1
|
Chung JD, Porrello ER, Lynch GS. Muscle regeneration and muscle stem cells in metabolic disease. Free Radic Biol Med 2024:S0891-5849(24)01075-X. [PMID: 39581389 DOI: 10.1016/j.freeradbiomed.2024.11.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 11/05/2024] [Accepted: 11/15/2024] [Indexed: 11/26/2024]
Abstract
Skeletal muscle has a high regenerative capacity due to its resident adult muscle stem cells (MuSCs), which can repair damaged tissue by forming myofibres de novo. Stem cell dependent regeneration is critical for maintaining skeletal muscle health, and different conditions can draw heavily on MuSC support to preserve muscle function, including metabolic diseases such as diabetes. The global incidence and burden of diabetes is increasing, and skeletal muscle is critical for maintaining systemic metabolic homeostasis and improving outcomes for diabetic patients. Thus, poor muscle health in diabetes, termed diabetic myopathy, is an important complication that must be addressed. The health of MuSCs is also affected by diabetes, responsible for the poor muscle regenerative capacity and contributing to the functional decline in diabetic patients. Here, we review the impact of diabetes and metabolic disease on MuSCs and skeletal muscle, including potential mechanisms for impaired muscle regeneration and MuSC dysfunction, and how these deficits could be addressed.
Collapse
Affiliation(s)
- Jin D Chung
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne 3010, VIC, Australia; Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne 3052, VIC, Australia; Novo Nordisk Foundation Center for Stem Cell Medicine, Murdoch Children's Research Institute, Melbourne 3052, VIC, Australia
| | - Enzo R Porrello
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne 3010, VIC, Australia; Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne 3052, VIC, Australia; Novo Nordisk Foundation Center for Stem Cell Medicine, Murdoch Children's Research Institute, Melbourne 3052, VIC, Australia; Department of Paediatrics, The University of Melbourne, Melbourne 3010, VIC, Australia
| | - Gordon S Lynch
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne 3010, VIC, Australia.
| |
Collapse
|
2
|
Thomas NT, Confides AL, Fry CS, Dupont-Versteegden EE. Satellite cell depletion does not affect diaphragm adaptations to hypoxia. J Appl Physiol (1985) 2022; 133:637-646. [PMID: 35861521 PMCID: PMC9448290 DOI: 10.1152/japplphysiol.00083.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 07/01/2022] [Accepted: 07/13/2022] [Indexed: 01/25/2023] Open
Abstract
The diaphragm is the main skeletal muscle responsible for inspiration and is susceptible to age-associated decline in function and morphology. Satellite cells in diaphragm fuse into unperturbed muscle fibers throughout life, yet their role in adaptations to hypoxia in diaphragm is unknown. Given their continual fusion, we hypothesize that satellite cell depletion will negatively impact adaptations to hypoxia in the diaphragm, particularly with aging. We used the Pax7CreER/CreER:R26RDTA/DTA genetic mouse model of inducible satellite cell depletion to investigate diaphragm responses to hypoxia in adult (6 mo) and aged (22 mo) male mice. The mice were subjected to normobaric hypoxia at 10% [Formula: see text] or normoxia for 4 wk. We showed that satellite cell depletion had no effect on diaphragm muscle fiber cross-sectional area, fiber-type distribution, myonuclear density, or regulation of extracellular matrix in either adult or aged mice. Furthermore, we showed lower muscle fiber cross-sectional area with hypoxia and age (main effects), while extracellular matrix content was higher and satellite cell abundance was lower with age (main effect) in diaphragm. Lastly, a greater number of Pax3-mRNA+ cells was observed in diaphragm muscle of satellite cell-depleted mice independent of hypoxia (main effect), potentially as a compensatory mechanism for the loss of satellite cells. We conclude that satellite cells are not required for diaphragm muscle adaptations to hypoxia in either adult or aged mice.NEW & NOTEWORTHY Satellite cells show consistent fusion into diaphragm muscle fibers throughout life, suggesting a critical role in maintaining homeostasis. Here, we report identical diaphragm adaptations to hypoxia with and without satellite cells in adult and aged mice. In addition, we propose that the higher number of Pax3-positive cells in satellite cell-depleted diaphragm muscle acts as a compensatory mechanism.
Collapse
Affiliation(s)
- Nicholas T Thomas
- Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
- Department of Athletic Training and Clinical Nutrition, University of Kentucky, Lexington, Kentucky
| | - Amy L Confides
- Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
- Department of Physical Therapy, University of Kentucky, Lexington, Kentucky
| | - Christopher S Fry
- Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
- Department of Athletic Training and Clinical Nutrition, University of Kentucky, Lexington, Kentucky
| | - Esther E Dupont-Versteegden
- Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
- Department of Physical Therapy, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
3
|
Takemoto R, Sejima T, Han LK, Michihara S, Takahashi R. Disuse muscle atrophy-improving effect of ninjin'yoeito in a mouse model. Neuropeptides 2021; 90:102199. [PMID: 34610544 DOI: 10.1016/j.npep.2021.102199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 11/20/2022]
Abstract
Disuse syndrome indicates psychosomatic hypofunction caused by excess rest and motionless and muscle atrophy is termed disuse muscle atrophy. Disuse muscle atrophy-induced muscle weakness and hypoactivity further induces muscle atrophy, leading to a vicious cycle, and this is considered a factor causing secondary sarcopenia and subsequently frailty. Since frailty finally leads to a bedridden state requiring nursing, in facing a super-aging society, intervention for a risk factor of frailty, disuse muscle atrophy, is important. However, the main treatment of disuse muscle atrophy is physical therapy and there are fewer effective preventive and therapeutic drugs. The objective of this study was to search for Kampo medicine with a disuse muscle atrophy-improving effect. Ninjin'yoeito is classified as a qi-blood sohozai (dual supplement) in Chinese herbal medicine, and it has an action supplementing the spleen related to muscle. In addition, improvement of muscle mass and muscle weakness by ninjin'yoeito in a clinical study has been reported. In this study, the effect of ninjin'yoeito on disuse muscle atrophy was investigated. A disuse muscle atrophy model was prepared using male ICR mice. After surgery applying a ring for tail suspension, a 1-week recovery period was set. Ninjin'yoeito was administered by mixing it in the diet for 1 week after the recovery period, followed by tail suspension for 14 days. Ninjin'yoeito administration was continued until autopsy including the hindlimb suspension period. The mice were euthanized and autopsied immediately after completion of tail suspension, and the hindlimb muscles were collected. The food and water intakes during the hindlimb unloaded period, wet weight of the collected muscle, and muscle synthesis and muscle degradation-related factors in blood and muscle were evaluated. Ingestion of ninjin'yoeito inhibited tail suspension-induced reduction of the soleus muscle wet weight. In addition, an increase in the blood level of a muscle synthesis-related factor, IGF-1, and promotion of phosphorylation of mTOR and 4E-BP1 in the soleus muscle were observed. It was suggested that ninjin'yoeito has a disuse muscle atrophy-improving action. Promotion of the muscle synthesis pathway was considered the action mechanism of this.
Collapse
Affiliation(s)
- Risa Takemoto
- Kampo Research Laboratories, Kracie Pharma Ltd., 3-1 Kanebo machi, Takaoka, Toyama 933-0856, Japan.
| | - Takehiro Sejima
- Kampo Research Laboratories, Kracie Pharma Ltd., 3-1 Kanebo machi, Takaoka, Toyama 933-0856, Japan
| | - Li-Kun Han
- Kampo Research Laboratories, Kracie Pharma Ltd., 3-1 Kanebo machi, Takaoka, Toyama 933-0856, Japan
| | - Seiwa Michihara
- Kampo Research Laboratories, Kracie Pharma Ltd., 3-1 Kanebo machi, Takaoka, Toyama 933-0856, Japan
| | - Ryuji Takahashi
- Kampo Research Laboratories, Kracie Pharma Ltd., 3-1 Kanebo machi, Takaoka, Toyama 933-0856, Japan
| |
Collapse
|
4
|
Transcriptional responses of skeletal stem/progenitor cells to hindlimb unloading and recovery correlate with localized but not systemic multi-systems impacts. NPJ Microgravity 2021; 7:49. [PMID: 34836964 PMCID: PMC8626488 DOI: 10.1038/s41526-021-00178-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 10/27/2021] [Indexed: 12/12/2022] Open
Abstract
Disuse osteoporosis (DO) results from mechanical unloading of weight-bearing bones and causes structural changes that compromise skeletal integrity, leading to increased fracture risk. Although bone loss in DO results from imbalances in osteoblast vs. osteoclast activity, its effects on skeletal stem/progenitor cells (SSCs) is indeterminate. We modeled DO in mice by 8 and 14 weeks of hindlimb unloading (HU) or 8 weeks of unloading followed by 8 weeks of recovery (HUR) and monitored impacts on animal physiology and behavior, metabolism, marrow adipose tissue (MAT) volume, bone density and micro-architecture, and bone marrow (BM) leptin and tyrosine hydroxylase (TH) protein expression, and correlated multi-systems impacts of HU and HUR with the transcript profiles of Lin-LEPR+ SSCs and mesenchymal stem cells (MSCs) purified from BM. Using this integrative approach, we demonstrate that prolonged HU induces muscle atrophy, progressive bone loss, and MAT accumulation that paralleled increases in BM but not systemic leptin levels, which remained low in lipodystrophic HU mice. HU also induced SSC quiescence and downregulated bone anabolic and neurogenic pathways, which paralleled increases in BM TH expression, but had minimal impacts on MSCs, indicating a lack of HU memory in culture-expanded populations. Although most impacts of HU were reversed by HUR, trabecular micro-architecture remained compromised and time-resolved changes in the SSC transcriptome identified various signaling pathways implicated in bone formation that were unresponsive to HUR. These findings indicate that HU-induced alterations to the SSC transcriptome that persist after reloading may contribute to poor bone recovery.
Collapse
|
5
|
High-Molecular-Weight Polyphenol-Rich Fraction of Black Tea Does Not Prevent Atrophy by Unloading, But Promotes Soleus Muscle Mass Recovery from Atrophy in Mice. Nutrients 2019; 11:nu11092131. [PMID: 31500089 PMCID: PMC6770236 DOI: 10.3390/nu11092131] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 08/27/2019] [Accepted: 09/03/2019] [Indexed: 11/17/2022] Open
Abstract
Previously, we reported that polyphenol-rich fraction (named E80) promotes skeletal muscle hypertrophy induced by functional overload in mice. This study indicates that E80 has potential for affecting skeletal muscle mass. Then, we evaluate the effect of E80 on atrophic and recovery conditions of skeletal muscle in mice. Hindlimb suspension (unloading) and relanding (reloading) are used extensively to observe disuse muscle atrophy and subsequent muscle mass recovery from atrophy. Eight-week old C57BL/6 mice were fed either a normal diet or a diet containing 0.5% E80 for two weeks under conditions of hindlimb suspension and a subsequent 5 or 10 days of reloading. We found that E80 administration did not prevent atrophy during hindlimb suspension, but promoted recovery of slow-twitch (soleus) muscle mass from atrophy induced by hindlimb suspension. After five days of reloading, we discovered that phosphorylation of the Akt/mammalian target of rapamycin (mTOR) pathway proteins, such as Akt and P70 ribosomal protein S6 kinase (S6K), was activated in the muscle. Therefore, E80 administration accelerated mTOR signal and increased protein synthesis in the reloaded soleus muscle.
Collapse
|
6
|
Der Vartanian A, Chabanais J, Carrion C, Maftah A, Germot A. Downregulation of POFUT1 Impairs Secondary Myogenic Fusion Through a Reduced NFATc2/IL-4 Signaling Pathway. Int J Mol Sci 2019; 20:ijms20184396. [PMID: 31500188 PMCID: PMC6770550 DOI: 10.3390/ijms20184396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 08/26/2019] [Accepted: 09/05/2019] [Indexed: 12/25/2022] Open
Abstract
Past work has shown that the protein O-fucosyltransferase 1 (POFUT1) is involved in mammal myogenic differentiation program. Pofut1 knockdown (Po –) in murine C2C12 cells leads to numerous elongated and thin myotubes, suggesting significant defects in secondary fusion. Among the few pathways involved in this process, NFATc2/IL-4 is described as the major one. To unravel the impact of POFUT1 on secondary fusion, we used wild-type (WT) C2C12 and Po – cell lines to follow Myf6, Nfatc2, Il-4 and Il-4rα expressions during a 120 h myogenic differentiation time course. Secreted IL-4 was quantified by ELISA. IL-4Rα expression and its labeling on myogenic cell types were investigated by Western blot and immunofluorescence, respectively. Phenotypic observations of cells treated with IL-4Rα blocking antibody were performed. In Po –, we found a decrease in nuclei number per myotube and a downexpression of Myf6. The observed downregulation of Nfatc2 is correlated to a diminution of secreted IL-4 and to the low level of IL-4Rα for reserve cells. Neutralization of IL-4Rα on WT C2C12 promotes myonuclear accretion defects, similarly to those identified in Po –. Thus, POFUT1 could be a new controller of myotube growth during myogenesis, especially through NFATc2/IL-4 signaling pathway.
Collapse
Affiliation(s)
- Audrey Der Vartanian
- PEIRENE, EA 7500, Glycosylation et différenciation cellulaire, Université de Limoges, F-87000 Limoges, France
- present address: INSERM, IMRB U955-E10, Faculté de Médecine, Université Paris Est Créteil, F-94000 Créteil, France
| | - Julien Chabanais
- PEIRENE, EA 7500, Glycosylation et différenciation cellulaire, Université de Limoges, F-87000 Limoges, France
| | - Claire Carrion
- UMR CNRS 7276, Contrôle de la Réponse Immune et des Lymphoproliférations, Université de Limoges, F-87000 Limoges, France
| | - Abderrahman Maftah
- PEIRENE, EA 7500, Glycosylation et différenciation cellulaire, Université de Limoges, F-87000 Limoges, France
| | - Agnès Germot
- PEIRENE, EA 7500, Glycosylation et différenciation cellulaire, Université de Limoges, F-87000 Limoges, France
- Correspondence: ; Tel.: +33-(0)5-55-45-76-57
| |
Collapse
|
7
|
Chaillou T. Ribosome specialization and its potential role in the control of protein translation and skeletal muscle size. J Appl Physiol (1985) 2019; 127:599-607. [DOI: 10.1152/japplphysiol.00946.2018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The ribosome is typically viewed as a supramolecular complex with constitutive and invariant capacity in mediating translation of mRNA into protein. This view has been challenged by recent research revealing that ribosome composition could be heterogeneous, and this heterogeneity leads to functional ribosome specialization. This review presents the idea that ribosome heterogeneity results from changes in its various components, including variations in ribosomal protein (RP) composition, posttranslational modifications of RPs, changes in ribosomal-associated proteins, alternative forms of rRNA, and posttranscriptional modifications of rRNAs. Ribosome heterogeneity could be orchestrated at several levels and may depend on numerous factors, such as the subcellular location, cell type, tissue specificity, the development state, cell state, ribosome biogenesis, RP turnover, physiological stimuli, and circadian rhythm. Ribosome specialization represents a completely new concept for the regulation of gene expression. Specialized ribosomes could modulate several aspects of translational control, such as mRNA translation selectivity, translation initiation, translational fidelity, and translation elongation. Recent research indicates that the expression of Rpl3 is markedly increased, while that of Rpl3l is highly reduced during mouse skeletal muscle hypertrophy. Moreover, Rpl3l overexpression impairs the growth and myogenic fusion of myotubes. Although the function of Rpl3 and Rpl3l in the ribosome remains to be clarified, these findings suggest that ribosome specialization may be potentially involved in the control of protein translation and skeletal muscle size. Limited data concerning ribosome specialization are currently available in skeletal muscle. Future investigations have the potential to delineate the function of specialized ribosomes in skeletal muscle.
Collapse
Affiliation(s)
- Thomas Chaillou
- School of Health Sciences, Örebro University, Örebro, Sweden
| |
Collapse
|
8
|
Franco I, Fernandez-Gonzalo R, Vrtačnik P, Lundberg TR, Eriksson M, Gustafsson T. Healthy skeletal muscle aging: The role of satellite cells, somatic mutations and exercise. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 346:157-200. [DOI: 10.1016/bs.ircmb.2019.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
9
|
Majumder A, Singh M, George AK, Tyagi SC. Restoration of skeletal muscle homeostasis by hydrogen sulfide during hyperhomocysteinemia-mediated oxidative/ER stress condition 1. Can J Physiol Pharmacol 2018; 97:441-456. [PMID: 30422673 DOI: 10.1139/cjpp-2018-0501] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Elevated homocysteine (Hcy), i.e., hyperhomocysteinemia (HHcy), causes skeletal muscle myopathy. Among many cellular and metabolic alterations caused by HHcy, oxidative and endoplasmic reticulum (ER) stress are considered the major ones; however, the precise molecular mechanism(s) in this process is unclear. Nevertheless, there is no treatment option available to treat HHcy-mediated muscle injury. Hydrogen sulfide (H2S) is increasingly recognized as a potent anti-oxidant, anti-apoptotic/necrotic/pyroptotic, and anti-inflammatory compound and also has been shown to improve angiogenesis during ischemic injury. Patients with CBS mutation produce less H2S, making them vulnerable to Hcy-mediated cellular damage. Many studies have reported bidirectional regulation of ER stress in apoptosis through JNK activation and concomitant attenuation of cell proliferation and protein synthesis via PI3K/AKT axis. Whether H2S mitigates these detrimental effects of HHcy on muscle remains unexplored. In this review, we discuss molecular mechanisms of HHcy-mediated oxidative/ER stress responses, apoptosis, angiogenesis, and atrophic changes in skeletal muscle and how H2S can restore skeletal muscle homeostasis during HHcy condition. This review also highlights the molecular mechanisms on how H2S could be developed as a clinically relevant therapeutic option for chronic conditions that are aggravated by HHcy.
Collapse
Affiliation(s)
- Avisek Majumder
- a Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA.,b Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Mahavir Singh
- a Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA.,c Eye and Vision Science Laboratory, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Akash K George
- a Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA.,c Eye and Vision Science Laboratory, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Suresh C Tyagi
- a Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| |
Collapse
|
10
|
Madokoro S, Inaoka PT, Tanaka S, Yamazaki T. Effect of hindlimb unloading and reloading on the soleus and plantaris muscles in diabetic rats. J Phys Ther Sci 2018; 30:1150-1155. [PMID: 30214115 PMCID: PMC6127482 DOI: 10.1589/jpts.30.1150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 06/22/2018] [Indexed: 11/24/2022] Open
Abstract
[Purpose] This study aimed to induce disuse muscle atrophy in Goto-Kakizaki rats, a type
2 diabetes model, to investigate the effects of reloading on the soleus and plantaris
muscles. [Materials and Methods] Wistar and Goto-Kakizaki (GK) rats were divided into 6
groups: Wistar Control (WC), GK Control (GC), Wistar Tail suspension (WS), GK Tail
suspension (GS), and Wistar Reload (WR), GK Reload (GR). [Results] Investigation of
myofiber cross-sectional area in Goto-Kakizaki rat soleus muscles indicated that the GS
group showed significantly lower values than the GC and GR groups. No significant
differences were observed between the GC and GR groups. However, investigation of
plantaris muscles in Goto-Kakizaki rats indicated that the GS and GR groups showed a
significant decrease compared to the GC group. No significant differences were found
between the GS and GR groups. [Conclusion] Investigation of muscle weight/body weight
ratios and myofiber cross-sectional area in tail suspension groups confirmed the induction
of muscular atrophy. The differences in the degree of atrophy and recovery in terms of
myofiber cross-sectional area observed in Goto-Kakizaki rat plantaris muscles may be
influenced by the myofiber type and diabetes.
Collapse
Affiliation(s)
- Sachiko Madokoro
- Division of Health Sciences, Graduate School of Medical Science, Kanazawa University: 5-11-80 Kodatsuno, Kanazawa, lshikawa 920-0942, Japan
| | - Pleiades Tiharu Inaoka
- Division of Health Sciences, Graduate School of Medical Science, Kanazawa University: 5-11-80 Kodatsuno, Kanazawa, lshikawa 920-0942, Japan
| | - Shoji Tanaka
- Division of Health Sciences, Graduate School of Medical Science, Kanazawa University: 5-11-80 Kodatsuno, Kanazawa, lshikawa 920-0942, Japan
| | - Toshiaki Yamazaki
- Division of Health Sciences, Graduate School of Medical Science, Kanazawa University: 5-11-80 Kodatsuno, Kanazawa, lshikawa 920-0942, Japan
| |
Collapse
|
11
|
Kneppers A, Leermakers P, Pansters N, Backx E, Gosker H, van Loon L, Schols A, Langen R, Verdijk L. Coordinated regulation of skeletal muscle mass and metabolic plasticity during recovery from disuse. FASEB J 2018; 33:1288-1298. [PMID: 30133324 DOI: 10.1096/fj.201701403rrr] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Skeletal muscle regeneration after disuse is essential for muscle maintenance and involves the regulation of both mass- and metabolic plasticity-related processes. However, the relation between these processes during recovery from disuse remains unclear. In this study, we explored the potential interrelationship between the molecular regulation of muscle mass and oxidative metabolism during recovery from disuse. Molecular profiles were measured in biopsies from the vastus lateralis of healthy men after 1-leg cast immobilization and after 1 wk reloading, and in mouse gastrocnemius obtained before and after hindlimb suspension and during reloading (RL-1, -2, -3, -5, and -8 d). Cluster analysis of the human recovery response revealed correlations between myogenesis and autophagy markers in 2 clusters, which were distinguished by the presence of markers of early myogenesis, autophagosome formation, and mitochondrial turnover vs. markers of late myogenesis, autophagy initiation, and mitochondrial mass. In line with these findings, an early transient increase in B-cell lymphoma-2 interacting protein-3 and sequestosome-1 protein, and GABA type A receptor-associated protein like-1 protein and mRNA and a late increase in myomaker and myosin heavy chain-8 mRNA, microtubule-associated protein 1 light chain 3-II:I ratio, and FUN14 domain-containing-1 mRNA and protein were observed in mice. In summary, the regulatory profiles of protein, mitochondrial, and myonuclear turnover are correlated and temporally associated, suggesting a coordinated regulation of muscle mass- and oxidative metabolism-related processes during recovery from disuse.-Kneppers, A., Leermakers, P., Pansters, N., Backx, E., Gosker, H., van Loon, L., Schols, A., Langen, R., Verdijk, L. Coordinated regulation of skeletal muscle mass and metabolic plasticity during recovery from disuse.
Collapse
Affiliation(s)
- Anita Kneppers
- Department of Respiratory Medicine, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre+, Maastricht, The Netherlands; and
| | - Pieter Leermakers
- Department of Respiratory Medicine, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre+, Maastricht, The Netherlands; and
| | - Nicholas Pansters
- Department of Respiratory Medicine, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre+, Maastricht, The Netherlands; and
| | - Evelien Backx
- Department of Human Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Harry Gosker
- Department of Respiratory Medicine, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre+, Maastricht, The Netherlands; and
| | - Luc van Loon
- Department of Human Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Annemie Schols
- Department of Respiratory Medicine, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre+, Maastricht, The Netherlands; and
| | - Ramon Langen
- Department of Respiratory Medicine, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre+, Maastricht, The Netherlands; and
| | - Lex Verdijk
- Department of Human Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre+, Maastricht, The Netherlands
| |
Collapse
|
12
|
Brooks MJ, Hajira A, Mohamed JS, Alway SE. Voluntary wheel running increases satellite cell abundance and improves recovery from disuse in gastrocnemius muscles from mice. J Appl Physiol (1985) 2018; 124:1616-1628. [PMID: 29470148 PMCID: PMC6032091 DOI: 10.1152/japplphysiol.00451.2017] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 01/18/2018] [Accepted: 02/21/2018] [Indexed: 02/04/2023] Open
Abstract
Reloading of atrophied muscles after hindlimb suspension unloading (HSU) can induce injury and prolong recovery. Low-impact exercise, such as voluntary wheel running, has been identified as a nondamaging rehabilitation therapy in rodents, but its effects on muscle function, morphology, and satellite cell activity after HSU are unclear. This study tested the hypothesis that low-impact wheel running would increase satellite cell proliferation and improve recovery of muscle structure and function after HSU in mice. Young adult male and female C57BL/6 mice ( n = 6/group) were randomly placed into five groups. These included HSU without recovery (HSU), normal ambulatory recovery for 14 days after HSU (HSU+NoWR), and voluntary wheel running recovery for 14 days after HSU (HSU+WR). Two control groups were used: nonsuspended mouse cage controls (Control) and voluntary wheel running controls (ControlWR). Satellite cell activation was evaluated by providing mice 5-bromo-2'-deoxyuridine (BrdU) in their drinking water. As expected, HSU significantly reduced in vivo maximal force, decreased in vivo fatigability, and decreased type I and IIa myosin heavy chain (MHC) abundance in plantarflexor muscles. HSU+WR mice significantly improved plantarflexor fatigue resistance, increased type I and IIa MHC abundance, increased fiber cross-sectional area, and increased the percentage of type I and IIA muscle fibers in the gastrocnemius muscle. HSU+WR mice also had a significantly greater percentage of BrdU-positive and Pax 7-positive nuclei inside muscle fibers and a greater MyoD-to-Pax 7 protein ratio compared with HSU+NoWR mice. The mechanotransduction protein Yes-associated protein (YAP) was elevated with reloading after HSU, but HSU+WR mice had lower levels of the inactive phosphorylated YAPserine127, which may have contributed to increased satellite cell activation with reloading after HSU. These results indicate that voluntary wheel running increased YAP signaling and satellite cell activity after HSU and this was associated with improved recovery. NEW & NOTEWORTHY Although satellite cell involvement in muscle remodeling has been challenged, the data in this study suggest that voluntary wheel running increased satellite cell activity and suppressed Yes-associated protein (YAP) protein relative to no wheel running and this was associated with improved muscle recovery of force, fatigue resistance, expression of type I myosin heavy chain, and greater fiber cross-sectional area after disuse.
Collapse
Affiliation(s)
- Matthew J Brooks
- Laboratory of Muscle Biology and Sarcopenia, Division of Exercise Physiology, Department of Human Performance and Applied Exercise Science, West Virginia University School of Medicine , Morgantown, West Virginia
| | - Ameena Hajira
- Laboratory of Muscle Biology and Sarcopenia, Division of Exercise Physiology, Department of Human Performance and Applied Exercise Science, West Virginia University School of Medicine , Morgantown, West Virginia
| | - Junaith S Mohamed
- Laboratory of Muscle Biology and Sarcopenia, Division of Exercise Physiology, Department of Human Performance and Applied Exercise Science, West Virginia University School of Medicine , Morgantown, West Virginia
| | - Stephen E Alway
- Laboratory of Muscle Biology and Sarcopenia, Division of Exercise Physiology, Department of Human Performance and Applied Exercise Science, West Virginia University School of Medicine , Morgantown, West Virginia
- Department of Physical Therapy, College of Health Professions and Department of Physiology, College of Medicine, University of Tennessee Health Sciences Center , Memphis, Tennessee
| |
Collapse
|
13
|
Rubio-Solsona E, Martí S, Vílchez JJ, Palau F, Hoenicka J. ANKK1 is found in myogenic precursors and muscle fibers subtypes with glycolytic metabolism. PLoS One 2018; 13:e0197254. [PMID: 29758057 PMCID: PMC5951577 DOI: 10.1371/journal.pone.0197254] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 04/30/2018] [Indexed: 11/24/2022] Open
Abstract
Ankyrin repeat and kinase domain containing 1 (ANKK1) gene has been widely related to neuropsychiatry disorders. The localization of ANKK1 in neural progenitors and its correlation with the cell cycle has suggested its participation in development. However, ANKK1 functions still need to be identified. Here, we have further characterized the ANKK1 localization in vivo and in vitro, by using immunolabeling, quantitative real-time PCR and Western blot in the myogenic lineage. Histologic investigations in mice and humans revealed that ANKK1 is expressed in precursors of embryonic and adult muscles. In mice embryos, ANKK1 was found in migrating myotubes where it shows a polarized cytoplasmic distribution, while proliferative myoblasts and satellite cells show different isoforms in their nuclei and cytoplasm. In vitro studies of ANKK1 protein isoforms along the myogenic progression showed the decline of nuclear ANKK1-kinase until its total exclusion in myotubes. In adult mice, ANKK1 was expressed exclusively in the Fast-Twitch muscles fibers subtype. The induction of glycolytic metabolism in C2C12 cells with high glucose concentration or treatment with berberine caused a significant increase in the ANKK1 mRNA. Similarly, C2C12 cells under hypoxic conditions caused the increase of nuclear ANKK1. These results altogether show a relationship between ANKK1 gene regulation and the metabolism of muscles during development and in adulthood. Finally, we found ANKK1 expression in regenerative fibers of muscles from dystrophic patients. Future studies in ANKK1 biology and the pathological response of muscles will reveal whether this protein is a novel muscle disease biomarker.
Collapse
Affiliation(s)
- Estrella Rubio-Solsona
- CIBERER Biobank, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia, Spain
- Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Salvador Martí
- CIBERER Biobank, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia, Spain
| | - Juan J. Vílchez
- CIBERER Biobank, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia, Spain
- Department of Neurology, Hospital Universitari i Politècnic La Fe, Valencia, Spain
- Neuromuscular Research Unit, Instituto de Investigación Sanitaria la Fe (IIS La Fe), Valencia, Spain
- Department of Medicine, University of Valencia School of Medicine, Valencia, Spain
| | - Francesc Palau
- CIBERER Biobank, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia, Spain
- Centro de Investigación Príncipe Felipe, Valencia, Spain
- Department of Genetic and Molecular Medicine, Hospital Sant Joan de Déu, Barcelona, Spain
- Laboratory of Neurogenetics and Molecular Medicine, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- Division of Pediatrics, University of Barcelona School of Medicine, Barcelona, Spain
| | - Janet Hoenicka
- Centro de Investigación Príncipe Felipe, Valencia, Spain
- Laboratory of Neurogenetics and Molecular Medicine, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- CIBER de Salud Mental (CIBERSAM), Madrid, Spain
- * E-mail:
| |
Collapse
|
14
|
Disturbed Ca 2+ Homeostasis in Muscle-Wasting Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1088:307-326. [PMID: 30390258 DOI: 10.1007/978-981-13-1435-3_14] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Ca2+ is essential for proper structure and function of skeletal muscle. It not only activates contraction and force development but also participates in multiple signaling pathways. Low levels of Ca2+ restrain muscle regeneration by limiting the fusion of satellite cells. Ironically, sustained elevations of Ca2+ also result in muscle degeneration as this ion promotes high rates of protein breakdown. Moreover, transforming growth factors (TGFs) which are well known for controlling muscle growth also regulate Ca2+ channels. Thus, therapies focused on changing levels of Ca2+ and TGFs are promising for treating muscle-wasting disorders. Three principal systems govern the homeostasis of Ca2+, namely, excitation-contraction (EC) coupling, excitation-coupled Ca2+ entry (ECCE), and store-operated Ca2+ entry (SOCE). Accordingly, alterations in these systems can lead to weakness and atrophy in many hereditary diseases, such as Brody disease, central core disease (CCD), tubular aggregate myopathy (TAM), myotonic dystrophy type 1 (MD1), oculopharyngeal muscular dystrophy (OPMD), and Duchenne muscular dystrophy (DMD). Here, the interrelationship between all these molecules and processes is reviewed.
Collapse
|
15
|
Murach KA, Fry CS, Kirby TJ, Jackson JR, Lee JD, White SH, Dupont-Versteegden EE, McCarthy JJ, Peterson CA. Starring or Supporting Role? Satellite Cells and Skeletal Muscle Fiber Size Regulation. Physiology (Bethesda) 2018; 33:26-38. [PMID: 29212890 PMCID: PMC5866409 DOI: 10.1152/physiol.00019.2017] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 09/18/2017] [Accepted: 09/18/2017] [Indexed: 12/22/2022] Open
Abstract
Recent loss-of-function studies show that satellite cell depletion does not promote sarcopenia or unloading-induced atrophy, and does not prevent regrowth. Although overload-induced muscle fiber hypertrophy is normally associated with satellite cell-mediated myonuclear accretion, hypertrophic adaptation proceeds in the absence of satellite cells in fully grown adult mice, but not in young growing mice. Emerging evidence also indicates that satellite cells play an important role in remodeling the extracellular matrix during hypertrophy.
Collapse
Affiliation(s)
- Kevin A Murach
- The Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
- Department of Rehabilitation Sciences, College of Health Sciences, University of Kentucky, Lexington, Kentucky
| | - Christopher S Fry
- Department of Nutrition and Metabolism, School of Health Professions, University of Texas Medical Branch at Galveston, Galveston, Texas
| | - Tyler J Kirby
- The Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York
| | - Janna R Jackson
- The Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
- Department of Rehabilitation Sciences, College of Health Sciences, University of Kentucky, Lexington, Kentucky
| | - Jonah D Lee
- Environment, Health, and Safety, University of Michigan, Ann Arbor, Michigan
| | - Sarah H White
- Department of Animal Science, Texas A&M University, College Station, Texas; and
| | - Esther E Dupont-Versteegden
- The Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
- Department of Rehabilitation Sciences, College of Health Sciences, University of Kentucky, Lexington, Kentucky
| | - John J McCarthy
- The Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky
| | - Charlotte A Peterson
- The Center for Muscle Biology, University of Kentucky, Lexington, Kentucky;
- Department of Rehabilitation Sciences, College of Health Sciences, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
16
|
Alway SE, McCrory JL, Kearcher K, Vickers A, Frear B, Gilleland DL, Bonner DE, Thomas JM, Donley DA, Lively MW, Mohamed JS. Resveratrol Enhances Exercise-Induced Cellular and Functional Adaptations of Skeletal Muscle in Older Men and Women. J Gerontol A Biol Sci Med Sci 2017; 72:1595-1606. [PMID: 28505227 PMCID: PMC5861947 DOI: 10.1093/gerona/glx089] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 05/09/2017] [Indexed: 01/30/2023] Open
Abstract
Older men (n = 12) and women (n = 18) 65-80 years of age completed 12 weeks of exercise and took either a placebo or resveratrol (RSV) (500 mg/d) to test the hypothesis that RSV treatment combined with exercise would increase mitochondrial density, muscle fatigue resistance, and cardiovascular function more than exercise alone. Contrary to our hypothesis, aerobic and resistance exercise coupled with RSV treatment did not reduce cardiovascular risk further than exercise alone. However, exercise added to RSV treatment improved the indices of mitochondrial density, and muscle fatigue resistance more than placebo and exercise treatments. In addition, subjects that were treated with RSV had an increase in knee extensor muscle peak torque (8%), average peak torque (14%), and power (14%) after training, whereas exercise did not increase these parameters in the placebo-treated older subjects. Furthermore, exercise combined with RSV significantly improved mean fiber area and total myonuclei by 45.3% and 20%, respectively, in muscle fibers from the vastus lateralis of older subjects. Together, these data indicate a novel anabolic role of RSV in exercise-induced adaptations of older persons and this suggests that RSV combined with exercise might provide a better approach for reversing sarcopenia than exercise alone.
Collapse
Affiliation(s)
- Stephen E Alway
- Division of Exercise Physiology, Department of Human Performance and Applied Exercise Science, West Virginia University School of Medicine, Morgantown
- West Virginia Clinical and Translational Science Institute, Morgantown
- Center for Neuroscience, Morgantown, West Virginia
| | - Jean L McCrory
- Division of Exercise Physiology, Department of Human Performance and Applied Exercise Science, West Virginia University School of Medicine, Morgantown
- West Virginia Clinical and Translational Science Institute, Morgantown
| | - Kalen Kearcher
- Division of Exercise Physiology, Department of Human Performance and Applied Exercise Science, West Virginia University School of Medicine, Morgantown
- West Virginia Clinical and Translational Science Institute, Morgantown
| | - Austen Vickers
- Division of Exercise Physiology, Department of Human Performance and Applied Exercise Science, West Virginia University School of Medicine, Morgantown
- West Virginia Clinical and Translational Science Institute, Morgantown
| | - Benjamin Frear
- Division of Exercise Physiology, Department of Human Performance and Applied Exercise Science, West Virginia University School of Medicine, Morgantown
- West Virginia Clinical and Translational Science Institute, Morgantown
| | - Diana L Gilleland
- Division of Exercise Physiology, Department of Human Performance and Applied Exercise Science, West Virginia University School of Medicine, Morgantown
| | - Daniel E Bonner
- Division of Exercise Physiology, Department of Human Performance and Applied Exercise Science, West Virginia University School of Medicine, Morgantown
| | - James M Thomas
- Division of Exercise Physiology, Department of Human Performance and Applied Exercise Science, West Virginia University School of Medicine, Morgantown
| | - David A Donley
- Division of Exercise Physiology, Department of Human Performance and Applied Exercise Science, West Virginia University School of Medicine, Morgantown
| | - Mathew W Lively
- Division of Exercise Physiology, Department of Human Performance and Applied Exercise Science, West Virginia University School of Medicine, Morgantown
- Section of Rheumatology, Department of Medicine, West Virginia University School of Medicine, Morgantown
| | - Junaith S Mohamed
- Division of Exercise Physiology, Department of Human Performance and Applied Exercise Science, West Virginia University School of Medicine, Morgantown
- Center for Neuroscience, Morgantown, West Virginia
| |
Collapse
|
17
|
OKAMOTO T, MACHIDA S. Changes in FOXO and proinflammatory cytokines in the late stage of immobilized fast and slow muscle atrophy . Biomed Res 2017; 38:331-342. [DOI: 10.2220/biomedres.38.331] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
| | - Shuichi MACHIDA
- Graduate School of Health and Sports Science, Juntendo University
| |
Collapse
|
18
|
Itoh Y, Murakami T, Mori T, Agata N, Kimura N, Inoue-Miyazu M, Hayakawa K, Hirano T, Sokabe M, Kawakami K. Training at non-damaging intensities facilitates recovery from muscle atrophy. Muscle Nerve 2016; 55:243-253. [PMID: 27301985 DOI: 10.1002/mus.25218] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2016] [Indexed: 11/07/2022]
Abstract
INTRODUCTION Resistance training promotes recovery from muscle atrophy, but optimum training programs have not been established. We aimed to determine the optimum training intensity for muscle atrophy. METHODS Mice recovering from atrophied muscles after 2 weeks of tail suspension underwent repeated isometric training with varying joint torques 50 times per day. RESULTS Muscle recovery assessed by maximal isometric contraction and myofiber cross-sectional areas (CSAs) were facilitated at 40% and 60% maximum contraction strength (MC), but at not at 10% and 90% MC. At 60% and 90% MC, damaged and contained smaller diameter fibers were observed. Activation of myogenic satellite cells and a marked increase in myonuclei were observed at 40%, 60%, and 90% MC. CONCLUSIONS The increases in myofiber CSAs were likely caused by increased myonuclei formed through fusion of resistance-induced myofibers with myogenic satellite cells. These data indicate that resistance training without muscle damage facilitates efficient recovery from atrophy. Muscle Nerve 55: 243-253, 2017.
Collapse
Affiliation(s)
- Yuta Itoh
- Physical and Occupational Therapy Program, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Faculty of Rehabilitation Science, Nagoya Gakuin University, Seto, Japan
| | - Taro Murakami
- Faculty of Wellness, Shigakkan University, Ohbu, Japan
| | - Tomohiro Mori
- Physical and Occupational Therapy Program, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Nobuhide Agata
- Physical and Occupational Therapy Program, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Faculty of Health and Medical Sciences, Tokoha University, Hamamatsu, Japan
| | - Nahoko Kimura
- Aiche Medical College for Physical and Occupational Therapy, Kiyosu, Japan
| | | | - Kimihide Hayakawa
- Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takayuki Hirano
- Faculty of Rehabilitation Science, Nagoya Gakuin University, Seto, Japan
| | - Masahiro Sokabe
- Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Keisuke Kawakami
- Physical and Occupational Therapy Program, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Faculty of Welfare and Health Sciences, Oita University, Dannoharu 700, Oita City, 870-1192, Japan
| |
Collapse
|
19
|
Randolph ME, Phillips BL, Choo HJ, Vest KE, Vera Y, Pavlath GK. Pharyngeal Satellite Cells Undergo Myogenesis Under Basal Conditions and Are Required for Pharyngeal Muscle Maintenance. Stem Cells 2016; 33:3581-95. [PMID: 26178867 DOI: 10.1002/stem.2098] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 05/15/2015] [Accepted: 06/01/2015] [Indexed: 12/19/2022]
Abstract
The pharyngeal muscles of the nasal, oral, and laryngeal pharynxes are required for swallowing. Pharyngeal muscles are preferentially affected in some muscular dystrophies yet spared in others. Muscle stem cells, called satellite cells, may be critical factors in the development of pharyngeal muscle disorders; however, very little is known about pharyngeal satellite cells (PSC) and their role in pharyngeal muscles. We show that PSC are distinct from the commonly studied hindlimb satellite cells both transcriptionally and biologically. Under basal conditions PSC proliferate, progress through myogenesis, and fuse with pharyngeal myofibers. Furthermore, PSC exhibit biologic differences dependent on anatomic location in the pharynx. Importantly, PSC are required to maintain myofiber size and myonuclear number in pharyngeal myofibers. Together, these results demonstrate that PSC are critical for pharyngeal muscle maintenance and suggest that satellite cell impairment could contribute to pharyngeal muscle pathology associated with various muscular dystrophies and aging.
Collapse
Affiliation(s)
| | | | - Hyo-Jung Choo
- Department of Pharmacology, Emory University, Atlanta, Georgia, USA
| | - Katherine E Vest
- Department of Pharmacology, Emory University, Atlanta, Georgia, USA
| | - Yandery Vera
- Department of Pharmacology, Emory University, Atlanta, Georgia, USA
| | - Grace K Pavlath
- Department of Pharmacology, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
20
|
Mirzoev TM, Tyganov SA, Shenkman BS. Akt-dependent and Akt-independent pathways are involved in protein synthesis activation during reloading of disused soleus muscle. Muscle Nerve 2016; 55:393-399. [DOI: 10.1002/mus.25235] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 05/10/2016] [Accepted: 06/30/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Timur M. Mirzoev
- Myology Laboratory, Institute of Bio-Medical Problems of the Russian Academy of Sciences; 123007 Moscow Russian Federation
| | - Sergey A. Tyganov
- Myology Laboratory, Institute of Bio-Medical Problems of the Russian Academy of Sciences; 123007 Moscow Russian Federation
| | - Boris S. Shenkman
- Myology Laboratory, Institute of Bio-Medical Problems of the Russian Academy of Sciences; 123007 Moscow Russian Federation
| |
Collapse
|
21
|
Yokoyama S, Ohno Y, Egawa T, Yasuhara K, Nakai A, Sugiura T, Ohira Y, Yoshioka T, Okita M, Origuchi T, Goto K. Heat shock transcription factor 1-associated expression of slow myosin heavy chain in mouse soleus muscle in response to unloading with or without reloading. Acta Physiol (Oxf) 2016; 217:325-37. [PMID: 27084024 DOI: 10.1111/apha.12692] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 11/28/2015] [Accepted: 04/11/2016] [Indexed: 12/28/2022]
Abstract
AIM The effects of heat shock transcription factor 1 (HSF1) deficiency on the fibre type composition and the expression level of nuclear factor of activated T cells (NFAT) family members (NFATc1, NFATc2, NFATc3 and NFATc4), phosphorylated glycogen synthase kinase 3α (p-GSK3α) and p-GSK3β, microRNA-208b (miR-208b), miR-499 and slow myosin heavy chain (MyHC) mRNAs (Myh7 and Myh7b) of antigravitational soleus muscle in response to unloading with or without reloading were investigated. METHODS HSF1-null and wild-type mice were subjected to continuous 2-week hindlimb suspension followed by 2- or 4-week ambulation recovery. RESULTS In wild-type mice, the relative population of slow type I fibres, the expression level of NFATc2, p-GSK3 (α and β), miR-208b, miR-499 and slow MyHC mRNAs (Myh7 and Myh7b) were all decreased with hindlimb suspension, but recovered after it. Significant interactions between train and time (the relative population of slow type I fibres; P = 0.01, the expression level of NFATc2; P = 0.001, p-GSKβ; P = 0.009, miR-208b; P = 0.002, miR-499; P = 0.04) suggested that these responses were suppressed in HSF1-null mice. CONCLUSION HSF1 may be a molecule in the regulation of the expression of slow MyHC as well as miR-208b, miR-499, NFATc2 and p-GSK3 (α and β) in mouse soleus muscle.
Collapse
Affiliation(s)
- S. Yokoyama
- Department of Locomotive Rehabilitation Science; Unit of Rehabilitation Sciences; Nagasaki University Graduate School of Biomedical Sciences; Nagasaki Japan
- Laboratory of Physiology; School of Health Science; Toyohashi SOZO University; Toyohashi Japan
| | - Y. Ohno
- Laboratory of Physiology; School of Health Science; Toyohashi SOZO University; Toyohashi Japan
| | - T. Egawa
- Department of Physiology; Graduate School of Health Science; Toyohashi SOZO University; Toyohashi Japan
| | - K. Yasuhara
- Department of Orthopaedic Surgery; St. Marianna University School of Medicine; Kawasaki Japan
| | - A. Nakai
- Department of Molecular Biology; Graduate School of Medicine; Yamaguchi University; Ube Japan
| | - T. Sugiura
- Faculty of Education; Yamaguchi University; Yamaguchi Japan
| | - Y. Ohira
- Faculty and Graduate School of Health and Sports Sciences; Doshisha University; Kyotanabe Japan
| | | | - M. Okita
- Department of Locomotive Rehabilitation Science; Unit of Rehabilitation Sciences; Nagasaki University Graduate School of Biomedical Sciences; Nagasaki Japan
| | - T. Origuchi
- Department of Locomotive Rehabilitation Science; Unit of Rehabilitation Sciences; Nagasaki University Graduate School of Biomedical Sciences; Nagasaki Japan
| | - K. Goto
- Laboratory of Physiology; School of Health Science; Toyohashi SOZO University; Toyohashi Japan
- Department of Physiology; Graduate School of Health Science; Toyohashi SOZO University; Toyohashi Japan
| |
Collapse
|
22
|
Abstract
Skeletal muscle and bone rely on a number of growth factors to undergo development, modulate growth, and maintain physiological strength. A major player in these actions is insulin-like growth factor I (IGF-I). However, because this growth factor can directly enhance muscle mass and bone density, it alters the state of the musculoskeletal system indirectly through mechanical crosstalk between these two organ systems. Thus, there are clearly synergistic actions of IGF-I that extend beyond the direct activity through its receptor. This review will cover the production and signaling of IGF-I as it pertains to muscle and bone, the chemical and mechanical influences that arise from IGF-I activity, and the potential for therapeutic strategies based on IGF-I. This article is part of a Special Issue entitled "Muscle Bone Interactions".
Collapse
|
23
|
Kim MJ, Kim ZH, Kim SM, Choi YS. Conditioned medium derived from umbilical cord mesenchymal stem cells regenerates atrophied muscles. Tissue Cell 2016; 48:533-43. [PMID: 27457384 DOI: 10.1016/j.tice.2016.06.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 06/10/2016] [Accepted: 06/25/2016] [Indexed: 12/26/2022]
Abstract
We investigated the regenerative effects and regulatory mechanisms of human umbilical cord mesenchymal stem cells (UC-MSCs)-derived conditioned medium (CM) in atrophied muscles using an in vivo model. To determine the appropriate harvest point of UC-CM, active factor content was analyzed in the secretome over time. A muscle atrophy model was induced in rats by hindlimb suspension (HS) for 2 weeks. Next, UC-CM was injected directly into the soleus muscle of both hind legs to assess its regenerative efficacy on atrophy-related factors after 1 week of HS. During HS, muscle mass and muscle fiber size were significantly reduced by over 2-fold relative to untreated controls. Lactate accumulation within the muscles was similarly increased. By contrast, all of the above analytical factors were significantly improved in HS-induced rats by UC-CM injection compared with saline injection. Furthermore, the expression levels of desmin and skeletal muscle actin were significantly elevated by UC-CM treatment. Importantly, UC-CM effectively suppressed expression of the atrophy-related ubiquitin E3-ligases, muscle ring finger 1 and muscle atrophy F-box by 2.3- and 2.1-fold, respectively. UC-CM exerted its actions by stimulating the phosphoinositol-3-kinase (PI3K)/Akt signaling cascade. These findings suggest that UC-CM provides an effective stimulus to recover muscle status and function in atrophied muscles.
Collapse
Affiliation(s)
- Mi Jin Kim
- Department of Biotechnology, CHA University, Seongnam, Republic of Korea
| | - Z-Hun Kim
- Department of Biotechnology, CHA University, Seongnam, Republic of Korea
| | - Sun-Mi Kim
- Department of Biotechnology, CHA University, Seongnam, Republic of Korea
| | - Yong-Soo Choi
- Department of Biotechnology, CHA University, Seongnam, Republic of Korea.
| |
Collapse
|
24
|
Griffin DA, Johnson RW, Whitlock JM, Pozsgai ER, Heller KN, Grose WE, Arnold WD, Sahenk Z, Hartzell HC, Rodino-Klapac LR. Defective membrane fusion and repair in Anoctamin5-deficient muscular dystrophy. Hum Mol Genet 2016; 25:1900-1911. [PMID: 26911675 PMCID: PMC5062581 DOI: 10.1093/hmg/ddw063] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 02/22/2016] [Indexed: 11/15/2022] Open
Abstract
Limb-girdle muscular dystrophies are a genetically diverse group of diseases characterized by chronic muscle wasting and weakness. Recessive mutations in ANO5 (TMEM16E) have been directly linked to several clinical phenotypes including limb-girdle muscular dystrophy type 2L and Miyoshi myopathy type 3, although the pathogenic mechanism has remained elusive. ANO5 is a member of the Anoctamin/TMEM16 superfamily that encodes both ion channels and regulators of membrane phospholipid scrambling. The phenotypic overlap of ANO5 myopathies with dysferlin-associated muscular dystrophies has inspired the hypothesis that ANO5, like dysferlin, may be involved in the repair of muscle membranes following injury. Here we show that Ano5-deficient mice have reduced capacity to repair the sarcolemma following laser-induced damage, exhibit delayed regeneration after cardiotoxin injury and suffer from defective myoblast fusion necessary for the proper repair and regeneration of multinucleated myotubes. Together, these data suggest that ANO5 plays an important role in sarcolemmal membrane dynamics. Genbank Mouse Genome Informatics accession no. 3576659.
Collapse
Affiliation(s)
- Danielle A Griffin
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital
| | - Ryan W Johnson
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital
| | - Jarred M Whitlock
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Eric R Pozsgai
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Integrated Biomedical Science Graduate Program, College of Medicine, The Ohio State University, Columbus, OH, USA and
| | - Kristin N Heller
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital
| | - William E Grose
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital
| | - W David Arnold
- Department of Neurology, Department of Physical Medicine and Rehabilitation, Department of Neuroscience and
| | - Zarife Sahenk
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Department of Pediatrics, Department of Neurology
| | - H Criss Hartzell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Louise R Rodino-Klapac
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Department of Pediatrics, Integrated Biomedical Science Graduate Program, College of Medicine, The Ohio State University, Columbus, OH, USA and
| |
Collapse
|
25
|
Function of Membrane-Associated Proteoglycans in the Regulation of Satellite Cell Growth. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 900:61-95. [DOI: 10.1007/978-3-319-27511-6_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
26
|
Jackson JR, Kirby TJ, Fry CS, Cooper RL, McCarthy JJ, Peterson CA, Dupont-Versteegden EE. Reduced voluntary running performance is associated with impaired coordination as a result of muscle satellite cell depletion in adult mice. Skelet Muscle 2015; 5:41. [PMID: 26579218 PMCID: PMC4647638 DOI: 10.1186/s13395-015-0065-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 11/02/2015] [Indexed: 11/10/2022] Open
Abstract
Background Satellite cells, or muscle stem cells, have been thought to be responsible for all muscle plasticity, but recent studies using genetically modified mouse models that allow for the conditional ablation of satellite cells have challenged this dogma. Results have confirmed the absolute requirement of satellite cells for muscle regeneration but surprisingly also showed that they are not required for adult muscle growth. While the function of satellite cells in muscle growth and regeneration is becoming better defined, their role in the response to aerobic activity remains largely unexplored. The purpose of the current study was to assess the involvement of satellite cells in response to aerobic exercise by evaluating the effect of satellite cell depletion on wheel running performance. Results Four-month-old female Pax7/DTA mice (n = 8–12 per group) were satellite cell depleted via tamoxifen administration; at 6 months of age, mice either remained sedentary or were provided with running wheels for 8 weeks. Plantaris muscles were significantly depleted of Pax7+cells (≥90 % depleted), and 8 weeks of wheel running did not result in an increase in Pax7+ cells, or in myonuclear accretion. Interestingly, satellite cell-depleted animals ran ~27 % less distance and were 23 % slower than non-depleted animals. Wheel running was associated with elevated succinate dehydrogenase activity, muscle vascularization, lipid accumulation, and a significant shift toward more oxidative myosin heavy chain isoforms, as well as an increase in voltage dependent anion channel abundance, a marker of mitochondrial density. Importantly, these changes were independent of satellite cell content. Interestingly, depletion of Pax7+ cells from intra- as well as extrafusal muscle fibers resulted in atrophy of intrafusal fibers, thickening of muscle spindle-associated extracellular matrix, and a marked reduction of functional outcomes including grip strength, gait fluidity, and balance, which likely contributed to the impaired running performance. Conclusions Depletion of Pax7-expressing cells in muscle resulted in reduced voluntary wheel running performance, without affecting markers of aerobic adaptation; however, their absence may perturb proprioception via disruption of muscle spindle fibers resulting in loss of gross motor coordination, indicating that satellite cells have a yet unexplored role in muscle function. Electronic supplementary material The online version of this article (doi:10.1186/s13395-015-0065-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Janna R Jackson
- Department of Rehabilitation Sciences, College of Health Sciences, University of Kentucky, Lexington, KY USA ; Center for Muscle Biology, University of Kentucky, Lexington, KY USA
| | - Tyler J Kirby
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY USA ; Center for Muscle Biology, University of Kentucky, Lexington, KY USA ; Present address: Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY USA
| | - Christopher S Fry
- Department of Rehabilitation Sciences, College of Health Sciences, University of Kentucky, Lexington, KY USA ; Center for Muscle Biology, University of Kentucky, Lexington, KY USA ; Present address: Department of Nutrition and Metabolism, School of Health Professions, University of Texas Medical Branch, Galveston, TX USA
| | - Robin L Cooper
- Center for Muscle Biology, University of Kentucky, Lexington, KY USA ; Department of Biology, University of Kentucky, Lexington, KY USA
| | - John J McCarthy
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY USA ; Center for Muscle Biology, University of Kentucky, Lexington, KY USA
| | - Charlotte A Peterson
- Department of Rehabilitation Sciences, College of Health Sciences, University of Kentucky, Lexington, KY USA ; Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY USA ; Center for Muscle Biology, University of Kentucky, Lexington, KY USA
| | - Esther E Dupont-Versteegden
- Department of Rehabilitation Sciences, College of Health Sciences, University of Kentucky, Lexington, KY USA ; Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY USA ; Center for Muscle Biology, University of Kentucky, Lexington, KY USA
| |
Collapse
|
27
|
Bikle DD, Tahimic C, Chang W, Wang Y, Philippou A, Barton ER. Role of IGF-I signaling in muscle bone interactions. Bone 2015; 80:79-88. [PMID: 26453498 PMCID: PMC4600536 DOI: 10.1016/j.bone.2015.04.036] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 04/11/2015] [Accepted: 04/22/2015] [Indexed: 12/16/2022]
Abstract
Skeletal muscle and bone rely on a number of growth factors to undergo development, modulate growth, and maintain physiological strength. A major player in these actions is insulin-like growth factor I (IGF-I). However, because this growth factor can directly enhance muscle mass and bone density, it alters the state of the musculoskeletal system indirectly through mechanical crosstalk between these two organ systems. Thus, there are clearly synergistic actions of IGF-I that extend beyond the direct activity through its receptor. This review will cover the production and signaling of IGF-I as it pertains to muscle and bone, the chemical and mechanical influences that arise from IGF-I activity, and the potential for therapeutic strategies based on IGF-I. This article is part of a Special Issue entitled "Muscle Bone Interactions".
Collapse
Affiliation(s)
- Daniel D Bikle
- VA Medical Center and University of California San Francisco, San Francisco, CA, USA
| | - Candice Tahimic
- VA Medical Center and University of California San Francisco, San Francisco, CA, USA
| | - Wenhan Chang
- VA Medical Center and University of California San Francisco, San Francisco, CA, USA
| | - Yongmei Wang
- VA Medical Center and University of California San Francisco, San Francisco, CA, USA
| | - Anastassios Philippou
- National and Kapodistrian University of Athens, Department of Physiology, Medical School, Goudi-Athens, Greece
| | - Elisabeth R Barton
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
28
|
Liu SH, Yang RS, Yen YP, Chiu CY, Tsai KS, Lan KC. Low-Concentration Arsenic Trioxide Inhibits Skeletal Myoblast Cell Proliferation via a Reactive Oxygen Species-Independent Pathway. PLoS One 2015; 10:e0137907. [PMID: 26359868 PMCID: PMC4567280 DOI: 10.1371/journal.pone.0137907] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 08/22/2015] [Indexed: 12/25/2022] Open
Abstract
Myoblast proliferation and differentiation are essential for skeletal muscle regeneration. Myoblast proliferation is a critical step in the growth and maintenance of skeletal muscle. The precise action of inorganic arsenic on myoblast growth has not been investigated. Here, we investigated the in vitro effect of inorganic arsenic trioxide (As2O3) on the growth of C2C12 myoblasts. As2O3 decreased myoblast growth at submicromolar concentrations (0.25–1 μM) after 72 h of treatment. Submicromolar concentrations of As2O3 did not induce the myoblast apoptosis. Low-concentration As2O3 (0.5 and 1 μM) significantly suppressed the myoblast cell proliferative activity, which was accompanied by a small proportion of bromodeoxyuridine (BrdU) incorporation and decreased proliferating cell nuclear antigen (PCNA) protein expression. As2O3 (0.5 and 1 μM) increased the intracellular arsenic content but did not affect the reactive oxygen species (ROS) levels in the myoblasts. Cell cycle analysis indicated that low-concentrations of As2O3 inhibited cell proliferation via cell cycle arrest in the G1 and G2/M phases. As2O3 also decreased the protein expressions of cyclin D1, cyclin E, cyclin B1, cyclin-dependent kinase (CDK) 2, and CDK4, but did not affect the protein expressions of p21 and p27. Furthermore, As2O3 inhibited the phosphorylation of Akt. Insulin-like growth factor-1 significantly reversed the inhibitory effect of As2O3 on Akt phosphorylation and cell proliferation in the myoblasts. These results suggest that submicromolar concentrations of As2O3 alter cell cycle progression and reduce myoblast proliferation, at least in part, through a ROS-independent Akt inhibition pathway.
Collapse
Affiliation(s)
- Shing Hwa Liu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Rong-Sen Yang
- Departments of Orthopaedic, College of Medicine and Hospital, National Taiwan University, Taipei, Taiwan
| | - Yuan-Peng Yen
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chen-Yuan Chiu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Keh-Sung Tsai
- Departments of Laboratory Medicine, College of Medicine and Hospital, National Taiwan University, Taipei, Taiwan
| | - Kuo-Cheng Lan
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
29
|
Biressi S, Gopinath SD. The quasi-parallel lives of satellite cells and atrophying muscle. Front Aging Neurosci 2015; 7:140. [PMID: 26257645 PMCID: PMC4510774 DOI: 10.3389/fnagi.2015.00140] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 07/06/2015] [Indexed: 12/25/2022] Open
Abstract
Skeletal muscle atrophy or wasting accompanies various chronic illnesses and the aging process, thereby reducing muscle function. One of the most important components contributing to effective muscle repair in postnatal organisms, the satellite cells (SCs), have recently become the focus of several studies examining factors participating in the atrophic process. We critically examine here the experimental evidence linking SC function with muscle loss in connection with various diseases as well as aging, and in the subsequent recovery process. Several recent reports have investigated the changes in SCs in terms of their differentiation and proliferative capacity in response to various atrophic stimuli. In this regard, we review the molecular changes within SCs that contribute to their dysfunctional status in atrophy, with the intention of shedding light on novel potential pharmacological targets to counteract the loss of muscle mass.
Collapse
Affiliation(s)
- Stefano Biressi
- Dulbecco Telethon Institute and Centre for Integrative Biology (CIBIO), University of TrentoTrento, Italy
| | | |
Collapse
|
30
|
Zushi K, Yamazaki T. The Effect of Reloading on Disuse Muscle Atrophy: Time Course of Hypertrophy and Regeneration Focusing on the Myofiber Cross-sectional Area and Myonuclear Change. JOURNAL OF THE JAPANESE PHYSICAL THERAPY ASSOCIATION 2015; 15:1-8. [PMID: 25792895 DOI: 10.1298/jjpta.vol15_001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 01/05/2012] [Indexed: 11/23/2022]
Abstract
The purpose of this study was to investigate the effect of reloading on atrophied muscle and the time course of hypertrophy and regeneration. Forty-nine male Wistar rats were randomly assigned to groups for hindlimb suspension (HS), hindlimb suspension and reloading (R), or control (C0). Rats in the HS group were suspended for 14 days. Rats in the R group were randomly divided into five subgroups for different post-hindlimb-suspension recovery times. Briefly, each subgroup was suspended for 14 days and given 1 day of reloading (R1), 3 days of reloading (R3), 7 days of reloading (R7), 10 days of reloading (R10), or 14 days of reloading (R14). Myonuclear numbers were significantly decreased in the groups with hindlimb suspension and 1 day and 3 days of reloading compared with that in the control group. We focused on the processes of change of mean myofiber cross-sectional area and myonuclear domain size; the degrees of increase of both indexes were limited until 3 days of reloading, and significantly increased after 7 days of reloading. An important finding of the current study was that the processes of muscle hypertrophy and regeneration did not show uniform change. In addition, there were differences in the ratio of increase among the stages of hypertrophy and regeneration. Therefore, consideration of the duration and method of physiotherapeutic intervention for atrophied muscle on the basis of the process of hypertrophy and regeneration is needed to provide more effective physiotherapy.
Collapse
Affiliation(s)
- Kazumi Zushi
- Division of Health Sciences, Graduate School of Medical Science, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, Ishikawa 920-0942, Japan ; Department of Rehabilitation, Minamigaoka Hospital
| | - Toshiaki Yamazaki
- Division of Health Sciences, Graduate School of Medical Science, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, Ishikawa 920-0942, Japan
| |
Collapse
|
31
|
Muscle-specific GSK-3β ablation accelerates regeneration of disuse-atrophied skeletal muscle. Biochim Biophys Acta Mol Basis Dis 2014; 1852:490-506. [PMID: 25496993 DOI: 10.1016/j.bbadis.2014.12.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 11/26/2014] [Accepted: 12/03/2014] [Indexed: 01/08/2023]
Abstract
Muscle wasting impairs physical performance, increases mortality and reduces medical intervention efficacy in chronic diseases and cancer. Developing proficient intervention strategies requires improved understanding of the molecular mechanisms governing muscle mass wasting and recovery. Involvement of muscle protein- and myonuclear turnover during recovery from muscle atrophy has received limited attention. The insulin-like growth factor (IGF)-I signaling pathway has been implicated in muscle mass regulation. As glycogen synthase kinase 3 (GSK-3) is inhibited by IGF-I signaling, we hypothesized that muscle-specific GSK-3β deletion facilitates the recovery of disuse-atrophied skeletal muscle. Wild-type mice and mice lacking muscle GSK-3β (MGSK-3β KO) were subjected to a hindlimb suspension model of reversible disuse-induced muscle atrophy and followed during recovery. Indices of muscle mass, protein synthesis and proteolysis, and post-natal myogenesis which contribute to myonuclear accretion, were monitored during the reloading of atrophied muscle. Early muscle mass recovery occurred more rapidly in MGSK-3β KO muscle. Reloading-associated changes in muscle protein turnover were not affected by GSK-3β ablation. However, coherent effects were observed in the extent and kinetics of satellite cell activation, proliferation and myogenic differentiation observed during reloading, suggestive of increased myonuclear accretion in regenerating skeletal muscle lacking GSK-3β. This study demonstrates that muscle mass recovery and post-natal myogenesis from disuse-atrophy are accelerated in the absence of GSK-3β.
Collapse
|
32
|
Alway SE, Bennett BT, Wilson JC, Sperringer J, Mohamed JS, Edens NK, Pereira SL. Green tea extract attenuates muscle loss and improves muscle function during disuse, but fails to improve muscle recovery following unloading in aged rats. J Appl Physiol (1985) 2014; 118:319-30. [PMID: 25414242 DOI: 10.1152/japplphysiol.00674.2014] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
In this study we tested the hypothesis that green tea extract (GTE) would improve muscle recovery after reloading following disuse. Aged (32 mo) Fischer 344 Brown Norway rats were randomly assigned to receive either 14 days of hindlimb suspension (HLS) or 14 days of HLS followed by normal ambulatory function for 14 days (recovery). Additional animals served as cage controls. The rats were given GTE (50 mg/kg body wt) or water (vehicle) by gavage 7 days before and throughout the experimental periods. Compared with vehicle treatment, GTE significantly attenuated the loss of hindlimb plantaris muscle mass (-24.8% vs. -10.7%, P < 0.05) and tetanic force (-43.7% vs. -25.9%, P <0.05) during HLS. Although GTE failed to further improve recovery of muscle function or mass compared with vehicle treatment, animals given green tea via gavage maintained the lower losses of muscle mass that were found during HLS (-25.2% vs. -16.0%, P < 0.05) and force (-45.7 vs. -34.4%, P < 0.05) after the reloading periods. In addition, compared with vehicle treatment, GTE attenuated muscle fiber cross-sectional area loss in both plantaris (-39.9% vs. -23.9%, P < 0.05) and soleus (-37.2% vs. -17.6%) muscles after HLS. This green tea-induced difference was not transient but was maintained over the reloading period for plantaris (-45.6% vs. -21.5%, P <0.05) and soleus muscle fiber cross-sectional area (-38.7% vs. -10.9%, P <0.05). GTE increased satellite cell proliferation and differentiation in plantaris and soleus muscles during recovery from HLS compared with vehicle-treated muscles and decreased oxidative stress and abundance of the Bcl-2-associated X protein (Bax), yet this did not further improve muscle recovery in reloaded muscles. These data suggest that muscle recovery following disuse in aging is complex. Although satellite cell proliferation and differentiation are critical for muscle repair to occur, green tea-induced changes in satellite cell number is by itself insufficient to improve muscle recovery following a period of atrophy in old rats.
Collapse
Affiliation(s)
- Stephen E Alway
- Laboratory of Muscle Biology and Sarcopenia, Department of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia; West Virginia Center for Clinical and Translational Science Institute, Morgantown, West Virginia; Center for Cardiovascular and Respiratory Sciences, West Virginia University School of Medicine, Morgantown, West Virginia; and
| | - Brian T Bennett
- Laboratory of Muscle Biology and Sarcopenia, Department of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia; Center for Cardiovascular and Respiratory Sciences, West Virginia University School of Medicine, Morgantown, West Virginia; and
| | - Joseph C Wilson
- Laboratory of Muscle Biology and Sarcopenia, Department of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia; Center for Cardiovascular and Respiratory Sciences, West Virginia University School of Medicine, Morgantown, West Virginia; and
| | - Justin Sperringer
- Laboratory of Muscle Biology and Sarcopenia, Department of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia; Center for Cardiovascular and Respiratory Sciences, West Virginia University School of Medicine, Morgantown, West Virginia; and
| | - Junaith S Mohamed
- Laboratory of Muscle Biology and Sarcopenia, Department of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia; Center for Cardiovascular and Respiratory Sciences, West Virginia University School of Medicine, Morgantown, West Virginia; and
| | | | | |
Collapse
|
33
|
Chaillou T, Jackson JR, England JH, Kirby TJ, Richards-White J, Esser KA, Dupont-Versteegden EE, McCarthy JJ. Identification of a conserved set of upregulated genes in mouse skeletal muscle hypertrophy and regrowth. J Appl Physiol (1985) 2014; 118:86-97. [PMID: 25554798 DOI: 10.1152/japplphysiol.00351.2014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The purpose of this study was to compare the gene expression profile of mouse skeletal muscle undergoing two forms of growth (hypertrophy and regrowth) with the goal of identifying a conserved set of differentially expressed genes. Expression profiling by microarray was performed on the plantaris muscle subjected to 1, 3, 5, 7, 10, and 14 days of hypertrophy or regrowth following 2 wk of hind-limb suspension. We identified 97 differentially expressed genes (≥2-fold increase or ≥50% decrease compared with control muscle) that were conserved during the two forms of muscle growth. The vast majority (∼90%) of the differentially expressed genes was upregulated and occurred at a single time point (64 out of 86 genes), which most often was on the first day of the time course. Microarray analysis from the conserved upregulated genes showed a set of genes related to contractile apparatus and stress response at day 1, including three genes involved in mechanotransduction and four genes encoding heat shock proteins. Our analysis further identified three cell cycle-related genes at day and several genes associated with extracellular matrix (ECM) at both days 3 and 10. In conclusion, we have identified a core set of genes commonly upregulated in two forms of muscle growth that could play a role in the maintenance of sarcomere stability, ECM remodeling, cell proliferation, fast-to-slow fiber type transition, and the regulation of skeletal muscle growth. These findings suggest conserved regulatory mechanisms involved in the adaptation of skeletal muscle to increased mechanical loading.
Collapse
Affiliation(s)
- Thomas Chaillou
- Center for Muscle Biology, University of Kentucky, Lexington, Kentucky; Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky
| | - Janna R Jackson
- Center for Muscle Biology, University of Kentucky, Lexington, Kentucky; Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky; Department of Rehabilitation Sciences, College of Health Sciences, University of Kentucky, Lexington, Kentucky
| | - Jonathan H England
- Center for Muscle Biology, University of Kentucky, Lexington, Kentucky; Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky
| | - Tyler J Kirby
- Center for Muscle Biology, University of Kentucky, Lexington, Kentucky; Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky; Department of Rehabilitation Sciences, College of Health Sciences, University of Kentucky, Lexington, Kentucky
| | - Jena Richards-White
- Department of Rehabilitation Sciences, College of Health Sciences, University of Kentucky, Lexington, Kentucky
| | - Karyn A Esser
- Center for Muscle Biology, University of Kentucky, Lexington, Kentucky; Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky
| | - Esther E Dupont-Versteegden
- Center for Muscle Biology, University of Kentucky, Lexington, Kentucky; Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky; Department of Rehabilitation Sciences, College of Health Sciences, University of Kentucky, Lexington, Kentucky
| | - John J McCarthy
- Center for Muscle Biology, University of Kentucky, Lexington, Kentucky; Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky;
| |
Collapse
|
34
|
Itoh Y, Hayakawa K, Mori T, Agata N, Inoue-Miyazu M, Murakami T, Sokabe M, Kawakami K. Stand-up exercise training facilitates muscle recovery from disuse atrophy by stimulating myogenic satellite cell proliferation in mice. Physiol Rep 2014; 2:2/11/e12185. [PMID: 25367692 PMCID: PMC4255801 DOI: 10.14814/phy2.12185] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Determining the cellular and molecular recovery processes in inactivity – or unloading –induced atrophied muscles should improve rehabilitation strategies. We assessed the effects of stand‐up exercise (SE) training on the recovery of atrophied skeletal muscles in male mice. Mice were trained to stand up and press an elevated lever in response to a light‐tone cue preceding an electric foot shock and then subjected to tail suspension (TS) for 2 weeks to induce disuse atrophy in hind limb muscles. After release from TS, mice were divided into SE‐trained (SE cues: 25 times per set, two sets per day) and non‐SE‐trained groups. Seven days after the training, average myofiber cross‐sectional area (CSA) of the soleus muscle was significantly greater in the SE‐trained group than in the non‐SE‐trained group (1843 ± 194 μm2 vs. 1315 ± 153 μm2). Mean soleus muscle CSA in the SE trained group was not different from that in the CON group subjected to neither TS nor SE training (2005 ± 196 μm2), indicating that SE training caused nearly complete recovery from muscle atrophy. The number of myonuclei per myofiber was increased by ~60% in the SE‐trained group compared with the non‐SE‐trained and CON groups (0.92 ± 0.03 vs. 0.57 ± 0.03 and 0.56 ± 0.11, respectively). The number of proliferating myonuclei, identified by 5‐ethynyl‐2′‐deoxyuridine staining, increased within the first few days of SE training. Thus, it is highly likely that myogenic satellite cells proliferated rapidly in atrophied muscles in response to SE training and fused with existing myofibers to reestablish muscle mass. Stand‐up exercise (SE) training facilitates recovery of myofiber size within 7 days and increases the number of myonuclei during atrophied muscle recovery. This rapid increase in the number of myonuclei derived from myogenic satellite cells may account for the rapid histological changes in atrophied muscles induced by SE training.
Collapse
Affiliation(s)
- Yuta Itoh
- Physical and Occupational Therapy Program, Nagoya University Graduate School of Medicine, Nagoya, Japan Faculty of Rehabilitation Science, Nagoya Gakuin University, Seto, Japan
| | - Kimihide Hayakawa
- Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomohiro Mori
- Physical and Occupational Therapy Program, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Nobuhide Agata
- Physical and Occupational Therapy Program, Nagoya University Graduate School of Medicine, Nagoya, Japan Faculty of Health and Medical Sciences, Tokoha University, Hamamatsu, Japan
| | | | - Taro Murakami
- Faculty of Wellness, Sigakkan University, Ohbu, Japan
| | - Masahiro Sokabe
- Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, Nagoya, Japan Department of Physiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Keisuke Kawakami
- Physical and Occupational Therapy Program, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
35
|
Swift JM, Lima F, Macias BR, Allen MR, Greene ES, Shirazi-Fard Y, Kupke JS, Hogan HA, Bloomfield SA. Partial weight bearing does not prevent musculoskeletal losses associated with disuse. Med Sci Sports Exerc 2014; 45:2052-60. [PMID: 23657172 DOI: 10.1249/mss.0b013e318299c614] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE The purpose of this study was to investigate whether partial weight-bearing activity, at either one-sixth or one-third of body mass, blunts the deleterious effects of simulated microgravity (0G) after 21 d on muscle mass and quantitative/qualitative measures of bone. METHODS Using a novel, previously validated partial weight-bearing suspension device, mice were subjected to 16% (G/3, i.e., simulated lunar gravity) or 33% (G/6, i.e., simulated Martian gravity) weight bearing for 21 d. One gravity control (1G, i.e., Earth gravity) and tail-suspended mice (0G, i.e., simulated microgravity) served as controls to compare the effects of simulated lunar and Martian gravity to both Earth and microgravity. RESULTS Simulated microgravity (0G) resulted in an 8% reduction in body mass and a 28% lower total plantarflexor muscle mass (for both, P < 0.01) as compared with 1G controls, but one-sixth and one-third partial weight-bearing activity attenuated losses. Relative to 1G controls, trabecular bone volume fraction (-9% to -13%) and trabecular thickness (-10% to -14%) were significantly lower in all groups (P < 0.01). In addition, cancellous and cortical bone formation rates (BFR) were lower in all reduced weight-bearing groups compared with 1G controls (-46% to -57%, trabecular BFR; -73% to -85%, cortical BFR; P < 0.001). Animals experiencing one-third but not one-sixth weight bearing exhibited attenuated deficits in femoral neck mechanical strength associated with 0G. CONCLUSION These results suggest that partial weight bearing (up to 33% of body mass) is not sufficient to protect against bone loss observed with simulated 0 g but does mitigate reductions in soleus mass in skeletally mature female mice.
Collapse
Affiliation(s)
- Joshua M Swift
- 1Department of Health and Kinesiology, Texas A&M University, College Station, TX; 2Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN; 3Department of Biomedical Engineering, Texas A&M University, College Station, TX; 4Department of Mechanical Engineering, Texas A&M University, College Station, TX; and 5Department of Nutrition and Food Science, Texas A&M University, College Station, TX
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Sachdev U, Cui X, Xu J, Xu J, Tzeng E. MyD88 and TRIF mediate divergent inflammatory and regenerative responses to skeletal muscle ischemia. Physiol Rep 2014; 2:2/5/e12006. [PMID: 24844636 PMCID: PMC4098734 DOI: 10.14814/phy2.12006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
We have previously shown that MyD88 KO mice appear protected from ischemic muscle injury while TRIF KO mice exhibit sustained necrosis after femoral artery ligation (FAL). However, our previous data did not differentiate whether the protective effect of absent MyD88 signaling was secondary to attenuated injury after FAL or quicker recovery from the insult. The purpose of this study was to delineate these different possibilities. On the basis of previous findings, we hypothesized that MyD88 signaling promotes enhanced inflammation while TRIF mediates regeneration after skeletal muscle ischemia. Our results show that after FAL, both MyD88 KO mice and TRIF KO mice have evidence of ischemia, as do their control counterparts. However, MyD88 KO mice had lower levels of serum IL‐6 24 h after FAL, while TRIF KO mice demonstrated sustained serum IL‐6 up to 1 week after injury. Additionally, MyD88 KO mice had higher nuclear content and larger myofibers than control animals 1 week after injury. IL‐6 is known to have differential effects in myoblast function, and can inhibit proliferation and differentiation. In tibialis anterior muscle harvested from injured animals, IL‐6 levels were higher and the proliferative marker MyoD was lower in TRIF KO mice by PCR. Furthermore, expression of MyD88 appeared to be higher in skeletal muscle of TRIF KO mice. In vitro, we showed that myoblast differentiation and proliferation were attenuated in response to IL‐6 treatment giving credence to the finding that low IL‐6 in MyD88 KO mice may be responsible for larger myocyte sizes 1 week after FAL. We conclude that MyD88 and TRIF work in concert to mediate a balanced response to ischemic injury. We describe opposing roles of MyD88 and TRIF, both downstream signaling molecules of TLR4, in the inflammatory and regenerative processes that follow limb ischemia. MyD88 appears to mediate inflammation, while TRIF appears to be required for modulation of MyD88 activity and promoting regeneration. Absence of MyD88 may ultimately have a protective effect in muscle recovery after ischemic injury.
Collapse
Affiliation(s)
- Ulka Sachdev
- University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Xiangdong Cui
- University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Jia Xu
- University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Jun Xu
- University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Edith Tzeng
- University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania Department of Surgery, VA Pittsburgh Health System, Pittsburgh, Pennsylvania
| |
Collapse
|
37
|
McDonald AA, Kunz MD, McLoon LK. Dystrophic changes in extraocular muscles after gamma irradiation in mdx:utrophin(+/-) mice. PLoS One 2014; 9:e86424. [PMID: 24466085 PMCID: PMC3897728 DOI: 10.1371/journal.pone.0086424] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 12/11/2013] [Indexed: 12/05/2022] Open
Abstract
Extraocular muscles (EOM) have a strikingly different disease profile than limb skeletal muscles. It has long been known that they are spared in Duchenne (DMD) and other forms of muscular dystrophy. Despite many studies, the cause for this sparing is not understood. We have proposed that differences in myogenic precursor cell properties in EOM maintain normal morphology over the lifetime of individuals with DMD due to either greater proliferative potential or greater resistance to injury. This hypothesis was tested by exposing wild type and mdx:utrophin(+/-) (het) mouse EOM and limb skeletal muscles to 18 Gy gamma irradiation, a dose known to inhibit satellite cell proliferation in limb muscles. As expected, over time het limb skeletal muscles displayed reduced central nucleation mirrored by a reduction in Pax7-positive cells, demonstrating a significant loss in regenerative potential. In contrast, in the first month post-irradiation in the het EOM, myofiber cross-sectional areas first decreased, then increased, but ultimately returned to normal compared to non-irradiated het EOM. Central nucleation significantly increased in the first post-irradiation month, resembling the dystrophic limb phenotype. This correlated with decreased EECD34 stem cells and a concomitant increase and subsequent return to normalcy of both Pax7 and Pitx2-positive cell density. By two months, normal het EOM morphology returned. It appears that irradiation disrupts the normal method of EOM remodeling, which react paradoxically to produce increased numbers of myogenic precursor cells. This suggests that the EOM contain myogenic precursor cell types resistant to 18 Gy gamma irradiation, allowing return to normal morphology 2 months post-irradiation. This supports our hypothesis that ongoing proliferation of specialized regenerative populations in the het EOM actively maintains normal EOM morphology in DMD. Ongoing studies are working to define the differences in the myogenic precursor cells in EOM as well as the cellular milieu in which they reside.
Collapse
MESH Headings
- Animals
- Cell Proliferation/radiation effects
- Extremities/pathology
- Extremities/radiation effects
- Gamma Rays/adverse effects
- Homeodomain Proteins/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Inbred mdx
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscle, Skeletal/radiation effects
- Muscular Dystrophy, Animal/metabolism
- Muscular Dystrophy, Animal/pathology
- Oculomotor Muscles/metabolism
- Oculomotor Muscles/pathology
- Oculomotor Muscles/radiation effects
- PAX7 Transcription Factor/metabolism
- Phenotype
- Satellite Cells, Skeletal Muscle/metabolism
- Satellite Cells, Skeletal Muscle/pathology
- Satellite Cells, Skeletal Muscle/radiation effects
- Stem Cells/metabolism
- Stem Cells/radiation effects
- Transcription Factors/metabolism
- Utrophin/metabolism
- Homeobox Protein PITX2
Collapse
Affiliation(s)
- Abby A. McDonald
- Department of Ophthalmology and Visual Neurosciences, and Graduate Program in Molecular, Cellular, Developmental Biology and Genetics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Matthew D. Kunz
- Department of Ophthalmology and Visual Neurosciences, and Graduate Program in Molecular, Cellular, Developmental Biology and Genetics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Linda K. McLoon
- Department of Ophthalmology and Visual Neurosciences, and Graduate Program in Molecular, Cellular, Developmental Biology and Genetics, University of Minnesota, Minneapolis, Minnesota, United States of America
| |
Collapse
|
38
|
Alway SE, Pereira SL, Edens NK, Hao Y, Bennett BT. β-Hydroxy-β-methylbutyrate (HMB) enhances the proliferation of satellite cells in fast muscles of aged rats during recovery from disuse atrophy. Exp Gerontol 2013; 48:973-84. [DOI: 10.1016/j.exger.2013.06.005] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 06/04/2013] [Accepted: 06/23/2013] [Indexed: 01/06/2023]
|
39
|
Nutritional strategies to counteract muscle atrophy caused by disuse and to improve recovery. Nutr Res Rev 2013; 26:149-65. [PMID: 23930668 DOI: 10.1017/s0954422413000115] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Periods of immobilisation are often associated with pathologies and/or ageing. These periods of muscle disuse induce muscle atrophy which could worsen the pathology or elderly frailty. If muscle mass loss has positive effects in the short term, a sustained/uncontrolled muscle mass loss is deleterious for health. Muscle mass recovery following immobilisation-induced atrophy could be critical, particularly when it is uncompleted as observed during ageing. Exercise, the best way to recover muscle mass, is not always applicable. So, other approaches such as nutritional strategies are needed to limit muscle wasting and to improve muscle mass recovery in such situations. The present review discusses mechanisms involved in muscle atrophy following disuse and during recovery and emphasises the effect of age in these mechanisms. In addition, the efficiency of nutritional strategies proposed to limit muscle mass loss during disuse and to improve protein gain during recovery (leucine supplementation, whey proteins, antioxidants and anti-inflammatory compounds, energy intake) is also discussed.
Collapse
|
40
|
Hanson AM, Harrison BC, Young MH, Stodieck LS, Ferguson VL. Longitudinal characterization of functional, morphologic, and biochemical adaptations in mouse skeletal muscle with hindlimb suspension. Muscle Nerve 2013; 48:393-402. [DOI: 10.1002/mus.23753] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2012] [Indexed: 11/11/2022]
Affiliation(s)
- Andrea M. Hanson
- Aerospace Engineering Sciences, BioServe Space Technologies; University of Colorado; Boulder Colorado USA
| | - Brooke C. Harrison
- Molecular, Cellular, and Developmental Biology; University of Colorado; Boulder Colorado USA
| | - Mary H. Young
- Aerospace Engineering Sciences, BioServe Space Technologies; University of Colorado; Boulder Colorado USA
| | - Louis S. Stodieck
- Aerospace Engineering Sciences, BioServe Space Technologies; University of Colorado; Boulder Colorado USA
| | - Virginia L. Ferguson
- Department of Mechanical Engineering; University of Colorado; UCB 427 Boulder Colorado 80309 USA
| |
Collapse
|
41
|
Boldrin L, Morgan JE. Grafting of a single donor myofibre promotes hypertrophy in dystrophic mouse muscle. PLoS One 2013; 8:e54599. [PMID: 23349935 PMCID: PMC3548842 DOI: 10.1371/journal.pone.0054599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 12/13/2012] [Indexed: 12/02/2022] Open
Abstract
Skeletal muscle has a remarkable capability of regeneration following injury. Satellite cells, the principal muscle stem cells, are responsible for this process. However, this regenerative capacity is reduced in muscular dystrophies or in old age: in both these situations, there is a net loss of muscle fibres. Promoting skeletal muscle muscle hypertrophy could therefore have potential applications for treating muscular dystrophies or sarcopenia. Here, we observed that muscles of dystrophic mdx nude host mice that had been acutely injured by myotoxin and grafted with a single myofibre derived from a normal donor mouse exhibited increased muscle area. Transplantation experiments revealed that the hypertrophic effect is mediated by the grafted fibre and does not require either an imposed injury to the host muscle, or the contribution of donor cells to the host muscle. These results suggest the presence of a crucial cross-talk between the donor fibre and the host muscle environment.
Collapse
MESH Headings
- Age Factors
- Animals
- Crotalid Venoms/toxicity
- Hypertrophy
- Mice
- Mice, Inbred mdx
- Mice, Nude
- Muscle, Skeletal/cytology
- Muscle, Skeletal/injuries
- Muscle, Skeletal/transplantation
- Muscular Dystrophy, Animal/chemically induced
- Muscular Dystrophy, Animal/genetics
- Muscular Dystrophy, Animal/physiopathology
- Muscular Dystrophy, Animal/therapy
- Regeneration/genetics
- Regeneration/physiology
- Satellite Cells, Skeletal Muscle/cytology
- Satellite Cells, Skeletal Muscle/transplantation
Collapse
Affiliation(s)
- Luisa Boldrin
- The Dubowitz Neuromuscular Centre, UCL Institute of Child Health, London, United Kingdom.
| | | |
Collapse
|
42
|
Ye F, Mathur S, Liu M, Borst SE, Walter GA, Sweeney HL, Vandenborne K. Overexpression of insulin-like growth factor-1 attenuates skeletal muscle damage and accelerates muscle regeneration and functional recovery after disuse. Exp Physiol 2013; 98:1038-52. [PMID: 23291913 DOI: 10.1113/expphysiol.2012.070722] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Skeletal muscle is a highly dynamic tissue that responds to endogenous and external stimuli, including alterations in mechanical loading and growth factors. In particular, the antigravity soleus muscle experiences significant muscle atrophy during disuse and extensive muscle damage upon reloading. Given that insulin-like growth factor-1 (IGF-1) has been implicated as a central regulator of muscle repair and modulation of muscle size, we examined the effect of virally mediated overexpression of IGF-1 on the soleus muscle following hindlimb cast immobilization and upon reloading. Recombinant IGF-1 cDNA virus was injected into one of the posterior hindlimbs of the mice, while the contralateral limb was injected with saline (control). At 20 weeks of age, both hindlimbs were immobilized for 2 weeks to induce muscle atrophy in the soleus and ankle plantarflexor muscle group. Subsequently, the mice were allowed to reambulate, and muscle damage and recovery were monitored over a period of 2-21 days. The primary finding of this study was that IGF-1 overexpression attenuated reloading-induced muscle damage in the soleus muscle, and accelerated muscle regeneration and force recovery. Muscle T2 assessed by magnetic resonance imaging, a non-specific marker of muscle damage, was significantly lower in IGF-1-injected compared with contralateral soleus muscles at 2 and 5 days reambulation (P<0.05). The reduced prevalence of muscle damage in IGF-1-injected soleus muscles was confirmed on histology, with a lower fractional area of abnormal muscle tissue in IGF-1-injected muscles at 2 days reambulation (33.2±3.3 versus 54.1±3.6%, P<0.05). Evidence of the effect of IGF-1 on muscle regeneration included timely increases in the number of central nuclei (21% at 5 days reambulation), paired-box transcription factor 7 (36% at 5 days), embryonic myosin (37% at 10 days) and elevated MyoD mRNA (7-fold at 2 days) in IGF-1-injected limbs (P<0.05). These findings demonstrate a potential role of IGF-1 in protecting unloaded skeletal muscles from damage and accelerating muscle repair and regeneration.
Collapse
Affiliation(s)
- Fan Ye
- Department of Physical Therapy, PO Box 100154, Room 1142, PHHP Building, University of Florida, Gainesville, FL 32610, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Jackson JR, Mula J, Kirby TJ, Fry CS, Lee JD, Ubele MF, Campbell KS, McCarthy JJ, Peterson CA, Dupont-Versteegden EE. Satellite cell depletion does not inhibit adult skeletal muscle regrowth following unloading-induced atrophy. Am J Physiol Cell Physiol 2012; 303:C854-61. [PMID: 22895262 DOI: 10.1152/ajpcell.00207.2012] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Resident muscle stem cells, known as satellite cells, are thought to be the main mediators of skeletal muscle plasticity. Satellite cells are activated, replicate, and fuse into existing muscle fibers in response to both muscle injury and mechanical load. It is generally well-accepted that satellite cells participate in postnatal growth, hypertrophy, and muscle regeneration following injury; however, their role in muscle regrowth following an atrophic stimulus remains equivocal. The current study employed a genetic mouse model (Pax7-DTA) that allowed for the effective depletion of >90% of satellite cells in adult muscle upon the administration of tamoxifen. Vehicle and tamoxifen-treated young adult female mice were either hindlimb suspended for 14 days to induce muscle atrophy or hindlimb suspended for 14 days followed by 14 days of reloading to allow regrowth, or they remained ambulatory for the duration of the experimental protocol. Additionally, 5-bromo-2'-deoxyuridine (BrdU) was added to the drinking water to track cell proliferation. Soleus muscle atrophy, as measured by whole muscle wet weight, fiber cross-sectional area, and single-fiber width, occurred in response to suspension and did not differ between satellite cell-depleted and control muscles. Furthermore, the depletion of satellite cells did not attenuate muscle mass or force recovery during the 14-day reloading period, suggesting that satellite cells are not required for muscle regrowth. Myonuclear number was not altered during either the suspension or the reloading period in soleus muscle fibers from vehicle-treated or satellite cell-depleted animals. Thus, myonuclear domain size was reduced following suspension due to decreased cytoplasmic volume and was completely restored following reloading, independent of the presence of satellite cells. These results provide convincing evidence that satellite cells are not required for muscle regrowth following atrophy and that, instead, the myonuclear domain size changes as myofibers adapt.
Collapse
Affiliation(s)
- Janna R Jackson
- Department of Rehabilitation Sciences, College of Health Sciences, University of Kentucky, Lexington, 40536-0200, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Neal A, Boldrin L, Morgan JE. The satellite cell in male and female, developing and adult mouse muscle: distinct stem cells for growth and regeneration. PLoS One 2012; 7:e37950. [PMID: 22662253 PMCID: PMC3360677 DOI: 10.1371/journal.pone.0037950] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 04/30/2012] [Indexed: 11/18/2022] Open
Abstract
Satellite cells are myogenic cells found between the basal lamina and the sarcolemma of the muscle fibre. Satellite cells are the source of new myofibres; as such, satellite cell transplantation holds promise as a treatment for muscular dystrophies. We have investigated age and sex differences between mouse satellite cells in vitro and assessed the importance of these factors as mediators of donor cell engraftment in an in vivo model of satellite cell transplantation. We found that satellite cell numbers are increased in growing compared to adult and in male compared to female adult mice. We saw no difference in the expression of the myogenic regulatory factors between male and female mice, but distinct profiles were observed according to developmental stage. We show that, in contrast to adult mice, the majority of satellite cells from two week old mice are proliferating to facilitate myofibre growth; however a small proportion of these cells are quiescent and not contributing to this growth programme. Despite observed changes in satellite cell populations, there is no difference in engraftment efficiency either between satellite cells derived from adult or pre-weaned donor mice, male or female donor cells, or between male and female host muscle environments. We suggest there exist two distinct satellite cell populations: one for muscle growth and maintenance and one for muscle regeneration.
Collapse
Affiliation(s)
- Alice Neal
- The Dubowitz Neuromuscular Centre, Institute of Child Health, University College London, London, United Kingdom
- MRC Centre for Neuromuscular Diseases, Institute of Neurology, University College London, London, United Kingdom
- * E-mail: (AN); (JEM)
| | - Luisa Boldrin
- The Dubowitz Neuromuscular Centre, Institute of Child Health, University College London, London, United Kingdom
| | - Jennifer Elizabeth Morgan
- The Dubowitz Neuromuscular Centre, Institute of Child Health, University College London, London, United Kingdom
- * E-mail: (AN); (JEM)
| |
Collapse
|
45
|
Arsenic induces apoptosis in myoblasts through a reactive oxygen species-induced endoplasmic reticulum stress and mitochondrial dysfunction pathway. Arch Toxicol 2012; 86:923-33. [PMID: 22622864 DOI: 10.1007/s00204-012-0864-9] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 04/26/2012] [Indexed: 01/26/2023]
Abstract
A pool of myoblasts available for myogenesis is important for skeletal muscle size. The decreased number of skeletal muscle fibers could be due to the decreased myoblast proliferation or cytotoxicity. Identification of toxicants that regulate myoblast apoptosis is important in skeletal muscle development or regeneration. Here, we investigate the cytotoxic effect and its possible mechanisms of arsenic trioxide (As(2)O(3)) on myoblasts. C2C12 myoblasts underwent apoptosis in response to As(2)O(3) (1-10 μM), accompanied by increased Bax/Bcl-2 ratio, decreased mitochondria membrane potential, increased cytochrome c release, increased caspase-3/-9 activity, and increased poly (ADP-ribose) polymerase (PARP) cleavage. Moreover, As(2)O(3) triggered the endoplasmic reticulum (ER) stress indentified through several key molecules of the unfolded protein response, including glucose-regulated protein (GRP)-78, GRP-94, PERK, eIF2α, ATF6, and caspase-12. Pretreatment with antioxidant N-acetylcysteine (NAC, 0.5 mM) dramatically suppressed the increases in reactive oxygen species (ROS), lipid peroxidation, ER stress, caspase cascade activity, and apoptosis in As(2)O(3) (10 μM)-treated myoblasts. Furthermore, As(2)O(3) (10 μM) effectively decreased the phosphorylation of Akt, which could be reversed by NAC. Over-expression of constitutive activation of Akt (c.a. Akt) also significantly attenuated As(2)O(3)-induced myoblast apoptosis. Taken together, these results suggest that As(2)O(3) may exert its cytotoxicity on myoblasts by inducing apoptosis through a ROS-induced mitochondrial dysfunction, ER stress, and Akt inactivation signaling pathway.
Collapse
|
46
|
Bruusgaard JC, Egner IM, Larsen TK, Dupre-Aucouturier S, Desplanches D, Gundersen K. No change in myonuclear number during muscle unloading and reloading. J Appl Physiol (1985) 2012; 113:290-6. [PMID: 22582213 DOI: 10.1152/japplphysiol.00436.2012] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Muscle fibers are the cells in the body with the largest volume, and they have multiple nuclei serving different domains of cytoplasm. A large body of previous literature has suggested that atrophy induced by hindlimb suspension leads to a loss of "excessive" myonuclei by apoptosis. We demonstrate here that atrophy induced by hindlimb suspension does not lead to loss of myonuclei despite a strong increase in apoptotic activity of other types of nuclei within the muscle tissue. Thus hindlimb suspension turns out to be similar to other atrophy models such as denervation, nerve impulse block, and antagonist ablation. We discuss how the different outcome of various studies can be attributed to difficulties in separating myonuclei from other nuclei, and to systematic differences in passive properties between normal and unloaded muscles. During reload, after hindlimb suspension, a radial regrowth is observed, which has been believed to be accompanied by recruitment of new myonuclei from satellite cells. The lack of nuclear loss during unloading, however, puts these findings into question. We observed that reload led to an increase in cross sectional area of 59%, and fiber size was completely restored to the presuspension levels. Despite this notable growth there was no increase in the number of myonuclei. Thus radial regrowth seems to differ from de novo hypertrophy in that nuclei are only added during the latter. We speculate that the number of myonuclei might reflect the largest size the muscle fibers have had in its previous history.
Collapse
Affiliation(s)
- J C Bruusgaard
- Department of Molecular Biosciences, University of Oslo, Oslo, Norway
| | | | | | | | | | | |
Collapse
|
47
|
Minetti GC, Feige JN, Rosenstiel A, Bombard F, Meier V, Werner A, Bassilana F, Sailer AW, Kahle P, Lambert C, Glass DJ, Fornaro M. G i2 Signaling Promotes Skeletal Muscle Hypertrophy, Myoblast Differentiation, and Muscle Regeneration. Sci Signal 2011; 4:ra80. [DOI: 10.1126/scisignal.2002038] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
48
|
Armand AS, Laziz I, Djeghloul D, Lécolle S, Bertrand AT, Biondi O, De Windt LJ, Chanoine C. Apoptosis-inducing factor regulates skeletal muscle progenitor cell number and muscle phenotype. PLoS One 2011; 6:e27283. [PMID: 22076146 PMCID: PMC3208607 DOI: 10.1371/journal.pone.0027283] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 10/13/2011] [Indexed: 12/22/2022] Open
Abstract
Apoptosis Inducing Factor (AIF) is a highly conserved, ubiquitous flavoprotein localized in the mitochondrial intermembrane space. In vivo, AIF provides protection against neuronal and cardiomyocyte apoptosis induced by oxidative stress. Conversely in vitro, AIF has been demonstrated to have a pro-apoptotic role upon induction of the mitochondrial death pathway, once AIF translocates to the nucleus where it facilitates chromatin condensation and large scale DNA fragmentation. Given that the aif hypomorphic harlequin (Hq) mutant mouse model displays severe sarcopenia, we examined skeletal muscle from the aif hypomorphic mice in more detail. Adult AIF-deficient skeletal myofibers display oxidative stress and a severe form of atrophy, associated with a loss of myonuclei and a fast to slow fiber type switch, both in "slow" muscles such as soleus, as well as in "fast" muscles such as extensor digitorum longus, most likely resulting from an increase of MEF2 activity. This fiber type switch was conserved in regenerated soleus and EDL muscles of Hq mice subjected to cardiotoxin injection. In addition, muscle regeneration in soleus and EDL muscles of Hq mice was severely delayed. Freshly cultured myofibers, soleus and EDL muscle sections from Hq mice displayed a decreased satellite cell pool, which could be rescued by pretreating aif hypomorphic mice with the manganese-salen free radical scavenger EUK-8. Satellite cell activation seems to be abnormally long in Hq primary culture compared to controls. However, AIF deficiency did not affect myoblast cell proliferation and differentiation. Thus, AIF protects skeletal muscles against oxidative stress-induced damage probably by protecting satellite cells against oxidative stress and maintaining skeletal muscle stem cell number and activation.
Collapse
Affiliation(s)
- Anne-Sophie Armand
- Centre d’Etude de la Sensori-Motricité, UMR 8194 CNRS, Université Paris Descartes, Centre Universitaire des Saints-Pères, Paris, France
| | - Iman Laziz
- Centre d’Etude de la Sensori-Motricité, UMR 8194 CNRS, Université Paris Descartes, Centre Universitaire des Saints-Pères, Paris, France
| | - Dounia Djeghloul
- Centre d’Etude de la Sensori-Motricité, UMR 8194 CNRS, Université Paris Descartes, Centre Universitaire des Saints-Pères, Paris, France
| | - Sylvie Lécolle
- Centre d’Etude de la Sensori-Motricité, UMR 8194 CNRS, Université Paris Descartes, Centre Universitaire des Saints-Pères, Paris, France
| | - Anne T. Bertrand
- The Hubrecht Institute and Interuniversity Cardiology Institute Netherlands, Royal Netherlands Academy of Sciences, Utrecht, The Netherlands
| | - Olivier Biondi
- Centre d’Etude de la Sensori-Motricité, UMR 8194 CNRS, Université Paris Descartes, Centre Universitaire des Saints-Pères, Paris, France
| | - Leon J. De Windt
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Christophe Chanoine
- Centre d’Etude de la Sensori-Motricité, UMR 8194 CNRS, Université Paris Descartes, Centre Universitaire des Saints-Pères, Paris, France
| |
Collapse
|
49
|
McCarthy JJ, Mula J, Miyazaki M, Erfani R, Garrison K, Farooqui AB, Srikuea R, Lawson BA, Grimes B, Keller C, Van Zant G, Campbell KS, Esser KA, Dupont-Versteegden EE, Peterson CA. Effective fiber hypertrophy in satellite cell-depleted skeletal muscle. Development 2011; 138:3657-66. [PMID: 21828094 DOI: 10.1242/dev.068858] [Citation(s) in RCA: 463] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
An important unresolved question in skeletal muscle plasticity is whether satellite cells are necessary for muscle fiber hypertrophy. To address this issue, a novel mouse strain (Pax7-DTA) was created which enabled the conditional ablation of >90% of satellite cells in mature skeletal muscle following tamoxifen administration. To test the hypothesis that satellite cells are necessary for skeletal muscle hypertrophy, the plantaris muscle of adult Pax7-DTA mice was subjected to mechanical overload by surgical removal of the synergist muscle. Following two weeks of overload, satellite cell-depleted muscle showed the same increases in muscle mass (approximately twofold) and fiber cross-sectional area with hypertrophy as observed in the vehicle-treated group. The typical increase in myonuclei with hypertrophy was absent in satellite cell-depleted fibers, resulting in expansion of the myonuclear domain. Consistent with lack of nuclear addition to enlarged fibers, long-term BrdU labeling showed a significant reduction in the number of BrdU-positive myonuclei in satellite cell-depleted muscle compared with vehicle-treated muscle. Single fiber functional analyses showed no difference in specific force, Ca(2+) sensitivity, rate of cross-bridge cycling and cooperativity between hypertrophied fibers from vehicle and tamoxifen-treated groups. Although a small component of the hypertrophic response, both fiber hyperplasia and regeneration were significantly blunted following satellite cell depletion, indicating a distinct requirement for satellite cells during these processes. These results provide convincing evidence that skeletal muscle fibers are capable of mounting a robust hypertrophic response to mechanical overload that is not dependent on satellite cells.
Collapse
Affiliation(s)
- John J McCarthy
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Yasuhara K, Ohno Y, Kojima A, Uehara K, Beppu M, Sugiura T, Fujimoto M, Nakai A, Ohira Y, Yoshioka T, Goto K. Absence of heat shock transcription factor 1 retards the regrowth of atrophied soleus muscle in mice. J Appl Physiol (1985) 2011; 111:1142-9. [DOI: 10.1152/japplphysiol.00471.2011] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Effects of heat shock transcription factor 1 (HSF1) gene on the regrowth of atrophied mouse soleus muscles were studied. Both HSF1-null and wild-type mice were subjected to continuous hindlimb suspension for 2 wk followed by 4 wk of ambulation recovery. There was no difference in the magnitude of suspension-related decrease of muscle weight, protein content, and the cross-sectional area of muscle fibers between both types of mice. However, the regrowth of atrophied soleus muscle in HSF1-null mice was slower compared with that in wild-type mice. Lower baseline expression level of HSP25, HSC70, and HSP72 were noted in soleus muscle of HSF1-null mice. Unloading-associated downregulation and reloading-associated upregulation of HSP25 and HSP72 mRNA were observed not only in wild-type mice but also in HSF1-null mice. Reloading-associated upregulation of HSP72 and HSP25 during the regrowth of atrophied muscle was observed in wild-type mice. Minor and delayed upregulation of HSP72 at mRNA and protein levels was also seen in HSF1-null mice. Significant upregulations of HSF2 and HSF4 were observed immediately after the suspension in HSF1-null mice, but not in wild-type mice. Therefore, HSP72 expression in soleus muscle might be regulated by the posttranscriptional level, but not by the stress response. Evidence from this study suggested that the upregulation of HSPs induced by HSF1-associated stress response might play, in part, important roles in the mechanical loading (stress)-associated regrowth of skeletal muscle.
Collapse
Affiliation(s)
- Kazuyuki Yasuhara
- Department of Orthopaedic Surgery, St. Marianna University School of Medicine, Kawasaki
| | - Yoshitaka Ohno
- Laboratory of Physiology, School of Health Sciences, Toyohashi SOZO University, Toyohashi
| | - Atsushi Kojima
- Department of Orthopaedic Surgery, St. Marianna University School of Medicine, Kawasaki
| | - Kenji Uehara
- Department of Orthopaedic Surgery, St. Marianna University School of Medicine, Kawasaki
| | - Moroe Beppu
- Department of Orthopaedic Surgery, St. Marianna University School of Medicine, Kawasaki
| | | | | | - Akira Nakai
- Graduate School of Medicine, Yamaguchi University, Yamaguchi
| | | | | | - Katsumasa Goto
- Department of Physiology, Graduate School of Health Sciences, Toyohashi SOZO University, Toyohashi, Japan
| |
Collapse
|