1
|
Rulli SB, Ahtiainen P, Ratner LD, Jonas K, Calandra RS, Poutanen M, Huhtaniemi I. Elevated chorionic gonadotropic hormone in transgenic mice induces parthenogenetic activation and ovarian teratomas. Mol Cell Endocrinol 2024; 587:112214. [PMID: 38537882 DOI: 10.1016/j.mce.2024.112214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 02/25/2024] [Accepted: 03/19/2024] [Indexed: 04/13/2024]
Abstract
Both male and female reproductive functions are impacted by altered gonadotrophin secretion and action, which may also influence the development of endocrine tumours. To ascertain if chronic hypersecretion of human chorionic gonadotropin (hCG) contributes to the development of gonadal tumours, double transgenic (TG) mice that overexpress hCGα- and β-subunits were analysed. By the age of two months, ovarian tumours with characteristics of teratomas developed with 100% penetrance. Teratomas were also seen in wild-type ovaries orthotopically transplanted into TG mice, demonstrating an endocrine/paracrine mechanism for the hCG-induced ovarian tumorigenesis. Both in vitro and in vivo experiments showed oocyte parthenogenetic activation in TG females. In addition, ovaries showed reduced ovulatory gene expression, inhibited ERK1/2 phosphorylation, and impaired cumulus cell expansion. Hence, persistently high endocrine hCG activity causes parthenogenetic activation and development of ovarian teratomas, along with altered follicle development and impaired ERK1/2 signalling, offering a novel mechanism associated with the molecular pathogenesis of ovarian teratomas.
Collapse
Affiliation(s)
- Susana B Rulli
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Kiinamyllynkatu 10, FIN-20520, Turku, Finland; Instituto de Biología y Medicina Experimental-CONICET, Vuelta de Obligado 2490, 1428, Buenos Aires, Argentina; Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Hidalgo 775, C1405BCK, Ciudad Autónoma de Buenos Aires, Argentina.
| | - Petteri Ahtiainen
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Kiinamyllynkatu 10, FIN-20520, Turku, Finland
| | - Laura D Ratner
- Instituto de Biología y Medicina Experimental-CONICET, Vuelta de Obligado 2490, 1428, Buenos Aires, Argentina
| | - Kim Jonas
- Department of Digestion, Metabolism and Reproduction, Institute of Reproductive and Developmental Biology, Hammersmith Campus, Imperial College London, London, W12 0NN, UK; Department of Women and Children's Health, School of Population and Life Course Sciences, King's College London, London, SE1 1UL, UK
| | - Ricardo S Calandra
- Instituto de Biología y Medicina Experimental-CONICET, Vuelta de Obligado 2490, 1428, Buenos Aires, Argentina
| | - Matti Poutanen
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Kiinamyllynkatu 10, FIN-20520, Turku, Finland; Turku Center for Disease Modeling, University of Turku, Kiinamyllynkatu 10, FIN-20520, Turku, Finland
| | - Ilpo Huhtaniemi
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Kiinamyllynkatu 10, FIN-20520, Turku, Finland; Department of Digestion, Metabolism and Reproduction, Institute of Reproductive and Developmental Biology, Hammersmith Campus, Imperial College London, London, W12 0NN, UK
| |
Collapse
|
2
|
Marcial Lopez A, Ratner LD, Martinez CS, Di Giorgio N, Poutanen M, Huhtaniemi IT, Rulli SB. Persistently expressed human chorionic gonadotropin induces premature luteinization and progressive alterations on the reproductive axis in female mice. Gen Comp Endocrinol 2023; 336:114247. [PMID: 36858273 DOI: 10.1016/j.ygcen.2023.114247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023]
Abstract
The hypothalamic-pituitary-gonadal axis plays a fundamental role in the endocrine regulation of the reproductive function in mammals. Any change in the function of the participating hormones or their receptors can lead to alterations in sexual differentiation, the onset of puberty, infertility, cancer development, and other dysfunctions. In this study, we analyzed the influence of persistently elevated levels of the human chorionic gonadotropin hormone (hCG), a powerful agonist of pituitary luteinizing hormone (LH), on the reproductive axis of female mice. As a consequence of chronic hCG hypersecretion through a global expression of the hCGbeta-subunit in transgenic (TG) female mice, a series of events perturbed the prepubertal to juvenile transition. The imbalance in gonadotropin action was first manifested by precocious puberty and alterations in gonadal hormone production, with the consequent ovarian function disruption and infertility in adulthood. The expansion of cumulus cells in vivo and in vitro, ovulatory capacity, and gene expression of ovulation-related marker genes after hormone stimulation were normal in 3-week-old TG females. However, the expression of genes related to steroidogenesis and luteinization such as Lhcgr, Prlr, and the steroidogenic enzymes Cyp11a1, Cyp17a1, and Cyp19a1 were significantly elevated in the TG females. This study demonstrates that the excessive secretion of hCG in concert with high prolactin, induced premature luteinization, and enhanced ovarian steroidogenesis, as was shown by the up-regulation of luteal cell markers and progesterone synthesis in the TG mice. Furthermore, progressively impaired reproductive function of the TG females occurred from the peripubertal stage to adulthood, thus culminating in infertility.
Collapse
Affiliation(s)
- Agustina Marcial Lopez
- Instituto de Biología y Medicina Experimental-CONICET, Vuelta de Obligado 2490 (1428), Buenos Aires, Argentina
| | - Laura D Ratner
- Instituto de Biología y Medicina Experimental-CONICET, Vuelta de Obligado 2490 (1428), Buenos Aires, Argentina
| | - Carolina S Martinez
- Laboratorio de Bio-nanotecnología, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Grupo vinculado GBEyB, IMBICE-CONICET-CICPBA, Bernal, Argentina
| | - Noelia Di Giorgio
- Instituto de Biología y Medicina Experimental-CONICET, Vuelta de Obligado 2490 (1428), Buenos Aires, Argentina
| | - Matti Poutanen
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Kiinamyllynkatu 10, 20520 Turku, Finland; Turku Center for Disease Modeling, University of Turku, Kiinamyllynkatu 10, 20520 Turku, Finland
| | - Ilpo T Huhtaniemi
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Kiinamyllynkatu 10, 20520 Turku, Finland; Department of Metabolism, Digestion and Reproduction, Institute of Reproductive and Developmental Biology, Imperial College London, London W12 0NN, UK
| | - Susana B Rulli
- Instituto de Biología y Medicina Experimental-CONICET, Vuelta de Obligado 2490 (1428), Buenos Aires, Argentina.
| |
Collapse
|
3
|
Brown RSE, Khant Aung Z, Phillipps HR, Barad Z, Lein HJ, Boehm U, Szawka RE, Grattan DR. Acute Suppression of LH Secretion by Prolactin in Female Mice Is Mediated by Kisspeptin Neurons in the Arcuate Nucleus. Endocrinology 2019; 160:1323-1332. [PMID: 30901026 DOI: 10.1210/en.2019-00038] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 03/17/2019] [Indexed: 12/21/2022]
Abstract
Hyperprolactinemia causes infertility, but the specific mechanism is unknown. It is clear that elevated prolactin levels suppress pulsatile release of GnRH from the hypothalamus, with a consequent reduction in pulsatile LH secretion from the pituitary. Only a few GnRH neurons express prolactin receptors (Prlrs), however, and thus prolactin must act indirectly in the underlying neural circuitry. Here, we have tested the hypothesis that prolactin-induced inhibition of LH secretion is mediated by kisspeptin neurons, which provide major excitatory inputs to GnRH neurons. To evaluate pulsatile LH secretion, we collected serial blood samples from diestrous mice and measured LH levels by ultrasensitive ELISA. Acute prolactin administration decreased LH pulses in wild-type mice. Kisspeptin neurons in the arcuate nucleus and in the rostral periventricular area of the third ventricle (RP3V) acutely responded to prolactin, but prolactin-induced signaling in kisspeptin neurons was up to fourfold higher in the arcuate nucleus when compared with the RP3V. Consistent with this, conditional knockout of Prlr specifically in arcuate nucleus kisspeptin neurons prevented prolactin-induced suppression of LH secretion. Our data establish that during hyperprolactinemia, suppression of pulsatile LH secretion is mediated by Prlr on arcuate kisspeptin neurons.
Collapse
Affiliation(s)
- Rosemary S E Brown
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Zin Khant Aung
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Hollian R Phillipps
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Zsuzsanna Barad
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Hsin-Jui Lein
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Ulrich Boehm
- Experimental Pharmacology, Center for Molecular Signaling, Saarland University School of Medicine, Homburg, Germany
| | - Raphael E Szawka
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - David R Grattan
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| |
Collapse
|
4
|
Jonak CR, Lainez NM, Boehm U, Coss D. GnRH Receptor Expression and Reproductive Function Depend on JUN in GnRH Receptor‒Expressing Cells. Endocrinology 2018; 159:1496-1510. [PMID: 29409045 PMCID: PMC5839737 DOI: 10.1210/en.2017-00844] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 01/10/2018] [Indexed: 12/19/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) from the hypothalamus regulates synthesis and secretion of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) from the anterior pituitary gonadotropes. LH and FSH are heterodimers composed of a common α-subunit and unique β-subunits, which provide biological specificity and are limiting components of mature hormone synthesis. Gonadotrope cells respond to GnRH via specific expression of the GnRH receptor (Gnrhr). GnRH induces the expression of gonadotropin genes and of the Gnrhr by activation of specific transcription factors. The JUN (c-Jun) transcription factor binds to AP-1 sites in the promoters of target genes and mediates induction of the FSHβ gene and of the Gnrhr in gonadotrope-derived cell lines. To analyze the role of JUN in reproductive function in vivo, we generated a mouse model that lacks JUN specifically in GnRH receptor‒expressing cells (conditional JUN knockout; JUN-cKO). JUN-cKO mice displayed profound reproductive anomalies such as reduced LH levels resulting in lower gonadal steroid levels, longer estrous cycles in females, and diminished sperm numbers in males. Unexpectedly, FSH levels were unchanged in these animals, whereas Gnrhr expression in the pituitary was reduced. Steroidogenic enzyme expression was reduced in the gonads of JUN-cKO mice, likely as a consequence of reduced LH levels. GnRH receptor‒driven Cre activity was detected in the hypothalamus but not in the GnRH neuron. Female, but not male, JUN-cKO mice exhibited reduced GnRH expression. Taken together, our results demonstrate that GnRH receptor‒expression levels depend on JUN and are critical for reproductive function.
Collapse
Affiliation(s)
- Carrie R. Jonak
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, California 92521
| | - Nancy M. Lainez
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, California 92521
| | - Ulrich Boehm
- Experimental Pharmacology, Center for Molecular Signaling, Saarland University School of Medicine, 66421 Homburg, Germany
| | - Djurdjica Coss
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, California 92521
- Correspondence: Djurdjica Coss, PhD, Division of Biomedical Sciences, School of Medicine, 303 SOM Research Building, University of California, Riverside, Riverside, California 92521. E-mail:
| |
Collapse
|
5
|
Gao X, Ye J, Yang C, Zhang K, Li X, Luo L, Ding J, Li Y, Cao H, Ling Y, Zhang X, Liu Y, Fang F, Zhang Y. Screening and evaluating of long noncoding RNAs in the puberty of goats. BMC Genomics 2017; 18:164. [PMID: 28196477 PMCID: PMC5310007 DOI: 10.1186/s12864-017-3578-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 02/09/2017] [Indexed: 12/20/2022] Open
Abstract
Background Long noncoding RNAs (lncRNAs) are involved in regulating animal development, however, their function in the onset of puberty in goats remain largely unexplored. To identify the genes controlling the regulation of puberty in goats, we measured lncRNA and mRNA expression levels from the hypothalamus. Results We applied RNA sequencing analysis to examine the hypothalamus of pubertal (case; n = 3) and prepubertal (control; n = 3) goats. Our results showed 2943 predicted lncRNAs, including 2012 differentially expressed lncRNAs, which corresponded to 5412 target genes. We also investigated the role of lncRNAs that act cis and trans to the target genes and found a number of lncRNAs involved in the regulation of puberty and reproduction, as well as several pathways related to these processes. For example, oxytocin signaling pathway, sterol biosynthetic process, and pheromone receptor activity signaling pathway were enriched as Kyoto Encyclopedia of Genes and Genomes (KEGG) or gene ontology (GO) analyses showed. Conclusion Our results clearly demonstrate that lncRNAs play an important role in regulating puberty in goats. However, further research is needed to explore the functions of lncRNAs and their predicted targets to provide a detailed expression profile of lncRNAs on goat puberty. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3578-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaoxiao Gao
- Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China
| | - Jing Ye
- Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China.,Anhui Provincial Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, 130 Changjiang West Road, Hefei, Anhui, 230036, China.,Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China
| | - Chen Yang
- Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China
| | - Kaifa Zhang
- Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China
| | - Xiumei Li
- Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China.,Anhui Provincial Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, 130 Changjiang West Road, Hefei, Anhui, 230036, China.,Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China
| | - Lei Luo
- Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China
| | - Jianping Ding
- Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China.,Anhui Provincial Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, 130 Changjiang West Road, Hefei, Anhui, 230036, China.,Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China
| | - Yunsheng Li
- Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China.,Anhui Provincial Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, 130 Changjiang West Road, Hefei, Anhui, 230036, China.,Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China
| | - Hongguo Cao
- Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China.,Anhui Provincial Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, 130 Changjiang West Road, Hefei, Anhui, 230036, China.,Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China
| | - Yinghui Ling
- Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China.,Anhui Provincial Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, 130 Changjiang West Road, Hefei, Anhui, 230036, China.,Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China
| | - Xiaorong Zhang
- Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China.,Anhui Provincial Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, 130 Changjiang West Road, Hefei, Anhui, 230036, China.,Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China
| | - Ya Liu
- Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China.,Anhui Provincial Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, 130 Changjiang West Road, Hefei, Anhui, 230036, China.,Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China
| | - Fugui Fang
- Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China. .,Anhui Provincial Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, 130 Changjiang West Road, Hefei, Anhui, 230036, China. .,Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China.
| | - Yunhai Zhang
- Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China. .,Anhui Provincial Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, 130 Changjiang West Road, Hefei, Anhui, 230036, China. .,Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China.
| |
Collapse
|
6
|
Ratner LD, Stevens G, Bonaventura MM, Lux-Lantos VA, Poutanen M, Calandra RS, Huhtaniemi IT, Rulli SB. Hyperprolactinemia induced by hCG leads to metabolic disturbances in female mice. J Endocrinol 2016; 230:157-69. [PMID: 27154336 DOI: 10.1530/joe-15-0528] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 05/06/2016] [Indexed: 01/23/2023]
Abstract
The metabolic syndrome is a growing epidemic; it increases the risk for diabetes, cardiovascular disease, fatty liver, and several cancers. Several reports have indicated a link between hormonal imbalances and insulin resistance or obesity. Transgenic (TG) female mice overexpressing the human chorionic gonadotropin β-subunit (hCGβ+ mice) exhibit constitutively elevated levels of hCG, increased production of testosterone, progesterone and prolactin, and obesity. The objective of this study was to investigate the influence of hCG hypersecretion on possible alterations in the glucose and lipid metabolism of adult TG females. We evaluated fasting serum insulin, glucose, and triglyceride levels in adult hCGβ+ females and conducted intraperitoneal glucose and insulin tolerance tests at different ages. TG female mice showed hyperinsulinemia, hypertriglyceridemia, and dyslipidemia, as well as glucose intolerance and insulin resistance at 6 months of age. A 1-week treatment with the dopamine agonist cabergoline applied on 5-week-old hCGβ+ mice, which corrected hyperprolactinemia, hyperandrogenism, and hyperprogesteronemia, effectively prevented the metabolic alterations. These data indicate a key role of the hyperprolactinemia-induced gonadal dysfunction in the metabolic disturbances of hCGβ+ female mice. The findings prompt further studies on the involvement of gonadotropins and prolactin on metabolic disorders and might pave the way for the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Laura D Ratner
- Instituto de Biología y Medicina Experimental- Consejo Nacional de Investigaciones Científicas y TécnicasBuenos Aires, Argentina
| | - Guillermina Stevens
- Instituto de Biología y Medicina Experimental- Consejo Nacional de Investigaciones Científicas y TécnicasBuenos Aires, Argentina Hospital General de Agudos J. M. Ramos MejíaBuenos Aires, Argentina
| | - Maria Marta Bonaventura
- Instituto de Biología y Medicina Experimental- Consejo Nacional de Investigaciones Científicas y TécnicasBuenos Aires, Argentina
| | - Victoria A Lux-Lantos
- Instituto de Biología y Medicina Experimental- Consejo Nacional de Investigaciones Científicas y TécnicasBuenos Aires, Argentina
| | - Matti Poutanen
- Department of PhysiologyInstitute of Biomedicine, University of Turku, Turku, Finland Turku Center for Disease ModelingUniversity of Turku, Turku, Finland
| | - Ricardo S Calandra
- Instituto de Biología y Medicina Experimental- Consejo Nacional de Investigaciones Científicas y TécnicasBuenos Aires, Argentina
| | - Ilpo T Huhtaniemi
- Department of PhysiologyInstitute of Biomedicine, University of Turku, Turku, Finland Department of Surgery and CancerImperial College London, London, UK
| | - Susana B Rulli
- Instituto de Biología y Medicina Experimental- Consejo Nacional de Investigaciones Científicas y TécnicasBuenos Aires, Argentina
| |
Collapse
|
7
|
Wilson K, Park J, Curry TE, Mishra B, Gossen J, Taniuchi I, Jo M. Core Binding Factor-β Knockdown Alters Ovarian Gene Expression and Function in the Mouse. Mol Endocrinol 2016; 30:733-47. [PMID: 27176614 DOI: 10.1210/me.2015-1312] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Core binding factor (CBF) is a heterodimeric transcription factor complex composed of a DNA-binding subunit, one of three runt-related transcription factor (RUNX) factors, and a non-DNA binding subunit, CBFβ. CBFβ is critical for DNA binding and stability of the CBF transcription factor complex. In the ovary, the LH surge increases the expression of Runx1 and Runx2 in periovulatory follicles, implicating a role for CBFs in the periovulatory process. The present study investigated the functional significance of CBFs (RUNX1/CBFβ and RUNX2/CBFβ) in the ovary by examining the ovarian phenotype of granulosa cell-specific CBFβ knockdown mice; CBFβ f/f * Cyp19 cre. The mutant female mice exhibited significant reductions in fertility, with smaller litter sizes, decreased progesterone during gestation, and fewer cumulus oocyte complexes collected after an induced superovulation. RNA sequencing and transcriptome assembly revealed altered expression of more than 200 mRNA transcripts in the granulosa cells of Cbfb knockdown mice after human chorionic gonadotropin stimulation in vitro. Among the affected transcripts are known regulators of ovulation and luteinization including Sfrp4, Sgk1, Lhcgr, Prlr, Wnt4, and Edn2 as well as many genes not yet characterized in the ovary. Cbfβ knockdown mice also exhibited decreased expression of key genes within the corpora lutea and morphological changes in the ovarian structure, including the presence of large antral follicles well into the luteal phase. Overall, these data suggest a role for CBFs as significant regulators of gene expression, ovulatory processes, and luteal development in the ovary.
Collapse
Affiliation(s)
- Kalin Wilson
- Department of Obstetrics and Gynecology (K.W., J.P., T.E.C., B.M., M.J.), Chandler Medical Center, University of Kentucky, Lexington, Kentucky 40536-0298; Women's Health Department (J.G.), Merck Sharp and Dohme Research Laboratories, 5340-BH Oss, The Netherlands; and Laboratory for Transcriptional Regulation (I.T.), Research Center for Allergy and Immunology, Yokohama, Kanagawa 230-0045, Japan
| | - Jiyeon Park
- Department of Obstetrics and Gynecology (K.W., J.P., T.E.C., B.M., M.J.), Chandler Medical Center, University of Kentucky, Lexington, Kentucky 40536-0298; Women's Health Department (J.G.), Merck Sharp and Dohme Research Laboratories, 5340-BH Oss, The Netherlands; and Laboratory for Transcriptional Regulation (I.T.), Research Center for Allergy and Immunology, Yokohama, Kanagawa 230-0045, Japan
| | - Thomas E Curry
- Department of Obstetrics and Gynecology (K.W., J.P., T.E.C., B.M., M.J.), Chandler Medical Center, University of Kentucky, Lexington, Kentucky 40536-0298; Women's Health Department (J.G.), Merck Sharp and Dohme Research Laboratories, 5340-BH Oss, The Netherlands; and Laboratory for Transcriptional Regulation (I.T.), Research Center for Allergy and Immunology, Yokohama, Kanagawa 230-0045, Japan
| | - Birendra Mishra
- Department of Obstetrics and Gynecology (K.W., J.P., T.E.C., B.M., M.J.), Chandler Medical Center, University of Kentucky, Lexington, Kentucky 40536-0298; Women's Health Department (J.G.), Merck Sharp and Dohme Research Laboratories, 5340-BH Oss, The Netherlands; and Laboratory for Transcriptional Regulation (I.T.), Research Center for Allergy and Immunology, Yokohama, Kanagawa 230-0045, Japan
| | - Jan Gossen
- Department of Obstetrics and Gynecology (K.W., J.P., T.E.C., B.M., M.J.), Chandler Medical Center, University of Kentucky, Lexington, Kentucky 40536-0298; Women's Health Department (J.G.), Merck Sharp and Dohme Research Laboratories, 5340-BH Oss, The Netherlands; and Laboratory for Transcriptional Regulation (I.T.), Research Center for Allergy and Immunology, Yokohama, Kanagawa 230-0045, Japan
| | - Ichiro Taniuchi
- Department of Obstetrics and Gynecology (K.W., J.P., T.E.C., B.M., M.J.), Chandler Medical Center, University of Kentucky, Lexington, Kentucky 40536-0298; Women's Health Department (J.G.), Merck Sharp and Dohme Research Laboratories, 5340-BH Oss, The Netherlands; and Laboratory for Transcriptional Regulation (I.T.), Research Center for Allergy and Immunology, Yokohama, Kanagawa 230-0045, Japan
| | - Misung Jo
- Department of Obstetrics and Gynecology (K.W., J.P., T.E.C., B.M., M.J.), Chandler Medical Center, University of Kentucky, Lexington, Kentucky 40536-0298; Women's Health Department (J.G.), Merck Sharp and Dohme Research Laboratories, 5340-BH Oss, The Netherlands; and Laboratory for Transcriptional Regulation (I.T.), Research Center for Allergy and Immunology, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
8
|
Talafha AQ, Ababneh MM, Khalifeh MS, Al-Majali AM. Effect of intravaginal fluorogestone acetate sponges on prolactin levels of Damascus-local cross breed goats. Trop Anim Health Prod 2014; 47:277-83. [PMID: 25367280 DOI: 10.1007/s11250-014-0716-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Accepted: 10/28/2014] [Indexed: 11/29/2022]
Abstract
The effect of intravaginal fluorogestone acetate (FGA) sponges on prolactin levels (PRL) and correlations between PRL and milk somatic cell count (SCC) and steroid hormones levels of Damascus-local cross goats during transitional period to anestrous were investigated in this study. Fifty-six goats were assigned to three groups. Group 1 (FGA, n = 19) was treated with 40 mg FGA and equine chorionic gonadotropin (600 IU, i.m.) at time of sponge withdrawal (day 0). Group 2 (FGA-PGF; n = 19) was treated similar to group 1 but was also injected with dinoprost tromethamine (naturally occurring PGF2α) (10 mg, i.m.) on day 0. Control goats (n = 18) were left untreated. On day 0, five fertile bucks were turned in with all goats. Milk and blood samples were collected on days -13 (day of sponge insertion), -6, 0, 1, 2, 7, 13, and 20. Prolactin levels were at lowest values on day -13 of the study and increased (p < 0.05) from day -6 to day 20 in all groups. A significant positive correlation (p < 0.05) between PRL and progesterone and between PRL and estradiol levels was found in this study. No significant correlation was found between PRL and SCC of all groups during the study except on days 2 and 20 where PRL levels were correlated (p < 0.05) with SCC of left udder halves of FGA group. In conclusion, estrus induction with FGA resulted in significant increase in PRL. A positive correlation was found between PRL and steroid hormones, but there was no correlation between PRL and goat milk SCC.
Collapse
Affiliation(s)
- Abdelsalam Qassem Talafha
- Department of Veterinary Clinical Sciences, Faculty of Veterinary Medicine, Jordan University of Science and Technology, P.O. Box 3030, Irbid, 22110, Jordan,
| | | | | | | |
Collapse
|
9
|
Lebedeva IY, Singina GN, Volkova NA, Vejlsted M, Zinovieva NA, Schmidt M. Prolactin affects bovine oocytes through direct and cumulus-mediated pathways. Theriogenology 2014; 82:1154-64. [DOI: 10.1016/j.theriogenology.2014.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 07/18/2014] [Accepted: 08/02/2014] [Indexed: 12/21/2022]
|
10
|
Ratner LD, Rulli SB, Huhtaniemi IT. Genetically modified mouse models addressing gonadotropin function. Reprod Biol 2014; 14:9-15. [DOI: 10.1016/j.repbio.2013.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 12/06/2013] [Accepted: 12/09/2013] [Indexed: 11/16/2022]
|