1
|
Cheung CV, Atube KJ, Colonna NA, Carter GJ, Marchena T, McCarthy S, Krusen KE, McCain RS, Frizzell N, Gower RM. A microparticle delivery system for extended release of all-trans retinoic acid and its impact on macrophage insulin-like growth factor 1 release and myotube formation. Int J Pharm 2024; 666:124821. [PMID: 39396656 DOI: 10.1016/j.ijpharm.2024.124821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/15/2024]
Abstract
Muscle atrophy secondary to disuse, aging, or illness increases the risk of injury, prolonged recovery, and permanent disability. The recovery process involves macrophages and their secretions, such as insulin-like growth factor 1 (IGF-1), which direct muscle to regenerate and grow. Retinoic acid receptor (RAR) activation in macrophages increases IGF-1 expression and can be achieved with all-trans retinoic acid (ATRA). However, poor bioavailability limits its clinical application. Thus, we encapsulated ATRA into poly(lactide-co-glycolide) microparticles (ATRA-PLG) to maintain bioactivity and achieve extended release. ATRA-PLG induces IGF-1 release by RAW 264.7 macrophages, and conditioned media from these cells enhances C2C12 myotube formation through IGF-1. Additionally, ATRA released from ATRA-PLG enhances myotube formation in the absence of macrophages. Toward clinical translation, we envision that ATRA-PLG will be injected in the vicinity of debilitated muscle where it can be taken up by macrophages and induce IGF-1 release over a predetermined therapeutic window. Along these lines, we demonstrate that ATRA-PLG microparticles are readily taken up by bone marrow-derived macrophages and reside within the cytosol for at least 12 days with no toxicity. Interestingly, ATRA-PLG induced IGF-1 secretion by thioglycolate-elicited macrophages, but not bone marrow derived macrophages. We found that the RAR isoforms present in lysate differed between the macrophages studied, which could explain the different IGF-1 responses to ATRA. Given that ATRA-PLG enhances myotube formation directly (through ATRA) and indirectly (through macrophage IGF-1) this study supports the further testing of this promising pharmaceutical using rodent models of muscle regeneration and growth.
Collapse
Affiliation(s)
- Candice V Cheung
- Biomedical Engineering Program, University of South Carolina, Columbia, SC 29208, USA
| | - Kidochukwu J Atube
- Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, USA
| | - Nicholas A Colonna
- Biomedical Engineering Program, University of South Carolina, Columbia, SC 29208, USA
| | - Griffin J Carter
- Biomedical Engineering Program, University of South Carolina, Columbia, SC 29208, USA
| | - Tristan Marchena
- Biomedical Engineering Program, University of South Carolina, Columbia, SC 29208, USA
| | - Samantha McCarthy
- Biomedical Engineering Program, University of South Carolina, Columbia, SC 29208, USA
| | - Kelsey E Krusen
- Biomedical Engineering Program, University of South Carolina, Columbia, SC 29208, USA
| | - Richard S McCain
- Department of Pharmacology, Physiology & Neuroscience, School of Medicine, University of South Carolina, Columbia, SC 29209, USA
| | - Norma Frizzell
- Department of Pharmacology, Physiology & Neuroscience, School of Medicine, University of South Carolina, Columbia, SC 29209, USA
| | - R Michael Gower
- Biomedical Engineering Program, University of South Carolina, Columbia, SC 29208, USA; Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, USA; Veterans Affairs Medical Center, Columbia, SC 29209, USA.
| |
Collapse
|
2
|
Dong G, Moparthy C, Thome T, Kim K, Yue F, Ryan TE. IGF-1 Therapy Improves Muscle Size and Function in Experimental Peripheral Arterial Disease. JACC Basic Transl Sci 2023; 8:702-719. [PMID: 37426532 PMCID: PMC10322901 DOI: 10.1016/j.jacbts.2022.12.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 03/11/2023]
Abstract
Lower-extremity peripheral arterial disease (PAD) has increased in prevalence, yet therapeutic development has remained stagnant. Skeletal muscle health and function has been strongly linked to quality of life and medical outcomes in patients with PAD. Using a rodent model of PAD, this study demonstrates that treatment of the ischemic limb with insulin-like growth factor (IGF)-1 significantly increases muscle size and strength without improving limb hemodynamics. Interestingly, the effect size of IGF1 therapy was larger in female mice than in male mice, highlighting the need to carefully examine sex-dependent effects in experimental PAD therapies.
Collapse
Affiliation(s)
- Gengfu Dong
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA
| | - Chatick Moparthy
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA
| | - Trace Thome
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA
| | - Kyoungrae Kim
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA
| | - Feng Yue
- Department of Animal Sciences, University of Florida, Gainesville, Florida, USA
- Myology Institute, University of Florida, Gainesville, Florida, USA
| | - Terence E. Ryan
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA
- Center for Exercise Science, University of Florida, Gainesville, Florida, USA
- Myology Institute, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
3
|
Pereira SDC, Benoit B, de Aguiar Junior FCA, Chanon S, Vieille‐Marchiset A, Pesenti S, Ruzzin J, Vidal H, Toscano AE. Fibroblast growth factor 19 as a countermeasure to muscle and locomotion dysfunctions in experimental cerebral palsy. J Cachexia Sarcopenia Muscle 2021; 12:2122-2133. [PMID: 34704398 PMCID: PMC8718044 DOI: 10.1002/jcsm.12819] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 08/06/2021] [Accepted: 09/04/2021] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Cerebral palsy (CP) associates cerebral function damages with strong locomotor defects and premature sarcopenia. We previously showed that fibroblast growth factor 19 (FGF19) exerts hypertrophic effects on skeletal muscle and improves muscle mass and strength in mouse models with muscle atrophy. Facing the lack of therapeutics to treat locomotor dysfunctions in CP, we investigated whether FGF19 treatment could have beneficial effects in an experimental rat model of CP. METHODS Cerebral palsy was induced in male Wistar rat pups by perinatal anoxia immediately after birth and by sensorimotor restriction of hind paws maintained until Day 28. Daily subcutaneous injections with recombinant human FGF19 (0.1 mg/kg bw) were performed from Days 22 to 28. Locomotor activity and muscle strength were assessed before and after FGF19 treatment. At Day 29, motor coordination on rotarod and various musculoskeletal parameters (weight of tibia bone and of soleus and extensor digitorum longus (EDL) muscles; area of skeletal muscle fibres) were evaluated. In addition, expression of specific genes linked to human CP was measured in rat skeletal muscles. RESULTS Compared to controls, CP rats had reduced locomotion activity (-37.8% of distance travelled, P < 0.05), motor coordination (-88.9% latency of falls on rotarod, P < 0.05) and muscle strength (-25.1%, P < 0.05). These defects were associated with reduction in soleus (-51.5%, P < 0.05) and EDL (-42.5%, P < 0.05) weight, smaller area of muscle fibres, and with lower tibia weight (-38%, P < 0.05). In muscles from rats submitted to CP, changes in the expression levels of several genes related to muscle development and neuromuscular junctions were similar to those found in wrist muscle of children with CP (increased mRNA levels of Igfbp5, Kcnn3, Gdf8, and MyH4 and decreased expression of Myog, Ucp2 and Lpl). Compared with vehicle-treated CP rats, FGF19 administration improved locomotor activity (+53.2%, P < 0.05) and muscle strength (+25.7%, P < 0.05), and increased tibia weight (+13.8%, P < 0.05) and soleus and EDL muscle weight (+28.6% and +27.3%, respectively, P < 0.05). In addition, it reduced a number of very small fibres in both muscles (P < 0.05). Finally, gene expression analyses revealed that FGF19 might counteract the immature state of skeletal muscles induced by CP. CONCLUSIONS These results demonstrate that pharmacological intervention with recombinant FGF19 could restore musculoskeletal and locomotor dysfunction in an experimental CP model, suggesting that FGF19 may represent a potential therapeutic strategy to combat the locomotor disorders associated with CP.
Collapse
Affiliation(s)
- Sabrina da Conceição Pereira
- Studies in Nutrition and Phenotypic Plasticity Unit, Department of NutritionFederal University of PernambucoRecifePernambucoBrazil
| | - Bérengère Benoit
- CarMeN laboratory, French National Institute of Health and Medical Research (INSERM) U1060, National Research Institute for Agriculture, Food and Environment (INRAE) U1397University of Lyon, Claude Bernard University Lyon 1OullinsFrance
| | | | - Stéphanie Chanon
- CarMeN laboratory, French National Institute of Health and Medical Research (INSERM) U1060, National Research Institute for Agriculture, Food and Environment (INRAE) U1397University of Lyon, Claude Bernard University Lyon 1OullinsFrance
| | - Aurélie Vieille‐Marchiset
- CarMeN laboratory, French National Institute of Health and Medical Research (INSERM) U1060, National Research Institute for Agriculture, Food and Environment (INRAE) U1397University of Lyon, Claude Bernard University Lyon 1OullinsFrance
| | - Sandra Pesenti
- CarMeN laboratory, French National Institute of Health and Medical Research (INSERM) U1060, National Research Institute for Agriculture, Food and Environment (INRAE) U1397University of Lyon, Claude Bernard University Lyon 1OullinsFrance
| | - Jérome Ruzzin
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of MedicineUniversity of OsloOsloNorway
| | - Hubert Vidal
- CarMeN laboratory, French National Institute of Health and Medical Research (INSERM) U1060, National Research Institute for Agriculture, Food and Environment (INRAE) U1397University of Lyon, Claude Bernard University Lyon 1OullinsFrance
| | - Ana Elisa Toscano
- Studies in Nutrition and Phenotypic Plasticity Unit, Department of NutritionFederal University of PernambucoRecifePernambucoBrazil
- Department of Nursing, CAVFederal University of PernambucoVitória de Santo AntãoPernambucoBrazil
| |
Collapse
|
4
|
Juhl OJ, Buettmann EG, Friedman MA, DeNapoli RC, Hoppock GA, Donahue HJ. Update on the effects of microgravity on the musculoskeletal system. NPJ Microgravity 2021; 7:28. [PMID: 34301942 PMCID: PMC8302614 DOI: 10.1038/s41526-021-00158-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/28/2021] [Indexed: 02/07/2023] Open
Abstract
With the reignited push for manned spaceflight and the development of companies focused on commercializing spaceflight, increased human ventures into space are inevitable. However, this venture would not be without risk. The lower gravitational force, known as microgravity, that would be experienced during spaceflight significantly disrupts many physiological systems. One of the most notably affected systems is the musculoskeletal system, where exposure to microgravity causes both bone and skeletal muscle loss, both of which have significant clinical implications. In this review, we focus on recent advancements in our understanding of how exposure to microgravity affects the musculoskeletal system. We will focus on the catabolic effects microgravity exposure has on both bone and skeletal muscle cells, as well as their respective progenitor stem cells. Additionally, we report on the mechanisms that underlie bone and muscle tissue loss resulting from exposure to microgravity and then discuss current countermeasures being evaluated. We reveal the gaps in the current knowledge and expound upon how current research is filling these gaps while also identifying new avenues of study as we continue to pursue manned spaceflight.
Collapse
Affiliation(s)
- Otto J Juhl
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Evan G Buettmann
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Michael A Friedman
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Rachel C DeNapoli
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Gabriel A Hoppock
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Henry J Donahue
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
5
|
Mirzoev TM. Skeletal Muscle Recovery from Disuse Atrophy: Protein Turnover Signaling and Strategies for Accelerating Muscle Regrowth. Int J Mol Sci 2020; 21:ijms21217940. [PMID: 33114683 PMCID: PMC7663166 DOI: 10.3390/ijms21217940] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/08/2020] [Accepted: 10/23/2020] [Indexed: 12/15/2022] Open
Abstract
Skeletal muscle fibers have a unique capacity to adjust their metabolism and phenotype in response to alternations in mechanical loading. Indeed, chronic mechanical loading leads to an increase in skeletal muscle mass, while prolonged mechanical unloading results in a significant decrease in muscle mass (muscle atrophy). The maintenance of skeletal muscle mass is dependent on the balance between rates of muscle protein synthesis and breakdown. While molecular mechanisms regulating protein synthesis during mechanical unloading have been relatively well studied, signaling events implicated in protein turnover during skeletal muscle recovery from unloading are poorly defined. A better understanding of the molecular events that underpin muscle mass recovery following disuse-induced atrophy is of significant importance for both clinical and space medicine. This review focuses on the molecular mechanisms that may be involved in the activation of protein synthesis and subsequent restoration of muscle mass after a period of mechanical unloading. In addition, the efficiency of strategies proposed to improve muscle protein gain during recovery is also discussed.
Collapse
Affiliation(s)
- Timur M Mirzoev
- Myology Laboratory, Institute of Biomedical Problems RAS, Moscow 123007, Russia
| |
Collapse
|
6
|
Fang XB, Song ZB, Xie MS, Liu YM, Zhang WX. Synergistic effect of glucocorticoids and IGF-1 on myogenic differentiation through the Akt/GSK-3β pathway in C2C12 myoblasts. Int J Neurosci 2020; 130:1125-1135. [PMID: 32070170 DOI: 10.1080/00207454.2020.1730367] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Purpose: Glucocorticoids are the only therapeutics that can delay the progression of Duchenne musculardystrophy (DMD), the most prevalent type of inherited neuromuscular disorder in males. However, beyond theiranti-inflammatory effects, glucocorticoids have other underlying mechanisms that remain unclear. Moreover, muscleand circulating levels of insulin growth factor-1 (IGF-1) often decrease in response to glucocorticoids. Therefore, wehypothesized that glucocorticoids, either alone or in combination with IGF-1, can improve myogenic differentiation.Materials and methods: Established C2C12 myoblasts were employed as an in vitro model of myogenic differentiation,and myogenic differentiation markers, as assessed by Western blot (myogenin, MyoD, and MyHC protein expression),cellular morphology analysis (fusion index) and RT-PCR (MCK mRNA expression), were measured.Results: Myogenic differentiation markers were increased by glucocorticoid treatment. Furthermore, this effect was furtherenhanced by IGF-1, and these results suggest that glucocorticoids, either alone or together with IGF-1, can promotemyogenic differentiation. Akt and GSK-3β play important roles in myogenic differentiation. Interestingly, the levels ofboth phosphorylated Ser473-Akt and phosphorylated Ser9-GSK-3β were increased by glucocorticoid and IGF-1 cotreatment.Pharmacological manipulation with LY294002 and LiCl was employed to inhibit Akt and GSK-3β, respectively.We found that cellular differentiability was inhibited by LY294002 and enhanced by LiCl, indicating that theAkt/GSK-3β signaling pathway is activated by glucocorticoid and IGF-1 treatment to promote myogenic differentiation.Conclusions: Glucocorticoids together with IGF-1 promote myogenic differentiation through the Akt/GSK-3βpathway. Thus, these results further our knowledge of myogenic differentiation and may offer a potential alternativestrategy for DMD treatment based on glucocorticoid and IGF-1.
Collapse
Affiliation(s)
- Xiao-Bo Fang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zu-Biao Song
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Meng-Shu Xie
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yan-Mei Liu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wei-Xi Zhang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
7
|
Hunt ER, Villasanta-Tezanos AG, Butterfield TA, Lattermann C, Jacobs CA. Upregulation of Systemic Inflammatory Pathways Following Anterior Cruciate Ligament Injury Relates to Both Cartilage and Muscular Changes: A Pilot Study. J Orthop Res 2020; 38:387-392. [PMID: 31517396 DOI: 10.1002/jor.24467] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 09/03/2019] [Indexed: 02/04/2023]
Abstract
In conjunction with cartilage breakdown, muscle maladaptation including atrophy and increased fibrosis have been observed in the quadriceps following anterior cruciate ligament (ACL) injury. Previously observed upregulated muscle-related proteins in the synovial fluid following ACL rupture allude to cellular communication between the joint and muscle. Therefore, the purpose of this study was to determine whether muscle-related analytes are differentially expressed in the serum. Sixteen patients with an acute ACL tear participated in this IRB-approved study. Serum was obtained at two different time points at a mean of 6 and 14 days post-injury, and serum was analyzed by a highly multiplexed assay of 1,300 proteins. Pathway analysis using DAVID was performed; genes included met three criteria: significant change between the two study time points using a paired t test, significant change between the two study time points using a Mann-Whitney non-parametric test, and significant Benjamini post hoc analysis. Twelve analytes significantly increased between time points. Proteins chitinase-3-like protein 1 (p = 0.01), insulin-like growth factor binding protein 1 (p = 0.01), insulin-like growth factor binding protein 5 (p = 0.02), renin (p = 0.004), and lymphotoxin alpha 1: beta 2 (p = 0.03) were significantly upregulated in serum following acute ACL injury. The current results confirm the inflammatory pattern previously seen in the synovial fluid thought to play a role in the progression of post-traumatic osteoarthritis after ACL injury, and this data also provides further insights into important communication between the joint and quadriceps group, whose function is important in long term health. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 38:387-392, 2020.
Collapse
Affiliation(s)
- Emily R Hunt
- Department of Orthopedic Surgery, University of Kentucky, 740 S Limestone, Suite K401, Lexington, Kentucky, 40536-0284
| | | | - Timothy A Butterfield
- College of Health Sciences, Rehabilitation Science PhD Program, University of Kentucky, Lexington, Kentucky
| | - Christian Lattermann
- Department of Orthopaedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Cale A Jacobs
- Department of Orthopedic Surgery, University of Kentucky, 740 S Limestone, Suite K401, Lexington, Kentucky, 40536-0284
| |
Collapse
|
8
|
Li F, Kolb J, Crudele J, Tonino P, Hourani Z, Smith JE, Chamberlain JS, Granzier H. Expressing a Z-disk nebulin fragment in nebulin-deficient mouse muscle: effects on muscle structure and function. Skelet Muscle 2020; 10:2. [PMID: 31992366 PMCID: PMC6986074 DOI: 10.1186/s13395-019-0219-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/17/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Nebulin is a critical thin filament-binding protein that spans from the Z-disk of the skeletal muscle sarcomere to near the pointed end of the thin filament. Its massive size and actin-binding property allows it to provide the thin filaments with structural and regulatory support. When this protein is lost, nemaline myopathy occurs. Nemaline myopathy causes severe muscle weakness as well as structural defects on a sarcomeric level. There is no known cure for this disease. METHODS We studied whether sarcomeric structure and function can be improved by introducing nebulin's Z-disk region into a nebulin-deficient mouse model (Neb cKO) through adeno-associated viral (AAV) vector therapy. Following this treatment, the structural and functional characteristics of both vehicle-treated and AAV-treated Neb cKO and control muscles were studied. RESULTS Intramuscular injection of this AAV construct resulted in a successful expression of the Z-disk fragment within the target muscles. This expression was significantly higher in Neb cKO mice than control mice. Analysis of protein expression revealed that the nebulin fragment was localized exclusively to the Z-disks and that Neb cKO expressed the nebulin fragment at levels comparable to the level of full-length nebulin in control mice. Additionally, the Z-disk fragment displaced full-length nebulin in control mice, resulting in nemaline rod body formation and a worsening of muscle function. Neb cKO mice experienced a slight functional benefit from the AAV treatment, with a small increase in force and fatigue resistance. Disease progression was also slowed as indicated by improved muscle structure and myosin isoform expression. CONCLUSIONS This study reveals that nebulin fragments are well-received by nebulin-deficient mouse muscles and that limited functional benefits are achievable.
Collapse
Affiliation(s)
- Frank Li
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, 85721, USA
| | - Justin Kolb
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, 85721, USA
| | - Julie Crudele
- Department of Neurology, University of Washington, Seattle, WA, 98109-8055, USA
| | - Paola Tonino
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, 85721, USA
| | - Zaynab Hourani
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, 85721, USA
| | - John E Smith
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, 85721, USA
| | | | - Henk Granzier
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, 85721, USA.
- Medical Research Building, RM 325, 1656 E Mabel St, Tucson, AZ, 85721, USA.
| |
Collapse
|
9
|
Nindl BC, Ahtiainen J, Gagnon SS, Taipale RS, Pierce JR, Martin BJ, Beckner ME, Lehti M, Häkkinen K, Kyröläinen H. Microdialysis-Assessed Exercised Muscle Reveals Localized and Differential IGFBP Responses to Unilateral Stretch Shortening Cycle Exercise. Front Endocrinol (Lausanne) 2020; 11:315. [PMID: 32547489 PMCID: PMC7272679 DOI: 10.3389/fendo.2020.00315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/24/2020] [Indexed: 01/10/2023] Open
Abstract
Microdialysis allows for a preview into local muscle metabolism and can provide physiological insight that blood measurements cannot. Purpose: To examine the potential differential IGF-I system regulation in interstitial fluid during unilateral stretch shortening cycle exercise. Methods: 10 men (26 ± 7 year) performed unilateral jumping [stretch shortening cycle (SSC) exercise at 50% of optimal jump height] until volitional fatigue on a sled apparatus. Biological sampling took place using a catheter inserted into an antecubital vein (serum), and 100 kDa microdialysis probes inserted into the thigh muscle of each exercise/control leg (dialysate). Serum was drawn before (Pre; -3 h) and after SSC [Post I (+0 h), II (+3 h), or III (+20 h)]; dialysate was sampled for 2 h before (Pre), during/immediately after (Ex), and 3 h into recovery (Rec) following SSC. IGF-I system parameters (free/total IGF-I and IGFBPs 1-6) were measured with immunoassays. Interstitial free IGF-I was estimated from dialysate IGF-I and relative recovery (ethanol) correction. Data were analyzed with repeated measures ANOVA. Results: Serum total IGF-I remained elevated +3 h (Post II: 182.8 ± 37.6 vs. Pre: 168.3 ± 35.0 ng/mL, p < 0.01), but returned to baseline by +20 h (Post III vs. Pre, p = 0.31). No changes in serum free IGF-I were noted. Serum BP-1 and -3 increased over baseline, but not until + 20 h after SSC (Post III vs. Pre: 7.6 ± 4.9 vs. 3.7 ± 2.3 and 1,048.6 ± 269.2 vs. 891.4 ± 171.2 ng/mL, respectively). We observed a decreased serum BP-6 +3 h after SSC (p < 0.01), followed by a return to baseline at +20 h (p = 0.64 vs. Pre). There were no exercise-induced changes in serum BP-2, -4, or -5. Unlike serum, there were no changes in dialysate or interstitial free IGF-I in either leg (p > 0.05). Dialysate BP-1 remained increased in both exercise and control legs through 3 h into recovery (Rec vs. Pre, p < 0.01). Dialysate BP-3 also demonstrated a prolonged elevation over Pre SSC concentrations, but in the exercise leg only (Ex and Rec vs. Pre, p < 0.04). We observed a prolonged decrease in dialysate BP-5 (Ex and Rec vs. Pre, p < 0.03) and an increase in BP-4 IP in the exercise leg only. There were no changes relative to Pre SSC in dialysate BP-2 or -6. Conclusions: Unilateral exercise drives differential regulation of the IGF-I system at both local and systemic levels. More specifically, this is the first study to demonstrate that localized exercise increases IGFBP-3, IGFBP-4 and decreases in IGFBP-5 in muscle interstitial fluid.
Collapse
Affiliation(s)
- Bradley C. Nindl
- Neuromuscular Research Laboratory/Warrior Human Performance Research Center, University of Pittsburgh, Pittsburgh, PA, United States
- US Army Research Institute of Environmental Medicine, Natick, MA, United States
- Army Public Health Center, Aberdeen Proving Ground, MD, United States
- *Correspondence: Bradley C. Nindl
| | - Juha Ahtiainen
- Neuromuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyvaskyla, Finland
| | - Sheila S. Gagnon
- Neuromuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyvaskyla, Finland
| | - Ritva S. Taipale
- Neuromuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyvaskyla, Finland
| | - Joseph R. Pierce
- US Army Research Institute of Environmental Medicine, Natick, MA, United States
- Army Public Health Center, Aberdeen Proving Ground, MD, United States
| | - Brian J. Martin
- Neuromuscular Research Laboratory/Warrior Human Performance Research Center, University of Pittsburgh, Pittsburgh, PA, United States
| | - Meaghan E. Beckner
- Neuromuscular Research Laboratory/Warrior Human Performance Research Center, University of Pittsburgh, Pittsburgh, PA, United States
| | - M. Lehti
- Neuromuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyvaskyla, Finland
| | - Keijo Häkkinen
- Neuromuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyvaskyla, Finland
| | - Heikki Kyröläinen
- Neuromuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyvaskyla, Finland
| |
Collapse
|
10
|
Fujitani M, Mizushige T, Kawabata F, Uozumi K, Yasui M, Hayamizu K, Uchida K, Okada S, Keshab B, Kishida T. Dietary Alaska pollack protein improves skeletal muscle weight recovery after immobilization-induced atrophy in rats. PLoS One 2019; 14:e0217917. [PMID: 31199814 PMCID: PMC6570023 DOI: 10.1371/journal.pone.0217917] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 05/21/2019] [Indexed: 11/26/2022] Open
Abstract
The promotion of muscle recovery after immobilization is important to preserve an optimum health status. Here, we examined the effect of dietary Alaska pollack protein (APP) on skeletal muscle weight after atrophy induced by hind limb immobilization using plaster immobilization technique. Rat left limb was casted with a wetted plaster cast under anesthesia. After 2 weeks of feeding, the cast was removed and the rats were divided into three groups, namely, a baseline group, high-fat casein diet group, and high-fat APP diet group. After 3 weeks of feeding, the skeletal muscles (soleus, extensor digitorum longus [EDL], and gastrocnemius) were sampled. The estimated weight gains of soleus, gastrocnemius, and EDL muscle in the immobilized limbs were significantly larger in the rats fed with APP diet as compared with those fed with casein diet. In soleus muscle, dietary APP increased the expression of Igf1 and Myog genes in the immobilized limbs after the recovery period.
Collapse
Affiliation(s)
- Mina Fujitani
- Laboratory of Nutrition Science, Division of Applied bioscience, Graduate School of Agriculture, Ehime University, Matsuyama, Japan
| | - Takafumi Mizushige
- Department of Applied Biological Chemistry, Faculty of Agriculture, Utsunomiya University, Minemachi, Utsunomiya, Tochigi, Japan
| | - Fuminori Kawabata
- Physiology of Domestic Animals, Faculty of Agriculture and Life Science, Hirosaki University, Bunkyo-cho, Hirosaki, Aomori, Japan
| | - Keisuke Uozumi
- Laboratory of Nutrition Science, Division of Applied bioscience, Graduate School of Agriculture, Ehime University, Matsuyama, Japan
| | - Machi Yasui
- Laboratory of Nutrition Science, Division of Applied bioscience, Graduate School of Agriculture, Ehime University, Matsuyama, Japan
| | - Kohsuke Hayamizu
- Laboratory of Food Chemistry, Yokohama University of Pharmacy, Yokohama, Japan
| | - Kenji Uchida
- Laboratory of Nutrition Science, Division of Applied bioscience, Graduate School of Agriculture, Ehime University, Matsuyama, Japan
- Food Function R&D Center, Nippon Suisan Kaisha, Ltd., Tokyo, Japan
| | - Shinji Okada
- Graduate School of Agricultural and Life Sciences, the University of Tokyo, Tokyo, Japan
| | - Bhattarai Keshab
- Laboratory of Nutrition Science, Division of Applied bioscience, Graduate School of Agriculture, Ehime University, Matsuyama, Japan
| | - Taro Kishida
- Laboratory of Nutrition Science, Division of Applied bioscience, Graduate School of Agriculture, Ehime University, Matsuyama, Japan
- Food and Health Sciences Research Centre, Graduate School of Agriculture, Ehime University, Matsuyama, Japan
- * E-mail:
| |
Collapse
|
11
|
Khalil R. Ubiquitin-Proteasome Pathway and Muscle Atrophy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1088:235-248. [DOI: 10.1007/978-981-13-1435-3_10] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Kneppers A, Leermakers P, Pansters N, Backx E, Gosker H, van Loon L, Schols A, Langen R, Verdijk L. Coordinated regulation of skeletal muscle mass and metabolic plasticity during recovery from disuse. FASEB J 2018; 33:1288-1298. [PMID: 30133324 DOI: 10.1096/fj.201701403rrr] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Skeletal muscle regeneration after disuse is essential for muscle maintenance and involves the regulation of both mass- and metabolic plasticity-related processes. However, the relation between these processes during recovery from disuse remains unclear. In this study, we explored the potential interrelationship between the molecular regulation of muscle mass and oxidative metabolism during recovery from disuse. Molecular profiles were measured in biopsies from the vastus lateralis of healthy men after 1-leg cast immobilization and after 1 wk reloading, and in mouse gastrocnemius obtained before and after hindlimb suspension and during reloading (RL-1, -2, -3, -5, and -8 d). Cluster analysis of the human recovery response revealed correlations between myogenesis and autophagy markers in 2 clusters, which were distinguished by the presence of markers of early myogenesis, autophagosome formation, and mitochondrial turnover vs. markers of late myogenesis, autophagy initiation, and mitochondrial mass. In line with these findings, an early transient increase in B-cell lymphoma-2 interacting protein-3 and sequestosome-1 protein, and GABA type A receptor-associated protein like-1 protein and mRNA and a late increase in myomaker and myosin heavy chain-8 mRNA, microtubule-associated protein 1 light chain 3-II:I ratio, and FUN14 domain-containing-1 mRNA and protein were observed in mice. In summary, the regulatory profiles of protein, mitochondrial, and myonuclear turnover are correlated and temporally associated, suggesting a coordinated regulation of muscle mass- and oxidative metabolism-related processes during recovery from disuse.-Kneppers, A., Leermakers, P., Pansters, N., Backx, E., Gosker, H., van Loon, L., Schols, A., Langen, R., Verdijk, L. Coordinated regulation of skeletal muscle mass and metabolic plasticity during recovery from disuse.
Collapse
Affiliation(s)
- Anita Kneppers
- Department of Respiratory Medicine, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre+, Maastricht, The Netherlands; and
| | - Pieter Leermakers
- Department of Respiratory Medicine, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre+, Maastricht, The Netherlands; and
| | - Nicholas Pansters
- Department of Respiratory Medicine, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre+, Maastricht, The Netherlands; and
| | - Evelien Backx
- Department of Human Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Harry Gosker
- Department of Respiratory Medicine, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre+, Maastricht, The Netherlands; and
| | - Luc van Loon
- Department of Human Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Annemie Schols
- Department of Respiratory Medicine, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre+, Maastricht, The Netherlands; and
| | - Ramon Langen
- Department of Respiratory Medicine, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre+, Maastricht, The Netherlands; and
| | - Lex Verdijk
- Department of Human Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre+, Maastricht, The Netherlands
| |
Collapse
|
13
|
Clemmons DR. Role of IGF-binding proteins in regulating IGF responses to changes in metabolism. J Mol Endocrinol 2018; 61:T139-T169. [PMID: 29563157 DOI: 10.1530/jme-18-0016] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 03/21/2018] [Indexed: 12/22/2022]
Abstract
The IGF-binding protein family contains six members that share significant structural homology. Their principal function is to regulate the actions of IGF1 and IGF2. These proteins are present in plasma and extracellular fluids and regulate access of both IGF1 and II to the type I IGF receptor. Additionally, they have functions that are independent of their ability to bind IGFs. Each protein is regulated independently of IGF1 and IGF2, and this provides an important mechanism by which other hormones and physiologic variables can regulate IGF actions indirectly. Several members of the family are sensitive to changes in intermediary metabolism. Specifically the presence of obesity/insulin resistance can significantly alter the expression of these proteins. Similarly changes in nutrition or catabolism can alter their synthesis and degradation. Multiple hormones such as glucocorticoids, androgens, estrogen and insulin regulate IGFBP synthesis and bioavailability. In addition to their ability to regulate IGF access to receptors these proteins can bind to distinct cell surface proteins or proteins in extracellular matrix and several cellular functions are influenced by these interactions. IGFBPs can be transported intracellularly and interact with nuclear proteins to alter cellular physiology. In pathophysiologic states, there is significant dysregulation between the changes in IGFBP synthesis and bioavailability and changes in IGF1 and IGF2. These discordant changes can lead to marked alterations in IGF action. Although binding protein physiology and pathophysiology are complex, experimental results have provided an important avenue for understanding how IGF actions are regulated in a variety of physiologic and pathophysiologic conditions.
Collapse
Affiliation(s)
- David R Clemmons
- Department of MedicineUNC School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
14
|
Vassilakos G, Lei H, Yang Y, Puglise J, Matheny M, Durzynska J, Ozery M, Bennett K, Spradlin R, Bonanno H, Park S, Ahima RS, Barton ER. Deletion of muscle IGF-I transiently impairs growth and progressively disrupts glucose homeostasis in male mice. FASEB J 2018; 33:181-194. [PMID: 29932867 DOI: 10.1096/fj.201800459r] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Insulin-like growth factors (IGFs) are essential for local skeletal muscle growth and organismal physiology, but these actions are entwined with glucose homeostasis through convergence with insulin signaling. The objective of this work was to determine whether the effects of IGF-I on growth and metabolism could be separated. We generated muscle-specific IGF-I-deficient (MID) mice that afford inducible deletion of Igf1 at any age. After Igf1 deletion at birth or in young adult mice, evaluations of muscle physiology and glucose homeostasis were performed up to 16 wk of age. MID mice generated at birth had lower muscle and circulating IGF-I, decreased muscle and body mass, and impaired muscle force production. Eight-wk-old male MID had heightened insulin levels with trends of elevated fasting glucose. This phenotype progressed to impaired glucose handling and increased fat deposition without significant muscle mass loss at 16 wk of age. The same phenotype emerged in 16-wk-old MID mice induced at 12 wk of age, compounded with heightened muscle fatigability and exercise intolerance. We assert that muscle IGF-I independently modulates anabolism and metabolism in an age-dependent manner, thus positioning muscle IGF-I maintenance to be critical for both muscle growth and metabolic homeostasis.-Vassilakos, G., Lei, H., Yang, Y., Puglise, J., Matheny, M., Durzynska, J., Ozery, M., Bennett, K., Spradlin, R., Bonanno, H., Park, S., Ahima, R. S., Barton, E. R. Deletion of muscle IGF-I transiently impairs growth and progressively disrupts glucose homeostasis in male mice.
Collapse
Affiliation(s)
- Georgios Vassilakos
- Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, Florida, USA
| | - Hanqin Lei
- Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, Florida, USA
| | - Yun Yang
- Pharmacology and Therapeutics, College of Medicine, University of Florida, Gainesville, Florida, USA.,Gastrointestinal Surgery, West China School of Medicine, Sichuan University-West China Hospital, Chengdu, China
| | - Jason Puglise
- Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, Florida, USA
| | - Michael Matheny
- Pharmacology and Therapeutics, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Julia Durzynska
- Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, Florida, USA.,Molecular Virology, Institute of Experimental Biology, A. Mickiewicz University, Poznań, Poland
| | - Matan Ozery
- Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, Florida, USA
| | - Katherine Bennett
- Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, Florida, USA
| | - Ray Spradlin
- Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, Florida, USA
| | - Heather Bonanno
- Animal Care Services, Cancer and Genetics Research Complex, University of Florida, Gainesville, Florida, USA
| | - Soohyun Park
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Rexford S Ahima
- Division of Endocrinology, Diabetes and Metabolism, Johns Hopkins University, Baltimore, Maryland, USA
| | - Elisabeth R Barton
- Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, Florida, USA.,Pharmacology and Therapeutics, College of Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
15
|
The Role of IGF-1 Signaling in Skeletal Muscle Atrophy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1088:109-137. [PMID: 30390250 DOI: 10.1007/978-981-13-1435-3_6] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Insulin-like growth factor 1 (IGF-1) is a key anabolic growth factor stimulating phosphatidylinositol 3-kinase (PI3K)/Akt signaling which is well known for regulating muscle hypertrophy. However, the role of IGF-1 in muscle atrophy is less clear. This review provides an overview of the mechanisms via which IGF-1 signaling is implicated in several conditions of muscle atrophy and via which mechanisms protein turnover is altered. IGF-1/PI3K/Akt signaling stimulates the rate of protein synthesis via p70S6Kinase and p90 ribosomal S6 kinase and negatively regulates protein degradation, predominantly by its inhibiting effect on proteasomal and lysosomal protein degradation. Caspase-dependent protein degradation is also attenuated by IGF/PI3K/Akt signaling, whereas evidence for an effect on calpain-dependent protein degradation is inconclusive. IGF-1/PI3K/Akt signaling reduces during denervation-, unloading-, and joint immobilization-induced muscle atrophy, whereas IGF-1/PI3K/Akt signaling seems unaltered during aging-associated muscle atrophy. During denervation and aging, IGF-1 overexpression or injection counteracts denervation- and aging-associated muscle atrophy, despite enhanced anabolic resistance with regard to IGF-1 signaling with aging. It remains unclear whether pharmacological stimulation of IGF-1/PI3K/Akt signaling attenuates immobilization- or unloading-induced muscle atrophy. Exploration of the possibilities to interfere with IGF-1/PI3K/Akt signaling reveals that microRNAs targeting IGF-1 signaling components are promising targets to counterbalance muscle atrophy. Overall, the findings summarized in this review show that in disuse conditions, but not with aging, IGF-1/PI3K/Akt signaling is attenuated and that in some conditions stimulation of this pathway may alleviate skeletal muscle atrophy.
Collapse
|
16
|
Khalil RM, Abdo WS, Saad A, Khedr EG. Muscle proteolytic system modulation through the effect of taurine on mice bearing muscular atrophy. Mol Cell Biochem 2017; 444:161-168. [DOI: 10.1007/s11010-017-3240-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 11/24/2017] [Indexed: 10/18/2022]
|
17
|
Lu Y, Bradley JS, McCoski SR, Gonzalez JM, Ealy AD, Johnson SE. Reduced skeletal muscle fiber size following caloric restriction is associated with calpain-mediated proteolysis and attenuation of IGF-1 signaling. Am J Physiol Regul Integr Comp Physiol 2017; 312:R806-R815. [PMID: 28228415 DOI: 10.1152/ajpregu.00400.2016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 02/15/2017] [Accepted: 02/16/2017] [Indexed: 01/24/2023]
Abstract
Caloric restriction decreases skeletal muscle mass in mammals, principally due to a reduction in fiber size. The effect of suboptimal nutrient intake on skeletal muscle metabolic properties in neonatal calves was examined. The longissimus muscle (LM) was collected after a control (CON) or caloric restricted (CR) diet was cosnumed for 8 wk and muscle fiber size, gene expression, and metabolic signal transduction activity were measured. Results revealed that CR animals had smaller (P < 0.05) LM fiber cross-sectional area than CON, as expected. Western blot analysis detected equivalent amounts of peroxisome proliferator-activated receptor-γ coactivator-1α (PGC1α) but reduced (P < 0.05) amounts of the splice-variant, PGC1α-4 in CR LM. Expression of IGF-1, a PGC1α-4 target gene, was 40% less (P < 0.05) in CR than CON. Downstream mediators of autocrine IGF-1 signaling also are attenuated in CR by comparison with CON. The amount of phosphorylated AKT1 was less (P < 0.05) in CR than CON. The ratio of p4EBP1T37/46 to total 4EBP1, a downstream mediator of AKT1, did not differ between CON and CR. By contrast, protein lysates from CR LM contained less (P < 0.05) total glycogen synthase kinase-3β (GSK3β) and phosphorylated GSK3β than CON LM, suggesting blunted protein synthesis. Smaller CR LM fiber size associates with increased (P < 0.05) calpain 1 (CAPN1) activity coupled with lower (P < 0.05) expression of calpastatin, the endogenous inhibitor of CAPN1. Atrogin-1 and MuRF expression and autophagy components were unaffected by CR. Thus CR suppresses the hypertrophic PGC1α-4/IGF-1/AKT1 pathway while promoting activation of the calpain system.
Collapse
Affiliation(s)
- Yue Lu
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg Virginia; and
| | - Jennifer S Bradley
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg Virginia; and
| | - Sarah R McCoski
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg Virginia; and
| | - John M Gonzalez
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, Kansas
| | - Alan D Ealy
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg Virginia; and
| | - Sally E Johnson
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg Virginia; and
| |
Collapse
|
18
|
Ichige MHA, Pereira MG, Brum PC, Michelini LC. Experimental Evidences Supporting the Benefits of Exercise Training in Heart Failure. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 999:181-206. [PMID: 29022264 DOI: 10.1007/978-981-10-4307-9_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Heart Failure (HF), a common end point for many cardiovascular diseases, is a syndrome with a very poor prognosis. Although clinical trials in HF have achieved important outcomes in reducing mortality, little is known about functional mechanisms conditioning health improvement in HF patients. In parallel with clinical studies, basic science has been providing important discoveries to understand the mechanisms underlying the pathophysiology of HF, as well as to identify potential targets for the treatment of this syndrome. In spite of being the end-point of cardiovascular derangements caused by different etiologies, autonomic dysfunction, sympathetic hyperactivity, oxidative stress, inflammation and hormonal activation are common factors involved in the progression of this syndrome. Together these causal factors create a closed link between three important organs: brain, heart and the skeletal muscle. In the past few years, we and other groups have studied the beneficial effects of aerobic exercise training as a safe therapy to avoid the progression of HF. As summarized in this chapter, exercise training, a non-pharmacological tool without side effects, corrects most of the HF-induced neurohormonal and local dysfunctions within the brain, heart and skeletal muscles. These adaptive responses reverse oxidative stress, reduce inflammation, ameliorate neurohormonal control and improve both cardiovascular and skeletal muscle function, thus increasing the quality of life and reducing patients' morbimortality.
Collapse
Affiliation(s)
- Marcelo H A Ichige
- Department of Physiology & Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Marcelo G Pereira
- Department of Biodynamics of Human Body Movement, School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil
| | - Patrícia C Brum
- Department of Biodynamics of Human Body Movement, School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil. .,National Institute for Science & Technology - INCT (In)activity & Exercise, CNPq - Niterói (RJ), Rio de Janeiro, Brazil.
| | - Lisete C Michelini
- Department of Physiology & Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil.,National Institute for Science & Technology - INCT (In)activity & Exercise, CNPq - Niterói (RJ), Rio de Janeiro, Brazil
| |
Collapse
|
19
|
Exercise Training Promotes Functional Recovery after Spinal Cord Injury. Neural Plast 2016; 2016:4039580. [PMID: 28050288 PMCID: PMC5168470 DOI: 10.1155/2016/4039580] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/21/2016] [Accepted: 11/03/2016] [Indexed: 11/17/2022] Open
Abstract
The exercise training is an effective therapy for spinal cord injury which has been applied to clinic. Traditionally, the exercise training has been considered to improve spinal cord function only through enhancement, compensation, and replacement of the remaining function of nerve and muscle. Recently, accumulating evidences indicated that exercise training can improve the function in different levels from end-effector organ such as skeletal muscle to cerebral cortex through reshaping skeletal muscle structure and muscle fiber type, regulating physiological and metabolic function of motor neurons in the spinal cord and remodeling function of the cerebral cortex. We compiled published data collected in different animal models and clinical studies into a succinct review of the current state of knowledge.
Collapse
|
20
|
Abstract
Skeletal muscle and bone rely on a number of growth factors to undergo development, modulate growth, and maintain physiological strength. A major player in these actions is insulin-like growth factor I (IGF-I). However, because this growth factor can directly enhance muscle mass and bone density, it alters the state of the musculoskeletal system indirectly through mechanical crosstalk between these two organ systems. Thus, there are clearly synergistic actions of IGF-I that extend beyond the direct activity through its receptor. This review will cover the production and signaling of IGF-I as it pertains to muscle and bone, the chemical and mechanical influences that arise from IGF-I activity, and the potential for therapeutic strategies based on IGF-I. This article is part of a Special Issue entitled "Muscle Bone Interactions".
Collapse
|
21
|
Aerobic Exercise and Pharmacological Therapies for Skeletal Myopathy in Heart Failure: Similarities and Differences. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:4374671. [PMID: 26904163 PMCID: PMC4745416 DOI: 10.1155/2016/4374671] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 09/29/2015] [Indexed: 12/20/2022]
Abstract
Skeletal myopathy has been identified as a major comorbidity of heart failure (HF) affecting up to 20% of ambulatory patients leading to shortness of breath, early fatigue, and exercise intolerance. Neurohumoral blockade, through the inhibition of renin angiotensin aldosterone system (RAS) and β-adrenergic receptor blockade (β-blockers), is a mandatory pharmacological therapy of HF since it reduces symptoms, mortality, and sudden death. However, the effect of these drugs on skeletal myopathy needs to be clarified, since exercise intolerance remains in HF patients optimized with β-blockers and inhibitors of RAS. Aerobic exercise training (AET) is efficient in counteracting skeletal myopathy and in improving functional capacity and quality of life. Indeed, AET has beneficial effects on failing heart itself despite being of less magnitude compared with neurohumoral blockade. In this way, AET should be implemented in the care standards, together with pharmacological therapies. Since both neurohumoral inhibition and AET have a direct and/or indirect impact on skeletal muscle, this review aims to provide an overview of the isolated effects of these therapeutic approaches in counteracting skeletal myopathy in HF. The similarities and dissimilarities of neurohumoral inhibition and AET therapies are also discussed to identify potential advantageous effects of these combined therapies for treating HF.
Collapse
|
22
|
Bikle DD, Tahimic C, Chang W, Wang Y, Philippou A, Barton ER. Role of IGF-I signaling in muscle bone interactions. Bone 2015; 80:79-88. [PMID: 26453498 PMCID: PMC4600536 DOI: 10.1016/j.bone.2015.04.036] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 04/11/2015] [Accepted: 04/22/2015] [Indexed: 12/16/2022]
Abstract
Skeletal muscle and bone rely on a number of growth factors to undergo development, modulate growth, and maintain physiological strength. A major player in these actions is insulin-like growth factor I (IGF-I). However, because this growth factor can directly enhance muscle mass and bone density, it alters the state of the musculoskeletal system indirectly through mechanical crosstalk between these two organ systems. Thus, there are clearly synergistic actions of IGF-I that extend beyond the direct activity through its receptor. This review will cover the production and signaling of IGF-I as it pertains to muscle and bone, the chemical and mechanical influences that arise from IGF-I activity, and the potential for therapeutic strategies based on IGF-I. This article is part of a Special Issue entitled "Muscle Bone Interactions".
Collapse
Affiliation(s)
- Daniel D Bikle
- VA Medical Center and University of California San Francisco, San Francisco, CA, USA
| | - Candice Tahimic
- VA Medical Center and University of California San Francisco, San Francisco, CA, USA
| | - Wenhan Chang
- VA Medical Center and University of California San Francisco, San Francisco, CA, USA
| | - Yongmei Wang
- VA Medical Center and University of California San Francisco, San Francisco, CA, USA
| | - Anastassios Philippou
- National and Kapodistrian University of Athens, Department of Physiology, Medical School, Goudi-Athens, Greece
| | - Elisabeth R Barton
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
23
|
Feng R, Ma X, Ma J, Jia H, Ma B, Xu L, Liu A. Positive effect of IGF-1 injection on gastrocnemius of rat during distraction osteogenesis. J Orthop Res 2015; 33:1424-32. [PMID: 25452218 DOI: 10.1002/jor.22796] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 01/27/2015] [Indexed: 02/04/2023]
Abstract
Distraction osteogenesis (DO) is used to form new bone between bone segments to lengthen the callus. Skeletal muscles frequently fail to adapt to distraction, which causes complications. Insulin-like growth factor-1 (IGF-1) has been implicated as a central regulator of muscle repair. We hypothesized that IGF-1 injection could reduce muscle complications in DO. A total of 102 Sprague-Dawley rats received DO or did not were randomly assigned into saline, IGF-1 and normal groups. On the day before the distraction, the rats in the IGF-1 group were injected with IGF-1. The gastrocnemius muscles of the rats were harvested at the 0, 1st, 4th, 7th, and 10th days of distraction. The weight of the muscles, cross-sectional area (CSA) of the muscle fibers, collagen volume fraction (CVF), maximum limit load (MLL), maximum contraction forces, and gene expression of Akt, MyoD, myogenin, myostatin, and collagen I were analyzed. The results indicated that IGF-1 injection had increased the weights, CSA of the muscle fibers, MLL and force generation of the gastrocnemius. Also, Akt, MyoD, and myogenin were upregulated, and myostatin was downregulated in the IGF-1 group. Injection of IGF-1 could attenuate the gastrocnemius atrophy, prevent fibrosis, increase MLL, and regulate the related mRNA.
Collapse
Affiliation(s)
- Rui Feng
- Biomechanics Labs of Orthopaedics Research Institute, Tianjin Hospital Heping Branch, 122 Munan Street, Heping District, Tianjin, 300050, China.,Tianjin Medical University, No. 22 Qixiangtai Street, Heping District, Tianjin, 300052, China
| | - Xinlong Ma
- Biomechanics Labs of Orthopaedics Research Institute, Tianjin Hospital Heping Branch, 122 Munan Street, Heping District, Tianjin, 300050, China
| | - Jianxiong Ma
- Biomechanics Labs of Orthopaedics Research Institute, Tianjin Hospital Heping Branch, 122 Munan Street, Heping District, Tianjin, 300050, China
| | - Haobo Jia
- Biomechanics Labs of Orthopaedics Research Institute, Tianjin Hospital Heping Branch, 122 Munan Street, Heping District, Tianjin, 300050, China.,Tianjin Medical University, No. 22 Qixiangtai Street, Heping District, Tianjin, 300052, China
| | - Baoyi Ma
- Biomechanics Labs of Orthopaedics Research Institute, Tianjin Hospital Heping Branch, 122 Munan Street, Heping District, Tianjin, 300050, China
| | - Liyan Xu
- Biomechanics Labs of Orthopaedics Research Institute, Tianjin Hospital Heping Branch, 122 Munan Street, Heping District, Tianjin, 300050, China.,Tianjin Medical University, No. 22 Qixiangtai Street, Heping District, Tianjin, 300052, China
| | - Aifeng Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, No. 314, Anshan Road, Nankai District, Tianjin, 300193, China
| |
Collapse
|
24
|
Biressi S, Gopinath SD. The quasi-parallel lives of satellite cells and atrophying muscle. Front Aging Neurosci 2015; 7:140. [PMID: 26257645 PMCID: PMC4510774 DOI: 10.3389/fnagi.2015.00140] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 07/06/2015] [Indexed: 12/25/2022] Open
Abstract
Skeletal muscle atrophy or wasting accompanies various chronic illnesses and the aging process, thereby reducing muscle function. One of the most important components contributing to effective muscle repair in postnatal organisms, the satellite cells (SCs), have recently become the focus of several studies examining factors participating in the atrophic process. We critically examine here the experimental evidence linking SC function with muscle loss in connection with various diseases as well as aging, and in the subsequent recovery process. Several recent reports have investigated the changes in SCs in terms of their differentiation and proliferative capacity in response to various atrophic stimuli. In this regard, we review the molecular changes within SCs that contribute to their dysfunctional status in atrophy, with the intention of shedding light on novel potential pharmacological targets to counteract the loss of muscle mass.
Collapse
Affiliation(s)
- Stefano Biressi
- Dulbecco Telethon Institute and Centre for Integrative Biology (CIBIO), University of TrentoTrento, Italy
| | | |
Collapse
|
25
|
Philippou A, Barton ER. Optimizing IGF-I for skeletal muscle therapeutics. Growth Horm IGF Res 2014; 24:157-163. [PMID: 25002025 PMCID: PMC4665094 DOI: 10.1016/j.ghir.2014.06.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 06/09/2014] [Indexed: 12/13/2022]
Abstract
It is virtually undisputed that IGF-I promotes cell growth and survival. However, the presence of several IGF-I isoforms, vast numbers of intracellular signaling components, and multiple receptors results in a complex and highly regulated system by which IGF-I actions are mediated. IGF-I has long been recognized as one of the critical factors for coordinating muscle growth, enhancing muscle repair, and increasing muscle mass and strength. How to optimize this panoply of pathways to drive anabolic processes in muscle as opposed to aberrant growth in other tissues is an area that deserves focus. This review will address how advances in the bioavailability, potency, and tissue response of IGF-I can provide new potential directions for skeletal muscle therapeutics.
Collapse
Affiliation(s)
- Anastassios Philippou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Elisabeth R Barton
- Department of Anatomy and Cell Biology, School of Dental Medicine, and Pennsylvania Muscle Institute, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
26
|
Matthews CC, Lovering RM, Bowen TG, Fishman PS. Tetanus toxin preserves skeletal muscle contractile force and size during limb immobilization. Muscle Nerve 2014; 50:759-66. [DOI: 10.1002/mus.24231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 02/19/2014] [Accepted: 02/27/2014] [Indexed: 01/09/2023]
Affiliation(s)
- Christopher C. Matthews
- Research Service, VA Maryland Health Care System; 10 North Greene Street Baltimore Maryland 21201 USA
- Department of Neurology; School of Medicine, University of Maryland; Baltimore Maryland USA
| | - Richard M. Lovering
- Department of Orthopaedics; School of Medicine, University of Maryland; Baltimore Maryland USA
| | - Thomas G. Bowen
- Research Service, VA Maryland Health Care System; 10 North Greene Street Baltimore Maryland 21201 USA
| | - Paul S. Fishman
- Research Service, VA Maryland Health Care System; 10 North Greene Street Baltimore Maryland 21201 USA
- Department of Neurology; School of Medicine, University of Maryland; Baltimore Maryland USA
| |
Collapse
|
27
|
Ye F, McCoy SC, Ross HH, Bernardo JA, Beharry AW, Senf SM, Judge AR, Beck DT, Conover CF, Cannady DF, Smith BK, Yarrow JF, Borst SE. Transcriptional regulation of myotrophic actions by testosterone and trenbolone on androgen-responsive muscle. Steroids 2014; 87:59-66. [PMID: 24928725 PMCID: PMC8396102 DOI: 10.1016/j.steroids.2014.05.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Revised: 05/23/2014] [Accepted: 05/27/2014] [Indexed: 12/31/2022]
Abstract
Androgens regulate body composition and skeletal muscle mass in males, but the molecular mechanisms are not fully understood. Recently, we demonstrated that trenbolone (a potent synthetic testosterone analogue that is not a substrate for 5-alpha reductase or for aromatase) induces myotrophic effects in skeletal muscle without causing prostate enlargement, which is in contrast to the known prostate enlarging effects of testosterone. These previous results suggest that the 5α-reduction of testosterone is not required for myotrophic action. We now report differential gene expression in response to testosterone versus trenbolone in the highly androgen-sensitive levator ani/bulbocavernosus (LABC) muscle complex of the adult rat after 6weeks of orchiectomy (ORX), using real time PCR. The ORX-induced expression of atrogenes (Muscle RING-finger protein-1 [MuRF1] and atrogin-1) was suppressed by both androgens, with trenbolone producing a greater suppression of atrogin-1 mRNA compared to testosterone. Both androgens elevated expression of anabolic genes (insulin-like growth factor-1 and mechano-growth factor) after ORX. ORX-induced increases in expression of glucocorticoid receptor (GR) mRNA were suppressed by trenbolone treatment, but not testosterone. In ORX animals, testosterone promoted WNT1-inducible-signaling pathway protein 2 (WISP-2) gene expression while trenbolone did not. Testosterone and trenbolone equally enhanced muscle regeneration as shown by increases in LABC mass and in protein expression of embryonic myosin by western blotting. In addition, testosterone increased WISP-2 protein levels. Together, these findings identify specific mechanisms by which testosterone and trenbolone may regulate skeletal muscle maintenance and growth.
Collapse
Affiliation(s)
- Fan Ye
- Geriatric Research, Education and Clinical Center, VA Medical Center, Gainesville, FL, United States; Applied Physiology & Kinesiology, University of Florida, Gainesville, FL, United States.
| | - Sean C McCoy
- Rural Health, VA Medical Center, Gainesville, FL, United States; Animal Sciences, University of Florida, Gainesville, FL, United States
| | - Heather H Ross
- Physical Therapy, University of Florida, Gainesville, FL, United States
| | - Joseph A Bernardo
- Physical Therapy, University of Florida, Gainesville, FL, United States
| | - Adam W Beharry
- Physical Therapy, University of Florida, Gainesville, FL, United States
| | - Sarah M Senf
- Physical Therapy, University of Florida, Gainesville, FL, United States
| | - Andrew R Judge
- Physical Therapy, University of Florida, Gainesville, FL, United States
| | - Darren T Beck
- Geriatric Research, Education and Clinical Center, VA Medical Center, Gainesville, FL, United States
| | - Christine F Conover
- Geriatric Research, Education and Clinical Center, VA Medical Center, Gainesville, FL, United States
| | - Darryl F Cannady
- Geriatric Research, Education and Clinical Center, VA Medical Center, Gainesville, FL, United States
| | - Barbara K Smith
- Physical Therapy, University of Florida, Gainesville, FL, United States
| | - Joshua F Yarrow
- Applied Physiology & Kinesiology, University of Florida, Gainesville, FL, United States; Research, VA Medical Center, Gainesville, FL, United States
| | - Stephen E Borst
- Geriatric Research, Education and Clinical Center, VA Medical Center, Gainesville, FL, United States; Applied Physiology & Kinesiology, University of Florida, Gainesville, FL, United States
| |
Collapse
|
28
|
KATAOKA H, NAKANO J, MORIMOTO Y, HONDA Y, SAKAMOTO J, ORIGUCHI T, OKITA M, YOSHIMURA T. Hyperglycemia Inhibits Recovery From Disuse-Induced Skeletal Muscle Atrophy in Rats. Physiol Res 2014; 63:465-74. [DOI: 10.33549/physiolres.932687] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The purpose of this study was to evaluate the effects of hyperglycemia on skeletal muscle recovery following disuse-induced muscle atrophy in rats. Wistar rats were grouped as streptozotocin-induced diabetic rats and non-diabetic rats. Both ankle joints of each rat were immobilized to induce atrophy of the gastrocnemius muscles. After two weeks of immobilization and an additional two weeks of recovery, tail blood and gastrocnemius muscles were isolated. Serial cross sections of muscles were stained for myosin ATPase (pH 4.5) and alkaline phosphatase activity. Serum insulin and muscle insulin-like growth factor-1 (IGF-1) levels were also measured. Serum insulin levels were significantly reduced in the diabetic rats compared to the non-diabetic controls. The diameters of type I, IIa, and IIb myofibers and capillary-to-myofiber ratio in the isolated muscle tissue were decreased after immobilization in both treatments. During the recovery period, these parameters were restored in the non-diabetic rats, but not in the diabetic rats. In addition, muscle IGF-1 levels after recovery increased significantly in the non-diabetic rats, but not in the diabetic rats. We conclude that decreased levels of insulin and IGF-1 and impairment of angiogenesis associated with diabetes might be partly responsible for the inhibition of regrowth in diabetic muscle.
Collapse
Affiliation(s)
| | - J. NAKANO
- Unit of Physical Therapy and Occupational Therapy Sciences, Nagasaki University Graduate School of Biomedical Sciences, Japan
| | | | | | | | | | | | | |
Collapse
|
29
|
Nagata K, Itaka K, Baba M, Uchida S, Ishii T, Kataoka K. Muscle-targeted hydrodynamic gene introduction of insulin-like growth factor-1 using polyplex nanomicelle to treat peripheral nerve injury. J Control Release 2014; 183:27-34. [DOI: 10.1016/j.jconrel.2014.03.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 03/02/2014] [Accepted: 03/10/2014] [Indexed: 10/25/2022]
|
30
|
Brooks NE, Myburgh KH. Skeletal muscle wasting with disuse atrophy is multi-dimensional: the response and interaction of myonuclei, satellite cells and signaling pathways. Front Physiol 2014; 5:99. [PMID: 24672488 PMCID: PMC3955994 DOI: 10.3389/fphys.2014.00099] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 02/27/2014] [Indexed: 12/25/2022] Open
Abstract
Maintenance of skeletal muscle is essential for health and survival. There are marked losses of skeletal muscle mass as well as strength and physiological function under conditions of low mechanical load, such as space flight, as well as ground based models such as bed rest, immobilization, disuse, and various animal models. Disuse atrophy is caused by mechanical unloading of muscle and this leads to reduced muscle mass without fiber attrition. Skeletal muscle stem cells (satellite cells) and myonuclei are integrally involved in skeletal muscle responses to environmental changes that induce atrophy. Myonuclear domain size is influenced differently in fast and slow twitch muscle, but also by different models of muscle wasting, a factor that is not yet understood. Although the myonuclear domain is 3-dimensional this is rarely considered. Apoptosis as a mechanism for myonuclear loss with atrophy is controversial, whereas cell death of satellite cells has not been considered. Molecular signals such as myostatin/SMAD pathway, MAFbx, and MuRF1 E3 ligases of the ubiquitin proteasome pathway and IGF1-AKT-mTOR pathway are 3 distinctly different contributors to skeletal muscle protein adaptation to disuse. Molecular signaling pathways activated in muscle fibers by disuse are rarely considered within satellite cells themselves despite similar exposure to unloading or low mechanical load. These molecular pathways interact with each other during atrophy and also when various interventions are applied that could alleviate atrophy. Re-applying mechanical load is an obvious method to restore muscle mass, however how nutrient supplementation (e.g., amino acids) may further enhance recovery (or reduce atrophy despite unloading or ageing) is currently of great interest. Satellite cells are particularly responsive to myostatin and to growth factors. Recently, the hibernating squirrel has been identified as an innovative model to study resistance to atrophy.
Collapse
Affiliation(s)
- Naomi E Brooks
- Health and Exercise Science Research Group, School of Sport, University of Stirling Stirling, UK
| | - Kathryn H Myburgh
- Muscle Research Group, Department of Physiological Sciences, Stellenbosch University Stellenbosch, South Africa
| |
Collapse
|
31
|
Park S, Brisson BK, Liu M, Spinazzola JM, Barton ER. Mature IGF-I excels in promoting functional muscle recovery from disuse atrophy compared with pro-IGF-IA. J Appl Physiol (1985) 2013; 116:797-806. [PMID: 24371018 DOI: 10.1152/japplphysiol.00955.2013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Prolonged disuse of skeletal muscle results in atrophy, and once physical activity is resumed, there is increased susceptibility to injury. Insulin-like growth factor-I (IGF-I) is considered a potential therapeutic target to attenuate atrophy during unloading and to enhance rehabilitation upon reloading of skeletal muscles, due to its multipronged actions on satellite cell proliferation, differentiation, and survival, as well as its actions on muscle fibers to boost protein synthesis and inhibit protein degradation. However, the form of IGF-I delivered may alter the success of treatment. Using the hindlimb suspension model of disuse atrophy, we compared the efficacy of two IGF-I forms in protection against atrophy and enhancement of recovery: mature IGF-I (IGF-IS) lacking the COOH-terminal extension, called the E-peptide, and IGF-IA, which is the predominant form retaining the E-peptide. Self-complementary adeno-associated virus harboring the murine Igf1 cDNA constructs were delivered to hindlimbs of adult female C57BL6 mice 3 days prior to hindlimb suspension. Hindlimb muscles were unloaded for 7 days and then reloaded for 3, 7, and 14 days. Loss of muscle mass following suspension was not prevented by either IGF-I construct. However, IGF-IS expression maintained soleus muscle force production. Further, IGF-IS treatment caused rapid recovery of muscle fiber morphology during reloading and maintained muscle strength. Analysis of gene expression revealed that IGF-IS expression accelerated the downregulation of atrophy-related genes compared with untreated or IGF-IA-treated samples. We conclude that mature-IGF-I may be a better option than pro-IGF-IA to promote skeletal muscle recovery following disuse atrophy.
Collapse
Affiliation(s)
- Soohyun Park
- Department of Anatomy and Cell Biology, School of Dental Medicine
| | | | | | | | | |
Collapse
|
32
|
Yoshida T, Tabony AM, Galvez S, Mitch WE, Higashi Y, Sukhanov S, Delafontaine P. Molecular mechanisms and signaling pathways of angiotensin II-induced muscle wasting: potential therapeutic targets for cardiac cachexia. Int J Biochem Cell Biol 2013; 45:2322-32. [PMID: 23769949 DOI: 10.1016/j.biocel.2013.05.035] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 05/28/2013] [Accepted: 05/29/2013] [Indexed: 02/07/2023]
Abstract
Cachexia is a serious complication of many chronic diseases, such as congestive heart failure (CHF) and chronic kidney disease (CKD). Many factors are involved in the development of cachexia, and there is increasing evidence that angiotensin II (Ang II), the main effector molecule of the renin-angiotensin system (RAS), plays an important role in this process. Patients with advanced CHF or CKD often have increased Ang II levels and cachexia, and angiotensin-converting enzyme (ACE) inhibitor treatment improves weight loss. In rodent models, an increase in systemic Ang II leads to weight loss through increased protein breakdown, reduced protein synthesis in skeletal muscle and decreased appetite. Ang II activates the ubiquitin-proteasome system via generation of reactive oxygen species and via inhibition of the insulin-like growth factor-1 signaling pathway. Furthermore, Ang II inhibits 5' AMP-activated protein kinase (AMPK) activity and disrupts normal energy balance. Ang II also increases cytokines and circulating hormones such as tumor necrosis factor-α, interleukin-6, serum amyloid-A, glucocorticoids and myostatin, which regulate muscle protein synthesis and degradation. Ang II acts on hypothalamic neurons to regulate orexigenic/anorexigenic neuropeptides, such as neuropeptide-Y, orexin and corticotropin-releasing hormone, leading to reduced appetite. Also, Ang II may regulate skeletal muscle regenerative processes. Several clinical studies have indicated that blockade of Ang II signaling via ACE inhibitors or Ang II type 1 receptor blockers prevents weight loss and improves muscle strength. Thus the RAS is a promising target for the treatment of muscle atrophy in patients with CHF and CKD. This article is part of a Directed Issue entitled: Molecular basis of muscle wasting.
Collapse
Affiliation(s)
- Tadashi Yoshida
- Heart and Vascular Institute, Tulane University School of Medicine, New Orleans, LA, United States
| | | | | | | | | | | | | |
Collapse
|
33
|
Durzyńska J, Philippou A, Brisson BK, Nguyen-McCarty M, Barton ER. The pro-forms of insulin-like growth factor I (IGF-I) are predominant in skeletal muscle and alter IGF-I receptor activation. Endocrinology 2013; 154:1215-24. [PMID: 23407451 PMCID: PMC3578996 DOI: 10.1210/en.2012-1992] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IGF-I is a key regulator of muscle development and growth. The pre-pro-peptide produced by the Igf1gene undergoes several posttranslational processing steps to result in a secreted mature protein, which is thought to be the obligate ligand for the IGF-I receptor (IGF-IR). The goals of this study were to determine what forms of IGF-I exist in skeletal muscle, and whether the mature IGF-I protein was the only form able to activate the IGF-IR. We measured the proportion of IGF-I species in murine skeletal muscle and found that the predominant forms were nonglycosylated pro-IGF-I and glycosylated pro-IGF-I, which retained the C-terminal E peptide extension, instead of mature IGF-I. These forms were validated using samples subjected to viral expression of IGF-I combined with furin and glycosidase digestion. To determine whether the larger molecular weight IGF-I forms were also ligands for the IGF-IR, we generated each specific form through transient transfection of 3T3 cells and used the enriched media to perform kinase receptor activation assays. Compared with mature IGF-I, nonglycosylated pro-IGF-I had similar ability to activate the IGF-IR, whereas glycosylation of pro-IGF-I significantly reduced receptor activation. Thus, it is important to understand not only the quantity, but also the proportion of IGF-I forms produced, to evaluate the true biological activity of this growth factor.
Collapse
Affiliation(s)
- Julia Durzyńska
- Department of Anatomy and Cell Biology, School of Dental Medicine, and Pennsylvania Muscle Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
34
|
Ye F, Baligand C, Keener JE, Vohra R, Lim W, Ruhella A, Bose P, Daniels M, Walter GA, Thompson F, Vandenborne K. Hindlimb muscle morphology and function in a new atrophy model combining spinal cord injury and cast immobilization. J Neurotrauma 2013; 30:227-35. [PMID: 22985272 DOI: 10.1089/neu.2012.2504] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Contusion spinal cord injury (SCI) animal models are used to study loss of muscle function and mass. However, parallels to the human condition typically have been confounded by spontaneous recovery observed within the first few post-injury weeks, partly because of free cage activity. We implemented a new rat model combining SCI with cast immobilization (IMM) to more closely reproduce the unloading conditions experienced by SCI patients. Magnetic resonance imaging was used to monitor hindlimb muscles' cross-sectional area (CSA) after SCI, IMM alone, SCI combined with IMM (SCI+IMM), and in controls (CTR) over a period of 21 days. Soleus muscle tetanic force was measured in situ on day 21, and hindlimb muscles were harvested for histology. IMM alone produced a decrease in triceps surae CSA to 63.9±4.9% of baseline values within 14 days. In SCI, CSA decreased to 75.0±10.5% after 7 days, and recovered to 77.9±10.7% by day 21. SCI+IMM showed the greatest amount of atrophy (56.9±9.9% on day 21). In all groups, muscle mass and soleus tetanic force decreased in parallel, such that specific force was maintained. Extensor digitorum longus (EDL) and soleus fiber size decreased in all groups, particularly in SCI+IMM. We observed a significant degree of asymmetry in muscle CSA in SCI but not IMM. This effect increased between day 7 and 21 in SCI, but also in SCI+IMM, suggesting a minor dependence on muscle activity. SCI+IMM offers a clinically relevant model of SCI to investigate the mechanistic basis for skeletal muscle adaptations after SCI and develop therapeutic approaches.
Collapse
Affiliation(s)
- Fan Ye
- Department of Physical Therapy, University of Florida, Gainesville, FL 32610, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Ye F, Mathur S, Liu M, Borst SE, Walter GA, Sweeney HL, Vandenborne K. Overexpression of insulin-like growth factor-1 attenuates skeletal muscle damage and accelerates muscle regeneration and functional recovery after disuse. Exp Physiol 2013; 98:1038-52. [PMID: 23291913 DOI: 10.1113/expphysiol.2012.070722] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Skeletal muscle is a highly dynamic tissue that responds to endogenous and external stimuli, including alterations in mechanical loading and growth factors. In particular, the antigravity soleus muscle experiences significant muscle atrophy during disuse and extensive muscle damage upon reloading. Given that insulin-like growth factor-1 (IGF-1) has been implicated as a central regulator of muscle repair and modulation of muscle size, we examined the effect of virally mediated overexpression of IGF-1 on the soleus muscle following hindlimb cast immobilization and upon reloading. Recombinant IGF-1 cDNA virus was injected into one of the posterior hindlimbs of the mice, while the contralateral limb was injected with saline (control). At 20 weeks of age, both hindlimbs were immobilized for 2 weeks to induce muscle atrophy in the soleus and ankle plantarflexor muscle group. Subsequently, the mice were allowed to reambulate, and muscle damage and recovery were monitored over a period of 2-21 days. The primary finding of this study was that IGF-1 overexpression attenuated reloading-induced muscle damage in the soleus muscle, and accelerated muscle regeneration and force recovery. Muscle T2 assessed by magnetic resonance imaging, a non-specific marker of muscle damage, was significantly lower in IGF-1-injected compared with contralateral soleus muscles at 2 and 5 days reambulation (P<0.05). The reduced prevalence of muscle damage in IGF-1-injected soleus muscles was confirmed on histology, with a lower fractional area of abnormal muscle tissue in IGF-1-injected muscles at 2 days reambulation (33.2±3.3 versus 54.1±3.6%, P<0.05). Evidence of the effect of IGF-1 on muscle regeneration included timely increases in the number of central nuclei (21% at 5 days reambulation), paired-box transcription factor 7 (36% at 5 days), embryonic myosin (37% at 10 days) and elevated MyoD mRNA (7-fold at 2 days) in IGF-1-injected limbs (P<0.05). These findings demonstrate a potential role of IGF-1 in protecting unloaded skeletal muscles from damage and accelerating muscle repair and regeneration.
Collapse
Affiliation(s)
- Fan Ye
- Department of Physical Therapy, PO Box 100154, Room 1142, PHHP Building, University of Florida, Gainesville, FL 32610, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Pansters NA, Langen RC, Wouters EF, Schols AM. Synergistic stimulation of myogenesis by glucocorticoid and IGF-I signaling. J Appl Physiol (1985) 2012; 114:1329-39. [PMID: 22936724 DOI: 10.1152/japplphysiol.00503.2012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Muscle wasting is associated with poor prognosis in chronic obstructive pulmonary disease (COPD). Exercise stimulates muscle recovery, but its efficacy is variable, depending on the clinical condition and medical treatment. Systemic glucocorticoids, commonly administered in high doses during acute disease exacerbations or as maintenance treatment in end-stage disease, are known to contribute to muscle wasting. As muscle mass recovery involves insulin-like growth factor (IGF)-I signaling, which can be stimulated by anabolic steroids, the impact of glucocorticoids and the effect of simultaneous IGF-I stimulation by anabolic steroids on muscle recovery and growth were investigated. The effects of, and interactions between, glucocorticoid and IGF-I signaling on skeletal muscle growth were assessed in differentiating C2C12 myocytes. As proof of principle, we performed a post hoc analysis stratifying patients by glucocorticoid use of a clinical trial investigating the efficacy of anabolic steroid supplementation on muscle recovery in muscle-wasted patients with COPD. Glucocorticoids strongly impaired protein synthesis signaling, myotube formation, and muscle-specific protein expression. In contrast, in the presence of glucocorticoids, IGF-I synergistically stimulated myotube fusion and myofibrillar protein expression, which corresponded with restored protein synthesis signaling by IGF-I and increased transcriptional activation of muscle-specific genes by glucocorticoids. In COPD patients on maintenance glucocorticoid treatment, the clinical trial also revealed an enhanced effect of anabolic steroids on muscle mass and respiratory muscle strength. In conclusion, synergistic effects of anabolic steroids and glucocorticoids on muscle recovery may be caused by relief of the glucocorticoid-imposed blockade on protein synthesis signaling, allowing effective translation of glucocorticoid-induced accumulation of muscle-specific gene transcripts.
Collapse
Affiliation(s)
- N A Pansters
- Department of Respiratory Medicine, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Centre, Maastricht, the Netherlands
| | | | | | | |
Collapse
|
37
|
Lang SM, Kazi AA, Hong-Brown L, Lang CH. Delayed recovery of skeletal muscle mass following hindlimb immobilization in mTOR heterozygous mice. PLoS One 2012; 7:e38910. [PMID: 22745686 PMCID: PMC3382153 DOI: 10.1371/journal.pone.0038910] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 05/14/2012] [Indexed: 01/06/2023] Open
Abstract
The present study addressed the hypothesis that reducing mTOR, as seen in mTOR heterozygous (+/−) mice, would exaggerate the changes in protein synthesis and degradation observed during hindlimb immobilization as well as impair normal muscle regrowth during the recovery period. Atrophy was produced by unilateral hindlimb immobilization and data compared to the contralateral gastrocnemius. In wild-type (WT) mice, the gradual loss of muscle mass plateaued by day 7. This response was associated with a reduction in basal protein synthesis and development of leucine resistance. Proteasome activity was consistently elevated, but atrogin-1 and MuRF1 mRNAs were only transiently increased returning to basal values by day 7. When assessed 7 days after immobilization, the decreased muscle mass and protein synthesis and increased proteasome activity did not differ between WT and mTOR+/− mice. Moreover, the muscle inflammatory cytokine response did not differ between groups. After 10 days of recovery, WT mice showed no decrement in muscle mass, and this accretion resulted from a sustained increase in protein synthesis and a normalization of proteasome activity. In contrast, mTOR+/− mice failed to fully replete muscle mass at this time, a defect caused by the lack of a compensatory increase in protein synthesis. The delayed muscle regrowth of the previously immobilized muscle in the mTOR+/− mice was associated with a decreased raptor•4EBP1 and increased raptor•Deptor binding. Slowed regrowth was also associated with a sustained inflammatory response (e.g., increased TNFα and CD45 mRNA) during the recovery period and a failure of IGF-I to increase as in WT mice. These data suggest mTOR is relatively more important in regulating the accretion of muscle mass during recovery than the loss of muscle during the atrophy phase, and that protein synthesis is more sensitive than degradation to the reduction in mTOR during muscle regrowth.
Collapse
Affiliation(s)
- Susan M. Lang
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Abid A. Kazi
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Ly Hong-Brown
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Charles H. Lang
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
38
|
Frost RA, Lang CH. Multifaceted role of insulin-like growth factors and mammalian target of rapamycin in skeletal muscle. Endocrinol Metab Clin North Am 2012; 41:297-322, vi. [PMID: 22682632 PMCID: PMC3376019 DOI: 10.1016/j.ecl.2012.04.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
This review describes the current literature on the interaction between insulin-like growth factors, endocrine hormones, and branched-chain amino acids on muscle physiology in healthy young individuals and during select pathologic conditions. Emphasis is placed on the mechanism by which physical and hormonal signals are transduced at the cellular level to either grow or atrophy skeletal muscle. The key role of the mammalian target of rapamycin and its ability to respond to hypertrophic and atrophic signals informs our understanding how a combination of physical, nutritional, and pharmacologic therapies may be used in tandem to prevent or ameliorate reductions in muscle mass.
Collapse
Affiliation(s)
- Robert A. Frost
- Associate Professor, Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey PA, 17033
- Professor and Vice Chairman, Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey PA, 17033
| | - Charles H. Lang
- Associate Professor, Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey PA, 17033
| |
Collapse
|
39
|
Jayaraman A, Liu M, Ye F, Walter GA, Vandenborne K. Regenerative responses in slow- and fast-twitch muscles following moderate contusion spinal cord injury and locomotor training. Eur J Appl Physiol 2012; 113:191-200. [DOI: 10.1007/s00421-012-2429-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 05/15/2012] [Indexed: 11/30/2022]
|
40
|
Heinemeier KM, Mackey AL, Doessing S, Hansen M, Bayer ML, Nielsen RH, Herchenhan A, Malmgaard-Clausen NM, Kjaer M. GH/IGF-I axis and matrix adaptation of the musculotendinous tissue to exercise in humans. Scand J Med Sci Sports 2012; 22:e1-7. [PMID: 22429205 DOI: 10.1111/j.1600-0838.2012.01459.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2012] [Indexed: 12/11/2022]
Abstract
Exercise is not only associated with adaptive responses within skeletal muscle fibers but also with induction of collagen synthesis both in muscle and adjacent connective tissue. Additionally, exercise and training leads to activation of the systemic growth hormone/insulin-like growth factor I axis (GH/IGF-I), as well as increased local IGF-I expression. Studies in humans with pathologically high levels of GH/IGF-I, and in healthy humans who receive either weeks of GH administration or acute injection of IGF-I into connective tissue, demonstrate increased expression and synthesis of collagen in muscle and tendon. These observations support a stimulatory effect of GH/IGF-I on the connective tissue in muscle and tendon, which appears far more potent than the effect on contractile proteins of skeletal muscle. However, GH/IGF-I may play an additional role in skeletal muscle by regulation of stem cells (satellite cells), as increased satellite cell numbers are found in human muscle with increased GH/IGF-I levels, despite no change in myofibrillar protein synthesis. Although advanced age is associated with both a reduction in the GH/IGF-I axis activity, and in skeletal muscle mass (sarcopenia) as well as in tendon connective tissue, there is no direct proof linking age-related changes in the musculotendinous tissue to an impaired GH/IGF-I axis.
Collapse
Affiliation(s)
- K M Heinemeier
- Institute of Sports Medicine, Department of Orthopedic Surgery M81, Bispebjerg Hospital, Copenhagen, Denmark.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
López-Menduiña M, Martín AI, Castillero E, Villanúa MA, López-Calderón A. Short-term growth hormone or IGF-I administration improves the IGF-IGFBP system in arthritic rats. Growth Horm IGF Res 2012; 22:22-29. [PMID: 22244673 DOI: 10.1016/j.ghir.2011.12.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 12/08/2011] [Accepted: 12/14/2011] [Indexed: 01/15/2023]
Abstract
OBJECTIVE Adjuvant-induced arthritis is an experimental model of rheumatoid arthritis that inhibits the GH-IGF-I axis and decreases body weight gain and muscle mass. Although chronic GH or IGF-I treatment increases body weight gain in arthritic rats, muscle resistance to GH and IGF-I is a very common complication in inflammatory diseases. In this study we examine the effect of short-term administration of rhGH and rhIGF-I on liver and muscle IGF-I, IGFBP-3 and -5 as well as on the ubiquitin-ligases MuRF1 and atrogin-1 in the muscle of arthritic rats. DESIGN Arthritis was induced in adult male Wistar rats by an intradermal injection of 4 mg of Freund's adjuvant. Fifteen days after adjuvant injection, 300 μg/kg of rhGH or 200 μg/kg of rhIGF or saline was administrated 18 and 3h before decapitation. A pair-fed group injected with saline was included in order to discard a possible effect of decreased food intake. Gene expression of IGF-I, GHR, IGFBP-3, IGFBP-5, atrogin-1 and MuRF1 were quantified using RT-PCR. In serum, IGF-I was measured by radioimmunoassay (RIA) and IGFBP-3 by ligand blot. RESULTS Arthritis decreased serum IGF-I and IGF mRNA in liver (P<0.05), but not in skeletal muscle. In arthritic rats, rhGH increased serum IGF-I and liver IGF-I mRNA similar to the levels of pair-fed rats. Arthritis increased atrogin-1, MuRF1, IGFBP-3 and IGFBP-5 mRNA in muscle (P<0.01). IGFBP-3 mRNA was downregulated by rhIGF-I, but not by rhGH, administration in control and arthritic rats (P<0.05). Administration of rhGH and rhIGF-I increased IGFBP-5 in the gastrocnemius of arthritic rats. CONCLUSIONS Short-term rhGH and rhIGF-I administration was found to increase muscle IGFBP-5 mRNA, whereas only rhIGF-I administration decreased muscle IGFBP-3 mRNA in control and arthritic rats. These data suggest that arthritis does not induce GH or IGF-I resistance in skeletal muscle.
Collapse
Affiliation(s)
- M López-Menduiña
- Department of Physiology, Faculty of Medicine, Complutense University, Avda. Complutense s/n. 28040 Madrid, Spain
| | | | | | | | | |
Collapse
|