1
|
Seifi Moroudi R, Ansari Mahyari S, Vaez Torshizi R, Lanjanian H, Masoudi-Nejad A. Identification of new genes and quantitative trait locis associated with growth curve parameters in F2 chicken population using genome-wide association study. Anim Genet 2021; 52:171-184. [PMID: 33428266 DOI: 10.1111/age.13038] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/26/2020] [Indexed: 11/30/2022]
Abstract
The markers which are correlated with the growth curve parameters help in understanding the characteristics of individual growth during the rearing of livestock. This study aimed to identify a set of biomarkers through a GWAS for growth curve parameters in crossbred chickens using the Illumnia 60K chicken SNP Beadchip. Growth data were collected from a total of 301 birds from cross of a broiler line and native chickens. Using the Gompertz-Laird model, two growth curve parameters, the instantaneous growth rate per day (L) and the coefficient of relative growth or maturing index (k), were estimated. The L and k were used to estimate five derived parameters, namely asymptotic (mature) body weight, body weight at inflection point, age at the inflection point, average growth rate and maximum growth rate. These parameters were considered as phenotypic values in the GWAS based on generalized linear models. The results of the GWAS indicated 21 significant markers, which were located near or within 46 genes. A number of these genes, such as GH, RET, GRB14, FTSJ3 and CCK, are important for growth and meat quality in chickens, and some of them are growth related in other species such as sheep and cattle (GPI, XIRP2, GALNTL6, BMS1, THSD4, TRHDE, SHISA9, ACSL6 and DYNC1LI2). The other genes are associated with developmental biological pathways. These genes are particuarly related to body weight, average daily gain and growth QTL. The results of this study can shed light on the genetic mechanism of biological functions of growth factors in broiler chickens, which is useful for developing management practices and accelerating genetic progress in breeding programs.
Collapse
Affiliation(s)
- R Seifi Moroudi
- Department of Animal Science, College of Agriculture, Isfahan University of Technology, PO Box 841583111, Isfahan, Iran
| | - S Ansari Mahyari
- Department of Animal Science, College of Agriculture, Isfahan University of Technology, PO Box 841583111, Isfahan, Iran
| | - R Vaez Torshizi
- Department of Animal Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, 14115-336, Iran
| | - H Lanjanian
- Laboratory of Systems Biology and Bioinformatics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, 1417614411, Iran
| | - A Masoudi-Nejad
- Laboratory of Systems Biology and Bioinformatics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, 1417614411, Iran
| |
Collapse
|
2
|
Corneal Epithelial-Stromal Fibroblast Constructs to Study Cell-Cell Communication in Vitro. Bioengineering (Basel) 2019; 6:bioengineering6040110. [PMID: 31817298 PMCID: PMC6956392 DOI: 10.3390/bioengineering6040110] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/27/2019] [Accepted: 12/02/2019] [Indexed: 12/11/2022] Open
Abstract
Cell–cell communication plays a fundamental role in mediating corneal wound healing following injury or infection. Depending on the severity of the wound, regeneration of the cornea and the propensity for scar development are influenced by the acute resolution of the pro-fibrotic response mediated by closure of the wound via cellular and tissue contraction. Damage of the corneal epithelium, basement membrane, and anterior stroma following a superficial keratectomy is known to lead to significant provisional matrix deposition, including secretion of fibronectin and thrombospondin-1, as well as development of a corneal scar. In addition, corneal wounding has previously been shown to promote release of extracellular vesicles from the corneal epithelium, which, in addition to soluble factors, may play a role in promoting tissue regeneration. In this study, we report the development and characterization of a co-culture system of human corneal epithelial cells and corneal stromal fibroblasts cultured for 4 weeks to allow extracellular matrix deposition and tissue maturation. The secretion of provisional matrix components, as well as small and large extracellular vesicles, was apparent within the constructs, suggesting cell–cell communication between epithelial and stromal cell populations. Laminin-1β was highly expressed by the corneal epithelial layer with the presence of notable patches of basement membrane identified by transmission electron microscopy. Interestingly, we identified expression of collagen type III, fibronectin, and thrombospondin-1 along the epithelial–stromal interface similar to observations seen in vivo following a keratectomy, as well as expression of the myofibroblast marker, α-smooth muscle actin, within the stroma. Our results suggest that this corneal epithelial–stromal model may be useful in the study of the biochemical phenomena that occur during corneal wound healing.
Collapse
|
3
|
Amyloid precursor protein and amyloid precursor-like protein 2 in cancer. Oncotarget 2017; 7:19430-44. [PMID: 26840089 PMCID: PMC4991393 DOI: 10.18632/oncotarget.7103] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 01/23/2016] [Indexed: 12/22/2022] Open
Abstract
Amyloid precursor protein (APP) and its family members amyloid precursor-like protein 1 (APLP1) and amyloid precursor-like protein 2 (APLP2) are type 1 transmembrane glycoproteins that are highly conserved across species. The transcriptional regulation of APP and APLP2 is similar but not identical, and the cleavage of both proteins is regulated by phosphorylation. APP has been implicated in Alzheimer's disease causation, and in addition to its importance in neurology, APP is deregulated in cancer cells. APLP2 is likewise overexpressed in cancer cells, and APLP2 and APP are linked to increased tumor cell proliferation, migration, and invasion. In this present review, we discuss the unfolding account of these APP family members’ roles in cancer progression and metastasis.
Collapse
|
4
|
Zheng T, Le Q, Hong J, Xu J. Comparison of human corneal cell density by age and corneal location: an in vivo confocal microscopy study. BMC Ophthalmol 2016; 16:109. [PMID: 27422394 PMCID: PMC4947260 DOI: 10.1186/s12886-016-0290-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 07/05/2016] [Indexed: 11/23/2022] Open
Abstract
Background Peripheral and central regions of the cornea are optically different and have different repair capacity and pathology. For this reason, we characterized the cellular morphology and quantified the cell density of the central and peripheral regions of the cornea with age. Methods Eighty healthy subjects were enrolled in the study and divided into four groups according to age: A (0–19 years), B (20–39 years), C (40–59 years), and D (>60 years). In vivo confocal microscopy was used to measure the following parameters for the central and peripheral regions of the cornea: average cellular density and area of the superficial and basal epithelium; average density of the anterior and posterior keratocytes; average endothelial cell density and cellular area; percentage of hexagonal endothelial cells. Results Statistically significant differences between the central and peripheral cornea were observed for the cellular density of basal epithelial cells in group A. The density of keratocytes in the anterior stroma was significantly greater in the central region compared with the peripheral region in group B and group C. The percentage of hexagonal cells in the endothelial layer was significantly greater in the central region compared with the peripheral region. Age-related changes were found in peripheral basal epithelial cell density, central and peripheral endothelial cell density, and the percentage of hexagonal endothelial cells. Conclusion Both similarities and differences in morphology of the central and peripheral regions of the transparent cornea were observed. These observations would provide a histological basis for further studies to define its regional pathological mechanisms.
Collapse
Affiliation(s)
- Tianyu Zheng
- Department of Ophthalmology, EYE and ENT Hospital of Fudan University, 83 Fenyang Road, Shanghai, 200031, China
| | - Qihua Le
- Department of Ophthalmology, EYE and ENT Hospital of Fudan University, 83 Fenyang Road, Shanghai, 200031, China
| | - Jiaxu Hong
- Department of Ophthalmology, EYE and ENT Hospital of Fudan University, 83 Fenyang Road, Shanghai, 200031, China
| | - Jianjiang Xu
- Department of Ophthalmology, EYE and ENT Hospital of Fudan University, 83 Fenyang Road, Shanghai, 200031, China.
| |
Collapse
|
5
|
Li G, Chen H, Cheng L, Zhao R, Zhao J, Xu Y. Amyloid precursor-like protein 2 C-terminal fragments upregulate S100A9 gene and protein expression in BV2 cells. Neural Regen Res 2014; 9:1923-8. [PMID: 25558244 PMCID: PMC4281433 DOI: 10.4103/1673-5374.145362] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2014] [Indexed: 11/16/2022] Open
Abstract
The murine microglial cell line BV2 has neuroprotective effects, but is toxic to neurons by secreting inflammatory cytokines, and is an important target in the treatment of nerve inflammation and neurodegenerative diseases. In the present study, we observed the effects of transfecting three amyloid precursor-like protein 2 (APLP2) C-terminal fragments (CTFs; C57, C50 and C31) in the pEGFP-N1 vector on S100A9 expression in BV2 cells. Reverse transcription-PCR, western blot assay and immunocytochemistry revealed that S100A9 protein and mRNA expression was greater in BV2 cells after CTF transfection than after mock transfection with an empty vector. Furthermore, transfection of full-length APLP2-751 resulted in low levels of S100A9 protein expression. Our results show that APLP2-CTFs upregulate S100A9 protein and mRNA expression in BV2 cells, and identify a novel pathway involved in neuronal injury and apoptosis, and repair and protection in Alzheimer's disease.
Collapse
Affiliation(s)
- Guangzhe Li
- Department of Psychology, Yanbian Brain Hospital, Yanji, Jilin Province, China
| | - Hui Chen
- Department of Preventive Medicine, Medical College, Yanbian University, Yanji, Jilin Province, China
| | - Lin Cheng
- Department of Preventive Medicine, Medical College, Yanbian University, Yanji, Jilin Province, China
| | - Rongjie Zhao
- Department of Pharmacology, Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Junchang Zhao
- Department of Pharmacology, Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Yanji Xu
- Department of Preventive Medicine, Medical College, Yanbian University, Yanji, Jilin Province, China
| |
Collapse
|
6
|
Lee B, Kim TH, Jun JB, Yoo DH, Woo JH, Choi SJ, Lee YH, Song GG, Sohn J, Park-Min KH, Ivashkiv LB, Ji JD. Direct inhibition of human RANK+ osteoclast precursors identifies a homeostatic function of IL-1beta. THE JOURNAL OF IMMUNOLOGY 2010; 185:5926-34. [PMID: 20935210 DOI: 10.4049/jimmunol.1001591] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
IL-1β is a key mediator of bone resorption in inflammatory settings, such as rheumatoid arthritis (RA). IL-1β promotes osteoclastogenesis by inducing RANKL expression on stromal cells and synergizing with RANKL to promote later stages of osteoclast differentiation. Because IL-1Rs share a cytosolic Toll-IL-1R domain and common intracellular signaling molecules with TLRs that can directly inhibit early steps of human osteoclast differentiation, we tested whether IL-1β also has suppressive properties on osteoclastogenesis in primary human peripheral blood monocytes and RA synovial macrophages. Early addition of IL-1β, prior to or together with RANKL, strongly inhibited human osteoclastogenesis as assessed by generation of TRAP(+) multinucleated cells. IL-1β acted directly on human osteoclast precursors (OCPs) to strongly suppress expression of RANK, of the costimulatory triggering receptor expressed on myeloid cells 2 receptor, and of the B cell linker adaptor important for transmitting RANK-induced signals. Thus, IL-1β rendered early-stage human OCPs refractory to RANK stimulation. Similar inhibitory effects of IL-1β were observed using RA synovial macrophages. One mechanism of RANK inhibition was IL-1β-induced proteolytic shedding of the M-CSF receptor c-Fms that is required for RANK expression. These results identify a homeostatic function of IL-1β in suppressing early OCPs that contrasts with its well-established role in promoting later stages of osteoclast differentiation. Thus, the rate of IL-1-driven bone destruction in inflammatory diseases, such as RA, can be restrained by its direct inhibitory effects on early OCPs to limit the extent of inflammatory osteolysis.
Collapse
Affiliation(s)
- Bitnara Lee
- Hospital for Rheumatic Diseases, Hanyang University, South Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Jacobsen KT, Adlerz L, Multhaup G, Iverfeldt K. Insulin-like growth factor-1 (IGF-1)-induced processing of amyloid-beta precursor protein (APP) and APP-like protein 2 is mediated by different metalloproteinases. J Biol Chem 2010; 285:10223-31. [PMID: 20139073 DOI: 10.1074/jbc.m109.038224] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
alpha-Secretase cleavage of the amyloid precursor protein (APP) is of great interest because it prevents the formation of the Alzheimer-linked amyloid-beta peptide. APP belongs to a conserved gene family including the two paralogues APP-like protein (APLP) 1 and 2. Insulin-like growth factor-1 (IGF-1) stimulates the shedding of all three proteins. IGF-1-induced shedding of both APP and APLP1 is dependent on phosphatidylinositol 3-kinase (PI3-K), whereas APLP2 shedding is independent of this signaling pathway. Here, we used human neuroblastoma SH-SY5Y cells to investigate the involvement of protein kinase C (PKC) in the proteolytic processing of endogenously expressed members of the APP family. Processing was induced by IGF-1 or retinoic acid, another known stimulator of APP alpha-secretase shedding. Our results show that stimulation of APP and APLP1 processing involves multiple signaling pathways, whereas APLP2 processing is mainly dependent on PKC. Next, we wanted to investigate whether the difference in the regulation of APLP2 shedding compared with APP shedding could be due to involvement of different processing enzymes. We focused on the two major alpha-secretase candidates ADAM10 and TACE, which both are members of the ADAM (a disintegrin and metalloprotease) family. Shedding was analyzed in the presence of the ADAM10 inhibitor GI254023X, or after transfection with small interfering RNAs targeted against TACE. The results clearly demonstrate that different alpha-secretases are involved in IGF-1-induced processing. APP is mainly cleaved by ADAM10, whereas APLP2 processing is mediated by TACE. Finally, we also show that IGF-1 induces PKC-dependent phosphorylation of TACE.
Collapse
Affiliation(s)
- Kristin T Jacobsen
- Department of Neurochemistry, Stockholm University, SE10691 Stockholm, Sweden
| | | | | | | |
Collapse
|
8
|
Yin J, Yu FSX. ERK1/2 mediate wounding- and G-protein-coupled receptor ligands-induced EGFR activation via regulating ADAM17 and HB-EGF shedding. Invest Ophthalmol Vis Sci 2008; 50:132-9. [PMID: 18658095 DOI: 10.1167/iovs.08-2246] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
PURPOSE Previous studies have shown that wounding of human corneal epithelial cells (HCECs) results in the release of G-protein-coupled receptor ligands such as ATP and lysophosphatidic acid (LPA), which in turn transactivate epidermal growth factor (EGF) receptor (EGFR) through ectodomain shedding of heparin-binding EGF-like growth factor (HB-EGF). In the present study, the role of extracellular signal-regulated kinases 1/2 (ERK1/2) in regulating EGFR transactivation was investigated. METHODS SV40-immortalized HCECs were wounded or stimulated with ATP and LPA. EGFR and ADAM17 activation was analyzed by immunoprecipitation followed by Western blot analysis with phospho-tyrosine or phospho-serine antibodies, respectively. Phosphorylation of ERK and AKT was analyzed by Western blot analysis. HB-EGF shedding was assessed by measuring the release of alkaline phosphatase (AP) in a stably transfected human corneal epithelial (THCE) cell line expressing HB-EGF-AP. ADAM17 and ERK interaction was determined by coimmunoprecipitation. RESULTS Early, but not late, ERK1/2 phosphorylation in response to wounding, LPA, and ATP was EGFR independent, but sensitive to the inhibitors of calcium influx, protein kinase C and Src kinase. Wounding-, LPA-, and ATP-induced HB-EGF shedding and EGFR activation were attenuated by the MAPK/ERK kinase (MEK) inhibitors PD98059 and U0126, as well as by ADAM10 and -17 inhibitors. ADAM17 was found to be physically associated with active ERK and phosphorylated at serine residues in an ERK-dependent manner in wounded cells. CONCLUSIONS Taken together, our data suggest that in addition to functioning as an EGFR downstream effector, ERK1/2 also mediates ADAM-dependent HB-EGF shedding and subsequent EGFR transactivation in response to a variety of stimuli, including wounding and GPCR ligands.
Collapse
Affiliation(s)
- Jia Yin
- Department of Ophthalmology, Kresge Eye Institute, Wayne State University School of Medicine, 4717 St. Antoine Boulevard, Detroit, MI 48201, USA
| | | |
Collapse
|
9
|
Sonoda K, Miyamoto S, Yamazaki A, Kobayashi H, Nakashima M, Mekada E, Wake N. Biologic significance of receptor-binding cancer antigen expressed on SiSo cells (RCAS1) as a pivotal regulator of tumor growth through angiogenesis in human uterine cancer. Cancer 2007; 110:1979-90. [PMID: 17849467 DOI: 10.1002/cncr.23015] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND The expression of receptor-binding cancer antigen expressed on SiSo cells (RCAS1) is related significantly to the overall survival of patients with various cancers. RCAS1 reportedly induces apoptotic cell death in peripheral lymphocytes, which may contribute to the escape of tumor cells from immune surveillance. RCAS1 expression also has been related to tumor invasiveness and size in uterine cervical cancer. To clarify whether RCAS1 exacerbates tumor progression, the authors investigated the association between RCAS1 expression and tumor growth potential. METHODS The authors constructed small interfering ribonucleic acid (RNA) (siRNA) to target RCAS1. After transfection of siRNA and the RCAS1-encoding gene, growth of tumor cells was assessed in vitro and in vivo. The correlation between RCAS1 expression and angiogenesis was investigated in the transfected cells and in inoculated tumors from nude mice. In addition, the same association was investigated immunohistochemically with tissue samples from patients with uterine cervical cancer. RESULTS Knockdown of RCAS1 expression by siRNA significantly suppressed the in vivo growth of SiSo and HOUA tumor cells (P < .005); however, in vitro cell growth was not affected significantly. Enhanced RCAS1 expression significantly promoted in vivo growth, but not in vitro growth, of tumors derived from COS-7 cells (P = .0039). Introduction of the RCAS1-encoding gene increased expression of vascular endothelial growth factor (VEGF). In uterine cervical cancer, RCAS1 expression was associated significantly with VEGF expression (P = .0407) and with microvessel density (P = .0108). CONCLUSIONS RCAS1 may be a pivotal regulator of tumor growth through angiogenesis. Continued exploration of the biologic function of RCAS1 may allow the development of novel therapeutic strategies for uterine cancer.
Collapse
MESH Headings
- Animals
- Antigens, Neoplasm/metabolism
- Blotting, Western
- COS Cells
- Cell Line, Tumor
- Cell Proliferation
- Chlorocebus aethiops
- Female
- Flow Cytometry
- Gene Expression
- Humans
- Immunohistochemistry
- Mice
- Mice, Nude
- Neoplasms, Experimental/blood supply
- Neoplasms, Experimental/metabolism
- Neoplasms, Experimental/pathology
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- RNA, Small Interfering
- Reverse Transcriptase Polymerase Chain Reaction
- Uterine Neoplasms/blood supply
- Uterine Neoplasms/metabolism
- Uterine Neoplasms/pathology
- Vascular Endothelial Growth Factor A/metabolism
Collapse
Affiliation(s)
- Kenzo Sonoda
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | | | | | | | | | | | | |
Collapse
|
10
|
Adlerz L, Holback S, Multhaup G, Iverfeldt K. IGF-1-induced Processing of the Amyloid Precursor Protein Family Is Mediated by Different Signaling Pathways. J Biol Chem 2007; 282:10203-9. [PMID: 17301053 DOI: 10.1074/jbc.m611183200] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mammalian amyloid precursor protein (APP) protein family consists of the APP and the amyloid precursor-like proteins 1 and 2 (APLP1 and APLP2). The neurotoxic amyloid beta-peptide (Abeta) originates from APP, which is the only member of this protein family implicated in Alzheimer disease. However, the three homologous proteins have been proposed to be processed in similar ways and to have essential and overlapping functions. Therefore, it is also important to take into account the effects on the processing and function of the APP-like proteins in the development of therapeutic drugs aimed at decreasing the production of Abeta. Insulin and insulin-like growth factor-1 (IGF-1) have been shown to regulate APP processing and the levels of Abeta in the brain. In the present study, we show that IGF-1 increases alpha-secretase processing of endogenous APP and also increases ectodomain shedding of APLP1 and APLP2 in human SH-SY5Y neuroblastoma cells. We also investigated the role of different IGF-1-induced signaling pathways, using specific inhibitors for phosphatidylinositol 3-kinase and mitogen-activated protein kinase (MAPK). Our results indicate that phosphatidylinositol 3-kinase is involved in ectodomain shedding of APP and APLP1, but not APLP2, and that MAPK is involved only in the ectodomain shedding of APLP1.
Collapse
Affiliation(s)
- Linda Adlerz
- Department of Neurochemistry, Stockholm University, SE-10691 Stockholm, Sweden
| | | | | | | |
Collapse
|
11
|
Cosen-Binker LI, Lam PPL, Binker MG, Gaisano HY. Alcohol-induced protein kinase Calpha phosphorylation of Munc18c in carbachol-stimulated acini causes basolateral exocytosis. Gastroenterology 2007; 132:1527-45. [PMID: 17408632 DOI: 10.1053/j.gastro.2007.01.042] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Accepted: 01/04/2007] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Acute or chronic alcohol treatment does little to the exocrine pancreas but predisposes the pancreas to postprandial cholinergic stimulation that triggers cellular events leading to pancreatitis. This alcohol-induced susceptibility mechanism of pancreatitis is unknown. METHODS We employed alcohol-treated dispersed rat pancreatic acini and alcohol diet-fed rats to examine the effects of submaximal carbachol-induced changes in exocytosis (FM1-43 epifluorescence imaging and electron microscopy), Munc18c cellular translocation (confocal microscopy and subcellular fractionation), and protein kinase C (PKC) alpha-induced phosphorylation in relation to pancreatitis. RESULTS Acute low-dose alcohol (20 mmol/L) in vitro exposure or chronic alcohol diet reduces postprandial cholinergic-stimulated amylase secretion from rat pancreatic acinar cells by blocking apical exocytosis and redirecting exocytosis to less efficient basolateral plasma membrane sites. This ectopic exocytosis is mediated by PKCalpha-induced phosphorylation of Munc18c, causing Munc18c displacement from the basolateral plasma membrane into the cytosol in which it undergoes proteolytic degradation; these processes can be blocked by PKCalpha inhibition. CONCLUSIONS We conclude that sequential low-dose alcohol and postprandial cholinergic stimulation can induce PKCalpha-mediated Munc18c plasma membrane displacement. This relieves cognate SNARE proteins on zymogen granules and basolateral membrane to complex and consummate pathologic ectopic exocytosis at the basolateral surface. This change in vesicle trafficking may be related to the pathogenesis of pancreatitis.
Collapse
Affiliation(s)
- Laura I Cosen-Binker
- Department of Medicine, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
12
|
Cosen-Binker LI, Lam PPL, Binker MG, Reeve J, Pandol S, Gaisano HY. Alcohol/cholecystokinin-evoked pancreatic acinar basolateral exocytosis is mediated by protein kinase C alpha phosphorylation of Munc18c. J Biol Chem 2007; 282:13047-58. [PMID: 17324928 DOI: 10.1074/jbc.m611132200] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The pancreatic acinus is the functional unit of the exocrine pancreas whose role is to secrete zymogens into the gut lumen for food digestion via apical exocytosis. We previously reported that supramaximal CCK induced apical blockade and redirected exocytosis to ectopic sites on the basolateral plasma membrane (BPM) of this polarized cell, leading to pancreatitis. Basolateral exocytosis was mediated by protein kinase C phosphorylation of BPM Munc18c, causing its displacement into the cytosol and activation of BPM-bound Syntaxin-4 to form a SNARE complex. To mimic the conditions of alcoholic pancreatitis, we now examined whether 20 mm alcohol followed by submaximal CCK might mimic supramaximal CCK in inducing these pathologic exocytotic events. We show that a non-secretory but clinically relevant alcohol concentration (20 mm) inhibited submaximal CCK (50 pM)-stimulated amylase secretion by blocking apical exocytosis and redirecting exocytosis to less efficient BPM, indeed mimicking supramaximal CCK (10 nM) stimulation. We further demonstrate that basolateral exocytosis caused by both stimulation protocols is mediated by PKC alpha-induced phosphorylation of Munc18c: 1) PKC alpha is activated, which binds and induces phosphorylation of PM-Munc18c at a Thr site, and these events can be inhibited by PKC alpha blockade; 2) PKC alpha inhibition blocks Munc18c displacement from the BPM; 3) PKC alpha inhibition prevents basolateral exocytosis but does not rescue apical exocytosis. We conclude that 20 mm alcohol/submaximal CCK as well supramaximal CCK stimulation can trigger pathologic basolateral exocytosis in pancreatic acinar cells via PKC alpha-mediated activation of Munc18c, which enables Syntaxin-4 to become receptive in forming a SNARE complex in the BPM; and we further postulate this to be an underlying mechanism contributing to alcoholic pancreatitis.
Collapse
Affiliation(s)
- Laura I Cosen-Binker
- Department of Medicine, University Health Network, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | | | | | | | | |
Collapse
|
13
|
Sonoda K, Miyamoto S, Hirakawa T, Yagi H, Yotsumoto F, Nakashima M, Watanabe T, Nakano H. Clinical significance of RCAS1 as a biomarker of uterine cancer. Gynecol Oncol 2006; 103:924-31. [PMID: 16842844 DOI: 10.1016/j.ygyno.2006.05.047] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2006] [Revised: 05/22/2006] [Accepted: 05/24/2006] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Expression of RCAS1 (receptor-binding cancer antigen expressed on SiSo cells) is associated with prognosis of various malignancies including uterine cancer. Proteolytic cleavage of RCAS1 at extracellular domains (ectodomain shedding) yields soluble RCAS1. Although RCAS1 can induce apoptosis in normal peripheral lymphocytes, its biologic function in cancer patients is unclear. Here, we evaluated serum RCAS1 concentrations to clarify its biologic activity in uterine cancer. METHODS Via ELISA, we measured serum RCAS1 concentrations in samples from 54 healthy blood donors and 113 patients-63 with cervical cancer and 50 with endometrial cancer. We also counted the peripheral lymphocyte number. We correlated via statistical means the RCAS1 values with patients' clinicopathologic variables. We assessed inhibition of growth of K562 cells, which express the putative RCAS1 receptor, via WST-1 assay of serum samples to clarify RCAS1's biologic activity. RESULTS Uterine cancer patients had significantly higher serum RCAS1 concentrations than did healthy blood donors (P<0.05). Patients with adenocarcinoma had significantly higher RCAS1 concentrations than did those with squamous cell carcinoma (P=0.0340). RCAS1 values were also significantly associated with response to treatment (P<0.001). FasL and TNF-alpha serum concentrations were not significantly different for the different groups, however. The WST-1 assay showed that patients' serum induced K562 cell growth inhibition, but this effect partially recovered after immunodepletion of RCAS1. Peripheral lymphocyte number and serum RCAS1 concentration were inversely related (P=0.0310). CONCLUSION RCAS1 may be a biomarker of uterine cancer because of its potential to predict results of uterine cancer treatment and inhibit growth of immune cells.
Collapse
MESH Headings
- Adenocarcinoma/blood
- Adenocarcinoma/diagnosis
- Adenocarcinoma/pathology
- Adenocarcinoma, Clear Cell/blood
- Adenocarcinoma, Clear Cell/diagnosis
- Adenocarcinoma, Clear Cell/pathology
- Antigens, Neoplasm/blood
- Biomarkers/blood
- Carcinoma, Endometrioid/blood
- Carcinoma, Endometrioid/diagnosis
- Carcinoma, Endometrioid/pathology
- Carcinoma, Squamous Cell/blood
- Carcinoma, Squamous Cell/diagnosis
- Carcinoma, Squamous Cell/pathology
- Case-Control Studies
- Cystadenocarcinoma, Serous/blood
- Cystadenocarcinoma, Serous/diagnosis
- Cystadenocarcinoma, Serous/pathology
- Endometrial Neoplasms/blood
- Endometrial Neoplasms/diagnosis
- Endometrial Neoplasms/pathology
- Enzyme-Linked Immunosorbent Assay
- Female
- Humans
- Middle Aged
- Neoplasm Staging
- Predictive Value of Tests
- Uterine Cervical Neoplasms/blood
- Uterine Cervical Neoplasms/diagnosis
- Uterine Cervical Neoplasms/pathology
Collapse
Affiliation(s)
- Kenzo Sonoda
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Endres K, Postina R, Schroeder A, Mueller U, Fahrenholz F. Shedding of the amyloid precursor protein-like protein APLP2 by disintegrin-metalloproteinases. FEBS J 2005; 272:5808-20. [PMID: 16279945 DOI: 10.1111/j.1742-4658.2005.04976.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cleavage of the amyloid precursor protein (APP) within the amyloid-beta (Abeta) sequence by the alpha-secretase prevents the formation of toxic Abeta peptides. It has been shown that the disintegrin-metalloproteinases ADAM10 and TACE (ADAM17) act as alpha-secretases and stimulate the generation of a soluble neuroprotective fragment of APP, APPsalpha. Here we demonstrate that the related APP-like protein 2 (APLP2), which has been shown to be essential for development and survival of mice, is also a substrate for both proteinases. Overexpression of either ADAM10 or TACE in HEK293 cells increased the release of neurotrophic soluble APLP2 severalfold. The strongest inhibition of APLP2 shedding in neuroblastoma cells was observed with an ADAM10-preferring inhibitor. Transgenic mice with neuron-specific overexpression of ADAM10 showed significantly increased levels of soluble APLP2 and its C-terminal fragments. To elucidate a possible regulatory mechanism of APLP2 shedding in the neuronal context, we examined retinoic acid-induced differentiation of neuroblastoma cells. Retinoic acid treatment of two neuroblastoma cell lines upregulated the expression of both APLP2 and ADAM10, thus leading to an increased release of soluble APLP2.
Collapse
Affiliation(s)
- Kristina Endres
- Institute of Biochemistry, Johannes Gutenberg-University Mainz, Germany
| | | | | | | | | |
Collapse
|
15
|
Holback S, Adlerz L, Iverfeldt K. Increased processing of APLP2 and APP with concomitant formation of APP intracellular domains in BDNF and retinoic acid-differentiated human neuroblastoma cells. J Neurochem 2005; 95:1059-68. [PMID: 16150056 DOI: 10.1111/j.1471-4159.2005.03440.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The amyloid precursor protein (APP) belongs to a conserved gene family, also including the amyloid precursor-like proteins, APLP1 and APLP2. We have previously shown that all members of the APP protein family are up-regulated upon retinoic acid (RA)-induced neuronal differentiation of SH-SY5Y neuroblastoma cells. Here, we demonstrate that RA also affects the processing of APLP2 and APP, as shown by increased shedding of both sAPLP2 and sAPPalpha, as well as elevated levels of the APP intracellular domains (AICDs). Brain-derived neurotrophic factor (BDNF) has been reported to induce APP promoter activity and RA induces expression of the tyrosine kinase receptor B (TrkB) in neuroblastoma cells. We show that the increase in shedding of both APLP2 and APP in response to RA is not mediated through the TrkB receptor. However, BDNF concomitant with RA increased the expression of APP even further. In addition, the secretion of sAPLP2 and sAPPalpha as well as the levels of AICDs were increased in response to BDNF. In contrast, the levels of membrane-bound APP C-terminal fragment C99 significantly decreased. Our results suggest that RA and BDNF shifts APP processing towards the alpha-secretase pathway. In addition, we show that RA and BDNF regulate N-linked glycosylation of APLP1.
Collapse
Affiliation(s)
- Sofia Holback
- Department of Neurochemistry, Stockholm University, Stockholm, Sweden
| | | | | |
Collapse
|
16
|
Sonoda K, Miyamoto S, Hirakawa T, Yagi H, Yotsumoto F, Nakashima M, Watanabe T, Nakano H. Invasive potency related to RCAS1 expression in uterine cervical cancer. Gynecol Oncol 2005; 99:189-98. [PMID: 16112176 DOI: 10.1016/j.ygyno.2005.06.061] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2004] [Revised: 06/16/2005] [Accepted: 06/22/2005] [Indexed: 11/25/2022]
Abstract
OBJECTIVES RCAS1 expression is significantly associated with clinical prognosis in various human cancers, which suggests that RCAS1 may be involved in acquisition of malignant phenotypes. To investigate the relationship between RCAS1 and one such characteristic, tumor invasiveness, we examined RCAS1 expression in cervical neoplasms ranging from the precancerous state to invasive cancer. METHODS RCAS1 expression was studied retrospectively via immunohistochemical methods. Samples consisted of biopsy tissue from 90 patients with intraepithelial neoplasia and resected tumor tissue from 154 patients with invasive cancer. Statistical analysis was done to correlate RCAS1 expression and clinicopathologic variables in patients with a depth of cancer cell invasion into stromal tissue of >5 mm. RESULTS RCAS1 expression was detected in patients with intraepithelial cancer and invasive cancer but not in patients with dysplasia. The occurrence and degree of RCAS1 expression increased with the depth of invasion. In patients with invasive cancer, RCAS1 overexpression was significantly correlated with invasion of the lymph-vascular space, lymph node metastasis in two or more sites, and tumor volume; RCAS1 expression was not associated with histologic subtype. Overall survival rates for patients with RCAS1 overexpression were significantly shorter than those for patients without RCAS1 overexpression. In connective tissue surrounding tumor cells, the number of cells expressing vimentin significantly decreased in relation to RCAS1 expression level. Moreover, significant associations between expression levels of RCAS1 and those of MMP-1 and laminin-5 were found. CONCLUSION RCAS1 may contribute to acquisition of malignant uterine cervical phenotypic characteristics including invasion, metastasis, and tumor growth via connective tissue remodeling.
Collapse
Affiliation(s)
- Kenzo Sonoda
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Tsakadze NL, Sen U, Zhao Z, Sithu SD, English WR, D'Souza SE. Signals mediating cleavage of intercellular adhesion molecule-1. Am J Physiol Cell Physiol 2004; 287:C55-63. [PMID: 14973144 DOI: 10.1152/ajpcell.00585.2003] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
ICAM-1, a membrane-bound receptor, is released as soluble ICAM-1 in inflammatory diseases. To delineate mechanisms regulating ICAM-1 cleavage, studies were performed in endothelial cells (EC), human embryonic kidney (HEK)-293 cells transfected with wild-type (WT) ICAM-1, and ICAM-1 containing single tyrosine-to-alanine substitutions (Y474A, Y476A, and Y485A) in the cytoplasmic region. Tyrosine residues at 474 and 485 become phosphorylated upon ICAM-1 ligation and associate with signaling modules. Cleavage was assessed by using an antibody against the cytoplasmic tail of ICAM-1, which recognizes intact ICAM-1 and the 7-kDa membrane-bound fragment remaining after cleavage. Cleavage in HEK-293 WT cells was accelerated by phorbol ester PMA, whereas in EC it was induced by tumor necrosis factor-alpha. In both cell types, a 7-kDa ICAM-1 remnant was detected. Tyrosine phosphatase inhibitors dephostatin and sodium orthovanadate augmented cleavage. PD-98059 (MEK kinase inhibitor), geldanamycin and PP2 (Src kinase inhibitors), and wortmannin (phosphatidylinositol 3-kinase inhibitor) dose-dependently inhibited cleavage in both cell types. SB-203580 (p38 inhibitor) was more effective in EC, and D609 (PLC inhibitor) mostly affected cleavage in HEK-293 cells. Cleavage was drastically decreased in Y474A and Y485A, whereas it was marginally reduced in Y476A. Surprisingly, phosphorylation was not detectable on the 7-kDa fragment of ICAM-1. These results implicate distinct pathways in the cleavage process and suggest a preferred signal transmission route for ICAM-1 shedding in the two cell systems tested. Tyrosine residues Y474 and Y485 within the cytoplasmic sequence of ICAM-1 regulate the cleavage process.
Collapse
Affiliation(s)
- Nina L Tsakadze
- Department of Physiology and Biophysics, University of Louisville, Health Sciences Center A-1115, Louisville, KY 40292, USA
| | | | | | | | | | | |
Collapse
|
18
|
Abstract
Multiple species of mucins are synthesized and secreted by corneal and conjunctival epithelial cells. These mucins are vital components of the tear film protecting the ocular surface from the external environment by providing a physical and chemical barrier. The release of mucins must be tightly regulated as both mucin overproduction and underproduction cause ocular surface disorders. Mucin production can be regulated by controlling mucin synthesis, mucin release, or proliferation of the cells that produce the mucin. This review will focus on the evidence demonstrating the control of the mechanisms responsible for production of mucins, their secretion, and corneal and conjunctival epithelia cell proliferation. By understanding these mechanisms under normal conditions, treatments can be designed for diseases of the mucous production of the ocular surface.
Collapse
Affiliation(s)
- Darlene A Dartt
- The Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, 20 Staniford Street, Boston, MA 02114, USA.
| |
Collapse
|
19
|
Adlerz L, Beckman M, Holback S, Tehranian R, Cortés Toro V, Iverfeldt K. Accumulation of the amyloid precursor-like protein APLP2 and reduction of APLP1 in retinoic acid-differentiated human neuroblastoma cells upon curcumin-induced neurite retraction. ACTA ACUST UNITED AC 2003; 119:62-72. [PMID: 14597230 DOI: 10.1016/j.molbrainres.2003.08.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Amyloid precursor protein (APP) belongs to a conserved gene family, also including the amyloid precursor-like proteins, APLP1 and APLP2. The function of these three proteins is not yet fully understood. One of the proposed roles of APP is to promote neurite outgrowth. The aim of this study was to investigate the regulation of the expression levels of APP family members during neurite outgrowth. We observed that retinoic acid (RA)-induced neuronal differentiation of human SH-SY5Y cells resulted in increased expression of APP, APLP1 and APLP2. We also examined the effect of the NFkappaB, AP-1 and c-Jun N-terminal kinase inhibitor curcumin (diferuloylmethane) on the RA-induced expression levels of these proteins. We found that treatment with curcumin counteracted the RA-induced mRNA expression of all APP family members. In addition, we observed that curcumin treatment resulted in neurite retraction without any effect on cell viability. Surprisingly, curcumin had differential effects on the APLP protein levels in RA-differentiated cells. RA-induced APLP1 protein expression was blocked by curcumin, while the APLP2 protein levels were further increased. APP protein levels were not affected by curcumin treatment. We propose that the sustained levels of APP and the elevated levels of APLP2, in spite of the reduced mRNA expression, are due to altered proteolytic processing of these proteins. Furthermore, our results suggest that APLP1 does not undergo the same type of regulated processing as APP and APLP2.
Collapse
Affiliation(s)
- Linda Adlerz
- Department of Neurochemistry and Neurotoxicology, Stockholm University, SE-10691 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
20
|
Fan H, Turck CW, Derynck R. Characterization of growth factor-induced serine phosphorylation of tumor necrosis factor-alpha converting enzyme and of an alternatively translated polypeptide. J Biol Chem 2003; 278:18617-27. [PMID: 12621058 DOI: 10.1074/jbc.m300331200] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Tumor necrosis factor-alpha converting enzyme (TACE) is a prototype member of the adamalysin family of transmembrane metalloproteases that effects ectodomain cleavage and release of many transmembrane proteins, including transforming growth factor-alpha. Growth factors that act through tyrosine kinase receptors, as well as other stimuli, induce shedding through activation of the Erk mitogen-activated protein (MAP) kinase pathway without the need of new protein synthesis. How MAP kinase regulates shedding by TACE is not known. We now report that the cytoplasmic domain of TACE is phosphorylated in response to growth factor stimulation. We also identified a naturally expressed smaller polypeptide corresponding to most of the cytoplasmic domain of TACE. This protein, which we named SPRACT, is derived through alternative translation of the TACE-coding sequence and is, similarly to TACE, phosphorylated in response to growth factor and phorbol 12-myristate 13-acetate stimulation. Phosphoamino acid analysis revealed that growth factor-induced phosphorylation of TACE occurs only on serine and not on threonine or tyrosine. Tryptic mapping experiments coupled with site-directed mutagenesis identified Ser(819) as the major target of growth factor-induced phosphorylation, whereas Ser(791) undergoes dephosphorylation in response to growth factor stimulation. The phosphorylation of Ser(819), but not the dephosphorylation of Ser(791), depends on activation of the Erk MAP kinase pathway. Increased SPRACT expression or mutation of the TACE cytoplasmic domain to inactivate growth factor-induced phosphorylation did not detectably affect growth factor-induced shedding of transmembrane transforming growth factor-alpha by TACE. The roles of SPRACT and the cytoplasmic phosphorylation of TACE remain to be defined.
Collapse
Affiliation(s)
- Huizhou Fan
- Department of Growth and Development, and Anatomy, Programs in Cell Biology and Developmental Biology, University of California, San Francisco, California 94143, USA.
| | | | | |
Collapse
|
21
|
Scheinfeld MH, Matsuda S, D'Adamio L. JNK-interacting protein-1 promotes transcription of A beta protein precursor but not A beta precursor-like proteins, mechanistically different than Fe65. Proc Natl Acad Sci U S A 2003; 100:1729-34. [PMID: 12563035 PMCID: PMC149901 DOI: 10.1073/pnas.0437908100] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Processing of the amyloid beta protein precursor (A beta PP) by the beta and gamma secretases leads to the production of two small peptides, amyloid beta and the A beta PP intracellular domain (AID, or called elsewhere AICD). Whereas the role of amyloid beta in the pathogenesis of Alzheimer's disease has been studied extensively, only recently has information begun to accumulate as to the role of AID. Functions identified for AID include its ability to trigger apoptosis and a role in regulating gene transcription, particularly in combination with the A beta PP binding protein Fe65. Here, we report that AID in combination with Janus kinase interacting protein-1 (JIP-1) can activate gene expression. We demonstrate that the mechanism is different from activation in combination with Fe65 by first showing that although Fe65 enters the nucleus in the absence of full-length A beta PP, JIP-1 does not. Additionally, JIP-1-induced activation is Tip60 independent, whereas a complex with AID, Fe65, and Tip60 is formed for Fe65-induced activation. Finally, and probably most interestingly, we show that although the A beta PP family members APLP1 and APLP2 (for amyloid beta precursor-like protein) can cause activation in combination with Fe65, APLP1 and APLP2 show little or no activation in combination with JIP-1. This activity for the AID fragment may help explain the unique functions of A beta PP relative to its other family members, and changes in gene expression found in Alzheimer's disease.
Collapse
Affiliation(s)
- Meir H Scheinfeld
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | |
Collapse
|
22
|
Hodges RR, Dartt DA. Regulatory pathways in lacrimal gland epithelium. INTERNATIONAL REVIEW OF CYTOLOGY 2003; 231:129-96. [PMID: 14713005 DOI: 10.1016/s0074-7696(03)31004-6] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Tears are a complex fluid that continuously cover the exposed surface of the eye, namely the cornea and conjunctiva. Tears are secreted in response to the multitude of environmental stresses that can harm the ocular surface such as cold, mechanical stimulation, physical injury, noxious chemicals, as well as infections from various organisms. Tears also provide nutrients and remove waste from cells of the ocular surface. Because of the varied function of tears, tears are complex and are secreted by several different tissues. Tear secretion is under tight neural control allowing tears to respond rapidly to changing environmental conditions. The lacrimal gland is the main contributor to the aqueous portion of the tear film and the regulation of secretion from this gland has been well studied. Despite multiple redundencies in pathways to stimulate secretion from the lacrimal gland, defects can occur resulting in dry eye syndromes. These diseases can have deleterious effects on vision. In this review, we summarize the latest information regarding the regulatory pathways, which control secretion from the lacrimal gland, and their roles in the pathogenesis of dry eye syndromes.
Collapse
Affiliation(s)
- Robin R Hodges
- Schepens Eye Research Institute and Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | |
Collapse
|
23
|
Scheinfeld MH, Ghersi E, Laky K, Fowlkes BJ, D'Adamio L. Processing of beta-amyloid precursor-like protein-1 and -2 by gamma-secretase regulates transcription. J Biol Chem 2002; 277:44195-201. [PMID: 12228233 DOI: 10.1074/jbc.m208110200] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The familial Alzheimer's disease gene product beta-amyloid (Abeta) precursor protein (APP) is processed by the beta- and gamma-secretases to produce Abeta as well as AID (APP Intracellular Domain) which is derived from the extreme carboxyl terminus of APP. AID was originally shown to lower the cellular threshold to apoptosis and more recently has been shown to modulate gene expression such that it represses Notch-dependent gene expression while in combination with Fe65 it enhances gene activation. Here we report that the two other members of the APP family, beta-amyloid precursor-like protein-1 and -2 (APLP1 and APLP2), are also processed by the gamma-secretase in a Presenilin 1-dependent manner. Furthermore, the extreme carboxyl-terminal fragments produced by this processing (here termed APP-like Intracellular Domain or ALID1 and ALID2) are able to enhance Fe65-dependent gene activation, similar to what has been reported for AID. Considering that only APP and not the APLPs have been linked to familial Alzheimer's disease (AD), this data should help in understanding the physiologic roles of the APP family members and in differentiating these functions from the pathologic role of APP in Alzheimer's disease.
Collapse
Affiliation(s)
- Meir H Scheinfeld
- Albert Einstein College of Medicine, Department of Microbiology and Immunology, Bronx, New York 10461, USA
| | | | | | | | | |
Collapse
|
24
|
Dello Sbarba P, Rovida E. Transmodulation of cell surface regulatory molecules via ectodomain shedding. Biol Chem 2002; 383:69-83. [PMID: 11928824 DOI: 10.1515/bc.2002.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Cell responses to exogenous stimuli often result in a rapid decrease of cell surface density of a wide range of diverse regulatory proteins, receptor and adhesion molecules in particular. This decrease may occur in a ligand-dependent fashion (down-regulation), following endocytosis and degradation by lysosomal proteases, or by down-modulation, where molecules are targeted by endoproteases directly on cell surface. These proteases are recruited by trans-modulating agents, different from ligand, which act via their own receptors and the related intracellularly-generated signals. Endoproteolytic activity determines the release of large portions (shedding) of substrate proteins, called ectodomains, which are usually not ligand-bound, and therefore represent biologically-active molecules. Ectodomain shedding is involved in a number of pathophysiological processes, such as inflammation, cell degeneration and apoptosis, and oncogenesis. Common features of the process, such as the involvement of protein kinase C and of transmembrane metalloproteases, have been identified. In this review, we summarize basic concepts on down-modulation and ectodomain shedding, and provide an update of the issue with respect to: (i) new entries to the list of molecules found involved in the process; (ii) current views about the upstream control of shedding, i.e. the pathways linking the signals triggered by the trans-modulating agents to the activation of endoproteolytic activity on the cell surface.
Collapse
Affiliation(s)
- Persio Dello Sbarba
- Dipartimento di Patologia e Oncologia Sperimentali, Università di Firenze, Italy
| | | |
Collapse
|