1
|
Liang M, Huo M, Guo Y, Zhang Y, Xiao X, Xv J, Fang L, Li T, Wang H, Dong S, Jiang X, Yu W. Aqueous extract of Artemisia capillaris improves non-alcoholic fatty liver and obesity in mice induced by high-fat diet. Front Pharmacol 2022; 13:1084435. [PMID: 36518663 PMCID: PMC9742474 DOI: 10.3389/fphar.2022.1084435] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 11/15/2022] [Indexed: 01/21/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the most common chronic liver diseases and is a nutritional metabolic disease. Artemisia capillaris (AC) is the above-ground dried part of Artemisia capillaris Thunb. or Artemisia scoparia Waldst. et Kit., a natural medicinal plant with pharmacological effects of heat-clearing and biliary-promoting. In order to evaluate the therapeutic effect of Artemisia capillaris on NAFLD and obesity, experiments were conducted using aqueous extracts of Artemisia capillaris (WAC) to intervene in NAFLD models in vivo and in vitro. In vivo experiments were performed using HFD-fed (high fat diet) C57BL/6 mice to induce NAFLD model, and in vitro experiments were performed using oleic acid to induce HepG2 cells to construct NAFLD cell model. H.E. staining and oil red O staining of liver tissue were used to observe hepatocytes. Blood biochemistry analyzer was used to detect serum lipid levels in mice. The drug targets and mechanism of action of AC to improve NAFLD were investigated by western blotting, qRT-PCR and immunofluorescence. The results showed that C57BL/6 mice fed HFD continuously for 16 weeks met the criteria for NAFLD in terms of lipid index and hepatocyte fat accumulation. WAC was able to reverse the elevation of serum lipid levels induced by high-fat diet in mice. WAC promoted the phosphorylation levels of PI3K/AKT and AMPK in liver and HepG2 cells of NAFLD mice, inhibited SREBP-1c expression, reduced TG and lipogenesis, and decreased lipid accumulation. In summary, WAC extract activates PI3K/AKT pathway, reduces SREBP-1c protein expression by promoting AMPK phosphorylation, and decreases fatty acid synthesis and TG content in hepatocytes. AC can be used as a potential health herb to improve NAFLD and obesity.
Collapse
Affiliation(s)
- Meng Liang
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Mohan Huo
- Department of Life Sciences, Northeast Agricultural University, Harbin, China
| | - Yi Guo
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yuyi Zhang
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xiao Xiao
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Jianwen Xv
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Lixue Fang
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Tianqi Li
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Huan Wang
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Siyu Dong
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xiaowen Jiang
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Wenhui Yu
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Institute of Chinese Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Provincial Key Laboratory for Prevention and Control of Common Animal Diseases, Northeast Agricultural University, Harbin, China
| |
Collapse
|
2
|
Ghosh B, Guidry HJ, Johnston M, Bohnert KA. A Fat-Promoting Botanical Extract From Artemisia scoparia Exerts Geroprotective Effects on Caenorhabditis elegans Life Span and Stress Resistance. J Gerontol A Biol Sci Med Sci 2022; 77:1112-1120. [PMID: 35167659 PMCID: PMC9159661 DOI: 10.1093/gerona/glac040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Indexed: 11/13/2022] Open
Abstract
Like other biological processes, aging is not random but subject to molecular control. Natural products that modify core metabolic parameters, including fat content, may provide entry points to extend animal life span and promote healthy aging. Here, we show that a botanical extract from Artemisia scoparia (SCO), which promotes fat storage and metabolic resiliency in mice, extends the life span of the nematode Caenorhabditis elegans by up to 40%. Notably, this life-span extension depends significantly on SCO's effects on fat; SCO-treated worms exhibit heightened levels of unsaturated fat, and inhibition of Δ9 desaturases, which oversee biosynthesis of monounsaturated fatty acids, prevents SCO-dependent fat accumulation and life-span extension. At an upstream signaling level, SCO prompts changes to C. elegans fat regulation by stimulating nuclear translocation of transcription factor DAF-16/FOXO, an event that requires AMP-activated protein kinase under this condition. Importantly, animals treated with SCO are not only long-lived but also show improved stress resistance in late adulthood, suggesting that this fat-promoting intervention may enhance some aspects of physiological health in older age. These findings identify SCO as a natural product that can modify fat regulation for longevity benefit and add to growing evidence indicating that elevated fat can be prolongevity in some circumstances.
Collapse
Affiliation(s)
- Bhaswati Ghosh
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Hayden J Guidry
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Maxwell Johnston
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - K Adam Bohnert
- Address correspondence to: K. Adam Bohnert, PhD, Department of Biological Sciences, Louisiana State University, Room 220, Life Sciences Building, Baton Rouge, LA 70803, USA. E-mail:
| |
Collapse
|
3
|
Richard AJ, Hang H, Allerton TD, Zhao P, Mendoza T, Ghosh S, Elks CM, Stephens JM. Loss of Adipocyte STAT5 Confers Increased Depot-Specific Adiposity in Male and Female Mice That Is Not Associated With Altered Adipose Tissue Lipolysis. Front Endocrinol (Lausanne) 2022; 13:812802. [PMID: 35464049 PMCID: PMC9022209 DOI: 10.3389/fendo.2022.812802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/24/2022] [Indexed: 01/05/2023] Open
Abstract
STATs (Signal Transducers and Activators of Transcription) 5A and 5B are induced during adipocyte differentiation and are primarily activated by growth hormone (GH) and prolactin in fat cells. Previous studies in mice lacking adipocyte GH receptor or STAT5 support their roles in lipolysis-mediated reduction of adipose tissue mass. Male and female mice harboring adipocyte-specific deletion of both STAT5 genes (STAT5AKO) exhibit increased subcutaneous or inguinal adipose tissue mass, but no changes in visceral or gonadal fat mass. Both depots display substantial increases in adipocyte size with no changes in lipolysis in adipose tissue explants. RNA sequencing analysis of subcutaneous adipose tissue and indirect calorimetry experiments reveal sex-dependent differences in adipose gene expression and whole-body energy expenditure, respectively, resulting from the loss of adipocyte STAT5.
Collapse
Affiliation(s)
- Allison J. Richard
- Adipocyte Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Hardy Hang
- Adipocyte Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Timothy D. Allerton
- Adipocyte Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Peng Zhao
- Adipocyte Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Tamra Mendoza
- Adipocyte Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Sujoy Ghosh
- Cardiovascular and Metabolic Disease Program and Center for Computational Biology, Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Carrie M. Elks
- Adipocyte Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Jacqueline M. Stephens
- Adipocyte Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, United States
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States
- *Correspondence: Jacqueline M. Stephens,
| |
Collapse
|
4
|
Harvey I, Stephens JM. Artemisia scoparia promotes adipogenesis in the absence of adipogenic effectors. Obesity (Silver Spring) 2021; 29:1309-1319. [PMID: 34227239 PMCID: PMC8883808 DOI: 10.1002/oby.23199] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/09/2021] [Accepted: 04/13/2021] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Extracts of Artemisia scoparia (SCO) have antidiabetic properties in mice and enhance adipogenesis in vitro, but the underlying mechanisms are unknown. Thiazolidinediones, including rosiglitazone (ROSI), are pharmacological activators of peroxisome proliferator-activated receptor gamma that also promote adipogenesis. The aim of this study was to examine adipogenic pathways responsible for SCO-mediated adipogenesis and identify potential differences between SCO and ROSI in the ability to promote adipocyte development. METHODS The ability of SCO or ROSI to promote adipogenesis in 3T3-L1 cells following systematic omission of the common triad of adipogenic effectors dexamethasone, 1-methyl-3-isobutylxanthine (MIX), and insulin was examined. Adipogenesis was assessed by both neutral lipid quantitation and adipocyte marker gene expression. RESULTS The results demonstrate that SCO and ROSI promote adipogenesis and increase the expression of several peroxisome proliferator-activated receptor gamma target genes involved in lipid accumulation in the absence of MIX. However, ROSI can enhance adipogenesis in the absence of MIX and insulin and differentially regulates adipogenic and lipid metabolism genes as compared with SCO. CONCLUSIONS These data demonstrate the adipogenic capabilities of SCO are similar but not identical to ROSI, thereby warranting further research into SCO as a promising source of therapeutic compounds in the treatment of metabolic disease states.
Collapse
Affiliation(s)
| | - Jacqueline M. Stephens
- Pennington Biomedical Research Center, Baton Rouge, LA 70808
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803
- To whom correspondence should be addressed Jacqueline Stephens, Louisiana State University, Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA 70808, Phone (225) 763-2648, FAX (225) 578-2597,
| |
Collapse
|
5
|
Ding J, Wang L, He C, Zhao J, Si L, Huang H. Artemisia scoparia: Traditional uses, active constituents and pharmacological effects. JOURNAL OF ETHNOPHARMACOLOGY 2021; 273:113960. [PMID: 33636317 DOI: 10.1016/j.jep.2021.113960] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 02/09/2021] [Accepted: 02/18/2021] [Indexed: 05/21/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Artemisia scoparia Waldst.et Kit (A. scoparia), is an important medicinal plant mainly distributed in China, Korea, Japan, Pakistan, India, Central Europe, Saudi Arabia and Iran. It has been used for a long history to treat fever, inflammation, jaundice, and infection, but systematic reviews about the medicinal uses of A. scoparia are still lacking. AIM OF THE STUDY This review is to provide up-to-date information on A. scoparia, including its botanical characteristics, medicinal resources, traditional uses, phytochemistry and pharmacological effects, in exploring therapeutic and scientific potentials. MATERIALS AND METHODS The information related to this article was systematically collected from the scientific literature databases including PubMed, Google Scholar, Web of Science, Science Direct, Springer, China National Knowledge Infrastructure, local books, PhD and MS dissertations, and other web sources. RESULTS Herein a total of 102 compounds, such as flavonoids, coumarins, chromones, steroids, volatile oil and phenolic acid isolated from A. scoparia are summarized. Among these compounds, the effects of flavonoids, coumarins and phenolic acids were extensively studied. We have comprehensively summarized modern pharmacological studies on A. scoparia and demonstrated A. scoparia and its active components have a wide range of pharmaceutical activities, such as anticancer, anti-inflammatory, antibacterial, liver protection, antiatherogenic, antiviral as well as neuroprotective functions. CONCLUSIONS As an important Chinese medicinal plant, modern pharmacological studies have demonstrated that A. scoparia has diverse bioactivities, especially on liver protection and anti-inflammatory activities. These prominent bioactivities highlight prospects on new drug development. Nevertheless, the comprehensive evaluation, long-term in vivo toxicity, and clinical efficacy of A. scoparia require further in-depth research.
Collapse
Affiliation(s)
- Jiwei Ding
- Xinjiang Institute of Materia Medica, Urumqi, 830004, Xinjiang Province, China; Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Linlin Wang
- Xinjiang Institute of Materia Medica, Urumqi, 830004, Xinjiang Province, China
| | - Chunnian He
- Xinjiang Institute of Materia Medica, Urumqi, 830004, Xinjiang Province, China; Institute of Medicinal Plant, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Jun Zhao
- Xinjiang Institute of Materia Medica, Urumqi, 830004, Xinjiang Province, China
| | - Lijun Si
- Xinjiang Institute of Materia Medica, Urumqi, 830004, Xinjiang Province, China
| | - Hua Huang
- Xinjiang Institute of Materia Medica, Urumqi, 830004, Xinjiang Province, China.
| |
Collapse
|
6
|
Ribnicky D, Kim SB, Poulev A, Wang Y, Boudreau A, Raskin I, Bisson J, Ray GJ, Chen SN, Richard A, Stephens JM, Pauli GF. Prenylated Coumaric Acids from Artemisia scoparia Beneficially Modulate Adipogenesis. JOURNAL OF NATURAL PRODUCTS 2021; 84:1078-1086. [PMID: 33830759 PMCID: PMC8132292 DOI: 10.1021/acs.jnatprod.0c01149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Two new diprenylated coumaric acid isomers (1a and 1b) and two known congeners, capillartemisin A (2) and B (3), were isolated from Artemisia scoparia as bioactive markers using bioactivity-guided HPLC fractionation. Their structures were determined by spectroscopic means, including 1D and 2D NMR methods and LC-MS, with their purity assessed by 1D 1H pure shift qNMR spectroscopic analysis. The bioactivity of compounds was evaluated by enhanced accumulation of lipids, as measured using Oil Red O staining, and by increased expression of several adipocyte marker genes, including adiponectin in 3T3-L1 adipocytes relative to untreated negative controls. Compared to the plant's 80% EtOH extract, these purified compounds showed significant but still weaker inhibition of TNFα-induced lipolysis in 3T3-L1 adipocytes. This suggests that additional bioactive substances are responsible for the multiple metabolically favorable effects on adipocytes observed with Artemisia scoparia extract.
Collapse
Affiliation(s)
- David Ribnicky
- Corresponding Authors Tel: +1 312 355 1949 Fax: +1 312 413 5894 (David Ribnicky): (Guido Pauli):
| | - Seon Beom Kim
- Corresponding Authors Tel: +1 312 355 1949 Fax: +1 312 413 5894 (David Ribnicky): (Guido Pauli):
| | - Alexander Poulev
- Department of Plant Biology, Rutgers University, New Brunswick, New Jersey 08901, United States
| | - Yang Wang
- Department of Plant Biology, Rutgers University, New Brunswick, New Jersey 08901, United States
| | - Anik Boudreau
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana 70808, United States
| | - Ilya Raskin
- Department of Plant Biology, Rutgers University, New Brunswick, New Jersey 08901, United States
| | - Jonathan Bisson
- Center for Natural Product Technologies, Pharmacognosy Institute, and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Illinois 60612, United States
| | - G. Joseph Ray
- Pharmacognosy Institute and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Illinois 60612, United States
| | - Shao-Nong Chen
- Center for Natural Product Technologies, Pharmacognosy Institute, and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Illinois 60612, United States
| | - Allison Richard
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana 70808, United States
| | - Jacqueline M. Stephens
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana 70808, United States
| | - Guido F. Pauli
- Corresponding Authors Tel: +1 312 355 1949 Fax: +1 312 413 5894 (David Ribnicky): (Guido Pauli):
| |
Collapse
|
7
|
Boudreau A, Richard AJ, Harvey I, Stephens JM. Artemisia scoparia and Metabolic Health: Untapped Potential of an Ancient Remedy for Modern Use. Front Endocrinol (Lausanne) 2021; 12:727061. [PMID: 35211087 PMCID: PMC8861327 DOI: 10.3389/fendo.2021.727061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 12/16/2021] [Indexed: 11/19/2022] Open
Abstract
Botanicals have a long history of medicinal use for a multitude of ailments, and many modern pharmaceuticals were originally isolated from plants or derived from phytochemicals. Among these, artemisinin, first isolated from Artemisia annua, is the foundation for standard anti-malarial therapies. Plants of the genus Artemisia are among the most common herbal remedies across Asia and Central Europe. The species Artemisia scoparia (SCOPA) is widely used in traditional folk medicine for various liver diseases and inflammatory conditions, as well as for infections, fever, pain, cancer, and diabetes. Modern in vivo and in vitro studies have now investigated SCOPA's effects on these pathologies and its ability to mitigate hepatotoxicity, oxidative stress, obesity, diabetes, and other disease states. This review focuses on the effects of SCOPA that are particularly relevant to metabolic health. Indeed, in recent years, an ethanolic extract of SCOPA has been shown to enhance differentiation of cultured adipocytes and to share some properties of thiazolidinediones (TZDs), a class of insulin-sensitizing agonists of the adipogenic transcription factor PPARγ. In a mouse model of diet-induced obesity, SCOPA diet supplementation lowered fasting insulin and glucose levels, while inducing metabolically favorable changes in adipose tissue and liver. These observations are consistent with many lines of evidence from various tissues and cell types known to contribute to metabolic homeostasis, including immune cells, hepatocytes, and pancreatic beta-cells. Compounds belonging to several classes of phytochemicals have been implicated in these effects, and we provide an overview of these bioactives. The ongoing global epidemics of obesity and metabolic disease clearly require novel therapeutic approaches. While the mechanisms involved in SCOPA's effects on metabolic, anti-inflammatory, and oxidative stress pathways are not fully characterized, current data support further investigation of this plant and its bioactives as potential therapeutic agents in obesity-related metabolic dysfunction and many other conditions.
Collapse
Affiliation(s)
- Anik Boudreau
- Adipocyte Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Allison J. Richard
- Adipocyte Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Innocence Harvey
- Adipocyte Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Jacqueline M. Stephens
- Adipocyte Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, United States
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States
- *Correspondence: Jacqueline M. Stephens,
| |
Collapse
|
8
|
Salazar-Gómez A, Ontiveros-Rodríguez JC, Pablo-Pérez SS, Vargas-Díaz ME, Garduño-Siciliano L. The potential role of sesquiterpene lactones isolated from medicinal plants in the treatment of the metabolic syndrome - A review. SOUTH AFRICAN JOURNAL OF BOTANY : OFFICIAL JOURNAL OF THE SOUTH AFRICAN ASSOCIATION OF BOTANISTS = SUID-AFRIKAANSE TYDSKRIF VIR PLANTKUNDE : AMPTELIKE TYDSKRIF VAN DIE SUID-AFRIKAANSE GENOOTSKAP VAN PLANTKUNDIGES 2020; 135:240-251. [PMID: 32963416 PMCID: PMC7493762 DOI: 10.1016/j.sajb.2020.08.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 07/01/2020] [Accepted: 08/20/2020] [Indexed: 05/15/2023]
Abstract
Metabolic syndrome comprises a cluster of metabolic disorders related to the development of cardiovascular disease and type 2 diabetes mellitus. In latter years, plant secondary metabolites have become of special interest because of their potential role in preventing and managing metabolic syndrome. Sesquiterpene lactones constitute a large and diverse group of biologically active compounds widely distributed in several medicinal plants used for the treatment of metabolic disorders. The structural diversity and the broad spectrum of biological activities of these compounds drew significant interests in the pharmacological applications. This review describes selected sesquiterpene lactones that have been experimentally validated for their biological activities related to risk factors of metabolic syndrome, together with their mechanisms of action. The potential beneficial effects of sesquiterpene lactones discussed in this review demonstrate that these substances represent remarkable compounds with a diversity of molecular structure and high biological activity, providing new insights into the possible role in metabolic syndrome management.
Collapse
Key Words
- ACE, angiotensin I-converting enzyme
- AMPK, activated protein kinase
- APOC3, apolipoprotein C3
- AT, adipose tissue
- Antidiabetic
- CAT, catalase
- COX-2, cyclooxygenase 2
- CVD, cardiovascular disease
- FFA, free fatty acids
- FN, fibronectin
- G6Pase, glucose-6-phosphatase
- GK, glucokinase
- GPx, glutathione peroxidase
- GSH, reduced glutathione
- HDL-C, high-density lipoproteins-cholesterol
- Hypoglycemic
- Hypolipidemic
- IFN-γ, interferon gamma
- IL-1β, interleukin 1 beta
- IL-6, interleukin 6
- IR, insulin resistance
- JNK, c-Jun N-terminal kinases
- LDL-C, low-density lipoprotein-cholesterol
- LPS, lipopolysaccharide
- MAPK, mitogen-activated protein kinases
- MCP-1, monocyte chemoattractant protein 1
- Medicinal plants
- MetS, metabolic syndrome
- Metabolic syndrome
- NF-κB, nuclear factor kappa B
- NO, nitric oxide
- ROS, reactive oxygen species
- SLns, sesquiterpene lactones
- SOD, superoxide dismutase
- STAT1, signal transducer and activator of transcription 1
- STZ, streptozotocin
- Sesquiterpene lactones
- T2DM, type 2 diabetes mellitus
- TBARS, thiobarbituric acid reactive substances
- TC, total cholesterol
- TG, triglycerides
- TGF-β1, transforming growth factor beta
- TLRs, Toll-like receptor
- TNF-α, tumor necrosis factor alpha
- VLDL, very-low-density lipoprotein
- iNOS, inducible nitric oxide synthase
Collapse
Affiliation(s)
- Anuar Salazar-Gómez
- Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu y M. Stampa, Col. Planetario Lindavista, 77380 Ciudad de México, Mexico
| | - Julio C Ontiveros-Rodríguez
- CONACYT - Universidad Michoacana de San Nicolás de Hidalgo, Edificio B-1, Ciudad Universitaria, 58030 Morelia, Michoacán, Mexico
| | - Saudy S Pablo-Pérez
- Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu y M. Stampa, Col. Planetario Lindavista, 77380 Ciudad de México, Mexico
| | - M Elena Vargas-Díaz
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala, 11340 Ciudad de México, Mexico
| | - Leticia Garduño-Siciliano
- Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu y M. Stampa, Col. Planetario Lindavista, 77380 Ciudad de México, Mexico
| |
Collapse
|
9
|
Boudreau A, Burke S, Collier J, Richard AJ, Ribnicky DM, Stephens JM. Mechanisms of Artemisia scoparia's Anti-Inflammatory Activity in Cultured Adipocytes, Macrophages, and Pancreatic β-Cells. Obesity (Silver Spring) 2020; 28:1726-1735. [PMID: 32741148 PMCID: PMC7483878 DOI: 10.1002/oby.22912] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/22/2020] [Accepted: 05/11/2020] [Indexed: 12/19/2022]
Abstract
OBJECTIVE An ethanolic extract of Artemisia scoparia (SCO) improves adipose tissue function and reduces negative metabolic consequences of high-fat feeding. A. scoparia has a long history of medicinal use across Asia and has anti-inflammatory effects in various cell types and disease models. The objective of the current study was to investigate SCO's effects on inflammation in cells relevant to metabolic health. METHODS Inflammatory responses were assayed in cultured adipocytes, macrophages, and insulinoma cells by quantitative polymerase chain reaction, immunoblotting, and NF-κB reporter assays. RESULTS In tumor necrosis factor α-treated adipocytes, SCO mitigated ERK and NF-κB signaling as well as transcriptional responses but had no effect on fatty acid-binding protein 4 secretion. SCO also reduced levels of deleted in breast cancer 1 protein in adipocytes and inhibited inflammatory gene expression in stimulated macrophages. Finally, in pancreatic β-cells, SCO decreased NF-κB-responsive promoter activity induced by IL-1β treatment. CONCLUSIONS SCO's ability to promote adipocyte development and function is thought to mediate its insulin-sensitizing actions in vivo. Our findings that SCO inhibits inflammatory responses through at least two distinct signaling pathways (ERK and NF-κB) in three cell types known to contribute to metabolic disease reveal that SCO may act more broadly than previously thought to improve metabolic health.
Collapse
Affiliation(s)
- Anik Boudreau
- Pennington Biomedical Research Center, Baton Rouge, LA 70808
| | - Susan Burke
- Pennington Biomedical Research Center, Baton Rouge, LA 70808
| | - Jason Collier
- Pennington Biomedical Research Center, Baton Rouge, LA 70808
| | | | - David M. Ribnicky
- Department of Plant Biology and Pathology, Rutgers University, New Brunswick, NJ
| | - Jacqueline M. Stephens
- Pennington Biomedical Research Center, Baton Rouge, LA 70808
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803
- To whom correspondence should be addressed: Jacqueline Stephens, Louisiana State University, Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA 70808, Phone (225) 763-2648, FAX (225) 578-2597,
| |
Collapse
|
10
|
Li J, Jiang M, Chen H, Yu J, Liu C. Intraspecific variations among the chloroplast genomes of Artemisia scoparia (asteraceae) from Pakistan and China. Mitochondrial DNA B Resour 2020. [DOI: 10.1080/23802359.2020.1810167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Affiliation(s)
- Jingling Li
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Mei Jiang
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine from Ministry of Education, Engineering Research Center of Chinese Medicine Resources from Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Haimei Chen
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine from Ministry of Education, Engineering Research Center of Chinese Medicine Resources from Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Jie Yu
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Chang Liu
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine from Ministry of Education, Engineering Research Center of Chinese Medicine Resources from Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| |
Collapse
|
11
|
Chloroplast Genome Sequence of Artemisia scoparia: Comparative Analyses and Screening of Mutational Hotspots. PLANTS 2019; 8:plants8110476. [PMID: 31698805 PMCID: PMC6918244 DOI: 10.3390/plants8110476] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/14/2019] [Accepted: 10/29/2019] [Indexed: 02/07/2023]
Abstract
Artemisia L. is among the most diverse and medicinally important genera of the plant family Asteraceae. Discrepancies arise in the taxonomic classification of Artemisia due to the occurrence of multiple polyploidy events in separate lineages and its complex morphology. The discrepancies could be resolved by increasing the genomic resources. A. scoparia is one of the most medicinally important species in Artemisia. In this paper, we report the complete chloroplast genome sequence of Artemisia scoparia. The genome was 151,060 bp (base pairs), comprising a large single copy (82,834 bp) and small single copy (18,282 bp), separated by a pair of long inverted repeats (IRa and IRb: 24,972 bp each). We identified 114 unique genes, including four ribosomal RNAs, 30 transfer RNAs, and 80 protein-coding genes. We analysed the chloroplast genome features, including oligonucleotide repeats, microsatellites, amino acid frequencies, RNA editing sites, and codon usage. Transversion substitutions were twice as frequent as transition substitutions. Mutational hotspot loci included ccsA-ndhD, trnH-psbA, ndhG-ndhI, rps18-rpl20, and rps15-ycf1. These loci can be used to develop cost-effective and robust molecular markers for resolving the taxonomic discrepancies. The reconstructed phylogenetic tree supported previous findings of Artemisia as a monophyletic genus, sister to the genus Chrysanthemum, whereby A. scoparia appeared as sister to A. capillaris.
Collapse
|
12
|
Boudreau A, Poulev A, Ribnicky DM, Raskin I, Rathinasabapathy T, Richard AJ, Stephens JM. Distinct Fractions of an Artemisia scoparia Extract Contain Compounds With Novel Adipogenic Bioactivity. Front Nutr 2019; 6:18. [PMID: 30906741 PMCID: PMC6418310 DOI: 10.3389/fnut.2019.00018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 02/11/2019] [Indexed: 12/19/2022] Open
Abstract
Adipocytes are important players in metabolic health and disease, and disruption of adipocyte development or function contributes to metabolic dysregulation. Hence, adipocytes are significant targets for therapeutic intervention in obesity and metabolic syndrome. Plants have long been sources for bioactive compounds and drugs. In previous studies, we screened botanical extracts for effects on adipogenesis in vitro and discovered that an ethanolic extract of Artemisia scoparia (SCO) could promote adipocyte differentiation. To follow up on these studies, we have used various separation methods to identify the compound(s) responsible for SCO's adipogenic properties. Fractions and subfractions of SCO were tested for effects on lipid accumulation and adipogenic gene expression in differentiating 3T3-L1 adipocytes. Fractions were also analyzed by Ultra Performance Liquid Chromatography- Mass Spectrometry (UPLC-MS), and resulting peaks were putatively identified through high resolution, high mass accuracy mass spectrometry, literature data, and available natural products databases. The inactive fractions contained mostly quercetin derivatives and chlorogenates, including chlorogenic acid and 3,5-dicaffeoylquinic acid, which had no effects on adipogenesis when tested individually, thus ruling them out as pro-adipogenic bioactives in SCO. Based on these studies we have putatively identified the principal constituents in SCO fractions and subfractions that promoted adipocyte development and fat cell gene expression as prenylated coumaric acids, coumarin monoterpene ethers, 6-demethoxycapillarisin and two polymethoxyflavones.
Collapse
Affiliation(s)
- Anik Boudreau
- Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Alexander Poulev
- Department of Plant Biology and Pathology, Rutgers University, New Brunswick, NJ, United States
| | - David M Ribnicky
- Department of Plant Biology and Pathology, Rutgers University, New Brunswick, NJ, United States
| | - Ilya Raskin
- Department of Plant Biology and Pathology, Rutgers University, New Brunswick, NJ, United States
| | | | - Allison J Richard
- Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Jacqueline M Stephens
- Pennington Biomedical Research Center, Baton Rouge, LA, United States.,Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States
| |
Collapse
|