1
|
Vigh-Larsen JF, Ørtenblad N, Nielsen J, Emil Andersen O, Overgaard K, Mohr M. The Role of Muscle Glycogen Content and Localization in High-Intensity Exercise Performance: A Placebo-Controlled Trial. Med Sci Sports Exerc 2022; 54:2073-2086. [PMID: 35868015 DOI: 10.1249/mss.0000000000003002] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE We investigated the coupling between muscle glycogen content and localization and high-intensity exercise performance using a randomized, placebo-controlled, parallel-group design with emphasis on single-fiber subcellular glycogen concentrations and sarcoplasmic reticulum Ca 2+ kinetics. METHODS Eighteen well-trained participants performed high-intensity intermittent glycogen-depleting exercise, followed by randomization to a high- (CHO; ~1 g CHO·kg -1 ·h -1 ; n = 9) or low-carbohydrate placebo diet (PLA, <0.1 g CHO·kg -1 ·h -1 ; n = 9) for a 5-h recovery period. At baseline, after exercise, and after the carbohydrate manipulation assessments of repeated sprint ability (5 × 6-s maximal cycling sprints with 24 s of rest), neuromuscular function and ratings of perceived exertion during standardized high-intensity cycling (~90% Wmax ) were performed, while muscle and blood samples were collected. RESULTS The exercise and carbohydrate manipulations led to distinct muscle glycogen concentrations in CHO and PLA at the whole-muscle (291 ± 78 vs 175 ± 100 mmol·kg -1 dry weight (dw), P = 0.020) and subcellular level in each of three local regions ( P = 0.001-0.046). This was coupled with near-depleted glycogen concentrations in single fibers of both main fiber types in PLA, especially in the intramyofibrillar region (within the myofibrils). Furthermore, increased ratings of perceived exertion and impaired repeated sprint ability (~8% loss, P < 0.001) were present in PLA, with the latter correlating moderately to very strongly ( r = 0.47-0.71, P = 0.001-0.049) with whole-muscle glycogen and subcellular glycogen fractions. Finally, sarcoplasmic reticulum Ca 2+ uptake, but not release, was superior in CHO, whereas neuromuscular function, including prolonged low-frequency force depression, was unaffected by dietary manipulation. CONCLUSIONS Together, these results support an important role of muscle glycogen availability for high-intensity exercise performance, which may be mediated by reductions in single-fiber levels, particularly in distinct subcellular regions, despite only moderately lowered whole-muscle glycogen concentrations.
Collapse
Affiliation(s)
| | - Niels Ørtenblad
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, DENMARK
| | - Joachim Nielsen
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, DENMARK
| | | | | | | |
Collapse
|
2
|
Morissette MP, Susser SE, Stammers AN, O'Hara KA, Gardiner PF, Sheppard P, Moffatt TL, Duhamel TA. Differential regulation of the fiber type-specific gene expression of the sarcoplasmic reticulum calcium-ATPase isoforms induced by exercise training. J Appl Physiol (1985) 2014; 117:544-55. [PMID: 24876362 DOI: 10.1152/japplphysiol.00092.2014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The regulatory role of adenosine monophosphate-activated protein kinase (AMPK)-α2 on sarcoplasmic reticulum calcium-ATPase (SERCA) 1a and SERCA2a in different skeletal muscle fiber types has yet to be elucidated. Sedentary (Sed) or exercise-trained (Ex) wild-type (WT) and AMPKα2-kinase dead (KD) transgenic mice, which overexpress a mutated and inactivated AMPKα2 subunit, were utilized to characterize how genotype or exercise training influenced the regulation of SERCA isoforms in gastrocnemius. As expected, both Sed and Ex KD mice had >40% lower AMPK phosphorylation and 30% lower SERCA1a protein than WT mice (P < 0.05). In contrast, SERCA2a protein was not different among KD and WT mice. Exercise increased SERCA1a and SERCA2a protein content among WT and KD mice, compared with their Sed counterparts. Maximal SERCA activity was lower in KD mice, compared with WT. Total phospholamban protein was higher in KD mice than in WT and lower in Ex compared with Sed mice. Exercise training increased phospholamban Ser(16) phosphorylation in WT mice. Laser capture microdissection and quantitative PCR indicated that SERCA1a mRNA expression among type I fibers was not altered by genotype or exercise, but SERCA2a mRNA was increased 30-fold in WT+Ex, compared with WT+Sed. In contrast, the exercise-stimulated increase for SERCA2a mRNA was blunted in KD mice. Exercise upregulated SERCA1a and SERCA2a mRNA among type II fibers, but was not altered by genotype. Collectively, these data suggest that exercise differentially influences SERCA isoform expression in type I and type II fibers. Additionally, AMPKα2 influences the regulation of SERCA2a mRNA in type I skeletal muscle fibers following exercise training.
Collapse
Affiliation(s)
- Marc P Morissette
- Health, Leisure, and Human Performance Research Institute, Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, Manitoba, Canada; Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, Winnipeg, Manitoba, Canada
| | - Shanel E Susser
- Health, Leisure, and Human Performance Research Institute, Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, Manitoba, Canada; Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, Winnipeg, Manitoba, Canada; Department of Physiology, University of Manitoba, Winnipeg, Manitoba, Canada; and
| | - Andrew N Stammers
- Health, Leisure, and Human Performance Research Institute, Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, Manitoba, Canada; Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, Winnipeg, Manitoba, Canada
| | - Kimberley A O'Hara
- Health, Leisure, and Human Performance Research Institute, Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, Manitoba, Canada; Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, Winnipeg, Manitoba, Canada
| | - Phillip F Gardiner
- Health, Leisure, and Human Performance Research Institute, Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, Manitoba, Canada; Spinal Cord Research Institute, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Patricia Sheppard
- Health, Leisure, and Human Performance Research Institute, Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, Manitoba, Canada; Spinal Cord Research Institute, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Teri L Moffatt
- Health, Leisure, and Human Performance Research Institute, Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, Manitoba, Canada; Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, Winnipeg, Manitoba, Canada
| | - Todd A Duhamel
- Health, Leisure, and Human Performance Research Institute, Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, Manitoba, Canada; Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, Winnipeg, Manitoba, Canada; Department of Physiology, University of Manitoba, Winnipeg, Manitoba, Canada; and
| |
Collapse
|
3
|
Smith IC, Bombardier E, Vigna C, Tupling AR. ATP consumption by sarcoplasmic reticulum Ca²⁺ pumps accounts for 40-50% of resting metabolic rate in mouse fast and slow twitch skeletal muscle. PLoS One 2013; 8:e68924. [PMID: 23840903 PMCID: PMC3698183 DOI: 10.1371/journal.pone.0068924] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 06/03/2013] [Indexed: 11/18/2022] Open
Abstract
The main purpose of this study was to directly quantify the relative contribution of Ca2+ cycling to resting metabolic rate in mouse fast (extensor digitorum longus, EDL) and slow (soleus) twitch skeletal muscle. Resting oxygen consumption of isolated muscles (VO2, µL/g wet weight/s) measured polarographically at 30°C was ~20% higher (P<0.05) in soleus (0.326 ± 0.022) than in EDL (0.261 ± 0.020). In order to quantify the specific contribution of Ca2+ cycling to resting metabolic rate, the concentration of MgCl2 in the bath was increased to 10 mM to block Ca2+ release through the ryanodine receptor, thus eliminating a major source of Ca2+ leak from the sarcoplasmic reticulum (SR), and thereby indirectly inhibiting the activity of the sarco(endo) plasmic reticulum Ca2+-ATPases (SERCAs). The relative (%) reduction in muscle VO2 in response to 10 mM MgCl2 was similar between soleus (48.0±3.7) and EDL (42.4±3.2). Using a different approach, we attempted to directly inhibit SERCA ATPase activity in stretched EDL and soleus muscles (1.42x optimum length) using the specific SERCA inhibitor cyclopiazonic acid (CPA, up to 160 µM), but were unsuccessful in removing the energetic cost of Ca2+ cycling in resting isolated muscles. The results of the MgCl2 experiments indicate that ATP consumption by SERCAs is responsible for 40–50% of resting metabolic rate in both mouse fast- and slow-twitch muscles at 30°C, or 12–15% of whole body resting VO2. Thus, SERCA pumps in skeletal muscle could represent an important control point for energy balance regulation and a potential target for metabolic alterations to oppose obesity.
Collapse
Affiliation(s)
- Ian Curtis Smith
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | - Eric Bombardier
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | - Chris Vigna
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | - A. Russell Tupling
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
- * E-mail:
| |
Collapse
|
4
|
Thomas MM, Vigna C, Betik AC, Tupling AR, Hepple RT. Initiating treadmill training in late middle age offers modest adaptations in Ca2+ handling but enhances oxidative damage in senescent rat skeletal muscle. Am J Physiol Regul Integr Comp Physiol 2010; 298:R1269-78. [PMID: 20200131 DOI: 10.1152/ajpregu.00663.2009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Aging skeletal muscle shows an increased time to peak force and relaxation and a decreased specific force, all of which could relate to changes in muscle Ca(2+) handling. The purpose of this study was to determine if Ca(2+)-handling protein content and function are decreased in senescent gastrocnemius muscle and if initiating a training program in late middle age (LMA, 29 mo old) could improve function in senescent (34- to 36-mo-old) muscle. LMA male Fischer 344 x Brown-Norway rats underwent 5-7 mo of treadmill training. Aging resulted in a decrease in maximal sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) activity and a decrease in Ca(2+) release rate but no change in Ca(2+) uptake rate. Efficiency of the Ca(2+) pump was increased with age, as was the content of SERCA2a. Training caused a further increase in SERCA2a content. Aging also caused an increase in protein carbonyl and reactive nitrogen species damage accumulation, and both further increased with training. Consistent with the increase in oxidative damage, heat shock protein 70 content was increased with age and further increased with training. Together, these results suggest that while initiating exercise training in LMA augments the age-related increase in expression of heat shock protein 70 and the more efficient SERCA2a isoform, it did not prevent the decrease in SERCA activity and exacerbated oxidative damage in senescent gastrocnemius muscle.
Collapse
Affiliation(s)
- Melissa M Thomas
- Muscle and Aging Laboratory, Faculty of Kinesiology, University of Calgary, 2500 University Dr. NW, Calgary, Alberta, Canada
| | | | | | | | | |
Collapse
|
5
|
Norris SM, Bombardier E, Smith IC, Vigna C, Tupling AR. ATP consumption by sarcoplasmic reticulum Ca2+ pumps accounts for 50% of resting metabolic rate in mouse fast and slow twitch skeletal muscle. Am J Physiol Cell Physiol 2009; 298:C521-9. [PMID: 20018953 DOI: 10.1152/ajpcell.00479.2009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this study, we aimed to directly quantify the relative contribution of Ca(2+) cycling to resting metabolic rate in mouse fast-twitch (extensor digitorum longus, EDL) and slow-twitch (soleus) skeletal muscle. Resting oxygen consumption of isolated muscles (Vo(2), microl.g wet wt(-1).s(-1)) measured polarographically at 30 degrees C was approximately 25% higher in soleus (0.61 +/- .03) than in EDL (0.46 +/- .03). To quantify the specific contribution of Ca(2+) cycling to resting metabolic rate, cyclopiazonic acid (CPA), a highly specific inhibitor of sarco(endo)plasmic reticulum Ca(2+) ATPases (SERCAs), was added to the bath at different concentrations (1, 5, 10, and 15 microM). There was a concentration-dependent effect of CPA on Vo(2), with increasing CPA concentrations up to 10 microM resulting in progressively greater reductions in muscle Vo(2). There were no differences between 10 and 15 microM CPA, indicating that 10 microM CPA induces maximal inhibition of SERCAs in isolated muscle preparations. Relative reduction in muscle Vo(2) in response to CPA was nearly identical in EDL (1 microM, 10.6 +/- 3.0%; 5 microM, 33.2 +/- 3.4%; 10 microM, 49.2 +/- 2.9%; 15 microM, 50.9 +/- 2.1%) and soleus (1 microM, 11.2 +/- 1.5%; 5 microM, 37.7 +/- 2.4%; 10 microM, 50.0 +/- 1.3%; 15 microM, 49.9 +/- 1.6%). The results indicate that ATP consumption by SERCAs is responsible for approximately 50% of resting metabolic rate in both mouse fast- and slow-twitch muscles at 30 degrees C. Thus SERCA pumps in skeletal muscle could represent an important control point for energy balance regulation and a potential target for metabolic alterations to oppose obesity.
Collapse
|
6
|
Schertzer JD, Antonescu CN, Bilan PJ, Jain S, Huang X, Liu Z, Bonen A, Klip A. A transgenic mouse model to study glucose transporter 4myc regulation in skeletal muscle. Endocrinology 2009; 150:1935-40. [PMID: 19074577 DOI: 10.1210/en.2008-1372] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Skeletal muscle is the major site for dietary glucose disposal, taking up glucose via glucose transporter 4 (GLUT4). Although subcellular fractionation studies demonstrate that insulin increases GLUT4 density in sarcolemma and transverse tubules, fractionation cannot discern GLUT4 vesicle-membrane association from insertion and exofacial exposure. Clonal muscle cultures expressing exofacially tagged GLUT4 have allowed quantification of GLUT4 exposure at the cell surface, its exocytosis, endocytosis, and partner proteins. We hypothesized that transgenic expression of GLUT4myc in skeletal muscles would provide a useful model to investigate GLUT4 biology in vivo. A homozygous mouse colony was generated expressing GLUT4myc driven by the muscle creatine kinase (MCK) promoter. GLUT4 protein levels were about 3-fold higher in hindlimb muscles of MCK-GLUT4myc transgenic mice compared with littermates (P < 0.05). Insulin (12 nm, 30 min) induced a 2.1-fold increase in surface GLUT4myc detected by immunofluorescence of the exofacial myc epitope in nonpermeabilized muscle fiber bundles (P < 0.05). Glucose uptake and surface GLUT4myc levels were 3.5- and 3-fold higher, respectively, in giant membrane vesicles blebbed from hindlimb muscles of insulin-stimulated transgenic mice compared with unstimulated counterparts (P < 0.05). Muscle contraction also elevated both parameters, an effect partially additive to insulin's. GLUT4myc immunoprecipitation with anti-myc antibodies avoids interfering with associated intracellular binding proteins. Tether, containing a UBX domain, for GLUT4 coimmunoprecipitated with GLUT4myc and insulin stimulation significantly decreased such association (P < 0.05). MCK-GLUT4myc transgenic mice are thus useful to quantify exofacial GLUT4 exposure at the sarcolemma and GLUT4 binding partners in skeletal muscle, essential elements in the investigation of muscle GLUT4 regulation in physiological and pathological states in vivo.
Collapse
|
7
|
MINAMI Y, YAMANO S, KAWAI M, HIRAGA A, MIYATA H. Sarcoplasmic Reticulum Ca2+-ATPase Activity and Glycogen Content in Various Fiber Types after Intensive Exercise in Thoroughbred Horses. J Equine Sci 2009; 20:33-40. [PMID: 24833967 PMCID: PMC4013961 DOI: 10.1294/jes.20.33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2009] [Indexed: 11/01/2022] Open
Abstract
To find a new parameter indicating muscle fitness in Thoroughbred horses, we examined
time-dependent recovery of glycogen content and sarcoplasmic reticulum (SR)
Ca2+-ATPase activity of skeletal muscle after intensive treadmill running.
Two repeated 50-sec running sessions (13 m/sec) were performed on a flat treadmill
(approximately 90%VO2max). Muscle samples of the middle gluteal muscle were
taken before exercise (pre) and 1 min, 20 min, 60 min, and 24 hr after exercise. Muscle
fiber type composition was determined in the pre muscle samples by immunohistochemical
staining with monoclonal antibody to myosin heavy chain. SR Ca2+-ATPase
activity of the muscle and glycogen content of each muscle fiber type were determined with
biochemical analysis and quantitative histochemical staining, respectively. As compared to
the pre value, the glycogen content of each muscle fiber type was reduced by 15–27% at 1
min, 20 min, and 60 min after the exercise and recovered to the pre value at 24 hr after
exercise test. These results indicate that 24 hr is enough time to recover glycogen
content after short-term intensive exercise. The mean value of the SR
Ca2+-ATPase activity showed a slight decrease (not significant) immediately
after exercise, and complete recovery at 60 min after exercise. There were no significant
relationship between the changes in glycogen content of each muscle fiber type and SR
Ca2+-ATPase. Although further studies are needed, SR Ca2+-ATPase
is not a useful parameter to detect muscle fitness, at least in Thoroughbred horses.
Collapse
Affiliation(s)
- Yoshio MINAMI
- Biological Sciences, Graduate School of Medicine, Yamaguchi University
| | | | - Minako KAWAI
- Biological Sciences, Graduate School of Medicine, Yamaguchi University
| | | | - Hirofumi MIYATA
- Biological Sciences, Graduate School of Medicine, Yamaguchi University
| |
Collapse
|
8
|
Abstract
Repeated, intense use of muscles leads to a decline in performance known as muscle fatigue. Many muscle properties change during fatigue including the action potential, extracellular and intracellular ions, and many intracellular metabolites. A range of mechanisms have been identified that contribute to the decline of performance. The traditional explanation, accumulation of intracellular lactate and hydrogen ions causing impaired function of the contractile proteins, is probably of limited importance in mammals. Alternative explanations that will be considered are the effects of ionic changes on the action potential, failure of SR Ca2+release by various mechanisms, and the effects of reactive oxygen species. Many different activities lead to fatigue, and an important challenge is to identify the various mechanisms that contribute under different circumstances. Most of the mechanistic studies of fatigue are on isolated animal tissues, and another major challenge is to use the knowledge generated in these studies to identify the mechanisms of fatigue in intact animals and particularly in human diseases.
Collapse
|
9
|
Matsunaga S, Mishima T, Yamada T, Inashima S, Wada M. Alterations in in vitro function and protein oxidation of rat sarcoplasmic reticulum Ca2+-ATPase during recovery from high-intensity exercise. Exp Physiol 2007; 93:426-33. [PMID: 18156168 DOI: 10.1113/expphysiol.2007.040477] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The hypothesis tested in this study was that the extent to which sarcoplasmic reticulum (SR) Ca(2+)-ATPase is oxidized would correlate with a decline in its activity. For this purpose, changes in the SR Ca(2+)-sequestering ability and the contents of carbonyl and sulfhydryl groups during recovery after exercise were examined in the superficial portions of vastus lateralis muscles from rats subjected to 5 min running at an intensity corresponding to maximal oxygen uptake (50 m min(-1), 10% gradient). A single bout of exercise elicited a 22.4% reduction (P < 0.05) in SR Ca(2+)-ATPase activity. The decreased activity progressively reverted to normal levels during recovery after exercise, reaching normal levels after 60 min of recovery. This change was paralleled by a depressed SR Ca(2+)-uptake rate, and the proportional alteration in these two variables resulted in no change in the ratio of Ca(2+)-uptake rate to Ca(2+)-ATPase activity. The contents of SR Ca(2+)-ATPase protein and sulfhydryl groups in microsomes were unchanged after exercise and during recovery periods. In contrast, the content of carbonyl groups in SR Ca(2+)-ATPase behaved in an opposite manner to that of SR Ca(2+)-ATPase activity. An approximately 80% augmentation (P < 0.05) in the carbonyl group content occurred immediately after exercise. The elevated carbonyl content decreased towards normal levels during 60 min of recovery. These results are strongly suggestive that oxidation of SR Ca(2+)-ATPase is responsible, at least in part, for a decay in the SR Ca(2+)-pumping function produced by high-intensity exercise and imply that oxidized proteins may be repaired during recovery from exercise.
Collapse
Affiliation(s)
- Satoshi Matsunaga
- Research Center for Urban Health and Sports, Osaka City University, Sugimoto, Sumiyoshi, Osaka, Japan.
| | | | | | | | | |
Collapse
|
10
|
Duhamel TA, Green HJ, Stewart RD, Foley KP, Smith IC, Ouyang J. Muscle metabolic, SR Ca2+-cycling responses to prolonged cycling, with and without glucose supplementation. J Appl Physiol (1985) 2007; 103:1986-98. [DOI: 10.1152/japplphysiol.01440.2006] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study investigated the effects of prolonged exercise, with and without glucose supplementation, on metabolism and sarcoplasmic reticulum (SR) Ca2+-handling properties in working vastus lateralis muscle. Fifteen untrained volunteers [peak O2consumption (V̇o2peak) = 3.45 ± 0.17 l/min; mean ± SE] cycled at ∼60% V̇o2peakon two occasions, during which they were provided with either an artificially sweetened placebo beverage (NG) or a 6% glucose (G) beverage (∼1.00 g carbohydrate/kg body mass). Beverage supplementation started at 30 min of exercise and continued every 15 min thereafter. SR Ca2+handling, metabolic, and substrate responses were assessed in tissue extracted from the vastus lateralis at rest, after 30 min and 90 min of exercise, and at fatigue in both conditions. Plasma glucose during G was 15–23% higher ( P < 0.05) than those observed during NG following 60 min of exercise until fatigue. Cycle time to fatigue was increased ( P < 0.05) by ∼19% during G (137 ± 7 min) compared with NG (115 ± 6 min). Prolonged exercise reduced ( P < 0.05) maximal Ca2+-ATPase activity (−18.4%), SR Ca2+uptake (−27%), and both Phase 1 (−22.2%) and Phase 2 (−34.2%) Ca2+-release rates during NG. The exercise-induced reductions in SR Ca2+-cycling properties were not altered during G. The metabolic responses to exercise were all unaltered by glucose supplementation, since no differences in respiratory exchange ratios, carbohydrate and lipid oxidation rates, and muscle metabolite and glycogen contents were observed between NG and G. These results indicate that the maintenance of blood glucose homeostasis by glucose supplementation is without effect in modifying the muscle metabolic, endogenous glycogen, or SR Ca2+-handling responses.
Collapse
|
11
|
Beitzel F, Sillence MN, Lynch GS. beta-Adrenoceptor signaling in regenerating skeletal muscle after beta-agonist administration. Am J Physiol Endocrinol Metab 2007; 293:E932-40. [PMID: 17623752 DOI: 10.1152/ajpendo.00175.2007] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Stimulating the beta-adrenoceptor (beta-AR) signaling pathway can enhance the functional repair of skeletal muscle after injury, but long-term use of beta-AR agonists causes beta-AR downregulation, which may limit their therapeutic effectiveness. The aim was to examine beta-AR signaling during early regeneration in rat fast-twitch [extensor digitorum longus (EDL)] and slow-twitch (soleus) muscles after bupivacaine injury and test the hypothesis that, during regeneration, beta-agonist administration does not cause beta-AR desensitization. Rats received either the beta-AR agonist fenoterol (1.4 mgxkg(-1)xday(-1) ip) or saline for 7 days postinjury. Fenoterol reduced beta-AR density in regenerating soleus muscles by 42%. Regenerating EDL muscles showed a threefold increase in beta-AR density, and, again, these values were 43% lower with fenoterol treatment. An amplified adenylate cyclase (AC) response to isoproterenol was observed in cell membrane fragments from EDL and soleus muscles 7 days postinjury. Fenoterol attenuated this increase in regenerating EDL muscles but not soleus muscles. beta-AR signaling mechanisms were assessed using AC stimulants (NaF, forskolin, and Mn(2+)). Although beta-agonist treatment reduces beta-AR density in regenerating muscles, these muscles can produce large cAMP responses relative to healthy (uninjured) muscles. Desensitization of beta-AR signaling in regenerating muscles is prevented by altered rates of beta-AR synthesis and/or degradation, changes in G protein populations and coupling efficiency, and altered AC activity. These mechanisms have important therapeutic implications for modulating beta-AR signaling to enhance muscle repair after injury.
Collapse
MESH Headings
- Adenylyl Cyclases/metabolism
- Adrenergic beta-Agonists/pharmacology
- Animals
- GTP-Binding Proteins/metabolism
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/physiology
- RNA, Messenger/metabolism
- Rats
- Rats, Inbred F344
- Receptors, Adrenergic, beta/genetics
- Receptors, Adrenergic, beta/metabolism
- Receptors, Adrenergic, beta/physiology
- Regeneration/drug effects
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Felice Beitzel
- Basic and Clinical Myology Laboratory, Dept. of Physiology, The Univ. of Melbourne, Victoria, 3010 Australia
| | | | | |
Collapse
|
12
|
Tupling AR, Vigna C, Ford RJ, Tsuchiya SC, Graham DA, Denniss SG, Rush JWE. Effects of buthionine sulfoximine treatment on diaphragm contractility and SR Ca2+ pump function in rats. J Appl Physiol (1985) 2007; 103:1921-8. [PMID: 17717121 DOI: 10.1152/japplphysiol.00529.2007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The purpose of this study was to examine the effects of glutathione (GSH) depletion and cellular oxidation on rat diaphragm contractility and sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) function in vitro under basal conditions and following fatiguing stimulation. Buthionine sulfoximine (BSO) treatment (n = 10) for 10 days (20 mM in drinking water) reduced (P < 0.05) diaphragm GSH content (nmol/mg protein) and the ratio of GSH to glutathione disulfide (GSH/GSSG) by 91% and 71%, respectively, compared with controls (CTL) (n = 10). Western blotting showed that Hsp70 expression in diaphragm was not increased (P > 0.05) with BSO treatment. As hypothesized, basal peak twitch force (g/mm(2)) was increased (P < 0.05), and fatigability in response to repetitive stimulation (350-ms trains at 100 Hz once every 1 s for 5 min) was also increased (P < 0.05) in BSO compared with CTL. Both Ca(2+) uptake and maximal SERCA activity (mumol.g protein(-1).min(-1)) measured in diaphragm homogenates that were prepared at rest were increased (P < 0.05) with BSO treatment, an effect that could be partly explained by a twofold increase (P < 0.05) in SERCA2a expression with BSO. In response to the 5-min stimulation protocol, both Ca(2+) uptake and maximal SERCA activity were increased (P < 0.05) in CTL but not (P > 0.05) in BSO diaphragm. We conclude that 1) cellular redox state is more optimal for contractile function and fatigability is increased in rat diaphragm following BSO treatment, 2) SERCA2a expression is modulated by redox signaling, and 3) regulation of SERCA function in working diaphragm is altered following BSO treatment.
Collapse
Affiliation(s)
- A R Tupling
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada.
| | | | | | | | | | | | | |
Collapse
|
13
|
Duhamel TA, Green HJ, Perco JG, Ouyang J. Comparative effects of a low-carbohydrate diet and exercise plus a low-carbohydrate diet on muscle sarcoplasmic reticulum responses in males. Am J Physiol Cell Physiol 2006; 291:C607-17. [PMID: 16707551 DOI: 10.1152/ajpcell.00643.2005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We employed a glycogen-depleting session of exercise followed by a low-carbohydrate (CHO) diet to investigate modifications that occur in muscle sarcoplasmic reticulum (SR) Ca2+-cycling properties compared with low-CHO diet alone. SR properties were assessed in nine untrained males [peak aerobic power (V̇o2 peak) = 43.6 ± 2.6 (SE) ml·kg−1·min−1] during prolonged cycle exercise to fatigue performed at ∼58% V̇o2 peakafter 4 days of low-CHO diet (Lo CHO) and after glycogen-depleting exercise plus 4 days of low-CHO (Ex+Lo CHO). Compared with Lo CHO, Ex+Lo CHO resulted in 12% lower ( P < 0.05) resting maximal Ca2+-ATPase activity ( Vmax= 174 ± 12 vs. 153 ± 10 μmol·g protein−1·min−1) and smaller reduction in Vmaxinduced during exercise. A similar effect was observed for Ca2+uptake. The Hill coefficient, defined as slope of the relationship between cytosolic free Ca2+concentration and Ca2+-ATPase activity, was higher ( P < 0.05) at rest (2.07 ± 0.15 vs. 1.90 ± 0.10) with Ex+Lo CHO, an effect that persisted throughout the exercise. The coupling ratio, defined as the ratio of Ca2+uptake to Vmax, was 23–30% elevated ( P < 0.05) at rest and during the first 60 min of exercise with Ex+Lo CHO. The ∼27 and 34% reductions ( P < 0.05) in phase 1 and phase 2 Ca2+release, respectively, observed during exercise with Lo CHO were not altered by Ex+Lo CHO. These results indicate that when prolonged exercise precedes a short-term Lo CHO diet, Ca2+sequestration properties and efficiency are improved compared with those during Lo CHO alone.
Collapse
Affiliation(s)
- T A Duhamel
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | | | | | | |
Collapse
|
14
|
Schertzer JD, Lynch GS. Comparative evaluation of IGF-I gene transfer and IGF-I protein administration for enhancing skeletal muscle regeneration after injury. Gene Ther 2006; 13:1657-64. [PMID: 16871234 DOI: 10.1038/sj.gt.3302817] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Developing methodologies to enhance skeletal muscle regeneration and hasten the restoration of muscle function has important implications for minimizing disability after injury and for treating muscle diseases such as Duchenne muscular dystrophy. Although delivery of various growth factors, such as insulin-like growth factor-I (IGF-I), have proved successful in promoting skeletal muscle regeneration after injury, no study has compared the efficacy of different delivery methods directly. We compared the efficacy of systemic delivery of recombinant IGF-I protein via mini-osmotic pump (approximately 1.5 mg/kg/day) with a single electrotransfer-assisted plasmid-based gene transfer, to hasten functional repair of mouse tibialis anterior muscles after myotoxic injury. The relative efficacy of each method was assessed at 7, 21 and 28 days post-injury. Our findings indicate that IGF-I hastened functional recovery, regardless of the route of IGF-I administration. However, gene transfer of IGF-I was superior to systemic protein administration because in the regenerating muscle, this delivery method increased IGF-I levels, activated intracellular signals (Akt phosphorylation), induced a greater magnitude of myofiber hypertrophy and hastened functional recovery at an earlier time point (14 days) after injury than did protein administration (21 days). Thus, the relative efficacy of different modes of delivery is an important consideration when assessing the therapeutic potential of various proteins for treating muscle injuries and skeletal muscle diseases.
Collapse
Affiliation(s)
- J D Schertzer
- Basic and Clinical Myology Laboratory, Department of Physiology, The University of Melbourne, Grattan Street, Victoria 3010, Australia
| | | |
Collapse
|
15
|
Schertzer JD, Plant DR, Lynch GS. Optimizing plasmid-based gene transfer for investigating skeletal muscle structure and function. Mol Ther 2005; 13:795-803. [PMID: 16309967 DOI: 10.1016/j.ymthe.2005.09.019] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2005] [Revised: 08/22/2005] [Accepted: 09/04/2005] [Indexed: 11/22/2022] Open
Abstract
Intramuscular injection of naked plasmid DNA is a less cytotoxic alternative to viral vectors for delivering genetic material to skeletal muscle in vivo. However, the low efficiency of plasmid-based gene transfer limits its potential therapeutic efficacy and/or its use for many experimental applications. Current strategies to enhance transfection efficiency (i.e., electroporation) can cause significant muscle damage, confounding physiological assessments such as muscle contractility. Optimizing protocols to limit damage is critical for accurate physiological, biochemical, and molecular measurements. Following extensive testing, we developed an electroporation protocol that enhances transfection efficiency in skeletal muscles without causing muscle damage. Pretreating mouse tibialis anterior muscles with hyaluronidase and electroporation at 75 V/cm (using 50% vol/vol saline as a vehicle for plasmid DNA) resulted in 22 +/- 5% of the muscle fibers expressing a reporter gene. This protocol did not compromise contractile function of skeletal muscles assessed at both the intact (whole) muscle and the cellular (single fiber) level. Furthermore, ectopic expression of insulin-like growth factor I to levels that induced muscle fiber hypertrophy without causing tissue damage or compromising muscle function highlights the therapeutic potential of these methods for myopathies, muscle wasting disorders, and other pathophysiologic conditions.
Collapse
Affiliation(s)
- Jonathan D Schertzer
- Department of Physiology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | | | | |
Collapse
|
16
|
Holloway GP, Green HJ, Tupling AR. Differential effects of repetitive activity on sarcoplasmic reticulum responses in rat muscles of different oxidative potential. Am J Physiol Regul Integr Comp Physiol 2005; 290:R393-404. [PMID: 16179493 DOI: 10.1152/ajpregu.00006.2005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We investigated the hypothesis that muscles of different oxidative potential would display differences in sarcoplasmic reticulum (SR) Ca2+ handling responses to repetitive contractile activity and recovery. Repetitive activity was induced in two muscles of high oxidative potential, namely, soleus (SOL) and red gastrocnemius (RG), and in white gastrocnemius (WG), a muscle of low oxidative potential, by stimulation in adult male rats. Measurements of SR properties, performed in crude homogenates, were made on control and stimulated muscles at the start of recovery (R0) and at 25 min of recovery (R25). Maximal Ca2+-ATPase activity (Vmax, micromol x g protein(-1) x min(-1)) at R0 was lower in stimulated SOL (105 +/- 9 vs. 135 +/- 7) and RG (269 +/- 22 vs. 317 +/- 26) and higher (P < 0.05) in WG (795 +/- 32 vs. 708 +/- 34). At R25, Vmax remained lower (P < 0.05) in SOL and RG but recovered in WG. Ca2+ uptake, measured at 2,000 nM, was depressed (P < 0.05) in SOL and RG by 34 and 13%, respectively, in stimulated muscles at R0 and remained depressed (P < 0.05) at R25. In contrast, Ca2+ uptake was elevated (P < 0.05) in stimulated WG at R0 by 9% and remained elevated (P < 0.05) at R25. Ca2+ release, unaltered in SOL and RG at both R0 and R25, was increased (P < 0.05) in stimulated WG at both R0 and R25. We conclude that SR Ca2+-handling responses to repetitive contractile activity and recovery are related to the oxidative potential of muscle.
Collapse
Affiliation(s)
- G P Holloway
- Department of Kinesiology, University of Waterloo, Waterloo, ON, Canada
| | | | | |
Collapse
|
17
|
Harcourt LJ, Holmes AG, Gregorevic P, Schertzer JD, Stupka N, Plant DR, Lynch GS. Interleukin-15 administration improves diaphragm muscle pathology and function in dystrophic mdx mice. THE AMERICAN JOURNAL OF PATHOLOGY 2005; 166:1131-41. [PMID: 15793293 PMCID: PMC1602390 DOI: 10.1016/s0002-9440(10)62333-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/07/2004] [Indexed: 12/13/2022]
Abstract
Interleukin (IL)-15, a cytokine expressed in skeletal muscle, has been shown to have muscle anabolic effects in vitro and to slow muscle wasting in rats with cancer cachexia. Whether IL-15 has therapeutic potential for diseases such as Duchenne muscular dystrophy (DMD) is unknown. We examined whether IL-15 administration could ameliorate the dystrophic pathology in the diaphragm muscle of the mdx mouse, an animal model for DMD. Four weeks of IL-15 treatment improved diaphragm strength, a highly significant finding because respiratory function is a mortality predictor in DMD. Enhanced diaphragm function was associated with increased muscle fiber cross-sectional area and decreased collagen infiltration. IL-15 administration was not associated with changes in T-cell populations or alterations in specific components of the ubiquitin proteasome pathway. To determine the effects of IL-15 on myofiber regeneration, muscles of IL-15-treated and untreated wild-type mice were injured myotoxically, and their functional recovery was assessed. IL-15 had a mild anabolic effect, increasing fiber cross-sectional area after 2 and 6 days but not after 10 days. Our findings demonstrate that IL-15 administration improves the pathophysiology of dystrophic muscle and highlight a possible therapeutic role for IL-15 in the treatment of neuromuscular disorders especially in which muscle wasting is indicated.
Collapse
Affiliation(s)
- Leah J Harcourt
- Department of Physiology, University of Melbourne, Victoria, Australia, 3010
| | | | | | | | | | | | | |
Collapse
|
18
|
Schertzer JD, Plant DR, Ryall JG, Beitzel F, Stupka N, Lynch GS. Beta2-agonist administration increases sarcoplasmic reticulum Ca2+-ATPase activity in aged rat skeletal muscle. Am J Physiol Endocrinol Metab 2005; 288:E526-33. [PMID: 15479951 DOI: 10.1152/ajpendo.00399.2004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Aging is associated with a slowing of skeletal muscle contractile properties, including a decreased rate of relaxation. In rats, the age-related decrease in the maximal rate of relaxation is reversed after 4-wk administration with the beta2-adrenoceptor agonist (beta2-agonist) fenoterol. Given the critical role of the sarcoplasmic reticulum (SR) in regulating intracellular Ca2+ transients and ultimately the time course of muscle contraction and relaxation, we tested the hypothesis that the mechanisms of action of fenoterol are mediated by alterations in SR proteins. Sarcoendoplasmic reticulum Ca2+-ATPase (SERCA) kinetic properties were assessed in muscle homogenates and enriched SR membranes isolated from the red (RG) and white (WG) portions of the gastrocnemius muscle in adult (16 mo) and aged (28 mo) F344 rats that had been administered fenoterol for 4 wk (1.4 mg/kg/day ip, in saline) or vehicle only. Aging was associated with a 29% decrease in the maximal activity (Vmax) of SERCA in the RG but not in the WG muscles. Fenoterol treatment increased the Vmax of SERCA and SERCA1 protein levels in RG and WG. In the RG, fenoterol administration reversed an age-related selective nitration of the SERCA2a isoform. Our findings demonstrate that the mechanisms underlying age-related changes in contractile properties are fiber type dependent, whereas the effects of fenoterol administration are independent of age and fiber type.
Collapse
MESH Headings
- Adrenergic beta-Agonists/pharmacology
- Aging/metabolism
- Animals
- Blotting, Western
- Calcium/metabolism
- Calcium-Transporting ATPases/chemistry
- Calcium-Transporting ATPases/metabolism
- Cell Fractionation
- Fenoterol/pharmacology
- Kinetics
- Male
- Muscle Contraction/drug effects
- Muscle Contraction/physiology
- Muscle Fibers, Fast-Twitch/drug effects
- Muscle Fibers, Fast-Twitch/metabolism
- Muscle Fibers, Fast-Twitch/physiology
- Muscle Fibers, Slow-Twitch/drug effects
- Muscle Fibers, Slow-Twitch/physiology
- Muscle Relaxation/drug effects
- Muscle Relaxation/physiology
- Muscle, Skeletal/chemistry
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Myosin Heavy Chains/analysis
- Protein Isoforms/analysis
- Protein Isoforms/chemistry
- Protein Isoforms/metabolism
- Rats
- Rats, Inbred F344
- Sarcoplasmic Reticulum/drug effects
- Sarcoplasmic Reticulum/metabolism
- Sarcoplasmic Reticulum Calcium-Transporting ATPases
- Spectrometry, Fluorescence
- Tyrosine/analogs & derivatives
- Tyrosine/analysis
Collapse
|
19
|
Leppik JA, Aughey RJ, Medved I, Fairweather I, Carey MF, McKenna MJ. Prolonged exercise to fatigue in humans impairs skeletal muscle Na+-K+-ATPase activity, sarcoplasmic reticulum Ca2+release, and Ca2+uptake. J Appl Physiol (1985) 2004; 97:1414-23. [PMID: 15155714 DOI: 10.1152/japplphysiol.00964.2003] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Prolonged exhaustive submaximal exercise in humans induces marked metabolic changes, but little is known about effects on muscle Na+-K+-ATPase activity and sarcoplasmic reticulum Ca2+regulation. We therefore investigated whether these processes were impaired during cycling exercise at 74.3 ± 1.2% maximal O2uptake (mean ± SE) continued until fatigue in eight healthy subjects (maximal O2uptake of 3.93 ± 0.69 l/min). A vastus lateralis muscle biopsy was taken at rest, at 10 and 45 min of exercise, and at fatigue. Muscle was analyzed for in vitro Na+-K+-ATPase activity [maximal K+-stimulated 3- O-methylfluorescein phosphatase (3- O-MFPase) activity], Na+-K+-ATPase content ([3H]ouabain binding sites), sarcoplasmic reticulum Ca2+release rate induced by 4 chloro- m-cresol, and Ca2+uptake rate. Cycling time to fatigue was 72.18 ± 6.46 min. Muscle 3- O-MFPase activity (nmol·min−1·g protein−1) fell from rest by 6.6 ± 2.1% at 10 min ( P < 0.05), by 10.7 ± 2.3% at 45 min ( P < 0.01), and by 12.6 ± 1.6% at fatigue ( P < 0.01), whereas3[H]ouabain binding site content was unchanged. Ca2+release (mmol·min−1·g protein−1) declined from rest by 10.0 ± 3.8% at 45 min ( P < 0.05) and by 17.9 ± 4.1% at fatigue ( P < 0.01), whereas Ca2+uptake rate fell from rest by 23.8 ± 12.2% at fatigue ( P = 0.05). However, the decline in muscle 3- O-MFPase activity, Ca2+uptake, and Ca2+release were variable and not significantly correlated with time to fatigue. Thus prolonged exhaustive exercise impaired each of the maximal in vitro Na+-K+-ATPase activity, Ca2+release, and Ca2+uptake rates. This suggests that acutely downregulated muscle Na+, K+, and Ca2+transport processes may be important factors in fatigue during prolonged exercise in humans.
Collapse
Affiliation(s)
- James A Leppik
- Muscle, Ions, and Exercise Group, School of Human Movement, Recreation and Performance, (FO22 Victoria Univ. of Technology, PO Box 14428, MCMC, Melbourne, Victoria 8001, Australia
| | | | | | | | | | | |
Collapse
|
20
|
Duhamel TA, Green HJ, Perco JG, Sandiford SD, Ouyang J. Human muscle sarcoplasmic reticulum function during submaximal exercise in normoxia and hypoxia. J Appl Physiol (1985) 2004; 97:180-7. [PMID: 15220318 DOI: 10.1152/japplphysiol.00954.2003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In this study, the response of the sarcoplasmic reticulum (SR) to prolonged exercise, performed in normoxia (inspired O2fraction = 0.21) and hypoxia (inspired O2fraction = 0.14) was studied in homogenates prepared from the vastus lateralis muscle in 10 untrained men (peak O2consumption = 3.09 ± 0.25 l/min). In normoxia, performed at 48 ± 2.2% peak O2consumption, maximal Ca2+-dependent ATPase activity was reduced by ∼25% at 30 min of exercise compared with rest (168 ± 10 vs. 126 ± 8 μmol·g protein−1·min−1), with no further reductions observed at 90 min (129 ± 6 μmol·g protein−1·min−1). No changes were observed in the Hill coefficient or in the Ca2+concentration at half-maximal activity. The reduction in maximal Ca2+-dependent ATPase activity at 30 min of exercise was accompanied by oxalate-dependent reductions ( P < 0.05) in Ca2+uptake by ∼20% (370 ± 22 vs. 298 ± 25 μmol·g protein−1·min−1). Ca2+release, induced by 4-chloro- m-cresol and assessed into fast and slow phases, was decreased ( P < 0.05) by ∼16 and ∼32%, respectively, by 90 min of exercise. No differences were found between normoxia and hypoxia for any of the SR properties examined. It is concluded that the disturbances induced in SR Ca2+cycling with prolonged moderate-intensity exercise in human muscle during normoxia are not modified when the exercise is performed in hypoxia.
Collapse
Affiliation(s)
- T A Duhamel
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | | | | | | | | |
Collapse
|
21
|
Duhamel TA, Green HJ, Sandiford SD, Perco JG, Ouyang J. Effects of progressive exercise and hypoxia on human muscle sarcoplasmic reticulum function. J Appl Physiol (1985) 2004; 97:188-96. [PMID: 15064300 DOI: 10.1152/japplphysiol.00958.2003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study examined the effects of progressive exercise to fatigue in normoxia (N) on muscle sarcoplasmic reticulum (SR) Ca2+cycling and whether alterations in SR Ca2+cycling are related to the blunted peak mechanical power output (POpeak) and peak oxygen consumption (V̇o2 peak) observed during progressive exercise in hypoxia (H). Nine untrained men (20.7 ± 0.42 yr) performed progressive cycle exercise to fatigue on two occasions, namely during N (inspired oxygen fraction = 0.21) and during H (inspired oxygen fraction = 0.14). Tissue extracted from the vastus lateralis before exercise and at power output corresponding to 50 and 70% of V̇o2 peak(as determined during N) and at fatigue was used to investigate changes in homogenate SR Ca2+-cycling properties. Exercise in H compared with N resulted in a 19 and 21% lower ( P < 0.05) POpeakand V̇o2 peak, respectively. During progressive exercise in N, Ca2+-ATPase kinetics, as determined by maximal activity, the Hill coefficient, and the Ca2+concentration at one-half maximal activity were not altered. However, reductions with exercise in N were noted in Ca2+uptake (before exercise = 357 ± 29 μmol·min−1·g protein−1; at fatigue = 306 ± 26 μmol·min−1·g protein−1; P < 0.05) when measured at free Ca2+concentration of 2 μM and in phase 2 Ca2+release (before exercise = 716 ± 33 μmol·min−1·g protein−1; at fatigue = 500 ± 53 μmol·min−1·g protein−1; P < 0.05) when measured in vitro in whole muscle homogenates. No differences were noted between N and H conditions at comparable power output or at fatigue. It is concluded that, although structural changes in SR Ca2+-cycling proteins may explain fatigue during progressive exercise in N, they cannot explain the lower POpeakand V̇o2 peakobserved during H.
Collapse
Affiliation(s)
- T A Duhamel
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | | | | | | | | |
Collapse
|