1
|
Jiang Y, Han C, Xu W, Li Y, Liu Y. Compatibility of Calycosin-Tanshinone IIA improves Ang II-induced renal artery endothelial cell dysfunction through lncRNA-mRNA co-expression network. In Vitro Cell Dev Biol Anim 2025:10.1007/s11626-024-00990-4. [PMID: 39939539 DOI: 10.1007/s11626-024-00990-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/18/2024] [Indexed: 02/14/2025]
Abstract
This study aimed to investigate the effect of the compatibility of Calycosin and Tanshinone IIA on dysfunction of rat renal artery endothelial cells (RRAECs) induced by angiotensin II (Ang II) and to elucidate the underlying molecular mechanisms. We utilized cell culture to optimize Calycosin and Tanshinone IIA concentrations and assessed autophagy, apoptosis, ATP levels, and cell migration using MDC staining, Annexin V-FITC/PI staining, ATP assay, and Transwell assays, respectively. RNA-seq identified differentially expressed lncRNAs and mRNAs, which were validated by qRT-PCR. The compatibility of Calycosin and Tanshinone IIA significantly enhanced the proliferative capacity of Ang II-induced RRAECs, increased autophagosome formation, reduced cell apoptosis, elevated ATP production, and enhanced cell migration ability. RNA sequencing analysis revealed 146 differentially expressed lncRNAs and 43 differentially expressed mRNAs, and co-expression network analysis identified interactions between 28 lncRNAs and 7 mRNAs. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses indicated that these differentially expressed mRNAs were primarily involved in the regulation of ATPase activity and metabolic processes related to serine family amino acids, triglycerides, arachidonic acid, etc., as well as the MAPK signaling pathway. The compatibility of Calycosin and Tanshinone IIA improved Ang II-induced dysfunction in RRAECs by modulating the lncRNA-mRNA co-expression network, providing new molecular targets and therapeutic strategies for the prevention and treatment of hypertensive renal damage.
Collapse
Affiliation(s)
- YanYun Jiang
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Cong Han
- Nephropathy Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - WanLi Xu
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - YuQiu Li
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yao Liu
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| |
Collapse
|
2
|
Zhang J, Zhang G, Jiang L, Qiu D, Wang G, Chen C. FGF21 relieves calcium oxalate-induced cell injury, apoptosis, oxidative damage and ferroptosis of renal tubular epithelial cells through activating Nrf2 signaling pathway. Cytotechnology 2024; 76:519-531. [PMID: 39188649 PMCID: PMC11344745 DOI: 10.1007/s10616-024-00633-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 04/19/2024] [Indexed: 08/28/2024] Open
Abstract
Nephrolithiasis is a common urological disease accompanied by high morbidity worldwide. Evidences indicate that high-level CaOx crystals in the body can lead to renal tubular epithelial cell (RTEC) injury and RTEC injury is a critical precipitating factor for the formation of kidney stones. FGF21 has recently been revealed as the considerable marker in various kidney dysfunction and exerts the nephroprotective effects in various kidney diseases. This current study was formulated to fully elucidate the biological role of FGF21 in nephrolithiasis and probe into the intrinsic mechanisms underlying the protective effects of FGF21 against RTEC injury. In this work, HK-2 cells were incubated with 100 mg/ml COM for 24 h to establish in vitro RTEC injury model. COM-treated HK-2 cells were transfected with Oe-FGF21 to perform gain-of-function experiments. For rescue experiments, HK-2 cells were pretreated with 10 μM Nrf2 inhibitor ML385 for 24 h to thoroughly discuss the role of Nrf2 signaling in FGF21-mediating nephroprotective effects. It was verified that overexpression of FGF21 relieved COM-induced proliferation inhibition, cell injury, apoptosis, oxidative damage and ferroptosis of RTECs. ML385 treatment partially abolished the protective effects of FGF21 against COM injury in RTECs. In conclusion, up-regulation of FGF21 can relieve COM-induced proliferation inhibition, cell injury, apoptosis, oxidative damage and ferroptosis of RTECs through activating Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Urology, Hangzhou Ninth People’s Hospital, Zhejiang Province, Hangzhou, 311225 China
| | - Guanding Zhang
- Department of Urology, Hangzhou Ninth People’s Hospital, Zhejiang Province, Hangzhou, 311225 China
- Zhejiang Chinese Medical University, Zhejiang Province, Hangzhou, 310053 China
| | - Lijun Jiang
- Department of Urology, Hangzhou Ninth People’s Hospital, Zhejiang Province, Hangzhou, 311225 China
| | - Danyang Qiu
- Department of Urology, Hangzhou Ninth People’s Hospital, Zhejiang Province, Hangzhou, 311225 China
| | - Guoping Wang
- Department of Urology, Hangzhou Ninth People’s Hospital, Zhejiang Province, Hangzhou, 311225 China
| | - Chao Chen
- Department of Urology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, No. 261 Huansha RoadZhejiang Province, Hangzhou, 310006 China
| |
Collapse
|
3
|
Gharib OA, Fahmy HA, Abdou FY. Role of Olive Leaf Extract, Mesenchymal Stem Cells or Low Radiation Dose in Alleviating Hepatic Injury in Rats. Dose Response 2024; 22:15593258241289301. [PMID: 39483141 PMCID: PMC11526167 DOI: 10.1177/15593258241289301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/28/2024] [Indexed: 11/03/2024] Open
Abstract
Objectives This study was conducted to determine the efficacy of mesenchymal stem cells (MSCs) or low-dose gamma radiation (LDR) on liver injury compared to the effect of olive leaf extract as a hepatoprotective agent. Methods Rats were allocated into six groups; group I served as the negative control. Group II received 5% dextran sodium sulfate (DSS) in its drinking water for 1 week. Group III was injected with a single dose of 1 × 106 bone marrow-derived mesenchymal stem cells (BM-MSCs) intravenously. Group IV was treated as in group III after 5% DSS treatment. Group V was given 5% DSS, followed by olive leaf extract (OLE) (1000 mg/ kg, oral). Group VI: 5% DSS for 1 week, then was exposed to low-dose gamma radiation (LDR) (0.05 Gy). Results Rats treated with OLE, BM-MSCs, or exposed to LDR exerted significant alleviation in all hepatic biomarkers, significant enhancements in oxidative stress parameters, and improvements in inflammatory biomarkers Interleukin-1 beta (IL-1β) and Interferon gamma (INF-γ) hepatic contents compared with those of the DSS group. Histological pictures emphasized the biochemical findings. Conclusions BM-MSCs might be a valuable therapeutic approach to overcome hepatic injury. Exposure to LDR provided protective mechanisms that allow the body to survive better.
Collapse
Affiliation(s)
- Ola A. Gharib
- Drug Radiation Research Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Hanan A. Fahmy
- Drug Radiation Research Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Fatma Y. Abdou
- Drug Radiation Research Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| |
Collapse
|
4
|
Lim JY, Kim E. The Role of Organokines in Obesity and Type 2 Diabetes and Their Functions as Molecular Transducers of Nutrition and Exercise. Metabolites 2023; 13:979. [PMID: 37755259 PMCID: PMC10537761 DOI: 10.3390/metabo13090979] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/28/2023] Open
Abstract
Maintaining systemic homeostasis requires the coordination of different organs and tissues in the body. Our bodies rely on complex inter-organ communications to adapt to perturbations or changes in metabolic homeostasis. Consequently, the liver, muscle, and adipose tissues produce and secrete specific organokines such as hepatokines, myokines, and adipokines in response to nutritional and environmental stimuli. Emerging evidence suggests that dysregulation of the interplay of organokines between organs is associated with the pathophysiology of obesity and type 2 diabetes (T2D). Strategies aimed at remodeling organokines may be effective therapeutic interventions. Diet modification and exercise have been established as the first-line therapeutic intervention to prevent or treat metabolic diseases. This review summarizes the current knowledge on organokines secreted by the liver, muscle, and adipose tissues in obesity and T2D. Additionally, we highlighted the effects of diet/nutrition and exercise on the remodeling of organokines in obesity and T2D. Specifically, we investigated the ameliorative effects of caloric restriction, selective nutrients including ω3 PUFAs, selenium, vitamins, and metabolites of vitamins, and acute/chronic exercise on the dysregulation of organokines in obesity and T2D. Finally, this study dissected the underlying molecular mechanisms by which nutrition and exercise regulate the expression and secretion of organokines in specific tissues.
Collapse
Affiliation(s)
- Ji Ye Lim
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), 6431 Fannin St., Houston, TX 77030, USA
| | - Eunju Kim
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), 6431 Fannin St., Houston, TX 77030, USA
| |
Collapse
|
5
|
Research Progress of Fibroblast Growth Factor 21 in Fibrotic Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5042762. [PMID: 35677107 PMCID: PMC9168133 DOI: 10.1155/2022/5042762] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 05/04/2022] [Accepted: 05/10/2022] [Indexed: 11/24/2022]
Abstract
Fibrosis is a common pathological outcome of chronic injuries, characterized by excessive deposition of extracellular matrix components in organs, as seen in most chronic inflammatory diseases. At present, there is an increasing tendency of the morbidity and mortality of diseases caused by fibrosis, but the treatment measures for fibrosis are still limited. Fibroblast growth factor 21 (FGF21) belongs to the FGF19 subfamily, which also has the name endocrine FGFs because of their endocrine manner. In recent years, it has been found that plasma FGF21 level is significantly correlated with fibrosis progression. Furthermore, there is evidence that FGF21 has a pronounced antifibrotic effect in a variety of fibrotic diseases. This review summarizes the biological effects of FGF21 and discusses what is currently known about this factor and fibrosis disease, highlighting emerging insights that warrant further research.
Collapse
|
6
|
Curcumin and Weight Loss: Does It Work? Int J Mol Sci 2022; 23:ijms23020639. [PMID: 35054828 PMCID: PMC8775659 DOI: 10.3390/ijms23020639] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/29/2021] [Accepted: 01/06/2022] [Indexed: 01/27/2023] Open
Abstract
Obesity is a global health problem needing urgent research. Synthetic anti-obesity drugs show side effects and variable effectiveness. Thus, there is a tendency to use natural compounds for the management of obesity. There is a considerable body of knowledge, supported by rigorous experimental data, that natural polyphenols, including curcumin, can be an effective and safer alternative for managing obesity. Curcumin is a is an important compound present in Curcuma longa L. rhizome. It is a lipophilic molecule that rapidly permeates cell membrane. Curcumin has been used as a pharmacological traditional medicinal agent in Ayurvedic medicine for ∼6000 years. This plant metabolite doubtless effectiveness has been reported through increasingly detailed in vitro, in vivo and clinical trials. Regarding its biological effects, multiple health-promoting, disease-preventing and even treatment attributes have been remarkably highlighted. This review documents the status of research on anti-obesity mechanisms and evaluates the effectiveness of curcumin for management of obesity. It summarizes different mechanisms of anti-obesity action, associated with the enzymes, energy expenditure, adipocyte differentiation, lipid metabolism, gut microbiota and anti-inflammatory potential of curcumin. However, there is still a need for systematic and targeted clinical studies before curcumin can be used as the mainstream therapy for managing obesity.
Collapse
|
7
|
Yang M, Luo S, Yang J, Chen W, He L, Liu D, Zhao L, Wang X. Myokines: Novel therapeutic targets for diabetic nephropathy. Front Endocrinol (Lausanne) 2022; 13:1014581. [PMID: 36387916 PMCID: PMC9640471 DOI: 10.3389/fendo.2022.1014581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/11/2022] [Indexed: 12/02/2022] Open
Abstract
With the increasing incidence of diabetic nephropathy (DN), there is an urgent need to find effective DN preventive and therapeutic modalities. It is widely believed that effective exercise is good for health. However, the beneficial role of exercise in kidney disease, especially in DN, and the underlying molecular mechanisms have rarely been reported. Muscle is not only an important motor organ but also an important endocrine organ, secreting a group of proteins called "myokines" into the blood circulation. Circulating myokines then move to various target organs to play different biological roles. In this review, we summarize the currently known myokines and the progress in research relating them to DN and discuss its potential as a therapeutic target for DN.
Collapse
Affiliation(s)
- Ming Yang
- Department of Nutrition, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Shilu Luo
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jinfei Yang
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Wei Chen
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Liyu He
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Di Liu
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Li Zhao
- Department of Reproduction and Genetics, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xi Wang
- Department of Nutrition, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Xi Wang,
| |
Collapse
|
8
|
Meng F, Cao Y, Khoso MH, Kang K, Ren G, Xiao W, Li D. Therapeutic effect and mechanism of combined use of FGF21 and insulin on diabetic nephropathy. Arch Biochem Biophys 2021; 713:109063. [PMID: 34695409 DOI: 10.1016/j.abb.2021.109063] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/16/2021] [Accepted: 10/18/2021] [Indexed: 12/23/2022]
Abstract
Although FGF21 ameliorates diabetic nephropathy (DN), the efficacy is not satisfactory. Studies demonstrate that FGF21 combined with Insulin exhibits reciprocal sensitization on glucose and lipid metabolism in mice with type 2 diabetes. However, therapeutic effect of combined use of FGF21 and Insulin on DN has not been reported. Therefore, this study explored therapeutic effect and mechanism of combined use of FGF21 and Insulin on DN. Our results showed that compared with Insulin or FGF21 alone, FGF21 combined with Insulin further ameliorated blood glucose, HbAlc, OGTT, renal function, liver function, blood lipid, histopathological changes, oxidative stress and AGEs in the mice of DN (BKS-Leprem2Cd479/Gpt). Moreover, FGF21 combined with Insulin further reduced expressions of IL-1β, IL-6, TNF-α via promoting M1 type macrophage into M2 type macrophage. Results of real-time PCR and Western blot showed that FGF21 combined with Insulin upregulated the expressions of autophagy related genes LC3-Ⅱ and BCL-1. Mesangial cells play an important role in the pathological changes of DN mice. However, the effect of FGF21 on mesangial cells has not been reported. In this study, d-glucose was used in high glucose (HG) model in mesangial cells. The results showed that FGF21 significantly reduced the levels of OS, AGEs and cell overproliferation. Meanwhile, FGF21 significantly ameliorated autophagy level via upregulating the phosphorylation of AMPK and downregulating phosphorylation of mTOR. These effects were reversed in siRNA-β-klotho transfected mesangial cells. In conclusion, our results demonstrate that combination FGF21 with Insulin exhibits a better therapeutic effect on DN compared with FGF21 or Insulin alone. This study provides a theoretical basis for combined used of FGF21 and Insulin as a new treatment for DN and further provides theoretical support for application of FGF21 in treatment of DN.
Collapse
Affiliation(s)
- Fanrui Meng
- Northeast Agricultural University, Harbin, China.
| | - Yukai Cao
- Northeast Agricultural University, Harbin, China.
| | - Mir Hassan Khoso
- Department of Biochemistry, Shaheed Mohtarma Benazir Bhutto Medical University, Larkana, Pakistan.
| | - Kai Kang
- Northeast Agricultural University, Harbin, China.
| | - Guiping Ren
- Northeast Agricultural University, Harbin, China.
| | - Wei Xiao
- Jiangsu Kanion Pharmaceutical CO. LTD, Jiangsu, Lianyungang. State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu, China.
| | - Deshan Li
- Northeast Agricultural University, Harbin, China.
| |
Collapse
|
9
|
Weng HC, Lu XY, Xu YP, Wang YH, Wang D, Feng YL, Chi Z, Yan XQ, Lu CS, Wang HW. Fibroblast growth factor 21 attenuates salt-sensitive hypertension-induced nephropathy through anti-inflammation and anti-oxidation mechanism. Mol Med 2021; 27:147. [PMID: 34773993 PMCID: PMC8590333 DOI: 10.1186/s10020-021-00408-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/31/2021] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Patients with salt-sensitive hypertension are often accompanied with severe renal damage and accelerate to end-stage renal disease, which currently lacks effective treatment. Fibroblast growth factor 21 (FGF21) has been shown to suppress nephropathy in both type 1 and type 2 diabetes mice. Here, we aimed to investigate the therapeutic effect of FGF21 in salt-sensitive hypertension-induced nephropathy. METHODS Changes of FGF21 expression in deoxycorticosterone acetate (DOCA)-salt-induced hypertensive mice were detected. The influence of FGF21 knockout in mice on DOCA-salt-induced nephropathy were determined. Recombinant human FGF21 (rhFGF21) was intraperitoneally injected into DOCA-salt-induced nephropathy mice, and then the inflammatory factors, oxidative stress levels and kidney injury-related indicators were observed. In vitro, human renal tubular epithelial cells (HK-2) were challenged by palmitate acid (PA) with or without FGF21, and then changes in inflammation and oxidative stress indicators were tested. RESULTS We observed significant elevation in circulating levels and renal expression of FGF21 in DOCA-salt-induced hypertensive mice. We found that deletion of FGF21 in mice aggravated DOCA-salt-induced nephropathy. Supplementation with rhFGF21 reversed DOCA-salt-induced kidney injury. Mechanically, rhFGF21 induced AMPK activation in DOCA-salt-treated mice and PA-stimulated HK-2 cells, which inhibited NF-κB-regulated inflammation and Nrf2-mediated oxidative stress and thus, is important for rhFGF21 protection against DOCA-salt-induced nephropathy. CONCLUSION These findings indicated that rhFGF21 could be a promising pharmacological strategy for the treatment of salt-sensitive hypertension-induced nephropathy.
Collapse
Affiliation(s)
- Hua-Chun Weng
- The College of Medical Technology, Shanghai University of Medicine & Health Sciences, Shanghai, 200000, China
| | - Xin-Yu Lu
- The First Clinical Medical College of Wenzhou Medical University, Wenzhou, 325000, China
| | - Yu-Peng Xu
- The First Clinical Medical College of Wenzhou Medical University, Wenzhou, 325000, China
| | - Yi-Hong Wang
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, 322 Nanbaixiang Street, Wenzhou, 325000, Zhejiang, China
| | - Dan Wang
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, 322 Nanbaixiang Street, Wenzhou, 325000, Zhejiang, China
| | - Yi-Ling Feng
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, 322 Nanbaixiang Street, Wenzhou, 325000, Zhejiang, China
| | - Zhang Chi
- Ruian Center of Chinese-American Research Institute for Diabetic Complications, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Xiao-Qing Yan
- Ruian Center of Chinese-American Research Institute for Diabetic Complications, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Chao-Sheng Lu
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, 322 Nanbaixiang Street, Wenzhou, 325000, Zhejiang, China.
| | - Hong-Wei Wang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, 322 Nanbaixiang Street, Wenzhou, 325000, Zhejiang, China.
| |
Collapse
|
10
|
Shao W, Jin T. Hepatic hormone FGF21 and its analogues in clinical trials. Chronic Dis Transl Med 2021; 8:19-25. [PMID: 35620160 PMCID: PMC9126297 DOI: 10.1016/j.cdtm.2021.08.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 08/26/2021] [Indexed: 12/30/2022] Open
Abstract
Fibroblast growth factor 21 (FGF21) is a fasting or stress inducible metabolic hormone produced mainly in the liver. It plays important roles in regulating both glucose and lipid homeostasis via interacting with a heterodimeric receptor complex comprising FGF receptor 1 (FGFR1) and β‐klotho (KLB). For the past decade, great effort has been made on developing FGF21 derivatives or specific FGF21 receptor agonists into therapeutic agents for various metabolic disorders including type 2 diabetes (T2D), obesity, and more importantly, nonalcoholic fatty liver disease (NAFLD). Here we have reviewed FGF21 gene and protein structures, its expression pattern, cellular signaling cascades that mediate FGF21 production and function. We have then summarized the six clinical trials utilizing four FGF21 analogues. Finally, two recent literatures on the development of GLP‐1 and FGF21 dual agonists were presented briefly.
Collapse
|
11
|
Liu D, Pang J, Shao W, Gu J, Zeng Y, He HH, Ling W, Qian X, Jin T. Hepatic Fibroblast Growth Factor 21 Is Involved in Mediating Functions of Liraglutide in Mice With Dietary Challenge. Hepatology 2021; 74:2154-2169. [PMID: 33851458 DOI: 10.1002/hep.31856] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/24/2021] [Accepted: 04/08/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND AND AIMS Several studies have shown that expression of hepatic fibroblast growth factor 21 (FGF21) can be stimulated by glucagon-like peptide 1 (GLP-1)-based diabetes drugs. As GLP-1 receptor (GLP-1R) is unlikely to be expressed in hepatocytes, we aimed to compare such stimulation in mice and in mouse hepatocytes, determine the involvement of GLP-1R, and clarify whether FGF21 mediates certain functions of the GLP-1R agonist liraglutide. APPROACH AND RESULTS Liver FGF21 expression was assessed in mice receiving a daily liraglutide injection for 3 days or in mouse primary hepatocytes (MPHs) undergoing direct liraglutide treatment. The effects of liraglutide on metabolic improvement and FGF21 expression were then assessed in high-fat diet (HFD)-fed mice and compared with the effects of the dipeptidyl-peptidase 4 inhibitor sitagliptin. Animal studies were also performed in Glp1r-/- mice and liver-specific FGF21-knockout (lFgf21-KO) mice. In wild-type mouse liver that underwent RNA sequencing and quantitative reverse-transcription PCR, we observed liraglutide-stimulated hepatic Fgf21 expression and a lack of Glp1r expression. In MPHs, liraglutide did not stimulate Fgf21. In mice with HFD-induced obesity, liraglutide or sitagliptin treatment reduced plasma triglyceride levels, whereas their effect on reducing body-weight gain was different. Importantly, increased hepatic FGF21 expression was observed in liraglutide-treated mice but was not observed in sitagliptin-treated mice. In HFD-fed Glp1r-/- mice, liraglutide showed no beneficial effects and could not stimulate Fgf21 expression. In lFgf21-KO mice undergoing dietary challenge, the body-weight-gain attenuation and lipid homeostatic effects of liraglutide were lost or significantly reduced. CONCLUSIONS We suggest that liraglutide-stimulated hepatic Fgf21 expression may require GLP-1R to be expressed in extrahepatic organs. Importantly, we revealed that hepatic FGF21 is required for liraglutide to lower body weight and improve hepatic lipid homeostasis. These observations advanced our mechanistic understanding of the function of GLP-1-based drugs in NAFLD.
Collapse
Affiliation(s)
- Dinghui Liu
- Department of Cardiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China.,Division of Advanced Diagnostics, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Juan Pang
- Division of Advanced Diagnostics, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada.,Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Weijuan Shao
- Division of Advanced Diagnostics, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Jianqiu Gu
- Division of Advanced Diagnostics, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada.,Department of Endocrinology and Metabolism, The First Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China.,Institute of Endocrinology, The First Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Yong Zeng
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Housheng Hansen He
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Wenhua Ling
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Xiaoxian Qian
- Department of Cardiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Tianru Jin
- Division of Advanced Diagnostics, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada.,Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Banting and Best Diabetes Centre, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
12
|
Ianoș RD, Pop C, Iancu M, Rahaian R, Cozma A, Procopciuc LM. Diagnostic Performance of Serum Biomarkers Fibroblast Growth Factor 21, Galectin-3 and Copeptin for Heart Failure with Preserved Ejection Fraction in a Sample of Patients with Type 2 Diabetes Mellitus. Diagnostics (Basel) 2021; 11:1577. [PMID: 34573919 PMCID: PMC8470703 DOI: 10.3390/diagnostics11091577] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 01/14/2023] Open
Abstract
More than half of the patients with heart failure have preserved ejection fraction (HFpEF), however evidence shows a mortality rate comparable to those with reduced ejection fraction. The aim of this study was to evaluate whether FGF21, galectin-3 and copeptin can be used as biomarkers to identify HFpEF in patients with confirmed type 2 diabetes mellitus (DM). Sixty-nine diabetic patients were enrolled and divided into two groups: patients with HFpEF (n = 40) and those without HFpEF (n = 29). The ability of the studied biomarkers to discriminate HFpEF cases from non-HFpEF subjects were evaluated by the area under the Receiver Operating Characteristics (ROC) curve and the 95% confidence interval (CI). Compared to patients without heart failure, those with HFpEF had significantly higher levels of FGF21 (mean 146.79 pg/mL vs. 298.98 pg/mL). The AUC value of FGF21 was 0.88, 95% CI: [0.80, 0.96], Se = 85% [70.2, 94.3], Sp = 79.3% [60.3, 92.0], at an optimal cut-off value of 217.40 pg/mL. There was no statistical significance associated with galectin-3 and copeptin between patient cohorts. In conclusion, galectin-3 and copeptin levels were not effective for detecting HFpEF, while FGF21 is a promising biomarker for diagnosing HFpEF in DM patients.
Collapse
Affiliation(s)
- Raluca D. Ianoș
- Department of Cardiology, Iuliu Hațieganu University of Medicine and Pharmacy, 400001 Cluj-Napoca, Romania;
| | - Călin Pop
- Department of Cardiology, Emergency County Hospital, 430031 Baia Mare, Romania
- Faculty of Medicine Arad, “Vasile Goldis” Western University, 310045 Arad, Romania
| | - Mihaela Iancu
- Department of Medical Informatics and Biostatistics, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Rodica Rahaian
- Department of Immunology, Emergency County Hospital, 400006 Cluj-Napoca, Romania;
| | - Angela Cozma
- Department of Internal Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania;
| | - Lucia M. Procopciuc
- Department of Medical Biochemistry, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania;
| |
Collapse
|
13
|
Badakhshi Y, Shao W, Liu D, Tian L, Pang J, Gu J, Hu J, Jin T. Estrogen-Wnt signaling cascade regulates expression of hepatic fibroblast growth factor 21. Am J Physiol Endocrinol Metab 2021; 321:E292-E304. [PMID: 34229476 DOI: 10.1152/ajpendo.00638.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We have generated the transgenic mouse line LTCFDN in which dominant negative TCF7L2 (TCF7L2DN) is specifically expressed in the liver during adulthood. Male but not female LTCFDN mice showed elevated hepatic and plasma triglyceride (TG) levels, indicating the existence of estrogen-β-cat/TCF signaling cascade that regulates hepatic lipid homeostasis. We show here that hepatic fibroblast growth factor 21 (FGF21) expression was reduced in male but not in female LTCFDN mice. The reduction was not associated with altered hepatic expression of peroxisome proliferator-activated receptor α (PPARα). In mouse primary hepatocytes (MPH), Wnt-3a treatment increased FGF21 expression in the presence of PPARα inhibitor. Results from our luciferase-reporter assay and chromatin immunoprecipitation suggest that evolutionarily conserved TCF binding motifs (TCFBs) on Fgf21 promoter mediate Wnt-3a-induced Fgf21 transactivation. Female mice showed reduced hepatic FGF21 production and circulating FGF21 level following ovariectomy (OVX), associated with reduced hepatic TCF expression and β-catenin S675 phosphorylation. Finally, in MPH, estradiol (E2) treatment enhanced FGF21 expression, as well as binding of TCF7L2 and ribonucleic acid (RNA) polymerase II to the Fgf21 promoter; and the enhancement can be attenuated by the G-protein-coupled estrogen receptor 1 (GPER) antagonist G15. Our observations hence indicate that hepatic FGF21 is among the effectors of the newly recognized E2-β-cat/TCF signaling cascade.NEW & NOTEWORTHY FGF21 is mainly produced in the liver. Therapeutic effect of FGF21 analogues has been demonstrated in clinical trials on reducing hyperlipidemia. We show here that Fgf21 transcription is positively regulated by Wnt pathway effector β-cat/TCF. Importantly, hepatic β-cat/TCF activity can be regulated by the female hormone estradiol, involving GPER. The investigation enriched our understanding on hepatic FGF21 hormone production, and expanded our view on metabolic functions of the Wnt pathway in the liver.
Collapse
Affiliation(s)
- Yasaman Badakhshi
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Canada
- Divison of Advanced Diagnostics, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
- Banting and Best Diabetes Centre, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Weijuan Shao
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Canada
- Divison of Advanced Diagnostics, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
- Banting and Best Diabetes Centre, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Dinghui Liu
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Canada
- Department of Cardiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Lili Tian
- Divison of Advanced Diagnostics, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
- Banting and Best Diabetes Centre, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Juan Pang
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Canada
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Jianqiu Gu
- Divison of Advanced Diagnostics, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
- Departmemt of Endocrinology and Metabolism and the Institute of Endocrinology, The First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Jim Hu
- Hospital for Sick Children, Toronto, Ontario, Canada
| | - Tianru Jin
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Canada
- Divison of Advanced Diagnostics, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
- Banting and Best Diabetes Centre, Faculty of Medicine, University of Toronto, Toronto, Canada
| |
Collapse
|
14
|
Abd-ElRaouf A, Nada AS, Mohammed NEDA, Amer HA, Abd-ElRahman SS, Abdelsalam RM, Salem HA. Low dose gamma irradiation attenuates cyclophosphamide-induced cardiotoxicity in rats: role of NF-κB signaling pathway. Int J Radiat Biol 2021; 97:632-641. [PMID: 33635746 DOI: 10.1080/09553002.2021.1893856] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/24/2021] [Accepted: 02/14/2021] [Indexed: 01/03/2023]
Abstract
PURPOSE Cyclophosphamide (Cyp) is one of the most commonly used, wide spectrum chemotherapeutic agents. Cyp has multi-organ toxicities that are dose limiting, thus it's mostly used in chemotherapeutic combinations. Radiation is well known as a hazardous sort of energy, recent studies are interested in studying the beneficial therapeutic effects of low-dose gamma radiation. This study examined the protective effect of two different doses/dose-rates of irradiation either alone or combined with telmisartan against Cyp-induced cardiotoxicity. MATERIALS AND METHODS Rats were divided into seven groups; (1): Control, (2): Cyp, (3-4): 0.05 Gy low dose rate (LDR) irradiation, 0.25 Gy high dose rate (HDR) irradiation, respectively, prior to Cyp dose, (5-7): telmisartan either alone or with 0.05 Gy LDR-irradiation or 0.25 Gy HDR-irradiation, respectively, prior to Cyp dose. The current investigation studied the effect of Cyp alone or combined with different treatment regimens on serum cTn-I and LDH, nuclear factor-κB (NF-κB) pathway (p65/IκB/IKK-α/IKK-ß) in the myocardium. Pro-inflammatory cytokines IL-1ß, IL-6 and TNF-α were assessed in addition to histopathological examination of the heart. RESULTS Low-dose irradiation attenuated cardiac enzymes, pro-inflammatory cytokines, NF-κB content, and histology, in both low and HDRs. Furthermore, the combination of low-dose irradiation with telmisartan (an angiotensin-II receptor type-1 blocker and a known cardio-protective drug) offered the best histological results. CONCLUSIONS Low-dose irradiation-induced amelioration is partially but not completely through canonical activation of NF-κB, and may have another atypical pathway. While telmisartan probably ameliorates NF-κB totally through canonical pathway.
Collapse
Affiliation(s)
- Amira Abd-ElRaouf
- National Centre of Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Ahmed S Nada
- National Centre of Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Nour El-Din A Mohammed
- National Centre of Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Hany A Amer
- National Centre for Nuclear Safety and Radiation Control, Atomic Energy Authority, Cairo, Egypt
| | - Sahar S Abd-ElRahman
- Department of Pathology, Faculty of Veterinary, Cairo University, Giza Square, Egypt
| | - Rania M Abdelsalam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Hesham A Salem
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
15
|
Badakhshi Y, Jin T. Current understanding and controversies on the clinical implications of fibroblast growth factor 21. Crit Rev Clin Lab Sci 2020; 58:311-328. [PMID: 33382006 DOI: 10.1080/10408363.2020.1864278] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Metabolic functions of the hepatic hormone fibroblast growth factor 21 (FGF21) have been recognized for more than a decade in studying the responses of human subjects and rodent models to nutritional stresses such as fasting, high-fat diet or ketogenic diet consumption, and ethanol intake. Our interest in the beneficial metabolic effects of FGF21 has risen due to its potential ability to serve as a therapeutic agent for various metabolic disorders, including type 2 diabetes, obesity, and fatty liver diseases, as well as its potential to act as a diagnostic or prognostic biomarker for metabolic and other disorders. Here, we briefly review the FGF21 gene and protein structures, its expression pattern, and cellular signaling cascades that mediate FGF21 production and function. We mainly focus on discussing experimental and clinical literature pertaining to FGF21 as a therapeutic agent. Furthermore, we present several lines of investigation, including a few studies conducted by our team, suggesting that FGF21 expression and function can be regulated by dietary polyphenol interventions. Finally, we discuss the literature debating FGF21 as a potential biomarker in various disorders.
Collapse
Affiliation(s)
- Yasaman Badakhshi
- Division of Advanced Diagnostics, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada.,Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Canada.,Banting and Best Diabetes Center, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Tianru Jin
- Division of Advanced Diagnostics, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada.,Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Canada.,Banting and Best Diabetes Center, Faculty of Medicine, University of Toronto, Toronto, Canada
| |
Collapse
|
16
|
Weng W, Ge T, Wang Y, He L, Liu T, Wang W, Zheng Z, Yu L, Zhang C, Lu X. Therapeutic Effects of Fibroblast Growth Factor-21 on Diabetic Nephropathy and the Possible Mechanism in Type 1 Diabetes Mellitus Mice. Diabetes Metab J 2020; 44:566-580. [PMID: 32431116 PMCID: PMC7453991 DOI: 10.4093/dmj.2019.0089] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 10/28/2019] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Fibroblast growth factor 21 (FGF21) has been only reported to prevent type 1 diabetic nephropathy (DN) in the streptozotocin-induced type 1 diabetes mellitus (T1DM) mouse model. However, the FVB (Cg)-Tg (Cryaa-Tag, Ins2-CALM1) 26OVE/PneJ (OVE26) transgenic mouse is a widely recommended mouse model to recapture the most important features of T1DM nephropathy that often occurs in diabetic patients. In addition, most previous studies focused on exploring the preventive effect of FGF21 on the development of DN. However, in clinic, development of therapeutic strategy has much more realistic value compared with preventive strategy since the onset time of DN is difficult to be accurately predicted. Therefore, in the present study OVE26 mice were used to investigate the potential therapeutic effects of FGF21 on DN. METHODS Four-month-old female OVE26 mice were intraperitoneally treated with recombinant FGF21 at a dose of 100 μg/kg/day for 3 months. The diabetic and non-diabetic control mice were treated with phosphate-buffered saline at the same volume. Renal functions, pathological changes, inflammation, apoptosis, oxidative stress and fibrosis were examined in mice of all groups. RESULTS The results showed that severe renal dysfunction, morphological changes, inflammation, apoptosis, and fibrosis were observed in OVE26 mice. However, all the renal abnormalities above in OVE26 mice were significantly attenuated by 3-month FGF21 treatment associated with improvement of renal adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) activity and sirtuin 1 (SIRT1) expression. CONCLUSION Therefore, this study demonstrated that FGF21 might exert therapeutic effects on DN through AMPK-SIRT1 pathway.
Collapse
Affiliation(s)
- Wenya Weng
- Ruian Center of the Chinese-American Institute for Diabetic Complications, the Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Tingwen Ge
- Cancer Center, the First Hospital of Jilin University, Changchun, China
| | - Yi Wang
- Biological Engineering Department, School of Life Science, Anhui Medical University, Hefei, China
| | - Lulu He
- The Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China
| | - Tinghao Liu
- The Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China
| | - Wanning Wang
- Cancer Center, the First Hospital of Jilin University, Changchun, China
| | - Zongyu Zheng
- Cancer Center, the First Hospital of Jilin University, Changchun, China
| | - Lechu Yu
- Ruian Center of the Chinese-American Institute for Diabetic Complications, the Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chi Zhang
- Ruian Center of the Chinese-American Institute for Diabetic Complications, the Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Xuemian Lu
- Ruian Center of the Chinese-American Institute for Diabetic Complications, the Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
17
|
Abstract
FGF21 (fibroblast growth factor 21) is a regulator of metabolism and performs an important role in glucose and lipid metabolism and the maintenance of energy balance. FGF21 is principally expressed in the liver, but it can also be found in the pancreas, skeletal muscle, and adipose tissue. It is known that levels of serum FGF21 are significantly elevated in obese, insulin-resistant patients, and those with metabolic syndrome. Elevated levels of FGF21 in serum during the early stages of various metabolic diseases are considered a compensatory response by the organism. Therefore, FGF21 is considered a hormone in response to stress and an early diagnostic marker of disease. Diabetic cardiomyopathy is a special type of cardiac complication, characterized as a chronic myocardial disorder caused by diabetes. The pathological process includes increased oxidative stress, energy metabolism in myocardial cells, an inflammatory response, and myocardial cell apoptosis. A growing body of evidence suggests that FGF21 has the potential to be an effective drug for the treatment of diabetic cardiomyopathy. Here, we review recent progress on the characteristics of FGF21 in its protective role, especially in pathological processes such as suppressing apoptosis in the myocardium, reducing inflammation in cardiomyocytes, reducing oxidative stress, and promoting fatty acid oxidation. In addition, we explore the possibility that diabetic cardiomyopathy can be delayed through the application of FGF21, providing possible therapeutic targets of the disease.
Collapse
Affiliation(s)
- Xiang Zhang
- Department of Geriatrics, Renming Hospital of Wuhan University, Hubei, People's Republic of China
- Central Laboratory, Renming Hospital of Wuhan University, Hubei, People's Republic of China
| | - Luo Yang
- Department of Geriatrics, Renming Hospital of Wuhan University, Hubei, People's Republic of China
- Central Laboratory, Renming Hospital of Wuhan University, Hubei, People's Republic of China
| | - Xiongfeng Xu
- Department of Geriatrics, Renming Hospital of Wuhan University, Hubei, People's Republic of China
- Central Laboratory, Renming Hospital of Wuhan University, Hubei, People's Republic of China
| | - Fengjuan Tang
- Department of Geriatrics, Renming Hospital of Wuhan University, Hubei, People's Republic of China
- Central Laboratory, Renming Hospital of Wuhan University, Hubei, People's Republic of China
| | - Peng Yi
- Department of Geriatrics, Renming Hospital of Wuhan University, Hubei, People's Republic of China
- Central Laboratory, Renming Hospital of Wuhan University, Hubei, People's Republic of China
| | - Bo Qiu
- Department of Geriatrics, Renming Hospital of Wuhan University, Hubei, People's Republic of China
- Central Laboratory, Renming Hospital of Wuhan University, Hubei, People's Republic of China
| | - Yarong Hao
- Department of Geriatrics, Renming Hospital of Wuhan University, Hubei, People's Republic of China.
- Central Laboratory, Renming Hospital of Wuhan University, Hubei, People's Republic of China.
- Division of Metabolic Syndrome, Department of Geriatrics, Renming Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuchang District, Wuhan, 430060, Hubei, China.
| |
Collapse
|
18
|
Lu S, Liu G, Chen T, Wang W, Hu J, Tang D, Peng X. Lentivirus-Mediated hFGF21 Stable Expression in Liver of Diabetic Rats Model and Its Antidiabetic Effect Observation. Hum Gene Ther 2020; 31:472-484. [PMID: 32027183 DOI: 10.1089/hum.2019.322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The incidence of type 2 diabetes mellitus (T2DM) has been increasing annually, which is a serious threat to human health. Fibroblast growth factor 21 (FGF21) is one of the most popular targets for the treatment of diabetes because it effectively improves glycolipid metabolism. In our experiment, human FGF21 (hFGF21) was injected and stably expressed in the liver tissues of a rat T2DM model with lentivirus system. Based on clinical and histopathological examinations, islet cells were protected and liver tissue lesions were repaired for >4 months. Glucose metabolism and histopathology were controlled perfectly when hFGF21 was stably expressed in partial liver of T2DM rats. The results showed that the liver tissue cell apoptosis was reduced, the lipid droplet content was decreased, the oxidative stress indexes were improved, the glycogen content was increased, and the islet cells were increased too. Besides, insulin sensitivity and glycogen synthesis-related genes expression were increased, but cell apoptosis-related genes caspase3 and NFκB expression were decreased. The effectiveness of results suggested that injecting hFGF21 to rats liver could effectively treat T2DM.
Collapse
Affiliation(s)
- Shuaiyao Lu
- Institute of Medical Biology, Peking Union Medical College, Chinese Academy of Medical Sciences, Kunming, China
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
- Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Diseases, Kunming, China
| | - Guanglong Liu
- The First People's Hospital of Yunnan Province, Kunming, China
| | - Tianxing Chen
- The First People's Hospital of Yunnan Province, Kunming, China
| | - Wanpu Wang
- The First People's Hospital of Yunnan Province, Kunming, China
| | - Jingwen Hu
- Institute of Medical Biology, Peking Union Medical College, Chinese Academy of Medical Sciences, Kunming, China
| | - Donghong Tang
- Institute of Medical Biology, Peking Union Medical College, Chinese Academy of Medical Sciences, Kunming, China
- Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Diseases, Kunming, China
| | - Xiaozhong Peng
- Institute of Medical Biology, Peking Union Medical College, Chinese Academy of Medical Sciences, Kunming, China
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
- Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Diseases, Kunming, China
| |
Collapse
|
19
|
Tong J, Hei TK. Aging and age-related health effects of ionizing radiation. RADIATION MEDICINE AND PROTECTION 2020. [DOI: 10.1016/j.radmp.2020.01.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
20
|
Lin S, Yu L, Ni Y, He L, Weng X, Lu X, Zhang C. Fibroblast Growth Factor 21 Attenuates Diabetes-Induced Renal Fibrosis by Negatively Regulating TGF-β-p53-Smad2/3-Mediated Epithelial-to-Mesenchymal Transition via Activation of AKT. Diabetes Metab J 2020; 44:158-172. [PMID: 31701691 PMCID: PMC7043973 DOI: 10.4093/dmj.2018.0235] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 04/02/2019] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Epithelial-to-mesenchymal transition (EMT) is required for renal fibrosis, which is a characteristic of diabetic nephropathy (DN). Our previous study demonstrated that fibroblast growth factor 21 (FGF21) prevented DN associated with the suppressing renal connective tissue growth factor expression, a key marker of renal fibrosis. Therefore, the effects of FGF21 on renal fibrosis in a DN mouse model and the underlying mechanisms were investigated in this study. METHODS Type 1 diabetes mellitus was induced in C57BL/6J mice by intraperitoneal injections of multiple low doses of streptozotocin. Then, diabetic and non-diabetic mice were treated with or without FGF21 in the presence of pifithrin-α (p53 inhibitor) or 10-[4'-(N,N-Diethylamino)butyl]-2-chlorophenoxazine hydrochloride (10-DEBC) hydrochloride (Akt inhibitor) for 4 months. RESULTS DN was diagnosed by renal dysfunction, hypertrophy, tubulointerstitial lesions, and glomerulosclerosis associated with severe fibrosis, all of which were prevented by FGF21. FGF21 also suppressed the diabetes-induced renal EMT in DN mice by negatively regulating transforming growth factor beta (TGF-β)-induced nuclear translocation of Smad2/3, which is required for the transcription of multiple fibrotic genes. The mechanistic studies showed that FGF21 attenuated nuclear translocation of Smad2/3 by inhibiting renal activity of its conjugated protein p53, which carries Smad2/3 into the nucleus. Moreover pifithrin-α inhibited the FGF21-induced preventive effects on the renal EMT and subsequent renal fibrosis in DN mice. In addition, 10-DEBC also blocked FGF21-induced inhibition of renal p53 activity by phosphorylation of mouse double minute-2 homolog (MDM2). CONCLUSION FGF21 prevents renal fibrosis via negative regulation of the TGF-β/Smad2/3-mediated EMT process by activation of the Akt/MDM2/p53 signaling pathway.
Collapse
Affiliation(s)
- Sundong Lin
- Ruian Center of Chinese-American Research Institute for Diabetic Complications, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Lechu Yu
- Ruian Center of Chinese-American Research Institute for Diabetic Complications, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yongqing Ni
- Ruian Center of Chinese-American Research Institute for Diabetic Complications, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lulu He
- Ruian Center of Chinese-American Research Institute for Diabetic Complications, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Xiaolu Weng
- Ruian Center of Chinese-American Research Institute for Diabetic Complications, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China
| | - Xuemian Lu
- Ruian Center of Chinese-American Research Institute for Diabetic Complications, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Chi Zhang
- Ruian Center of Chinese-American Research Institute for Diabetic Complications, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
- Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
21
|
Mechanisms underlying the metabolic beneficial effect of curcumin intervention: Beyond anti-inflammation and anti-oxidative stress. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.obmed.2018.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
22
|
Abstract
Numerous natural products available over the counter are commonly consumed by healthy, sub-healthy or ill people for the treatment and prevention of various chronic diseases. Among them, a few dietary polyphenols, including the curry compound curcumin, have been attracting the most attention from biomedical researchers and drug developers. Unlike many so-called "good drug candidates", curcumin and several other dietary polyphenols do not have a single known therapeutic target or defined receptor. In addition, the bioavailability of these polyphenols is usually very low due to their poor absorption in the gut. These recently debated features have created enormous difficulties for drug developers. In this review, I do not discuss how to develop curcumin, other dietary polyphenols or their derivatives into pharmaceutical agents. Instead, I comment on how curcumin and dietary polyphenol research has enriched our knowledge of insulin signaling, including the presentation of my perspectives on how these studies will add to our understanding of the famous hepatic insulin function paradox.
Collapse
|
23
|
Yang H, Feng A, Lin S, Yu L, Lin X, Yan X, Lu X, Zhang C. Fibroblast growth factor-21 prevents diabetic cardiomyopathy via AMPK-mediated antioxidation and lipid-lowering effects in the heart. Cell Death Dis 2018; 9:227. [PMID: 29445083 PMCID: PMC5833682 DOI: 10.1038/s41419-018-0307-5] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 12/29/2017] [Accepted: 01/04/2018] [Indexed: 12/25/2022]
Abstract
Our previous studies showed that both exogenous and endogenous FGF21 inhibited cardiac apoptosis at the early stage of type 1 diabetes. Whether FGF21 induces preventive effect on type 2 diabetes-induced cardiomyopathy was investigated in the present study. High-fat-diet/streptozotocin-induced type 2 diabetes was established in both wild-type (WT) and FGF21-knockout (FGF21-KO) mice followed by treating with FGF21 for 4 months. Diabetic cardiomyopathy (DCM) was diagnosed by significant cardiac dysfunction, remodeling, and cardiac lipid accumulation associated with increased apoptosis, inflammation, and oxidative stress, which was aggravated in FGF21-KO mice. However, the cardiac damage above was prevented by administration of FGF21. Further studies demonstrated that the metabolic regulating effect of FGF21 is not enough, contributing to FGF21-induced significant cardiac protection under diabetic conditions. Therefore, other protective mechanisms must exist. The in vivo cardiac damage was mimicked in primary neonatal or adult mouse cardiomyocytes treated with HG/Pal, which was inhibited by FGF21 treatment. Knockdown of AMPKα1/2, AKT2, or NRF2 with their siRNAs revealed that FGF21 protected cardiomyocytes from HG/Pal partially via upregulating AMPK–AKT2–NRF2-mediated antioxidative pathway. Additionally, knockdown of AMPK suppressed fatty acid β-oxidation via inhibition of ACC–CPT-1 pathway. And, inhibition of fatty acid β-oxidation partially blocked FGF21-induced protection in cardiomyocytes. Further, in vitro and in vivo studies indicated that FGF21-induced cardiac protection against type 2 diabetes was mainly attributed to lipotoxicity rather than glucose toxicity. These results demonstrate that FGF21 functions physiologically and pharmacologically to prevent type 2 diabetic lipotoxicity-induced cardiomyopathy through activation of both AMPK–AKT2–NRF2-mediated antioxidative pathway and AMPK–ACC–CPT-1-mediated lipid-lowering effect in the heart.
Collapse
Affiliation(s)
- Hong Yang
- Ruian Center of Chinese-American Research Institute for Diabetic Complications, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Anyun Feng
- Ruian Center of Chinese-American Research Institute for Diabetic Complications, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Sundong Lin
- Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China.,School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Lechu Yu
- Ruian Center of Chinese-American Research Institute for Diabetic Complications, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiufei Lin
- Ruian Center of Chinese-American Research Institute for Diabetic Complications, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China.,School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China.,Wenzhou Biomedical Innovation Center, Wenzhou, China
| | - Xiaoqing Yan
- Ruian Center of Chinese-American Research Institute for Diabetic Complications, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China.,School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China.,Wenzhou Biomedical Innovation Center, Wenzhou, China
| | - Xuemian Lu
- Ruian Center of Chinese-American Research Institute for Diabetic Complications, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Chi Zhang
- Ruian Center of Chinese-American Research Institute for Diabetic Complications, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China. .,Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China. .,School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China. .,Wenzhou Biomedical Innovation Center, Wenzhou, China.
| |
Collapse
|
24
|
Kharitonenkov A, DiMarchi R. Fibroblast growth factor 21 night watch: advances and uncertainties in the field. J Intern Med 2017; 281:233-246. [PMID: 27878865 DOI: 10.1111/joim.12580] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Fibroblast growth factor (FGF) 21 belongs to a hormone-like subgroup within the FGF superfamily. The members of this subfamily, FGF19, FGF21 and FGF23, are characterized by their reduced binding affinity for heparin that enables them to be transported in the circulation and function in an endocrine manner. It is likely that FGF21 also acts in an autocrine and paracrine fashion, as multiple organs can produce this protein and its plasma concentration seems to be below the level necessary to induce a pharmacological effect. FGF21 signals via FGF receptors, but for efficient receptor engagement it requires a cofactor, membrane-spanning βKlotho (KLB). The regulation of glucose uptake in adipocytes was the initial biological activity ascribed to FGF21, but this hormone is now recognized to stimulate many other pathways in vitro and display multiple pharmacological effects in metabolically compromised animals and humans. Understanding of the precise physiology of FGF21 and its potential medicinal role has evolved exponentially over the last decade, yet numerous aspects remain to be defined and others are a source of debate. Here we provide a historical overview of the advances in FGF21 biology focusing on the uncertainties in the mechanism of action as well as the differing viewpoints relating to this intriguing protein.
Collapse
Affiliation(s)
- A Kharitonenkov
- Department of Chemistry, Indiana University Bloomington, Bloomington, IN, USA
| | - R DiMarchi
- Department of Chemistry, Indiana University Bloomington, Bloomington, IN, USA
| |
Collapse
|
25
|
Yang G, Li W, Jiang H, Liang X, Zhao Y, Yu D, Zhou L, Wang G, Tian H, Han F, Cai L, Cui J. Low-dose radiation may be a novel approach to enhance the effectiveness of cancer therapeutics. Int J Cancer 2016; 139:2157-68. [PMID: 27299986 DOI: 10.1002/ijc.30235] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 05/01/2016] [Accepted: 06/06/2016] [Indexed: 12/26/2022]
Abstract
It has been generally accepted that both natural and man-made sources of ionizing radiation contribute to human exposure and consequently pose a possible risk to human health. However, accumulating evidence has shown that the biological effects of low-dose radiation (LDR) are different from those of high-dose radiation. LDR can stimulate proliferation of normal cells and activate their defense systems, while these biological effects are not observed in some cancer cell types. Although there is still no concordance on this matter, the fact that LDR has the potential to enhance the effects of cancer therapeutics and reduce the toxic side effects of anti-cancer therapy has garnered significant interest. Here, we provide an overview of the current knowledge regarding the experimental data detailing the different responses of normal and cancer tissues to LDR, the underlying mechanisms, and its significance in clinical application.
Collapse
Affiliation(s)
- Guozi Yang
- Cancer Center, The First Hospital of Jilin University, Changchun, 130021, China.,Department of Radiation-Oncology, The First Hospital of Jilin University, Changchun, 130021, China
| | - Wei Li
- Cancer Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Hongyu Jiang
- Health Examination Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Xinyue Liang
- Cancer Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Yuguang Zhao
- Cancer Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Dehai Yu
- Cancer Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Lei Zhou
- Cancer Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Guanjun Wang
- Cancer Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Huimin Tian
- Cancer Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Fujun Han
- Cancer Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Lu Cai
- Cancer Center, The First Hospital of Jilin University, Changchun, 130021, China. .,Kosair Children's Hospital Research Institute, Departments of Pediatrics, Radiation Oncology, Pharmacology and Toxicology of the University of Louisville, Louisville, KY, 40202.
| | - Jiuwei Cui
- Cancer Center, The First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
26
|
Zhang F, Lin X, Yu L, Li W, Qian D, Cheng P, He L, Yang H, Zhang C. Low-dose radiation prevents type 1 diabetes-induced cardiomyopathy via activation of AKT mediated anti-apoptotic and anti-oxidant effects. J Cell Mol Med 2016; 20:1352-66. [PMID: 26991817 PMCID: PMC4929303 DOI: 10.1111/jcmm.12823] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 01/31/2016] [Indexed: 12/15/2022] Open
Abstract
We investigated whether low-dose radiation (LDR) can prevent late-stage diabetic cardiomyopathy and whether this protection is because of the induction of anti-apoptotic and anti-oxidant pathways. Streptozotocin-induced diabetic C57BL/6J mice were treated with/without whole-body LDR (12.5, 25, or 50 mGy) every 2 days. Twelve weeks after onset of diabetes, cardiomyopathy was diagnosed characterized by significant cardiac dysfunction, hypertrophy and histopathological abnormalities associated with increased oxidative stress and apoptosis, which was prevented by LDR (25 or 50 mGy only). Low-dose radiation-induced cardiac protection also associated with P53 inactivation, enhanced Nrf2 function and improved Akt activation. Next, for the mechanistic study, mouse primary cardiomyocytes were treated with high glucose (33 mmol/l) for 24 hrs and during the last 15 hrs bovine serum albumin-conjugated palmitate (62.5 μmol/l) was added into the medium to mimic diabetes, and cells were treated with LDR (25 mGy) every 6 hrs during the whole process of HG/Pal treatment. Data show that blocking Akt/MDM2/P53 or Akt/Nrf2 pathways with small interfering RNA of akt, mdm2 and nrf2 not only prevented LDR-induced anti-apoptotic and anti-oxidant effects but also prevented LDR-induced suppression on cardiomyocyte hypertrophy and fibrosis against HG/Pal. Low-dose radiation prevented diabetic cardiomyopathy by improving cardiac function and hypertrophic remodelling attributed to Akt/MDM2/P53-mediated anti-apoptotic and Akt/Nrf2-mediated anti-oxidant pathways simultaneously.
Collapse
Affiliation(s)
- Fangfang Zhang
- Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China.,Ruian Center of Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China
| | - Xiufei Lin
- Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China.,Ruian Center of Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China
| | - Lechu Yu
- Ruian Center of Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China
| | - Weihua Li
- Department of Pathology, the Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Dingliang Qian
- Department of Inspection, the Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Peng Cheng
- Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China.,Ruian Center of Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China
| | - Luqing He
- Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China.,Ruian Center of Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China
| | - Hong Yang
- Ruian Center of Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China
| | - Chi Zhang
- Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China.,Ruian Center of Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|