Proteomics profiles of blood glucose-related proteins involved in a Chinese longevity cohort.
Clin Proteomics 2022;
19:45. [PMID:
36463101 PMCID:
PMC9719669 DOI:
10.1186/s12014-022-09382-w]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 11/23/2022] [Indexed: 12/07/2022] Open
Abstract
BACKGROUND
High blood glucose level is one of the main characteristics of diabetes mellitus. Based on previous studies, it is speculated longevity families may have certain advantages in blood glucose regulation. However, limited information on these items has been reported. The purpose of this study was to profile differences of plasma proteomics between longevity subjects (with normal fructosamine (FUN) level) and non-longevity area participants (with exceeding standard FUN level).
METHODS
In this study, a TMT-based proteomics analysis was used to profile differences of plasma proteomics between longevity subjects (with normal FUN level) and non-longevity area participants (with exceeding standard FUN level). Results were validated by Luminex detection.
RESULTS
A total of 155 differentially expressed proteins (DEPs) were identified between these two groups. The DEPs related to blood glucose regulation were mainly involved in glycolysis/gluconeogenesis, pyruvate metabolism and propanoate metabolism, and most of the DEPs were contained in carbohydrate metabolism, PI3K-Akt pathway, glucagon signaling pathway and inflammatory response. Validation by Luminex detection confirmed that CD163 was down-regulated, and SPARC, PARK 7 and IGFBP-1 were up-regulated in longevity participants.
CONCLUSIONS
This study not only highlighted carbohydrate metabolism, PI3K-Akt pathway, glucagon signaling pathway and inflammatory response may play important roles in blood glucose regulation, but also indicated that YWHAZ, YWHAB, YWHAG, YWHAE, CALM3, CRP, SAA2, PARK 7, IGFBP1 and VNN1 may serve as potential biomarkers for predicting abnormal blood glucose levels.
Collapse