1
|
Muscella A, Felline M, Marsigliante S. Sex-Based Effects of Branched-Chain Amino Acids on Strength Training Performance and Body Composition. Sports (Basel) 2024; 12:275. [PMID: 39453241 PMCID: PMC11510782 DOI: 10.3390/sports12100275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Branched-chain amino acids (BCAAs) are widely studied for their effects on muscle recovery and performance. AIMS This study examined the effects of BCAA supplementation on anthropometric data, physical performance, delayed onset muscle soreness (DOMS), and fatigue in recreational weightlifters. METHODS The trial involved 100 participants (50 men and 50 women), randomized into BCAA and placebo groups. Subjects in the BCAA group took five daily capsules of 500 mg L-leucine, 250 mg L-isoleucine, and 250 mg L-valine for six months. A two-way ANOVA was used to analyze the main and interaction effects of sex and treatment. RESULTS Notable findings include significant improvements in muscle recovery, as indicated by reduced DOMS, particularly in women who showed a decrement of 18.1 ± 9.4 mm compared to 0.8 ± 1.2 mm in the placebo group of a horizontal 100 mm line. Fatigue perception was also significantly lower in the BCAA group, with women reporting a greater decrease (2.6 ± 1.5 scores) compared to the placebo group (0.6 ± 0.7 scores). Strength gains were prominent, especially in men, with a 10% increase in bench press maximum observed in the BCAA group. The interaction between sex and treatment was significant, suggesting sex-specific responses to BCAA supplementation. CONCLUSIONS These results underscore the effectiveness of BCAA supplementation in enhancing muscle recovery, reducing fatigue, and improving strength. This study also highlights sex-specific responses, with women benefiting more in terms of DOMS and fatigue reduction, while men experienced greater strength gains, suggesting a need for tailored supplementation strategies.
Collapse
Affiliation(s)
- Antonella Muscella
- Department of Biological and Environmental Science and Technologies (DiSTeBA), University of Salento, 73100 Lecce, Italy (S.M.)
| | | | | |
Collapse
|
2
|
Flockhart M, Nilsson LC, Tillqvist EN, Vinge F, Millbert F, Lännerström J, Nilsson PH, Samyn D, Apró W, Sundqvist ML, Larsen FJ. Glucosinolate-rich broccoli sprouts protect against oxidative stress and improve adaptations to intense exercise training. Redox Biol 2023; 67:102873. [PMID: 37688976 PMCID: PMC10493800 DOI: 10.1016/j.redox.2023.102873] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/01/2023] [Accepted: 09/01/2023] [Indexed: 09/11/2023] Open
Abstract
Oxidative stress plays a vital role for the adaptive responses to physical training. However, excessive oxidative stress can precipitate cellular damage, necessitating protective mechanisms to mitigate this effect. Glucosinolates, found predominantly in cruciferous vegetables, can be converted into isothiocyanates, known for their antioxidative properties. These compounds activate crucial antioxidant defence pathways and support mitochondrial function and protein integrity under oxidative stress, in both Nrf2-dependent and independent manners. We here administered glucosinolate-rich broccoli sprouts (GRS), in a randomized double-blinded cross-over fashion to 9 healthy subjects in combination with daily intense exercise training for 7 days. We found that exercise in combination with GRS significantly decreased the levels of carbonylated proteins in skeletal muscle and the release of myeloperoxidase into blood. Moreover, it lowered lactate accumulation during submaximal exercise, and attenuated the severe nocturnal hypoglycaemic episodes seen during the placebo condition. Furthermore, GRS in combination with exercise improved physical performance, which was unchanged in the placebo condition.
Collapse
Affiliation(s)
- M Flockhart
- Department of Physiology, Nutrition and Biomechanics, Åstrand Laboratory, The Swedish School of Sport and Health Sciences, Stockholm, Sweden.
| | - L C Nilsson
- Department of Physiology, Nutrition and Biomechanics, Åstrand Laboratory, The Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - E N Tillqvist
- Department of Physiology, Nutrition and Biomechanics, Åstrand Laboratory, The Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - F Vinge
- Department of Physiology, Nutrition and Biomechanics, Åstrand Laboratory, The Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - F Millbert
- Department of Physiology, Nutrition and Biomechanics, Åstrand Laboratory, The Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - J Lännerström
- Department of Physiology, Nutrition and Biomechanics, Åstrand Laboratory, The Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - P H Nilsson
- Linnaeus Centre for Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden; Department of Chemistry and Biomedicine, Linnaeus University, Kalmar, Sweden
| | - D Samyn
- Department of Laboratory Medicine, Clinical Chemistry, Örebro University Hospital, Örebro, Sweden; School of Medicine, Faculty of Medicine, Örebro University, Örebro, Sweden
| | - W Apró
- Department of Physiology, Nutrition and Biomechanics, Åstrand Laboratory, The Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - M L Sundqvist
- Department of Physiology, Nutrition and Biomechanics, Åstrand Laboratory, The Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - F J Larsen
- Department of Physiology, Nutrition and Biomechanics, Åstrand Laboratory, The Swedish School of Sport and Health Sciences, Stockholm, Sweden.
| |
Collapse
|
3
|
Robbins RN, Cortes T, O'Connor JC, Jiwani R, Serra MC. The Influence of Branched-Chain Amino Acid Supplementation on Fatigue and Tryptophan Metabolism After Acute and Chronic Exercise in Older Adults: Protocol for a Pilot Randomized Controlled Trial. JMIR Res Protoc 2023; 12:e52199. [PMID: 37910166 PMCID: PMC10652194 DOI: 10.2196/52199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 08/27/2023] [Indexed: 11/03/2023] Open
Abstract
BACKGROUND Fatigue is a strong predictor of negative health outcomes in older adults. Kynurenine, a metabolite of tryptophan, is strongly associated with fatigue. Reductions in fatigue are observed with exercise; however, exercise training does not completely alleviate symptoms. Branched-chain amino acids (BCAAs) have been shown to have advantageous effects on exercise performance and compete with kynurenine for transport into the central nervous system. Thus, the combination of BCAA and exercise may exert synergized effects of mental and physical fatigue. Therefore, we hypothesize that BCAA added to exercise will shift kynurenine metabolism toward enhanced synthesis of kynurenic acid, thereby reducing fatigue. OBJECTIVE This randomized, double-blind, placebo-controlled trial aims to compare the effects of acute (approximately 45 min) and chronic (8 wk) exercise with and without BCAA supplementation on mental and physical fatigue and assess whether the hypothesized outcomes are modulated by changes in kynurenine metabolism in 30 older adults (n=15, 50% per group). METHODS Older adults (aged 60-80 y) who do not exercise >2 days per week and self-report fatigue (≥3 on a scale of 1-10) will be recruited. Participants will be randomized to either the exercise+BCAA group or exercise+placebo group. Participants will engage in high-volume, moderate-intensity, whole-body exercise training (aerobic and resistance exercise; either in-person or web-based sessions) 3 times per week for 8 weeks. In addition, participants will consume daily either 100 mg/kg body weight of BCAA (2:1:1 leucine:isoleucine:valine) or placebo (maltodextrin) throughout the 8-week intervention. BCAA and placebo powders will be identical in color and dissolved in 400 mL of water and 2.5 g of a calorie-free water flavor enhancer. Muscle biopsies will be collected before and after the intervention after a 12-hour fast to examine changes in the biomarkers of tryptophan metabolism and inflammation. Our primary outcomes include changes in mental and physical fatigue and metabolism after the 8-week exercise training between the 2 groups. Mental and physical fatigue will be measured before and after the intervention. Mental fatigue will be subjectively assessed through the completion of validated questionnaires. Physical fatigue will be measured by isometric handgrip, 1-repetition maximum, chair rise, 400-meter walk, and cardiopulmonary exercise tests. RESULTS The study was funded in March 2022, with an anticipated projected data collection period lasting from January 2023 through December 2023. CONCLUSIONS The discovery that kynurenine concentrations are associated with fatigue and are responsive to BCAA supplementation during exercise training could have important implications for the development of future interventions, both lifestyle and pharmacologic, to treat fatigue in older adults. TRIAL REGISTRATION ClinicalTrials.gov NCT05484661; https://www.clinicaltrials.gov/study/NCT05484661. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) DERR1-10.2196/52199.
Collapse
Affiliation(s)
- Ronna N Robbins
- Department of Nutrition and Food Science, Texas Woman's University, Denton, TX, United States
- South Texas Veterans Health Care System, Geriatric Research Education and Clinical Center, San Antonio, TX, United States
| | - Tiffany Cortes
- South Texas Veterans Health Care System, Geriatric Research Education and Clinical Center, San Antonio, TX, United States
- Sam & Ann Barshop Institute for Longevity & Aging Studies, Department of Medicine, University of Texas Health Health Science Center San Antonio, San Antonio, TX, United States
| | - Jason C O'Connor
- South Texas Veterans Health Care System, San Antonio, TX, United States
- Department of Pharmacology, University of Texas Health Science Center San Antonio, San Antonio, TX, United States
| | - Rozmin Jiwani
- South Texas Veterans Health Care System, Geriatric Research Education and Clinical Center, San Antonio, TX, United States
- School of Nursing, University of Texas Health Science Center San Antonio, San Antonio, TX, United States
| | - Monica C Serra
- South Texas Veterans Health Care System, Geriatric Research Education and Clinical Center, San Antonio, TX, United States
- Sam & Ann Barshop Institute for Longevity & Aging Studies, Department of Medicine, University of Texas Health Health Science Center San Antonio, San Antonio, TX, United States
| |
Collapse
|
4
|
Flockhart M, Tischer D, Nilsson LC, Blackwood SJ, Ekblom B, Katz A, Apró W, Larsen FJ. Reduced glucose tolerance and insulin sensitivity after prolonged exercise in endurance athletes. Acta Physiol (Oxf) 2023; 238:e13972. [PMID: 37017615 DOI: 10.1111/apha.13972] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/06/2023]
Abstract
AIM The purpose of this study was to 1. investigate if glucose tolerance is affected after one acute bout of different types of exercise; 2. assess if potential differences between two exercise paradigms are related to changes in mitochondrial function; and 3. determine if endurance athletes differ from nonendurance-trained controls in their metabolic responses to the exercise paradigms. METHODS Nine endurance athletes (END) and eight healthy nonendurance-trained controls (CON) were studied. Oral glucose tolerance tests (OGTT) and mitochondrial function were assessed on three occasions: in the morning, 14 h after an overnight fast without prior exercise (RE), as well as after 3 h of prolonged continuous exercise at 65% of VO2 max (PE) or 5 × 4 min at ~95% of VO2 max (HIIT) on a cycle ergometer. RESULTS Glucose tolerance was markedly reduced in END after PE compared with RE. END also exhibited elevated fasting serum FFA and ketones levels, reduced insulin sensitivity and glucose oxidation, and increased fat oxidation during the OGTT. CON showed insignificant changes in glucose tolerance and the aforementioned measurements compared with RE. HIIT did not alter glucose tolerance in either group. Neither PE nor HIIT affected mitochondrial function in either group. END also exhibited increased activity of 3-hydroxyacyl-CoA dehydrogenase activity in muscle extracts vs. CON. CONCLUSION Prolonged exercise reduces glucose tolerance and increases insulin resistance in endurance athletes the following day. These findings are associated with an increased lipid load, a high capacity to oxidize lipids, and increased fat oxidation.
Collapse
Affiliation(s)
- Mikael Flockhart
- Department of Physiology, Nutrition and Biomechanics, The Swedish School of Sport and Health Sciences, GIH, Stockholm, Sweden
| | - Dominik Tischer
- Department of Physiology, Nutrition and Biomechanics, The Swedish School of Sport and Health Sciences, GIH, Stockholm, Sweden
| | - Lina C Nilsson
- Department of Physiology, Nutrition and Biomechanics, The Swedish School of Sport and Health Sciences, GIH, Stockholm, Sweden
| | - Sarah J Blackwood
- Department of Physiology, Nutrition and Biomechanics, The Swedish School of Sport and Health Sciences, GIH, Stockholm, Sweden
| | - Björn Ekblom
- Department of Physiology, Nutrition and Biomechanics, The Swedish School of Sport and Health Sciences, GIH, Stockholm, Sweden
| | - Abram Katz
- Department of Physiology, Nutrition and Biomechanics, The Swedish School of Sport and Health Sciences, GIH, Stockholm, Sweden
| | - William Apró
- Department of Physiology, Nutrition and Biomechanics, The Swedish School of Sport and Health Sciences, GIH, Stockholm, Sweden
- Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Filip J Larsen
- Department of Physiology, Nutrition and Biomechanics, The Swedish School of Sport and Health Sciences, GIH, Stockholm, Sweden
| |
Collapse
|
5
|
Martinho DV, Nobari H, Faria A, Field A, Duarte D, Sarmento H. Oral Branched-Chain Amino Acids Supplementation in Athletes: A Systematic Review. Nutrients 2022; 14:4002. [PMID: 36235655 PMCID: PMC9571679 DOI: 10.3390/nu14194002] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/10/2022] [Accepted: 09/16/2022] [Indexed: 11/27/2022] Open
Abstract
Branched-chain amino acids (BCAAs) are oxidized in the muscle and result in stimulating anabolic signals-which in return may optimize performance, body composition and recovery. Meanwhile, among athletes, the evidence about BCAA supplementation is not clear. The aim of this study was to review the effects of BCAAs in athletic populations. The research was conducted in three databases: Web of Science (all databases), PubMed and Scopus. The inclusion criteria involved participants classified both as athletes and people who train regularly, and who were orally supplemented with BCAAs. The risk of bias was individually assessed for each study using the revised Cochrane risk of bias tool for randomized trials (RoB 2.0). From the 2298 records found, 24 studies met the inclusion criteria. Although BCAAs tended to activate anabolic signals, the benefits on performance and body composition were negligible. On the other hand, studies that included resistance participants showed that BCAAs attenuated muscle soreness after exercise, while in endurance sports the findings were inconsistent. The protocols of BCAA supplements differed considerably between studies. Moreover, most of the studies did not report the total protein intake across the day and, consequently, the benefits of BCAAs should be interpreted with caution.
Collapse
Affiliation(s)
- Diogo V. Martinho
- University of Coimbra, Research Unit for Sport and Physical Activity, Faculty of Sport Sciences and Physical Education, 3040-248 Coimbra, Portugal
- Dietetics and Nutrition, Coimbra Health School, Polytechnic of Coimbra, 3046-854 Coimbra, Portugal
- Laboratory for Applied Health Research (LabinSaúde), 3046-854 Coimbra, Portugal
| | - Hadi Nobari
- Department of Physiology, Faculty of Sport Sciences, University of Extremadura, 10003 Cáceres, Spain
- Department of Physical Education and Special Motricity, Faculty of Physical Education and Mountain Sports, Transilvania University of Braşov, 500068 Braşov, Romania
| | - Ana Faria
- Dietetics and Nutrition, Coimbra Health School, Polytechnic of Coimbra, 3046-854 Coimbra, Portugal
- Laboratory for Applied Health Research (LabinSaúde), 3046-854 Coimbra, Portugal
| | - Adam Field
- School of Human and Health Sciences, University of Huddersfield, Huddersfield HD1 3DH, UK
| | - Daniel Duarte
- N2i—Polytechnic Institute of Maia, 4475-690 Maia, Portugal
- CIDESD—Maia University, 4475-690 Maia, Portugal
| | - Hugo Sarmento
- University of Coimbra, Research Unit for Sport and Physical Activity, Faculty of Sport Sciences and Physical Education, 3040-248 Coimbra, Portugal
| |
Collapse
|
6
|
Anderson L, Drust B, Close GL, Morton JP. Physical loading in professional soccer players: Implications for contemporary guidelines to encompass carbohydrate periodization. J Sports Sci 2022; 40:1000-1019. [DOI: 10.1080/02640414.2022.2044135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Liam Anderson
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Barry Drust
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Graeme L. Close
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Tom Reilly Building, Byrom St Campus, Liverpool John Moores University, Liverpool, L3 6AF, UK
| | - James P. Morton
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Tom Reilly Building, Byrom St Campus, Liverpool John Moores University, Liverpool, L3 6AF, UK
| |
Collapse
|
7
|
Yin S, Tao Y, Jiang Y, Meng L, Zhao L, Xue X, Li Q, Wu L. A Combined Proteomic and Metabolomic Strategy for Allergens Characterization in Natural and Fermented Brassica napus Bee Pollen. Front Nutr 2022; 9:822033. [PMID: 35155540 PMCID: PMC8833084 DOI: 10.3389/fnut.2022.822033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/03/2022] [Indexed: 01/14/2023] Open
Abstract
Bee pollen is consumed for its nutritional and pharmacological benefits, but it also contains hazardous allergens which have not been identified. Here, we identified two potential allergens, glutaredoxin and oleosin-B2, in Brassica napus bee pollen using mass spectrometry-based proteomics analyses, and used bioinformatics to predict their antigenic epitopes. Comparison of fermented (by Saccharomyces cerevisiae) and unfermented bee pollen samples indicated that glutaredoxin and oleosin-B2 contents were significantly decreased following fermentation, while the contents of their major constituent oligopeptides and amino acids were significantly increased based on metabolomics analyses. Immunoblot analysis indicated that the IgE-binding affinity with extracted bee pollen proteins was also significantly decreased after fermentation, suggesting a reduction in the allergenicity of fermented bee pollen. Furthermore, fermentation apparently promoted the biosynthesis of L-valine, L-isoleucine, L-tryptophan, and L-phenylalanine, as well as their precursors or intermediates. Thus, fermentation could potentially alleviate allergenicity, while also positively affecting nutritional properties of B. napus bee pollen. Our findings might provide a scientific foundation for improving the safety of bee pollen products to facilitate its wider application.
Collapse
Affiliation(s)
- Shuting Yin
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Animal Science, Shanxi Agricultural University, Shanxi, China
| | - Yuxiao Tao
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yusuo Jiang
- College of Animal Science, Shanxi Agricultural University, Shanxi, China
| | - Lifeng Meng
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Liuwei Zhao
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaofeng Xue
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qiangqiang Li
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Qiangqiang Li
| | - Liming Wu
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
- Liming Wu
| |
Collapse
|
8
|
Jonsson WO, Ponette J, Horwath O, Rydenstam T, Söderlund K, Ekblom B, Azzolini M, Ruas JL, Blomstrand E. Changes in plasma concentration of kynurenine following intake of branched-chain amino acids are not caused by alterations in muscle kynurenine metabolism. Am J Physiol Cell Physiol 2021; 322:C49-C62. [PMID: 34817270 DOI: 10.1152/ajpcell.00285.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Administration of branched-chain amino acids (BCAA) has been suggested to enhance mitochondrial biogenesis, including levels of PGC-1α, which may, in turn, alter kynurenine metabolism. Ten healthy subjects performed 60 min of dynamic one-leg exercise at ~70% of Wmax on two occasions. They were in random order supplied either a mixture of BCAA or flavored water (placebo) during the experiment. Blood samples were collected during exercise and recovery, and muscle biopsies were taken from both legs before, after and 90 and 180 min following exercise. Ingestion of BCAA doubled their concentration in both plasma and muscle while causing a 30-40% reduction (P<0.05 vs. placebo) in levels of aromatic amino acids in both resting and exercising muscle during 3-h recovery. The muscle concentration of kynurenine decreased by 25% (P<0.05) during recovery, similar in both resting and exercising leg and with both supplements, although plasma concentration of kynurenine during recovery was 10% lower (P<0.05) when BCAA were ingested. Ingestion of BCAA reduced the plasma concentration of kynurenic acid by 60% (P<0.01) during exercise and recovery, while the level remained unchanged with placebo. Exercise induced a 3-4-fold increase (P<0.05) in muscle content of PGC-1a1 mRNA after 90 min of recovery under both conditions, whereas levels of KAT4 mRNA and protein were unaffected by exercise or supplement. In conclusion, the reduction of plasma levels of kynurenine and kynurenic acid caused by BCAA were not associated with any changes in the level of muscle kynurenine, suggesting that kynurenine metabolism was altered in tissues other than muscle.
Collapse
Affiliation(s)
- William O Jonsson
- Department of Physiology, Biomechanics and Nutrition, The Swedish School of Sport and Health Sciences and Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Jonathan Ponette
- Department of Physiology, Biomechanics and Nutrition, The Swedish School of Sport and Health Sciences and Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Oscar Horwath
- Department of Physiology, Biomechanics and Nutrition, The Swedish School of Sport and Health Sciences and Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Tomas Rydenstam
- Department of Physiology, Biomechanics and Nutrition, The Swedish School of Sport and Health Sciences and Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Karin Söderlund
- Department of Physiology, Biomechanics and Nutrition, The Swedish School of Sport and Health Sciences and Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Björn Ekblom
- Department of Physiology, Biomechanics and Nutrition, The Swedish School of Sport and Health Sciences and Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Michele Azzolini
- Department of Physiology, Biomechanics and Nutrition, The Swedish School of Sport and Health Sciences and Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Jorge L Ruas
- Department of Physiology, Biomechanics and Nutrition, The Swedish School of Sport and Health Sciences and Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Eva Blomstrand
- Department of Physiology, Biomechanics and Nutrition, The Swedish School of Sport and Health Sciences and Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
9
|
Genetic predisposition to impaired metabolism of the branched chain amino acids, dietary intakes, and risk of type 2 diabetes. GENES AND NUTRITION 2021; 16:20. [PMID: 34727893 PMCID: PMC8561969 DOI: 10.1186/s12263-021-00695-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 08/25/2021] [Indexed: 12/29/2022]
Abstract
Background and objectives Circulating branched chain amino acids (BCAAs) increase the risk of type 2 diabetes (T2D). The genetic variants in the BCAA metabolic pathway influence the individual metabolic ability of BCAAs and may affect circulating BCAA levels together with dietary intakes. So, we investigated whether genetic predisposition to impaired BCAA metabolism interacts with dietary BCAA intakes on the risk of type 2 diabetes and related parameters. Methods We estimated dietary BCAA intakes among 434 incident T2D cases and 434 age-matched controls from The Harbin Cohort Study on Diet, Nutrition and Chronic Non-Communicable Diseases. The genetic risk score (GRS) was calculated on the basis of 5 variants having been identified in the BCAA metabolic pathway. Multivariate logistic regression models and general linear regression models were used to assess the interaction between dietary BCAAs and GRS on T2D risk and HbA1c. Results Dietary BCAAs significantly interact with metabolism related GRS on T2D risk and HbA1c (p for interaction = 0.038 and 0.015, respectively). A high intake of dietary BCAAs was positively associated with diabetes incidence only among high GRS (OR 2.40, 95% CI 1.39, 4.12, P for trend = 0.002). Dietary BCAAs were associated with 0.14% elevated HbA1c (p = 0.003) and this effect increased to 0.21% in high GRS (p = 0.003). Furthermore, GRS were associated with 9.19 μmol/L higher plasma BCAA levels (p = 0.006, P for interaction = 0.015) only among the highest BCAA intake individuals. Conclusions Our study suggests that genetic predisposition to BCAA metabolism disorder modifies the effect of dietary BCAA intakes on T2D risk as well as HbA1c and that higher BCAA intakes exert an unfavorable effect on type 2 diabetes risk and HbA1c only among those with high genetic susceptibility. Supplementary Information The online version contains supplementary material available at 10.1186/s12263-021-00695-3.
Collapse
|
10
|
Flockhart M, Nilsson LC, Tais S, Ekblom B, Apró W, Larsen FJ. Excessive exercise training causes mitochondrial functional impairment and decreases glucose tolerance in healthy volunteers. Cell Metab 2021; 33:957-970.e6. [PMID: 33740420 DOI: 10.1016/j.cmet.2021.02.017] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 11/18/2020] [Accepted: 02/22/2021] [Indexed: 12/19/2022]
Abstract
Exercise training positively affects metabolic health through increased mitochondrial oxidative capacity and improved glucose regulation and is the first line of treatment in several metabolic diseases. However, the upper limit of the amount of exercise associated with beneficial therapeutic effects has not been clearly identified. Here, we used a training model with a progressively increasing exercise load during an intervention over 4 weeks. We closely followed changes in glucose tolerance, mitochondrial function and dynamics, physical exercise capacity, and whole-body metabolism. Following the week with the highest exercise load, we found a striking reduction in intrinsic mitochondrial function that coincided with a disturbance in glucose tolerance and insulin secretion. We also assessed continuous blood glucose profiles in world-class endurance athletes and found that they had impaired glucose control compared with a matched control group.
Collapse
Affiliation(s)
- Mikael Flockhart
- The Swedish School of Sport and Health Sciences, GIH, Åstrand Laboratory, Department of Physiology, Nutrition and Biomechanics, Stockholm 114 33, Sweden.
| | - Lina C Nilsson
- The Swedish School of Sport and Health Sciences, GIH, Åstrand Laboratory, Department of Physiology, Nutrition and Biomechanics, Stockholm 114 33, Sweden
| | - Senna Tais
- The Swedish School of Sport and Health Sciences, GIH, Åstrand Laboratory, Department of Physiology, Nutrition and Biomechanics, Stockholm 114 33, Sweden
| | - Björn Ekblom
- The Swedish School of Sport and Health Sciences, GIH, Åstrand Laboratory, Department of Physiology, Nutrition and Biomechanics, Stockholm 114 33, Sweden
| | - William Apró
- The Swedish School of Sport and Health Sciences, GIH, Åstrand Laboratory, Department of Physiology, Nutrition and Biomechanics, Stockholm 114 33, Sweden; Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Filip J Larsen
- The Swedish School of Sport and Health Sciences, GIH, Åstrand Laboratory, Department of Physiology, Nutrition and Biomechanics, Stockholm 114 33, Sweden.
| |
Collapse
|
11
|
Moberg M, Apró W, Cervenka I, Ekblom B, van Hall G, Holmberg HC, Ruas JL, Blomstrand E. High-intensity leg cycling alters the molecular response to resistance exercise in the arm muscles. Sci Rep 2021; 11:6453. [PMID: 33742064 PMCID: PMC7979871 DOI: 10.1038/s41598-021-85733-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/02/2021] [Indexed: 11/09/2022] Open
Abstract
This study examined acute molecular responses to concurrent exercise involving different muscles. Eight men participated in a randomized crossover-trial with two sessions, one where they performed interval cycling followed by upper body resistance exercise (ER-Arm), and one with upper body resistance exercise only (R-Arm). Biopsies were taken from the triceps prior to and immediately, 90- and 180-min following exercise. Immediately after resistance exercise, the elevation in S6K1 activity was smaller and the 4E-BP1:eIF4E interaction greater in ER-Arm, but this acute attenuation disappeared during recovery. The protein synthetic rate in triceps was greater following exercise than at rest, with no difference between trials. The level of PGC-1α1 mRNA increased to greater extent in ER-Arm than R-Arm after 90 min of recovery, as was PGC-1α4 mRNA after both 90 and 180 min. Levels of MuRF-1 mRNA was unchanged in R-Arm, but elevated during recovery in ER-Arm, whereas MAFbx mRNA levels increased slightly in both trials. RNA sequencing in a subgroup of subjects revealed 862 differently expressed genes with ER-Arm versus R-Arm during recovery. These findings suggest that leg cycling prior to arm resistance exercise causes systemic changes that potentiate induction of specific genes in the triceps, without compromising the anabolic response.
Collapse
Affiliation(s)
- Marcus Moberg
- Department of Physiology, Nutrition and Biomechanics, Swedish School of Sport and Health Sciences, Stockholm, Sweden. .,The Swedish School of Sport and Health Sciences, Box 5626, 114 86, Stockholm, Sweden.
| | - William Apró
- Department of Physiology, Nutrition and Biomechanics, Swedish School of Sport and Health Sciences, Stockholm, Sweden.,Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Igor Cervenka
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Björn Ekblom
- Department of Physiology, Nutrition and Biomechanics, Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Gerrit van Hall
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Clinical Metabolomics Core Facility, Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark
| | | | - Jorge L Ruas
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Eva Blomstrand
- Department of Physiology, Nutrition and Biomechanics, Swedish School of Sport and Health Sciences, Stockholm, Sweden.,Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
12
|
Hokken R, Laugesen S, Aagaard P, Suetta C, Frandsen U, Ørtenblad N, Nielsen J. Subcellular localization- and fibre type-dependent utilization of muscle glycogen during heavy resistance exercise in elite power and Olympic weightlifters. Acta Physiol (Oxf) 2021; 231:e13561. [PMID: 32961628 DOI: 10.1111/apha.13561] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 09/13/2020] [Accepted: 09/14/2020] [Indexed: 12/16/2022]
Abstract
AIM Glycogen particles are found in different subcellular localizations, which are utilized heterogeneously in different fibre types during endurance exercise. Although resistance exercise typically involves only a moderate use of mixed muscle glycogen, the hypothesis of the present study was that high-volume heavy-load resistance exercise would mediate a pattern of substantial glycogen depletion in specific subcellular localizations and fibre types. METHODS 10 male elite weightlifters performed resistance exercise consisting of four sets of five (4 × 5) repetitions at 75% of 1RM back squats, 4 × 5 at 75% of 1RM deadlifts and 4 × 12 at 65% of 1RM rear foot elevated split squats. Muscle biopsies (vastus lateralis) were obtained before and after the exercise session. The volumetric content of intermyofibrillar (between myofibrils), intramyofibrillar (within myofibrils) and subsarcolemmal glycogen was assessed by transmission electron microscopy. RESULTS After exercise, biochemically determined muscle glycogen decreased by 38 (31:45)%. Location-specific glycogen analyses revealed in type 1 fibres a large decrement in intermyofibrillar glycogen, but no or only minor changes in intramyofibrillar or subsarcolemmal glycogen. In type 2 fibres, large decrements in glycogen were observed in all subcellular localizations. Notably, a substantial fraction of the type 2 fibres demonstrated near-depleted levels of intramyofibrillar glycogen after the exercise session. CONCLUSION Heavy resistance exercise mediates a substantial utilization of glycogen from all three subcellular localization in type 2 fibres, while mostly taxing intermyofibrillar glycogen stores in type 1 fibres. Thus, a better understanding of the impact of resistance training on myocellular metabolism and performance requires a focus on compartmentalized glycogen utilization.
Collapse
Affiliation(s)
- Rune Hokken
- Department of Sports Science and Clinical Biomechanics University of Southern Denmark Odense M Denmark
| | - Simon Laugesen
- Department of Sports Science and Clinical Biomechanics University of Southern Denmark Odense M Denmark
| | - Per Aagaard
- Department of Sports Science and Clinical Biomechanics University of Southern Denmark Odense M Denmark
| | - Charlotte Suetta
- Geriatric Research Unit Department of Geriatrics Bispebjerg‐Frederiksberg and Herlev‐Gentofte HospitalsUniversity of Copenhagen Kobenhavn Denmark
| | - Ulrik Frandsen
- Department of Sports Science and Clinical Biomechanics University of Southern Denmark Odense M Denmark
| | - Niels Ørtenblad
- Department of Sports Science and Clinical Biomechanics University of Southern Denmark Odense M Denmark
| | - Joachim Nielsen
- Department of Sports Science and Clinical Biomechanics University of Southern Denmark Odense M Denmark
| |
Collapse
|
13
|
Liegnell R, Apró W, Danielsson S, Ekblom B, van Hall G, Holmberg HC, Moberg M. Elevated plasma lactate levels via exogenous lactate infusion do not alter resistance exercise-induced signaling or protein synthesis in human skeletal muscle. Am J Physiol Endocrinol Metab 2020; 319:E792-E804. [PMID: 32830552 DOI: 10.1152/ajpendo.00291.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Lactate has been implicated as a potential signaling molecule. In myotubes, lactate incubation increases mechanistic target of rapamycin complex 1 (mTORC1)- and ERK-signaling and induces hypertrophy, indicating that lactate could be a mediator of muscle adaptations to resistance exercise. However, the potential signaling properties of lactate, at rest or with exercise, have not been explored in human tissue. In a crossover design study, 8 men and 8 women performed one-legged resistance exercise while receiving venous infusion of saline or sodium lactate. Blood was sampled repeatedly, and muscle biopsies were collected at rest and at 0, 90, and 180 min and 24 h after exercise. The primary outcomes examined were intracellular signaling, fractional protein synthesis rate (FSR), and blood/muscle levels of lactate and pH. Postexercise blood lactate concentrations were 130% higher in the Lactate trial (3.0 vs. 7.0 mmol/L, P < 0.001), whereas muscle levels were only marginally higher (27 vs. 32 mmol/kg dry wt, P = 0.003) compared with the Saline trial. Postexercise blood pH was higher in the Lactate trial (7.34 vs. 7.44, P < 0.001), with no differences in intramuscular pH. Exercise increased the phosphorylation of mTORS2448 (∼40%), S6K1T389 (∼3-fold), and p44T202/T204 (∼80%) during recovery, without any differences between trials. FSR over the 24-h recovery period did not differ between the Saline (0.067%/h) and Lactate (0.062%/h) trials. This study does not support the hypothesis that blood lactate levels can modulate anabolic signaling in contracted human muscle. Further in vivo research investigating the impact of exercised versus rested muscle and the role of intramuscular lactate is needed to elucidate its potential signaling properties.
Collapse
Affiliation(s)
- Rasmus Liegnell
- Department of Physiology, Nutrition and Biomechaniscs, Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - William Apró
- Department of Physiology, Nutrition and Biomechaniscs, Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Sebastian Danielsson
- Department of Physiology, Nutrition and Biomechaniscs, Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Björn Ekblom
- Department of Physiology, Nutrition and Biomechaniscs, Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Gerrit van Hall
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
- Clinical Metabolomics Core Facility, Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark
| | - Hans-Christer Holmberg
- Swedish Winter Sports Research Centre, Department of Health Sciences, Mid Sweden University, Östersund, Sweden
- Department of Physiology and Pharmacology, Biomedicum C5, Karolinska Institute, Stockholm, Sweden
| | - Marcus Moberg
- Department of Physiology, Nutrition and Biomechaniscs, Swedish School of Sport and Health Sciences, Stockholm, Sweden
| |
Collapse
|
14
|
Dahl MA, Areta JL, Jeppesen PB, Birk JB, Johansen EI, Ingemann-Hansen T, Hansen M, Skålhegg BS, Ivy JL, Wojtaszewski JFP, Overgaard K, Jensen J. Coingestion of protein and carbohydrate in the early recovery phase, compared with carbohydrate only, improves endurance performance despite similar glycogen degradation and AMPK phosphorylation. J Appl Physiol (1985) 2020; 129:297-310. [DOI: 10.1152/japplphysiol.00817.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Endurance athletes competing consecutive days need optimal dietary intake during the recovery period. We report that coingestion of protein and carbohydrate soon after exhaustive exercise, compared with carbohydrate only, resulted in better performance the following day. The better performance after coingestion of protein and carbohydrate was not associated with a higher rate of glycogen synthesis or activation of anabolic signaling compared with carbohydrate only. Importantly, nitrogen balance was positive after coingestion of protein and carbohydrate, which was not the case after intake of carbohydrate only, suggesting that protein synthesis contributes to the better performance the following day.
Collapse
Affiliation(s)
- Marius A. Dahl
- Department of Physical Performance, Norwegian School of Sports Sciences, Oslo, Norway
| | - José Lisandro Areta
- Department of Physical Performance, Norwegian School of Sports Sciences, Oslo, Norway
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | | | - Jesper Bratz Birk
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Egil I. Johansen
- Department of Physical Performance, Norwegian School of Sports Sciences, Oslo, Norway
| | | | - Mette Hansen
- Department of Public Health, Aarhus University, Aarhus C, Denmark
| | - Bjørn Steen Skålhegg
- Department of Nutrition, Division for Molecular Nutrition, University of Oslo, Oslo, Norway
| | - John L. Ivy
- Department of Kinesiology and Health Education, University of Texas at Austin, Austin, Texas
| | - Jørgen F. P. Wojtaszewski
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | | | - Jørgen Jensen
- Department of Physical Performance, Norwegian School of Sports Sciences, Oslo, Norway
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
15
|
Okekunle AP, Zhang M, Wang Z, Onwuka JU, Wu X, Feng R, Li C. Dietary branched-chain amino acids intake exhibited a different relationship with type 2 diabetes and obesity risk: a meta-analysis. Acta Diabetol 2019; 56:187-195. [PMID: 30413881 DOI: 10.1007/s00592-018-1243-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 10/09/2018] [Indexed: 12/13/2022]
Abstract
AIM To assess whether oral branched-chain amino acids (BCAA) supplementation exerts influence on circulating BCAA and the significance of dietary BCAA in type 2 diabetes and obesity risk. METHOD We searched PUBMED, EMBASE and Cochrane library through June 2018 to retrieve and screen published reports for inclusion in the meta-analysis after methodological assessment. Heterogeneity of studies was evaluated using I2 statistics, while sensitivity analysis and funnel plot were used to evaluate the potential effect of individual studies on the overall estimates and publication bias, respectively, using RevMan 5.3. RESULT Eight articles on randomized clinical trial of oral BCAA supplementation, and seven articles on dietary BCAA intake and type 2 diabetes/obesity risks were eligible for inclusion in our meta-analyses. Mean difference and 95% confidence interval (CI) of circulating leucine was 39.65 (3.54, 75.76) µmol/L, P = 0.03 post-BCAA supplementation. Also, OR and 95% CI for higher total BCAA intake and metabolic disorder risks were, 1.32 (1.14, 1.53), P = 0.0003-type 2 diabetes and 0.62 (0.47, 0.82), P = 0.0008-obesity. CONCLUSION Oral BCAA supplementation exerts modest influence on circulating leucine profile and higher total BCAA intake is positively and contra-positively associated with type 2 diabetes and obesity risk, respectively.
Collapse
Affiliation(s)
- Akinkunmi Paul Okekunle
- Department of General Surgery, Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, 150081, People's Republic of China
- Department of Nutrition and Food Hygiene, College of Public Health, Harbin Medical University, Harbin, Heilongjiang, 150081, People's Republic of China
| | - Meng Zhang
- Department of Nutrition and Food Hygiene, College of Public Health, Harbin Medical University, Harbin, Heilongjiang, 150081, People's Republic of China
| | - Zhen Wang
- Mudanjiang City Health Supervision, Mudanjiang, Heilongjiang, People's Republic of China
| | - Justina Ucheojor Onwuka
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin, Heilongjiang, 150081, People's Republic of China
| | - Xiaoyan Wu
- Department of Nutrition and Food Hygiene, College of Public Health, Harbin Medical University, Harbin, Heilongjiang, 150081, People's Republic of China
| | - Rennan Feng
- Department of Nutrition and Food Hygiene, College of Public Health, Harbin Medical University, Harbin, Heilongjiang, 150081, People's Republic of China.
| | - Chunlong Li
- Department of General Surgery, Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, 150081, People's Republic of China.
| |
Collapse
|
16
|
Sollie O, Jeppesen PB, Tangen DS, Jernerén F, Nellemann B, Valsdottir D, Madsen K, Turner C, Refsum H, Skålhegg BS, Ivy JL, Jensen J. Protein intake in the early recovery period after exhaustive exercise improves performance the following day. J Appl Physiol (1985) 2018; 125:1731-1742. [DOI: 10.1152/japplphysiol.01132.2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The aim of the present study was to investigate the effect of protein and carbohydrate ingestion during early recovery from exhaustive exercise on performance after 18-h recovery. Eight elite cyclists (V̇o2max: 74.0 ± 1.6 ml·kg−1·min−1) completed two exercise and diet interventions in a double-blinded, randomized, crossover design. Participants cycled first at 73% of V̇o2max (W73%) followed by 1-min intervals at 90% of V̇o2max until exhaustion. During the first 2 h of recovery, participants ingested either 1.2 g carbohydrate·kg−1·h−1 (CHO) or 0.8 g carbohydrate + 0.4 g protein·kg−1·h−1 (CHO + PROT). The diet during the remaining recovery period was similar for both interventions and adjusted to body weight. After an 18-h recovery, cycling performance was assessed with a 10-s sprint test, 30 min of cycling at W73%, and a cycling time trial (TT). The TT was 8.5% faster (41:53 ± 1:51 vs. 45:26 ± 1:32 min; P < 0.03) after CHO + PROT compared with CHO. Mean power output during the sprints was 3.7% higher in CHO + PROT compared with CHO (1,063 ± 54 vs. 1,026 ± 53 W; P = 0.01). Nitrogen balance in the recovery period was negative in CHO and neutral in CHO + PROT (−82.4 ± 11.5 vs. 7.0 ± 15.4 mg/kg; P < 0.01). In conclusion, TT and sprint performances were improved 18 h after exhaustive cycling by CHO + PROT supplementation during the first 2 h of recovery compared with isoenergetic CHO supplementation. Our results indicate that intake of carbohydrate plus protein after exhaustive endurance exercise more rapidly converts the body from a catabolic to an anabolic state than carbohydrate alone, thus speeding recovery and improving subsequent cycling performance. NEW & NOTEWORTHY Prolonged high intensity endurance exercise depends on glycogen utilization and high oxidative capacity. Still, exhaustion develops and effective recovery strategies are required to compete in multiday stage races. We show that coingestion of protein and carbohydrate during the first 2 h of recovery is superior to isoenergetic intake of carbohydrate to stimulate recovery, and improves both endurance time-trial and 10-s sprint performance the following day in elite cyclists.
Collapse
Affiliation(s)
- Ove Sollie
- Department of Physical Performance, Norwegian School of Sports Sciences, Oslo, Norway
| | - Per B. Jeppesen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Daniel S. Tangen
- Department of Physical Performance, Norwegian School of Sports Sciences, Oslo, Norway
| | - Fredrik Jernerén
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Birgitte Nellemann
- Department of Physical Performance, Norwegian School of Sports Sciences, Oslo, Norway
| | - Ditta Valsdottir
- Department of Physical Performance, Norwegian School of Sports Sciences, Oslo, Norway
- Department of Medical Sciences, Atlantis Medical University College, Oslo, Norway
| | - Klavs Madsen
- Department of Physical Performance, Norwegian School of Sports Sciences, Oslo, Norway
- Department of Public Health–Sport Science, Aarhus University, Aarhus, Norway
| | - Cheryl Turner
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Helga Refsum
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
- Department of Nutrition, Section for Molecular Nutrition, University of Oslo, Oslo, Norway
| | - Bjørn S. Skålhegg
- Department of Nutrition, Section for Molecular Nutrition, University of Oslo, Oslo, Norway
| | - John L. Ivy
- Department of Kinesiology and Health Education, University of Texas at Austin, Austin, Texas
| | - Jørgen Jensen
- Department of Physical Performance, Norwegian School of Sports Sciences, Oslo, Norway
| |
Collapse
|
17
|
Bamman MM, Roberts BM, Adams GR. Molecular Regulation of Exercise-Induced Muscle Fiber Hypertrophy. Cold Spring Harb Perspect Med 2018; 8:cshperspect.a029751. [PMID: 28490543 DOI: 10.1101/cshperspect.a029751] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Skeletal muscle hypertrophy is a widely sought exercise adaptation to counteract the muscle atrophy of aging and disease, or to improve athletic performance. While this desired muscle enlargement is a well-known adaptation to resistance exercise training (RT), the mechanistic underpinnings are not fully understood. The purpose of this review is thus to provide the reader with a summary of recent advances in molecular mechanisms-based on the most current literature-that are thought to promote RT-induced muscle hypertrophy. We have therefore focused this discussion on the following areas of fertile investigation: ribosomal function and biogenesis, muscle stem (satellite) cell activity, transcriptional regulation, mechanotransduction, and myokine signaling.
Collapse
Affiliation(s)
- Marcas M Bamman
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294.,UAB Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35205.,Geriatric Research, Education, and Clinical Center, Veterans' Affairs Medical Center, Birmingham, Alabama 35233
| | - Brandon M Roberts
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294.,UAB Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35205
| | - Gregory R Adams
- Department of Physiology and Biophysics, University of California Irvine, Irvine, California 92617
| |
Collapse
|
18
|
Knuiman P, Hopman MTE, Wouters JA, Mensink M. Select Skeletal Muscle mRNAs Related to Exercise Adaptation Are Minimally Affected by Different Pre-exercise Meals that Differ in Macronutrient Profile. Front Physiol 2018; 9:28. [PMID: 29434550 PMCID: PMC5791349 DOI: 10.3389/fphys.2018.00028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 01/09/2018] [Indexed: 11/13/2022] Open
Abstract
Background: Substantial research has been done on the impact of carbohydrate and fat availability on endurance exercise adaptation, though its role in the acute adaptive response to resistance exercise has yet to be fully characterized. Purpose: We aimed to assess the effects of a pre-resistance exercise isocaloric mixed meal containing different amounts of carbohydrates and fat, on post-resistance exercise gene expression associated with muscle adaptation. Methods: Thirteen young (age 21.2 ± 1.6 year), recreationally trained (VO2max 51.3 ± 4.8 ml/kg/min) men undertook an aerobic exercise session of 90-min continuous cycling (70% VO2max) in the morning with pre- and post-exercise protein ingestion (10 and 15 g casein in a 500 ml beverage pre- and post-exercise, respectively). Subjects then rested for 2 h and were provided with a meal consisting of either 3207 kJ; 52 g protein; 51 g fat; and 23 g carbohydrate (FAT) or 3124 kJ; 53 g protein; 9 g fat; and 109 g carbohydrate (CHO). Two hours after the meal, subjects completed 5 × 8 repetitions (80% 1-RM) for both bilateral leg press and leg extension directly followed by 25 g of whey protein (500 ml beverage). Muscle biopsies were obtained from the vastus lateralis at baseline (morning) and 1 and 3 h post-resistance exercise (afternoon) to determine intramuscular mRNA response. Results: Muscle glycogen levels were significantly decreased post-resistance exercise, without any differences between conditions. Plasma free fatty acids increased significantly after the mixed meal in the FAT condition, while glucose and insulin were higher in the CHO condition. However, PDK4 mRNA quantity was significantly higher in the FAT condition at 3 h post-resistance exercise compared to CHO. HBEGF, INSIG1, MAFbx, MURF1, SIRT1, and myostatin responded solely as a result of exercise without any differences between the CHO and FAT group. FOXO3A, IGF-1, PGC-1α, and VCP expression levels remained unchanged over the course of the day. Conclusion: We conclude that mRNA quantity associated with muscle adaptation after resistance exercise is not affected by a difference in pre-exercise nutrient availability. PDK4 was differentially expressed between CHO and FAT groups, suggesting a potential shift toward fat oxidation and reduced glucose oxidation in the FAT group.
Collapse
Affiliation(s)
- Pim Knuiman
- Division of Human Nutrition, Wageningen University and Research, Wageningen, Netherlands
| | - Maria T E Hopman
- Division of Human Nutrition, Wageningen University and Research, Wageningen, Netherlands.,Department of Physiology, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Jeroen A Wouters
- Centre for Sporting Excellence and Education, Sportcentre Papendal, Arnhem, Netherlands
| | - Marco Mensink
- Division of Human Nutrition, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|