1
|
Díaz-Castro F, Tuñón-Suárez M, Rivera P, Botella J, Cancino J, Figueroa AM, Gutiérrez J, Cantin C, Deldicque L, Zbinden-Foncea H, Nielsen J, Henríquez-Olguín C, Morselli E, Castro-Sepúlveda M. A single bout of resistance exercise triggers mitophagy, potentially involving the ejection of mitochondria in human skeletal muscle. Acta Physiol (Oxf) 2024; 240:e14203. [PMID: 39023008 DOI: 10.1111/apha.14203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 06/17/2024] [Accepted: 07/04/2024] [Indexed: 07/20/2024]
Abstract
AIM The present study aimed to investigate the effects of a single bout of resistance exercise on mitophagy in human skeletal muscle (SkM). METHODS Eight healthy men were recruited to complete an acute bout of one-leg resistance exercise. SkM biopsies were obtained one hour after exercise in the resting leg (Rest-leg) and the contracting leg (Ex-leg). Mitophagy was assessed using protein-related abundance, transmission electron microscopy (TEM), and fluorescence microscopy. RESULTS Our results show that acute resistance exercise increased pro-fission protein phosphorylation (DRP1Ser616) and decreased mitophagy markers such as PARKIN and BNIP3L/NIX protein abundance in the Ex-leg. Additionally, mitochondrial complex IV decreased in the Ex-leg when compared to the Rest-leg. In the Ex-leg, TEM and immunofluorescence images showed mitochondrial cristae abnormalities, a mitochondrial fission phenotype, and increased mitophagosome-like structures in both subsarcolemmal and intermyofibrillar mitochondria. We also observed increased mitophagosome-like structures on the subsarcolemmal cleft and mitochondria in the extracellular space of SkM in the Ex-leg. We stimulated human primary myotubes with CCCP, which mimics mitophagy induction in the Ex-leg, and found that BNIP3L/NIX protein abundance decreased independently of lysosomal degradation. Finally, in another human cohort, we found a negative association between BNIP3L/NIX protein abundance with both mitophagosome-like structures and mitochondrial cristae density in the SkM. CONCLUSION The findings suggest that a single bout of resistance exercise can initiate mitophagy, potentially involving mitochondrial ejection, in human skeletal muscle. BNIP3L/NIX is proposed as a sensitive marker for assessing mitophagy flux in SkM.
Collapse
Affiliation(s)
- Francisco Díaz-Castro
- Center of Exercise Physiology and Metabolism, Department of Kinesiology, Faculty of Medicine, Universidad Finis Terrae, Santiago, Chile
- Physiology Department, Biological Science Faculty, Pontificia Universidad Católica de Chile, Santiago, Chile
- Laboratory of Autophagy and Metabolism, Department of Basic Sciences, Faculty of Medicine and Sciences, Universidad San Sebastián, Santiago, Chile
| | - Mauro Tuñón-Suárez
- Center of Exercise Physiology and Metabolism, Department of Kinesiology, Faculty of Medicine, Universidad Finis Terrae, Santiago, Chile
| | - Patricia Rivera
- Physiology Department, Biological Science Faculty, Pontificia Universidad Católica de Chile, Santiago, Chile
- Laboratory of Autophagy and Metabolism, Department of Basic Sciences, Faculty of Medicine and Sciences, Universidad San Sebastián, Santiago, Chile
| | - Javier Botella
- Department of Dermatology and Venereology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Jorge Cancino
- Center of Exercise Physiology and Metabolism, Department of Kinesiology, Faculty of Medicine, Universidad Finis Terrae, Santiago, Chile
| | - Ana María Figueroa
- Center of Exercise Physiology and Metabolism, Department of Kinesiology, Faculty of Medicine, Universidad Finis Terrae, Santiago, Chile
| | - Juan Gutiérrez
- Center of Exercise Physiology and Metabolism, Department of Kinesiology, Faculty of Medicine, Universidad Finis Terrae, Santiago, Chile
| | - Claudette Cantin
- Departamento de Odontología, Facultad de Odontología y Ciencias de la Rehabilitación, Universidad San Sebastián, Puerto Montt, Chile
| | - Louise Deldicque
- Institute of Neuroscience, UCLouvain, Ottignies-Louvain-la-Neuve, Belgium
| | - Hermann Zbinden-Foncea
- Center of Exercise Physiology and Metabolism, Department of Kinesiology, Faculty of Medicine, Universidad Finis Terrae, Santiago, Chile
- Departamento de Fisioterapia, Facultad de Ciencias de la Salud, Universidad Francisco de Vitoria, Madrid, Spain
| | - Joachim Nielsen
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Carlos Henríquez-Olguín
- Center of Exercise Physiology and Metabolism, Department of Kinesiology, Faculty of Medicine, Universidad Finis Terrae, Santiago, Chile
- Department of Nutrition, Exercise and Sports, Section of Molecular Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Eugenia Morselli
- Laboratory of Autophagy and Metabolism, Department of Basic Sciences, Faculty of Medicine and Sciences, Universidad San Sebastián, Santiago, Chile
| | - Mauricio Castro-Sepúlveda
- Center of Exercise Physiology and Metabolism, Department of Kinesiology, Faculty of Medicine, Universidad Finis Terrae, Santiago, Chile
| |
Collapse
|
2
|
Figueroa-Toledo AM, Gutiérrez-Pino J, Carriel-Nesvara A, Marchese-Bittencourt M, Zbinden-Foncea H, Castro-Sepúlveda M. BMAL1 and CLOCK proteins exhibit differential association with mitochondrial dynamics, protein synthesis pathways and muscle strength in human muscle. J Physiol 2024. [PMID: 38922907 DOI: 10.1113/jp285955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Murine models lacking CLOCK/BMAL1 proteins in skeletal muscle (SkM) present muscle deterioration and mitochondria abnormalities. It is unclear whether humans with lower levels of these proteins in the SkM have similar alterations. Here we evaluated the association between BMAL1 and CLOCK protein mass with mitochondrial dynamics parameters and molecular and functional SkM quality markers in males. SkM biopsies were taken from the vastus lateralis of 16 male (non-athletes, non-obese and non-diabetic) subjects (8-9 a.m.). The morphology of mitochondria and their interaction with the sarcoplasmic reticulum (mitochondria-SR) were determined using transmission electron microscopy images. Additionally, protein abundance of the OXPHOS complex, mitochondria fusion/fission regulators, mitophagy and signalling proteins related to muscle protein synthesis were measured. To evaluate the quality of SkM, the cross-sectional area and maximal SkM strength were also measured. The results showed that BMAL1 protein mass was positively associated with mitochondria-SR distance, mitochondria size, mitochondria cristae density and mTOR protein mass. On the other hand, CLOCK protein mass was negatively associated with mitochondria-SR interaction, but positively associated with mitochondria complex III, OPA1 and DRP1 protein mass. Furthermore, CLOCK protein mass was positively associated with the protein synthesis signalling pathway (total mTOR, AKT and P70S6K protein mass) and SkM strength. These findings suggest that the BMAL1 and CLOCK proteins play different roles in regulating mitochondrial dynamics and SkM function in males, and that modulation of these proteins could be a potential therapeutic target for treating muscle diseases. KEY POINTS: In murine models, reductions in BMAL1 and CLOCK proteins lead to changes in mitochondria biology and a decline in muscle function. However, this association has not been explored in humans. We found that in human skeletal muscle, a decrease in BMAL1 protein mass is linked to smaller intermyofibrillar mitochondria, lower mitochondria cristae density, higher interaction between mitochondria and sarcoplasmic reticulum, and reduced mTOR protein mass. Additionally, we found that a decrease in CLOCK protein mass is associated with a higher interaction between mitochondria and sarcoplasmic reticulum, lower protein mass of OPA1 and DRP1, which regulates mitochondria fusion and fission, lower protein synthesis signalling pathway (mTOR, AKT and P70S6K protein mass), and decreased skeletal muscle strength. According to our findings in humans, which are supported by previous studies in animals, the mitochondrial dynamics and skeletal muscle function could be regulated differently by BMAL1 and CLOCK proteins. As a result, targeting the modulation of these proteins could be a potential therapeutic approach for treating muscle diseases and metabolic disorders related to muscle.
Collapse
Affiliation(s)
- A M Figueroa-Toledo
- Laboratorio de Fisiología del Ejercicio y Metabolismo (LABFEM), Escuela de Kinesiología, Facultad de Medicina, Universidad Finis Terrae, Santiago, Chile
| | - J Gutiérrez-Pino
- Laboratorio de Fisiología del Ejercicio y Metabolismo (LABFEM), Escuela de Kinesiología, Facultad de Medicina, Universidad Finis Terrae, Santiago, Chile
| | - A Carriel-Nesvara
- Laboratorio de Fisiología del Ejercicio y Metabolismo (LABFEM), Escuela de Kinesiología, Facultad de Medicina, Universidad Finis Terrae, Santiago, Chile
| | - M Marchese-Bittencourt
- Laboratorio de Fisiología del Ejercicio y Metabolismo (LABFEM), Escuela de Kinesiología, Facultad de Medicina, Universidad Finis Terrae, Santiago, Chile
| | - H Zbinden-Foncea
- Laboratorio de Fisiología del Ejercicio y Metabolismo (LABFEM), Escuela de Kinesiología, Facultad de Medicina, Universidad Finis Terrae, Santiago, Chile
| | - M Castro-Sepúlveda
- Laboratorio de Fisiología del Ejercicio y Metabolismo (LABFEM), Escuela de Kinesiología, Facultad de Medicina, Universidad Finis Terrae, Santiago, Chile
| |
Collapse
|
3
|
Dark C, Ali N, Golenkina S, Dhyani V, Blazev R, Parker BL, Murphy KT, Lynch GS, Senapati T, Millard SS, Judge SM, Judge AR, Giri L, Russell SM, Cheng LY. Mitochondrial fusion and altered beta-oxidation drive muscle wasting in a Drosophila cachexia model. EMBO Rep 2024; 25:1835-1858. [PMID: 38429578 PMCID: PMC11014992 DOI: 10.1038/s44319-024-00102-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 01/28/2024] [Accepted: 02/08/2024] [Indexed: 03/03/2024] Open
Abstract
Cancer cachexia is a tumour-induced wasting syndrome, characterised by extreme loss of skeletal muscle. Defective mitochondria can contribute to muscle wasting; however, the underlying mechanisms remain unclear. Using a Drosophila larval model of cancer cachexia, we observed enlarged and dysfunctional muscle mitochondria. Morphological changes were accompanied by upregulation of beta-oxidation proteins and depletion of muscle glycogen and lipid stores. Muscle lipid stores were also decreased in Colon-26 adenocarcinoma mouse muscle samples, and expression of the beta-oxidation gene CPT1A was negatively associated with muscle quality in cachectic patients. Mechanistically, mitochondrial defects result from reduced muscle insulin signalling, downstream of tumour-secreted insulin growth factor binding protein (IGFBP) homologue ImpL2. Strikingly, muscle-specific inhibition of Forkhead box O (FOXO), mitochondrial fusion, or beta-oxidation in tumour-bearing animals preserved muscle integrity. Finally, dietary supplementation with nicotinamide or lipids, improved muscle health in tumour-bearing animals. Overall, our work demonstrates that muscle FOXO, mitochondria dynamics/beta-oxidation and lipid utilisation are key regulators of muscle wasting in cancer cachexia.
Collapse
Affiliation(s)
- Callum Dark
- Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Nashia Ali
- Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
| | - Sofya Golenkina
- Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
| | - Vaibhav Dhyani
- Bioimaging and Data Analysis Lab, Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Sangareddy, Telangana, India
- Optical Science Centre, Faculty of Science, Engineering & Technology, Swinburne University of Technology, Hawthorn, Melbourne, VIC, Australia
| | - Ronnie Blazev
- Centre for Muscle Research, The University of Melbourne, Melbourne, VIC, 3010, Australia
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Benjamin L Parker
- Centre for Muscle Research, The University of Melbourne, Melbourne, VIC, 3010, Australia
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Kate T Murphy
- Centre for Muscle Research, The University of Melbourne, Melbourne, VIC, 3010, Australia
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Gordon S Lynch
- Centre for Muscle Research, The University of Melbourne, Melbourne, VIC, 3010, Australia
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Tarosi Senapati
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Queensland, QLD, 4072, Australia
| | - S Sean Millard
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Queensland, QLD, 4072, Australia
| | - Sarah M Judge
- Department of Physical Therapy, College of Public Health and Health Professions, University of Florida, Florida, FL, 32603, USA
| | - Andrew R Judge
- Department of Physical Therapy, College of Public Health and Health Professions, University of Florida, Florida, FL, 32603, USA
| | - Lopamudra Giri
- Bioimaging and Data Analysis Lab, Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Sangareddy, Telangana, India
| | - Sarah M Russell
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, 3010, Australia
- Optical Science Centre, Faculty of Science, Engineering & Technology, Swinburne University of Technology, Hawthorn, Melbourne, VIC, Australia
- Immune Signalling Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
| | - Louise Y Cheng
- Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, 3010, Australia.
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC, 3010, Australia.
| |
Collapse
|
4
|
Launay N, Ruiz M, Planas-Serra L, Verdura E, Rodríguez-Palmero A, Schlüter A, Goicoechea L, Guilera C, Casas J, Campelo F, Jouanguy E, Casanova JL, Boespflug-Tanguy O, Vazquez Cancela M, Gutiérrez-Solana LG, Casasnovas C, Area-Gomez E, Pujol A. RINT1 deficiency disrupts lipid metabolism and underlies a complex hereditary spastic paraplegia. J Clin Invest 2023; 133:e162836. [PMID: 37463447 DOI: 10.1172/jci162836] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 05/26/2023] [Indexed: 07/20/2023] Open
Abstract
The Rad50 interacting protein 1 (Rint1) is a key player in vesicular trafficking between the ER and Golgi apparatus. Biallelic variants in RINT1 cause infantile-onset episodic acute liver failure (ALF). Here, we describe 3 individuals from 2 unrelated families with novel biallelic RINT1 loss-of-function variants who presented with early onset spastic paraplegia, ataxia, optic nerve hypoplasia, and dysmorphic features, broadening the previously described phenotype. Our functional and lipidomic analyses provided evidence that pathogenic RINT1 variants induce defective lipid-droplet biogenesis and profound lipid abnormalities in fibroblasts and plasma that impact both neutral lipid and phospholipid metabolism, including decreased triglycerides and diglycerides, phosphatidylcholine/phosphatidylserine ratios, and inhibited Lands cycle. Further, RINT1 mutations induced intracellular ROS production and reduced ATP synthesis, affecting mitochondria with membrane depolarization, aberrant cristae ultrastructure, and increased fission. Altogether, our results highlighted the pivotal role of RINT1 in lipid metabolism and mitochondria function, with a profound effect in central nervous system development.
Collapse
Affiliation(s)
- Nathalie Launay
- Neurometabolic Diseases Laboratory, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Hospital Duran i Reynals, L'Hospitalet de Llobregat, Barcelona, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
| | - Montserrat Ruiz
- Neurometabolic Diseases Laboratory, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Hospital Duran i Reynals, L'Hospitalet de Llobregat, Barcelona, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
| | - Laura Planas-Serra
- Neurometabolic Diseases Laboratory, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Hospital Duran i Reynals, L'Hospitalet de Llobregat, Barcelona, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
| | - Edgard Verdura
- Neurometabolic Diseases Laboratory, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Hospital Duran i Reynals, L'Hospitalet de Llobregat, Barcelona, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
| | - Agustí Rodríguez-Palmero
- Neurometabolic Diseases Laboratory, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Hospital Duran i Reynals, L'Hospitalet de Llobregat, Barcelona, Spain
- Pediatric Neurology unit, Department of Pediatrics, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Spain
| | - Agatha Schlüter
- Neurometabolic Diseases Laboratory, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Hospital Duran i Reynals, L'Hospitalet de Llobregat, Barcelona, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
| | - Leire Goicoechea
- Neurometabolic Diseases Laboratory, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Hospital Duran i Reynals, L'Hospitalet de Llobregat, Barcelona, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
| | - Cristina Guilera
- Neurometabolic Diseases Laboratory, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Hospital Duran i Reynals, L'Hospitalet de Llobregat, Barcelona, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
| | - Josefina Casas
- Research Unit on BioActive Molecules (RUBAM), Departament de Química Biomèdica, Institut de Química Avançada de Catalunya (IQAC-CSIC), Barcelona, Spain
- CIBEREHD, Centro de Investigación Biomédica en Red de Enfermedades heoaticas y digestivas, ISCIII, Madrid, Spain
| | - Felix Campelo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Spain
| | - Emmanuelle Jouanguy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale, UMR 1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, USA
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale, UMR 1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, USA
- Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, Paris, France
- Howard Hughes Medical Institute, New York, New York, USA
| | - Odile Boespflug-Tanguy
- CRMR Leukofrance Service de Neuropédiatrie, Hôpital Robert Debré AP-HP, Paris, France
- UMR1141 Neurodiderot Université de Paris Cité, Paris, France
| | | | - Luis González Gutiérrez-Solana
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
- Consulta de Neurodegenerativas, Sección de Neurología Pediátrica, Hospital, Infantil Universitario Niño Jesús, Madrid, Spain
| | - Carlos Casasnovas
- Neurometabolic Diseases Laboratory, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Hospital Duran i Reynals, L'Hospitalet de Llobregat, Barcelona, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
- Neuromuscular Unit, Neurology Department, Hospital Universitari de Bellvitge, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Estela Area-Gomez
- Department of Neurology, Columbia University, New York, New York, USA
| | - Aurora Pujol
- Neurometabolic Diseases Laboratory, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Hospital Duran i Reynals, L'Hospitalet de Llobregat, Barcelona, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
- Catalan Institution of Research and Advanced Studies (ICREA), Barcelona, Spain
| |
Collapse
|
5
|
Botella J, Schytz CT, Pehrson TF, Hokken R, Laugesen S, Aagaard P, Suetta C, Christensen B, Ørtenblad N, Nielsen J. Increased mitochondrial surface area and cristae density in the skeletal muscle of strength athletes. J Physiol 2023; 601:2899-2915. [PMID: 37042493 DOI: 10.1113/jp284394] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/05/2023] [Indexed: 04/13/2023] Open
Abstract
Mitochondria are the cellular organelles responsible for resynthesising the majority of ATP. In skeletal muscle, there is an increased ATP turnover during resistance exercise to sustain the energetic demands of muscle contraction. Despite this, little is known regarding the mitochondrial characteristics of chronically strength-trained individuals and any potential pathways regulating the strength-specific mitochondrial remodelling. Here, we investigated the mitochondrial structural characteristics in skeletal muscle of strength athletes and age-matched untrained controls. The mitochondrial pool in strength athletes was characterised by increased mitochondrial cristae density, decreased mitochondrial size, and increased surface-to-volume ratio, despite similar mitochondrial volume density. We also provide a fibre-type and compartment-specific assessment of mitochondria morphology in human skeletal muscle, which reveals across groups a compartment-specific influence on mitochondrial morphology that is largely independent of fibre type. Furthermore, we show that resistance exercise leads to signs of mild mitochondrial stress, without an increase in the number of damaged mitochondria. Using publicly available transcriptomic data we show that acute resistance exercise increases the expression of markers of mitochondrial biogenesis, fission and mitochondrial unfolded protein responses (UPRmt ). Further, we observed an enrichment of the UPRmt in the basal transcriptome of strength-trained individuals. Together, these findings show that strength athletes possess a unique mitochondrial remodelling, which minimises the space required for mitochondria. We propose that the concurrent activation of markers of mitochondrial biogenesis and mitochondrial remodelling pathways (fission and UPRmt ) with resistance exercise may be partially responsible for the observed mitochondrial phenotype of strength athletes. KEY POINTS: Untrained individuals and strength athletes possess comparable skeletal muscle mitochondrial volume density. In contrast, strength athletes' mitochondria are characterised by increased cristae density, decreased size and increased surface-to-volume ratio. Type I fibres have an increased number of mitochondrial profiles with minor differences in the mitochondrial morphological characteristics compared with type II fibres. The mitochondrial morphology is distinct across the subcellular compartments in both groups, with subsarcolemmal mitochondria being bigger in size when compared with intermyofibrillar. Acute resistance exercise leads to signs of mild morphological mitochondrial stress accompanied by increased gene expression of markers of mitochondrial biogenesis, fission and mitochondrial unfolded protein response (UPRmt ).
Collapse
Affiliation(s)
- Javier Botella
- Institute for Mental and Physical Health and Clinical Translation, Metabolic Research Unit, School of Medicine, Deakin University, Geelong, Australia
| | - Camilla T Schytz
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Thomas F Pehrson
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Rune Hokken
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Simon Laugesen
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Per Aagaard
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Charlotte Suetta
- Geriatric Research Unit, Department of Geriatric and Palliative Medicine, Copenhagen University Hospital, Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Britt Christensen
- Department of Endocrinology and Internal Medicine, NBG/THG, Aarhus University Hospital, Aarhus, Denmark
| | - Niels Ørtenblad
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Joachim Nielsen
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
6
|
Castro-Sepulveda M, Tuñón-Suárez M, Rosales-Soto G, Vargas-Foitzick R, Deldicque L, Zbinden-Foncea H. Regulation of mitochondrial morphology and cristae architecture by the TLR4 pathway in human skeletal muscle. Front Cell Dev Biol 2023; 11:1212779. [PMID: 37435031 PMCID: PMC10332154 DOI: 10.3389/fcell.2023.1212779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/12/2023] [Indexed: 07/13/2023] Open
Abstract
In skeletal muscle (SkM), a reduced mitochondrial elongate phenotype is associated with several metabolic disorders like type 2 diabetes mellitus (T2DM). However, the mechanisms contributing to this reduction in mitochondrial elongate phenotype in SkM have not been fully elucidated. It has recently been shown in a SkM cell line that toll-like receptor 4 (TLR4) contributes to the regulation of mitochondrial morphology. However, this has not been investigated in human SkM. Here we found that in human SkM biopsies, TLR4 protein correlated negatively with Opa1 (pro-mitochondrial fusion protein). Moreover, the incubation of human myotubes with LPS reduced mitochondrial size and elongation and induced abnormal mitochondrial cristae, which was prevented with the co-incubation of LPS with TAK242. Finally, T2DM myotubes were found to have reduced mitochondrial elongation and mitochondrial cristae density. Mitochondrial morphology, membrane structure, and insulin-stimulated glucose uptake were restored to healthy levels in T2DM myotubes treated with TAK242. In conclusion, mitochondrial morphology and mitochondrial cristae seem to be regulated by the TLR4 pathway in human SkM. Those mitochondrial alterations might potentially contribute to insulin resistance in the SkM of patients with T2DM.
Collapse
Affiliation(s)
- Mauricio Castro-Sepulveda
- Laboratorio de Fisiología del Ejercicio y Metabolismo, Escuela de Kinesiología, Facultad de Medicina, Universidad Finis Terrae, Santiago, Chile
| | - Mauro Tuñón-Suárez
- Laboratorio de Fisiología del Ejercicio y Metabolismo, Escuela de Kinesiología, Facultad de Medicina, Universidad Finis Terrae, Santiago, Chile
| | - Giovanni Rosales-Soto
- Facultad de Ciencias de la Educación, Universidad San Sebastián, Sede Bellavista, Santiago, Chile
| | - Ronald Vargas-Foitzick
- Laboratorio de Fisiología del Ejercicio y Metabolismo, Escuela de Kinesiología, Facultad de Medicina, Universidad Finis Terrae, Santiago, Chile
| | - Louise Deldicque
- Institute of Neuroscience, UCLouvain, Ottignies-Louvain-la- Neuve, Belgium
| | - Hermann Zbinden-Foncea
- Laboratorio de Fisiología del Ejercicio y Metabolismo, Escuela de Kinesiología, Facultad de Medicina, Universidad Finis Terrae, Santiago, Chile
- Institute of Neuroscience, UCLouvain, Ottignies-Louvain-la- Neuve, Belgium
- Facultad de Ciencias de la Salud, Universidad Francisco de Vitoria, Madrid, España
| |
Collapse
|
7
|
Castro-Sepulveda M, Fernández-Verdejo R, Zbinden-Foncea H, Rieusset J. Mitochondria-SR interaction and mitochondrial fusion/fission in the regulation of skeletal muscle metabolism. Metabolism 2023; 144:155578. [PMID: 37164310 DOI: 10.1016/j.metabol.2023.155578] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/20/2023] [Accepted: 04/22/2023] [Indexed: 05/12/2023]
Abstract
Mitochondria-endoplasmic/sarcoplasmic reticulum (ER/SR) interaction and mitochondrial fusion/fission are critical processes that influence substrate oxidation. This narrative review summarizes the evidence on the effects of substrate availability on mitochondrial-SR interaction and mitochondria fusion/fission dynamics to modulate substrate oxidation in human skeletal muscle. Evidence shows that an increase in mitochondria-SR interaction and mitochondrial fusion are associated with elevated fatty acid oxidation. In contrast, a decrease in mitochondria-SR interaction and an increase in mitochondrial fission are associated with an elevated glycolytic activity. Based on the evidence reviewed, we postulate two hypotheses for the link between mitochondrial dynamics and insulin resistance in human skeletal muscle. First, glucose and fatty acid availability modifies mitochondria-SR interaction and mitochondrial fusion/fission to help the cell to adapt substrate oxidation appropriately. Individuals with an impaired response to these substrate challenges will accumulate lipid species and develop insulin resistance in skeletal muscle. Second, a chronically elevated substrate availability (e.g. overfeeding) increases mitochondrial production of reactive oxygen species and induced mitochondrial fission. This decreases fatty acid oxidation, thus leading to the accumulation of lipid species and insulin resistance in skeletal muscle. Altogether, we propose mitochondrial dynamics as a potential target for disturbances associated with low fatty acid oxidation.
Collapse
Affiliation(s)
- Mauricio Castro-Sepulveda
- Laboratorio de Fisiología del Ejercicio y Metabolismo (LABFEM), Escuela de Kinesiologia, Facultad de Medicina, Universidad Finis Terrae, Santiago, Chile.
| | - Rodrigo Fernández-Verdejo
- Laboratorio de Fisiología del Ejercicio y Metabolismo (LABFEM), Escuela de Kinesiologia, Facultad de Medicina, Universidad Finis Terrae, Santiago, Chile
| | - Hermann Zbinden-Foncea
- Laboratorio de Fisiología del Ejercicio y Metabolismo (LABFEM), Escuela de Kinesiologia, Facultad de Medicina, Universidad Finis Terrae, Santiago, Chile; Centro de Salud Deportiva, Clinica Santa Maria, Santiago, Chile
| | - Jennifer Rieusset
- CarMeN Laboratory, UMR INSERM U1060/INRA U1397, Université Claude Bernard Lyon 1, Pierre-Bénite, France
| |
Collapse
|
8
|
Li L, Huang T, Yang J, Yang P, Lan H, Liang J, Cai D, Zhong H, Jiao W, Song Y. PINK1/Parkin pathway-mediated mitophagy by AS-IV to explore the molecular mechanism of muscle cell damage. Biomed Pharmacother 2023; 161:114533. [PMID: 36948131 DOI: 10.1016/j.biopha.2023.114533] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/04/2023] [Accepted: 03/13/2023] [Indexed: 03/24/2023] Open
Abstract
BACKGROUND Functional disorders of mitochondria are closely related to muscle diseases. Many studies have also shown that oxidative stress can stimulate the production of a large number of reactive oxygen species (ROS), which have various adverse effects on mitochondria and can damage muscle cells. PURPOSE In this study, based on our previous research, we focused on the PINK1/Parkin pathway to explore the mechanism by which AS-IV alleviates muscle injury by inhibiting excessive mitophagy. METHODS L6 myoblasts were treated with AS-IV after stimulation with hydrogen peroxide (H2O2) and carbonyl cyanide m-chlorophenylhydrazone (CCCP). Then, we detected the related indices of oxidative stress and mitophagy by different methods. A PINK1 knockdown cell line was established by lentiviral infection to obtain further evidence that AS-IV reduces mitochondrial damage through PINK1/Parkin. RESULTS After mitochondrial damage, the expression of malondialdehyde (MDA) and intracellular ROS in L6 myoblasts significantly increased, while the expression of superoxide dismutase (SOD) and ATP decreased. The mRNA and protein expression levels of Tom20 and Tim23 were decreased, while those of VDAC1 were increased. PINK1, Parkin, and LC3 II mRNA and protein expression increased, and P62 mRNA and protein expression decreased·H2O2 combined with CCCP strongly activated the mitophagy pathway and impaired mitochondrial function. However, abnormal expression of these factors could be reversed after treatment with AS-IV, and excessive mitochondrial autophagy could also be reversed, thus restoring the regulatory function of mitochondria. However, AS-IV-adjusted function was resisted after PINK1 knockdown. CONCLUSION AS-IV is a potential drug for myasthenia gravis (MG), and its treatment mechanism is related to mediating mitophagy and restoring mitochondrial function through the PINK1/Parkin pathway.
Collapse
Affiliation(s)
- Lanqi Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Institute of Pi-Wei, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Tingjuan Huang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Institute of Pi-Wei, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jie Yang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Institute of Pi-Wei, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Peidan Yang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Institute of Pi-Wei, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Haixia Lan
- Department of Pediatrics, The 969th Hospital of the PLA joint Logistics Support Force, Hohhot, Inner Mongolia, China
| | - Jian Liang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Donghong Cai
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Institute of Pi-Wei, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Huiya Zhong
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Institute of Pi-Wei, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Wei Jiao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Institute of Pi-Wei, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yafang Song
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Institute of Pi-Wei, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| |
Collapse
|
9
|
Blottner D, Moriggi M, Trautmann G, Hastermann M, Capitanio D, Torretta E, Block K, Rittweger J, Limper U, Gelfi C, Salanova M. Space Omics and Tissue Response in Astronaut Skeletal Muscle after Short and Long Duration Missions. Int J Mol Sci 2023; 24:ijms24044095. [PMID: 36835504 PMCID: PMC9962627 DOI: 10.3390/ijms24044095] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
The molecular mechanisms of skeletal muscle adaptation to spaceflight are as yet not fully investigated and well understood. The MUSCLE BIOPSY study analyzed pre and postflight deep calf muscle biopsies (m. soleus) obtained from five male International Space Station (ISS) astronauts. Moderate rates of myofiber atrophy were found in long-duration mission (LDM) astronauts (~180 days in space) performing routine inflight exercise as countermeasure (CM) compared to a short-duration mission (SDM) astronaut (11 days in space, little or no inflight CM) for reference control. Conventional H&E scout histology showed enlarged intramuscular connective tissue gaps between myofiber groups in LDM post vs. preflight. Immunoexpression signals of extracellular matrix (ECM) molecules, collagen 4 and 6, COL4 and 6, and perlecan were reduced while matrix-metalloproteinase, MMP2, biomarker remained unchanged in LDM post vs. preflight suggesting connective tissue remodeling. Large scale proteomics (space omics) identified two canonical protein pathways associated to muscle weakness (necroptosis, GP6 signaling/COL6) in SDM and four key pathways (Fatty acid β-oxidation, integrin-linked kinase ILK, Rho A GTPase RHO, dilated cardiomyopathy signaling) explicitly in LDM. The levels of structural ECM organization proteins COL6A1/A3, fibrillin 1, FBN1, and lumican, LUM, increased in postflight SDM vs. LDM. Proteins from tricarboxylic acid, TCA cycle, mitochondrial respiratory chain, and lipid metabolism mostly recovered in LDM vs. SDM. High levels of calcium signaling proteins, ryanodine receptor 1, RyR1, calsequestrin 1/2, CASQ1/2, annexin A2, ANXA2, and sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA1) pump, ATP2A, were signatures of SDM, and decreased levels of oxidative stress peroxiredoxin 1, PRDX1, thioredoxin-dependent peroxide reductase, PRDX3, or superoxide dismutase [Mn] 2, SOD2, signatures of LDM postflight. Results help to better understand the spatiotemporal molecular adaptation of skeletal muscle and provide a large scale database of skeletal muscle from human spaceflight for the better design of effective CM protocols in future human deep space exploration.
Collapse
Affiliation(s)
- Dieter Blottner
- Institute of Integrative Neuroanatomy, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10115 Berlin, Germany
- NeuroMuscular System & Signaling Group, Center of Space Medicine and Extreme Environments, 10115 Berlin, Germany
- Correspondence: ; Tel.: +49-30-450-528-347
| | - Manuela Moriggi
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| | - Gabor Trautmann
- Institute of Integrative Neuroanatomy, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10115 Berlin, Germany
| | - Maria Hastermann
- Institute of Integrative Neuroanatomy, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10115 Berlin, Germany
- NeuroMuscular System & Signaling Group, Center of Space Medicine and Extreme Environments, 10115 Berlin, Germany
| | - Daniele Capitanio
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| | | | - Katharina Block
- Institute of Integrative Neuroanatomy, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10115 Berlin, Germany
| | - Joern Rittweger
- Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany
- Department of Pediatrics and Adolescence Medicine, University Hospital Cologne, 50937 Cologne, Germany
| | - Ulrich Limper
- Department of Anaesthesiology and Intensive Care Medicine, Merheim Medical Center, Witten/Herdecke University, 51109 Cologne, Germany
| | - Cecilia Gelfi
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
- IRCCS Orthopedic Institute Galeazzi, 20161 Milan, Italy
| | - Michele Salanova
- Institute of Integrative Neuroanatomy, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10115 Berlin, Germany
- NeuroMuscular System & Signaling Group, Center of Space Medicine and Extreme Environments, 10115 Berlin, Germany
| |
Collapse
|
10
|
Nieblas B, Pérez-Treviño P, García N. Role of mitochondria-associated endoplasmic reticulum membranes in insulin sensitivity, energy metabolism, and contraction of skeletal muscle. Front Mol Biosci 2022; 9:959844. [PMID: 36275635 PMCID: PMC9585326 DOI: 10.3389/fmolb.2022.959844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/04/2022] [Indexed: 11/29/2022] Open
Abstract
Skeletal muscle has a critical role in the regulation of the energy balance of the organism, particularly as the principal tissue responsible for insulin-stimulated glucose disposal and as the major site of peripheral insulin resistance (IR), which has been related to accumulation of lipid intermediates, reduced oxidative capacity of mitochondria and endoplasmic reticulum (ER) stress. These organelles form contact sites, known as mitochondria-associated ER membranes (MAMs). This interconnection seems to be involved in various cellular processes, including Ca2+ transport and energy metabolism; therefore, MAMs could play an important role in maintaining cellular homeostasis. Evidence suggests that alterations in MAMs may contribute to IR. However, the evidence does not refer to a specific subcellular location, which is of interest due to the fact that skeletal muscle is constituted by oxidative and glycolytic fibers as well as different mitochondrial populations that appear to respond differently to stimuli and pathological conditions. In this review, we show the available evidence of possible differential responses in the formation of MAMs in skeletal muscle as well as its role in insulin signaling and the beneficial effect it could have in the regulation of energetic metabolism and muscular contraction.
Collapse
Affiliation(s)
- Bianca Nieblas
- Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey, Monterrey, Nuevo León, México
- Experimental Medicine and Advanced Therapies, The Institute for Obesity Research, Tecnologico de Monterrey, Monterrey, Nuevo León, México
| | - Perla Pérez-Treviño
- Experimental Medicine and Advanced Therapies, The Institute for Obesity Research, Tecnologico de Monterrey, Monterrey, Nuevo León, México
| | - Noemí García
- Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey, Monterrey, Nuevo León, México
- Experimental Medicine and Advanced Therapies, The Institute for Obesity Research, Tecnologico de Monterrey, Monterrey, Nuevo León, México
- *Correspondence: Noemí García,
| |
Collapse
|
11
|
Castro‐Sepulveda M, Tapia G, Tuñón‐Suárez M, Diaz A, Marambio H, Valero‐Breton M, Fernández‐Verdejo R, Zbinden‐Foncea H. Severe COVID-19 correlates with lower mitochondrial cristae density in PBMCs and greater sitting time in humans. Physiol Rep 2022; 10:e15369. [PMID: 35883244 PMCID: PMC9325974 DOI: 10.14814/phy2.15369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 04/14/2023] Open
Abstract
An interaction between mitochondrial dynamics, physical activity levels, and COVID-19 severity has been previously hypothesized. However, this has not been tested. We aimed to compare mitochondrial morphology and cristae density of PBMCs between subjects with non-severe COVID-19, subjects with severe COVID-19, and healthy controls. Additionally, we compared the level of moderate-vigorous physical activity (MVPA) and sitting time between groups. Blood samples were taken to obtain PBMCs. Mitochondrial dynamics were assessed by electron microscopy images and western blot of protein that regulate mitochondrial dynamics. The International Physical Activity Questionnaire (IPAQ; short version) was used to estimate the level of MVPA and the sitting time The patients who develop severe COVID-19 (COVID-19++) not present alterations of mitochondrial size neither mitochondrial density in comparison to non-severe patients COVID-19 (COVID-19) and control subjects (CTRL). However, compared to CTRL, COVID-19 and COVID-19++ groups have lower mitochondrial cristae length, a higher proportion of abnormal mitochondrial cristae. The COVID-19++ group has lower number (trend) and length of mitochondrial cristae in comparison to COVID-19 group. COVID-19, but not COVID-19++ group had lower Opa 1, Mfn 2 and SDHB (Complex II) proteins than CTRL group. Besides, COVID-19++ group has a higher time sitting. Our results show that low mitochondrial cristae density, potentially due to physical inactivity, is associated with COVID-19 severity.
Collapse
Affiliation(s)
- Mauricio Castro‐Sepulveda
- Exercise Physiology and Metabolism Laboratory (LABFEM), School of KinesiologyFaculty of Medicine, Finis Terrae UniversitySantiagoChile
| | - German Tapia
- Exercise Physiology and Metabolism Laboratory (LABFEM), School of KinesiologyFaculty of Medicine, Finis Terrae UniversitySantiagoChile
- Sports Health CenterSanta María ClinicSantiagoChile
| | - Mauro Tuñón‐Suárez
- Exercise Physiology and Metabolism Laboratory (LABFEM), School of KinesiologyFaculty of Medicine, Finis Terrae UniversitySantiagoChile
| | | | | | - Mayalen Valero‐Breton
- Exercise Physiology and Metabolism Laboratory (LABFEM), School of KinesiologyFaculty of Medicine, Finis Terrae UniversitySantiagoChile
| | - Rodrigo Fernández‐Verdejo
- Exercise Physiology and Metabolism Laboratory (LABFEM), School of KinesiologyFaculty of Medicine, Finis Terrae UniversitySantiagoChile
| | - Hermann Zbinden‐Foncea
- Exercise Physiology and Metabolism Laboratory (LABFEM), School of KinesiologyFaculty of Medicine, Finis Terrae UniversitySantiagoChile
- Sports Health CenterSanta María ClinicSantiagoChile
- Institute of Neuroscience, UCLouvainLouvain‐La NeuveBelgium
| |
Collapse
|
12
|
Mitochondrial glutathione peroxidase 4 is indispensable for photoreceptor development and survival in mice. J Biol Chem 2022; 298:101824. [PMID: 35288190 PMCID: PMC8980337 DOI: 10.1016/j.jbc.2022.101824] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/03/2022] [Accepted: 03/05/2022] [Indexed: 01/18/2023] Open
Abstract
Glutathione peroxidase 4 (GPx4) is known for its unique function in the direct detoxification of lipid peroxides in the cell membrane and as a key regulator of ferroptosis, a form of lipid peroxidation–induced nonapoptotic cell death. However, the cytosolic isoform of GPx4 is considered to play a major role in inhibiting ferroptosis in somatic cells, whereas the roles of the mitochondrial isoform of GPx4 (mGPx4) in cell survival are not yet clear. In the present study, we found that mGPx4 KO mice exhibit a cone–rod dystrophy-like phenotype in which loss of cone photoreceptors precedes loss of rod photoreceptors. Specifically, in mGPx4 KO mice, cone photoreceptors disappeared prior to their maturation, whereas rod photoreceptors persisted through maturation but gradually degenerated afterward. Mechanistically, we demonstrated that vitamin E supplementation significantly ameliorated photoreceptor loss in these mice. Furthermore, LC–MS showed a significant increase in peroxidized phosphatidylethanolamine esterified with docosahexaenoic acid in the retina of mGPx4 KO mice. We also observed shrunken and uniformly condensed nuclei as well as caspase-3 activation in mGPx4 KO photoreceptors, suggesting that apoptosis was prevalent. Taken together, our findings indicate that mGPx4 is essential for the maturation of cone photoreceptors but not for the maturation of rod photoreceptors, although it is still critical for the survival of rod photoreceptors after maturation. In conclusion, we reveal novel functions of mGPx4 in supporting development and survival of photoreceptors in vivo.
Collapse
|
13
|
Zbinden-Foncea H, Castro-Sepulveda M, Fuentes J, Speisky H. Effect of epicatechin on skeletal muscle. Curr Med Chem 2021; 29:1110-1123. [DOI: 10.2174/0929867329666211217100020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 11/22/2022]
Abstract
:
Loss of skeletal muscle (SkM) quality is associated with different clinical conditions such as aging, diabetes, obesity, cancer and heart failure. Nutritional research has focused on identifying naturally occurring molecules that mitigate the loss of SkM quality induced by a pathology or syndrome. In this context, although few human studies have been conducted, Epicatechin (Epi) is a prime candidate that may positively affect SkM quality by its potential ability to mitigate muscle mass loss. This seems to be a consequence of its antioxidant, anti-inflammatory properties, and its stimulation of mitochondrial biogenesis to increase myogenic differentiation, as well as its modulation of key proteins involved in SkM structure, function, metabolism, and growth. In conclusion, the Epi could prevent, mitigate, delay, and even treat muscle-related disorders caused by aging and diseases, however, studies in humans are needed.
Collapse
Affiliation(s)
| | | | - Jocelyn Fuentes
- School of Kinesiology, Faculty of Medicine, Universidad Finis Terrae, Santiago, Chile
| | - Hernan Speisky
- Laboratory of Antioxidants, Nutrition and Food Technology Institute, University of Chile, Santiago, Chile
| |
Collapse
|
14
|
Castro-Sepúlveda M, Morio B, Tuñón-Suárez M, Jannas-Vela S, Díaz-Castro F, Rieusset J, Zbinden-Foncea H. The fasting-feeding metabolic transition regulates mitochondrial dynamics. FASEB J 2021; 35:e21891. [PMID: 34569666 DOI: 10.1096/fj.202100929r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/08/2021] [Accepted: 08/16/2021] [Indexed: 11/11/2022]
Abstract
In humans, insulin resistance has been linked to an impaired metabolic transition from fasting to feeding (metabolic flexibility; MetFlex). Previous studies suggest that mitochondrial dynamics response is a putative determinant of MetFlex; however, this has not been studied in humans. Thus, the aim of this study was to investigate the mitochondrial dynamics response in the metabolic transition from fasting to feeding in human peripheral blood mononuclear cells (PBMCs). Six male subjects fasted for 16 h (fasting), immediately after which they consumed a 75-g oral glucose load (glucose). In both fasting and glucose conditions, blood samples were taken to obtain PBMCs. Mitochondrial dynamics were assessed by electron microscopy images. We exposed in vitro acetoacetate-treated PBMCs to the specific IP3R inhibitor Xestospongin B (XeB) to reduce IP3R-mediated mitochondrial Ca2+ accumulation. This allowed us to evaluate the role of ER-mitochondria Ca2+ exchange in the mitochondrial dynamic response to substrate availability. To determine whether PBMCs could be used in obesity context (low MetFlex), we measured mitochondrial dynamics in mouse spleen-derived lymphocytes from WT and ob/ob mice. We demonstrated that the transition from fasting to feeding reduces mitochondria-ER interactions, induces mitochondrial fission and reduces mitochondrial cristae density in human PBMCs. In addition, we demonstrated that IP3R activity is key in the mitochondrial dynamics response when PBMCs are treated with a fasting-substrate in vitro. In murine mononuclear-cells, we confirmed that mitochondria-ER interactions are regulated in the fasted-fed transition and we further highlight mitochondria-ER miscommunication in PBMCs of diabetic mice. In conclusion, our results demonstrate that the fasting/feeding transition reduces mitochondria-ER interactions, induces mitochondrial fission and reduces mitochondrial cristae density in human PBMCs, and that IP3R activity may potentially play a central role.
Collapse
Affiliation(s)
- Mauricio Castro-Sepúlveda
- Laboratorio de Ciencias del Ejercicio, Escuela de Kinesiologia, Facultad de Medicina, Universidad Finis Terrae, Santiago, Chile.,Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Béatrice Morio
- CarMeN Laboratory, UMR INSERM U1060/INRA U13397, Université Claude Bernard Lyon 1, Pierre-Bénite, France
| | - Mauro Tuñón-Suárez
- Laboratorio de Ciencias del Ejercicio, Escuela de Kinesiologia, Facultad de Medicina, Universidad Finis Terrae, Santiago, Chile
| | - Sebastian Jannas-Vela
- Laboratorio de Ciencias del Ejercicio, Escuela de Kinesiologia, Facultad de Medicina, Universidad Finis Terrae, Santiago, Chile
| | - Francisco Díaz-Castro
- Laboratorio de Investigación en Nutrición y Actividad Física (LABINAF), Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Santiago, Chile.,Laboratorio de Autofagia y Metabolismo, Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jennifer Rieusset
- CarMeN Laboratory, UMR INSERM U1060/INRA U13397, Université Claude Bernard Lyon 1, Pierre-Bénite, France
| | - Hermann Zbinden-Foncea
- Laboratorio de Ciencias del Ejercicio, Escuela de Kinesiologia, Facultad de Medicina, Universidad Finis Terrae, Santiago, Chile.,Centro de Salud Deportiva, Clínica Santa María, Santiago, Chile
| |
Collapse
|
15
|
Fealy CE, Grevendonk L, Hoeks J, Hesselink MKC. Skeletal muscle mitochondrial network dynamics in metabolic disorders and aging. Trends Mol Med 2021; 27:1033-1044. [PMID: 34417125 DOI: 10.1016/j.molmed.2021.07.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/13/2021] [Accepted: 07/26/2021] [Indexed: 01/05/2023]
Abstract
With global demographics trending towards an aging population, the numbers of individuals with an age-associated loss of independence is increasing. A key contributing factor is loss of skeletal muscle mitochondrial, metabolic, and contractile function. Recent advances in imaging technologies have demonstrated the importance of mitochondrial morphology and dynamics in the pathogenesis of disease. In this review, we examine the evidence for altered mitochondrial dynamics as a mechanism in age and obesity-associated loss of skeletal muscle function, with a particular focus on the available human data. We highlight some of the areas where more data are needed to identify the specific mechanisms connecting mitochondrial morphology and skeletal muscle dysfunction.
Collapse
Affiliation(s)
- Ciarán E Fealy
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands; Department of Physical Education and Sport Sciences, University of Limerick, Castletroy, Limerick, Ireland
| | - Lotte Grevendonk
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Joris Hoeks
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Matthijs K C Hesselink
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
16
|
Castro-Sepulveda M, Fernández-Verdejo R, Tuñón-Suárez M, Morales-Zúñiga J, Troncoso M, Jannas-Vela S, Zbinden-Foncea H. Low abundance of Mfn2 protein correlates with reduced mitochondria-SR juxtaposition and mitochondrial cristae density in human men skeletal muscle: Examining organelle measurements from TEM images. FASEB J 2021; 35:e21553. [PMID: 33749943 DOI: 10.1096/fj.202002615rr] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/24/2021] [Accepted: 03/08/2021] [Indexed: 12/29/2022]
Abstract
The role of mitofusin 2 (Mfn2) in the regulation of skeletal muscle (SM) mitochondria-sarcoplasmic (SR) juxtaposition, mitochondrial morphology, mitochondrial cristae density (MCD), and SM quality has not been studied in humans. In in vitro studies, whether Mfn2 increases or decreases mitochondria-SR juxtaposition remains controversial. Transmission electron microscopy (TEM) images are commonly used to measure the organelle juxtaposition, but the measurements are performed "by-hand," thus potentially leading to between-rater differences. The purposes of this study were to: (1) examine the repeatability and reproducibility of mitochondrial-SR juxtaposition measurement from TEM images of human SM between three raters with different experience and (2) compare the mitochondrial-SR juxtaposition, mitochondrial morphology, MCD (stereological-method), and SM quality (cross-sectional area [CSA] and the maximum voluntary contraction [MVC]) between subjects with high abundance (Mfn2-HA; n = 6) and low abundance (Mfn2-LA; n = 6) of Mfn2 protein. The mitochondria-SR juxtaposition had moderate repeatability and reproducibility, with the most experienced raters showing the best values. There were no differences between Mfn2-HA and Mfn2-LA groups in mitochondrial size, distance from mitochondria to SR, CSA, or MVC. Nevertheless, the Mfn2-LA group showed lower mitochondria-SR interaction, MCD, and VO2max . In conclusion, mitochondrial-SR juxtaposition measurement depends on the experience of the rater, and Mfn2 protein seems to play a role in the metabolic control of human men SM, by regulating the mitochondria-SR interaction.
Collapse
Affiliation(s)
- Mauricio Castro-Sepulveda
- Escuela de Kinesiología, Facultad de Medicina, Universidad Finis Terrae, Santiago, Chile.,Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rodrigo Fernández-Verdejo
- Carrera de Nutrición y Dietética, Departamento de Ciencias de la Salud, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mauro Tuñón-Suárez
- Escuela de Kinesiología, Facultad de Medicina, Universidad Finis Terrae, Santiago, Chile
| | - Jorge Morales-Zúñiga
- Laboratorio de Ciencias del Deporte, Clínica Sports Medicina Deportiva, Viña del Mar, Chile
| | - Mayarling Troncoso
- Faculty of Chemical and Pharmaceutical Science & Faculty of Medicine, Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santiago, Chile
| | - Sebastian Jannas-Vela
- Escuela de Kinesiología, Facultad de Medicina, Universidad Finis Terrae, Santiago, Chile
| | - Hermann Zbinden-Foncea
- Escuela de Kinesiología, Facultad de Medicina, Universidad Finis Terrae, Santiago, Chile.,Centro de Salud Deportiva, Clinica Santa Maria, Santiago, Chile
| |
Collapse
|
17
|
Townsend LK, Brunetta HS, Mori MAS. Mitochondria-associated ER membranes in glucose homeostasis and insulin resistance. Am J Physiol Endocrinol Metab 2020; 319:E1053-E1060. [PMID: 32985254 DOI: 10.1152/ajpendo.00271.2020] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Obesity and insulin resistance (IR) are associated with endoplasmic reticulum (ER) stress and mitochondrial dysfunction in several tissues. Although for many years mitochondrial and ER function were studied separately, these organelles also connect to produce interdependent functions. Communication occurs at mitochondria-associated ER membranes (MAMs) and regulates lipid and calcium homeostasis, apoptosis, and the exchange of adenine nucleotides, among other things. Recent evidence suggests that MAMs contribute to organelle, cellular, and systemic metabolism. In obesity and IR models, metabolic tissues such as the liver, skeletal muscle, pancreas, and adipose tissue present alterations in MAM structure or function. The purpose of this mini review is to highlight the MAM disruptions that occur in each tissue during obesity and IR and its relationship with glucose homeostasis and IR. We also discuss the current controversy that surrounds MAMs' role in the development of IR.
Collapse
Affiliation(s)
- Logan K Townsend
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Henver S Brunetta
- Department of Physiological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
- Department of Biochemistry and Tissue Biology, University of Campinas, Campinas, Brazil
| | - Marcelo A S Mori
- Department of Biochemistry and Tissue Biology, University of Campinas, Campinas, Brazil
- Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
- Experimental Medicine Research Cluster, University of Campinas, Campinas, Brazil
| |
Collapse
|
18
|
Microencapsulated pomegranate peel extract induces mitochondrial complex IV activity and prevents mitochondrial cristae alteration in brown adipose tissue in mice fed on a high-fat diet. Br J Nutr 2020; 126:825-836. [DOI: 10.1017/s000711452000481x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
AbstractPomegranate peel is an agro-industrial residue obtained after fruit processing with high total polyphenol (TP) content, making it an attractive by-product for its reuse. Pomegranate peel extract (PPE) and its bioactive compounds have shown positive effects on obesity models. Effects on favouring mitochondrial biogenesis and function have also been described. However, once phenolic compounds are extracted, their stability can be affected by diverse factors. Microencapsulation could improve PPE stability, allowing its incorporation into functional foods. Nevertheless, studies on the potential biological effects of PPE microparticles (MPPE) in obesity models are lacking. This study aims to evaluate the effect of MPPE on brown adipose tissue (BAT) mitochondrial structure and function and metabolic alterations related to obesity in mice fed a high-fat diet (HFD). PPE was microencapsulated by spray drying using inulin (IN) as a wall material and physically–chemically characterised. Eight-week-old male C57BL/6J mice (n 40) were randomly distributed into five groups: control diet (CD), HFD, HFD + IN, HFD + PPE (50 mg/kg per d TP) and HFD + MPPE (50 mg/kg per d TP), for 14 weeks. A glucose tolerance test and indirect calorimetry were conducted. Blood and adipose tissue samples were obtained. MPPE supplementation prevented HFD-induced body weight gain (P < 0·001), fasting glycaemia (P = 0·007) and total cholesterol rise (P = 0·001). MPPE resulted in higher BAT mitochondrial complex IV activity (P = 0·03) and prevented HFD-induced mitochondrial cristae alteration (P = 0·02). In conclusion, MPPE prevented HFD-induced excessive body weight gain and associated metabolic disturbances, potentially by activating complex IV activity and preserving mitochondrial cristae structure in BAT in mice fed with a HFD.
Collapse
|