1
|
Ersoy U, Altinpinar AE, Kanakis I, Alameddine M, Gioran A, Chondrogianni N, Ozanne SE, Peffers MJ, Jackson MJ, Goljanek-Whysall K, Vasilaki A. Lifelong dietary protein restriction induces denervation and skeletal muscle atrophy in mice. Free Radic Biol Med 2024; 224:457-469. [PMID: 39245354 DOI: 10.1016/j.freeradbiomed.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/02/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
As a widespread global issue, protein deficiency hinders development and optimal growth in offspring. Maternal low-protein diet influences the development of age-related diseases, including sarcopenia, by altering the epigenome and organ structure through potential increase in oxidative stress. However, the long-term effects of lactational protein restriction or postnatal lifelong protein restriction on the neuromuscular system have yet to be elucidated. Our results demonstrated that feeding a normal protein diet after lactational protein restriction did not have significant impacts on the neuromuscular system in later life. In contrast, a lifelong low-protein diet induced a denervation phenotype and led to demyelination in the sciatic nerve, along with an increase in the number of centralised nuclei and in the gene expression of atrogenes at 18 months of age, indicating an induced skeletal muscle atrophy. These changes were accompanied by an increase in proteasome activity in skeletal muscle, with no significant alterations in oxidative stress or mitochondrial dynamics markers in skeletal muscle later in life. Thus, lifelong protein restriction may induce skeletal muscle atrophy through changes in peripheral nerves and neuromuscular junctions, potentially contributing to the early onset or exaggeration of sarcopenia.
Collapse
Affiliation(s)
- Ufuk Ersoy
- Department of Musculoskeletal and Ageing Science, Institute of Life Course & Medical Sciences (ILCaMS), The MRC - Versus Arthritis Centre for Integrated Research Into Musculoskeletal Ageing (CIMA), University of Liverpool, Liverpool, UK.
| | - Atilla Emre Altinpinar
- Department of Musculoskeletal and Ageing Science, Institute of Life Course & Medical Sciences (ILCaMS), The MRC - Versus Arthritis Centre for Integrated Research Into Musculoskeletal Ageing (CIMA), University of Liverpool, Liverpool, UK.
| | - Ioannis Kanakis
- Department of Musculoskeletal and Ageing Science, Institute of Life Course & Medical Sciences (ILCaMS), The MRC - Versus Arthritis Centre for Integrated Research Into Musculoskeletal Ageing (CIMA), University of Liverpool, Liverpool, UK; Chester Medical School, Faculty of Medicine and Life Sciences, University of Chester, Chester, UK.
| | - Moussira Alameddine
- Department of Musculoskeletal and Ageing Science, Institute of Life Course & Medical Sciences (ILCaMS), The MRC - Versus Arthritis Centre for Integrated Research Into Musculoskeletal Ageing (CIMA), University of Liverpool, Liverpool, UK.
| | - Anna Gioran
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece.
| | - Niki Chondrogianni
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece.
| | - Susan E Ozanne
- MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, University of Cambridge Metabolic Research Laboratories, Cambridge, UK.
| | - Mandy Jayne Peffers
- Department of Musculoskeletal and Ageing Science, Institute of Life Course & Medical Sciences (ILCaMS), The MRC - Versus Arthritis Centre for Integrated Research Into Musculoskeletal Ageing (CIMA), University of Liverpool, Liverpool, UK.
| | - Malcolm J Jackson
- Department of Musculoskeletal and Ageing Science, Institute of Life Course & Medical Sciences (ILCaMS), The MRC - Versus Arthritis Centre for Integrated Research Into Musculoskeletal Ageing (CIMA), University of Liverpool, Liverpool, UK.
| | - Katarzyna Goljanek-Whysall
- Department of Musculoskeletal and Ageing Science, Institute of Life Course & Medical Sciences (ILCaMS), The MRC - Versus Arthritis Centre for Integrated Research Into Musculoskeletal Ageing (CIMA), University of Liverpool, Liverpool, UK; Department of Physiology, School of Medicine and REMEDI, CMNHS, University of Galway, Galway, Ireland.
| | - Aphrodite Vasilaki
- Department of Musculoskeletal and Ageing Science, Institute of Life Course & Medical Sciences (ILCaMS), The MRC - Versus Arthritis Centre for Integrated Research Into Musculoskeletal Ageing (CIMA), University of Liverpool, Liverpool, UK.
| |
Collapse
|
2
|
Sergeeva XV, Lvova ID, Sharlo KA. Disuse-Induced Muscle Fatigue: Facts and Assumptions. Int J Mol Sci 2024; 25:4984. [PMID: 38732203 PMCID: PMC11084575 DOI: 10.3390/ijms25094984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Skeletal muscle unloading occurs during a wide range of conditions, from space flight to bed rest. The unloaded muscle undergoes negative functional changes, which include increased fatigue. The mechanisms of unloading-induced fatigue are far from complete understanding and cannot be explained by muscle atrophy only. In this review, we summarize the data concerning unloading-induced fatigue in different muscles and different unloading models and provide several potential mechanisms of unloading-induced fatigue based on recent experimental data. The unloading-induced changes leading to increased fatigue include both neurobiological and intramuscular processes. The development of intramuscular fatigue seems to be mainly contributed by the transformation of soleus muscle fibers from a fatigue-resistant, "oxidative" "slow" phenotype to a "fast" "glycolytic" one. This process includes slow-to-fast fiber-type shift and mitochondrial density decline, as well as the disruption of activating signaling interconnections between slow-type myosin expression and mitochondrial biogenesis. A vast pool of relevant literature suggests that these events are triggered by the inactivation of muscle fibers in the early stages of muscle unloading, leading to the accumulation of high-energy phosphates and calcium ions in the myoplasm, as well as NO decrease. Disturbance of these secondary messengers leads to structural changes in muscles that, in turn, cause increased fatigue.
Collapse
Affiliation(s)
| | | | - Kristina A. Sharlo
- Institute of Biomedical Problems, RAS, Khorosevskoye Shosse, 76a, 123007 Moscow, Russia; (X.V.S.); (I.D.L.)
| |
Collapse
|
3
|
Markussen KH, Corti M, Byrne BJ, Kooi CWV, Sun RC, Gentry MS. The multifaceted roles of the brain glycogen. J Neurochem 2024; 168:728-743. [PMID: 37554056 PMCID: PMC10901277 DOI: 10.1111/jnc.15926] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/04/2023] [Accepted: 07/07/2023] [Indexed: 08/10/2023]
Abstract
Glycogen is a biologically essential macromolecule that is directly involved in multiple human diseases. While its primary role in carbohydrate storage and energy metabolism in the liver and muscle is well characterized, recent research has highlighted critical metabolic and non-metabolic roles for glycogen in the brain. In this review, the emerging roles of glycogen homeostasis in the healthy and diseased brain are discussed with a focus on advancing our understanding of the role of glycogen in the brain. Innovative technologies that have led to novel insights into glycogen functions are detailed. Key insights into how cellular localization impacts neuronal and glial function are discussed. Perturbed glycogen functions are observed in multiple disorders of the brain, including where it serves as a disease driver in the emerging category of neurological glycogen storage diseases (n-GSDs). n-GSDs include Lafora disease (LD), adult polyglucosan body disease (APBD), Cori disease, Glucose transporter type 1 deficiency syndrome (G1D), GSD0b, and late-onset Pompe disease (PD). They are neurogenetic disorders characterized by aberrant glycogen which results in devastating neurological and systemic symptoms. In the most severe cases, rapid neurodegeneration coupled with dementia results in death soon after diagnosis. Finally, we discuss current treatment strategies that are currently being developed and have the potential to be of great benefit to patients with n-GSD. Taken together, novel technologies and biological insights have resulted in a renaissance in brain glycogen that dramatically advanced our understanding of both biology and disease. Future studies are needed to expand our understanding and the multifaceted roles of glycogen and effectively apply these insights to human disease.
Collapse
Affiliation(s)
- Kia H. Markussen
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, USA
| | - Manuela Corti
- Department of Pediatrics, Powell Gene Therapy Center, College of Medicine, University of Florida, USA
| | - Barry J. Byrne
- Department of Pediatrics, Powell Gene Therapy Center, College of Medicine, University of Florida, USA
| | - Craig W. Vander Kooi
- Department of Biochemistry & Molecular Biology, College of Medicine, University of Florida, USA
- Center for Advanced Spatial Biomolecule Research, University of Florida
- Lafora Epilepsy Cure Initiative
| | - Ramon C. Sun
- Department of Biochemistry & Molecular Biology, College of Medicine, University of Florida, USA
- Center for Advanced Spatial Biomolecule Research, University of Florida
- Lafora Epilepsy Cure Initiative
| | - Matthew S. Gentry
- Department of Biochemistry & Molecular Biology, College of Medicine, University of Florida, USA
- Center for Advanced Spatial Biomolecule Research, University of Florida
- Lafora Epilepsy Cure Initiative
| |
Collapse
|
4
|
Smith JAB, Murach KA, Dyar KA, Zierath JR. Exercise metabolism and adaptation in skeletal muscle. Nat Rev Mol Cell Biol 2023; 24:607-632. [PMID: 37225892 PMCID: PMC10527431 DOI: 10.1038/s41580-023-00606-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2023] [Indexed: 05/26/2023]
Abstract
Viewing metabolism through the lens of exercise biology has proven an accessible and practical strategy to gain new insights into local and systemic metabolic regulation. Recent methodological developments have advanced understanding of the central role of skeletal muscle in many exercise-associated health benefits and have uncovered the molecular underpinnings driving adaptive responses to training regimens. In this Review, we provide a contemporary view of the metabolic flexibility and functional plasticity of skeletal muscle in response to exercise. First, we provide background on the macrostructure and ultrastructure of skeletal muscle fibres, highlighting the current understanding of sarcomeric networks and mitochondrial subpopulations. Next, we discuss acute exercise skeletal muscle metabolism and the signalling, transcriptional and epigenetic regulation of adaptations to exercise training. We address knowledge gaps throughout and propose future directions for the field. This Review contextualizes recent research of skeletal muscle exercise metabolism, framing further advances and translation into practice.
Collapse
Affiliation(s)
- Jonathon A B Smith
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Kevin A Murach
- Molecular Mass Regulation Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Kenneth A Dyar
- Metabolic Physiology, Institute for Diabetes and Cancer, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Juleen R Zierath
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
5
|
Botella J, Schytz CT, Pehrson TF, Hokken R, Laugesen S, Aagaard P, Suetta C, Christensen B, Ørtenblad N, Nielsen J. Increased mitochondrial surface area and cristae density in the skeletal muscle of strength athletes. J Physiol 2023; 601:2899-2915. [PMID: 37042493 DOI: 10.1113/jp284394] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/05/2023] [Indexed: 04/13/2023] Open
Abstract
Mitochondria are the cellular organelles responsible for resynthesising the majority of ATP. In skeletal muscle, there is an increased ATP turnover during resistance exercise to sustain the energetic demands of muscle contraction. Despite this, little is known regarding the mitochondrial characteristics of chronically strength-trained individuals and any potential pathways regulating the strength-specific mitochondrial remodelling. Here, we investigated the mitochondrial structural characteristics in skeletal muscle of strength athletes and age-matched untrained controls. The mitochondrial pool in strength athletes was characterised by increased mitochondrial cristae density, decreased mitochondrial size, and increased surface-to-volume ratio, despite similar mitochondrial volume density. We also provide a fibre-type and compartment-specific assessment of mitochondria morphology in human skeletal muscle, which reveals across groups a compartment-specific influence on mitochondrial morphology that is largely independent of fibre type. Furthermore, we show that resistance exercise leads to signs of mild mitochondrial stress, without an increase in the number of damaged mitochondria. Using publicly available transcriptomic data we show that acute resistance exercise increases the expression of markers of mitochondrial biogenesis, fission and mitochondrial unfolded protein responses (UPRmt ). Further, we observed an enrichment of the UPRmt in the basal transcriptome of strength-trained individuals. Together, these findings show that strength athletes possess a unique mitochondrial remodelling, which minimises the space required for mitochondria. We propose that the concurrent activation of markers of mitochondrial biogenesis and mitochondrial remodelling pathways (fission and UPRmt ) with resistance exercise may be partially responsible for the observed mitochondrial phenotype of strength athletes. KEY POINTS: Untrained individuals and strength athletes possess comparable skeletal muscle mitochondrial volume density. In contrast, strength athletes' mitochondria are characterised by increased cristae density, decreased size and increased surface-to-volume ratio. Type I fibres have an increased number of mitochondrial profiles with minor differences in the mitochondrial morphological characteristics compared with type II fibres. The mitochondrial morphology is distinct across the subcellular compartments in both groups, with subsarcolemmal mitochondria being bigger in size when compared with intermyofibrillar. Acute resistance exercise leads to signs of mild morphological mitochondrial stress accompanied by increased gene expression of markers of mitochondrial biogenesis, fission and mitochondrial unfolded protein response (UPRmt ).
Collapse
Affiliation(s)
- Javier Botella
- Institute for Mental and Physical Health and Clinical Translation, Metabolic Research Unit, School of Medicine, Deakin University, Geelong, Australia
| | - Camilla T Schytz
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Thomas F Pehrson
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Rune Hokken
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Simon Laugesen
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Per Aagaard
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Charlotte Suetta
- Geriatric Research Unit, Department of Geriatric and Palliative Medicine, Copenhagen University Hospital, Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Britt Christensen
- Department of Endocrinology and Internal Medicine, NBG/THG, Aarhus University Hospital, Aarhus, Denmark
| | - Niels Ørtenblad
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Joachim Nielsen
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
6
|
Toth MJ, Savage PD, Voigt TB, Anair BM, Bunn JY, Smith IB, Tourville TW, Blankstein M, Stevens-Lapsley J, Nelms NJ. Effects of total knee arthroplasty on skeletal muscle structure and function at the cellular, organellar, and molecular levels. J Appl Physiol (1985) 2022; 133:647-660. [PMID: 35900327 PMCID: PMC9467475 DOI: 10.1152/japplphysiol.00323.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/11/2022] [Accepted: 07/20/2022] [Indexed: 11/22/2022] Open
Abstract
Total knee arthroplasty (TKA) is an important treatment option for knee osteoarthritis (OA) that improves self-reported pain and physical function, but objectively measured physical function typically remains reduced for years after surgery due, in part, to precipitous reductions in lower extremity neuromuscular function early after surgery. The present study examined intrinsic skeletal muscle adaptations during the first 5 weeks post-TKA to identify skeletal muscle attributes that may contribute to functional disability. Patients with advanced stage knee OA were evaluated prior to TKA and 5 weeks after surgery. Biopsies of the vastus lateralis were performed to assess muscle fiber size, contractility, and mitochondrial content, along with assessments of whole muscle size and function. TKA was accompanied by marked reductions in whole muscle size and strength. At the fiber (i.e., cellular) level, TKA caused profound muscle atrophy that was approximately twofold higher than that observed at the whole muscle level. TKA markedly reduced muscle fiber force production, contractile velocity, and power production, with force deficits persisting in myosin heavy chain (MHC) II fibers after expression relative to fiber size. Molecular level assessments suggest reduced strongly bound myosin-actin cross bridges and myofilament lattice stiffness as a mechanism underlying reduced force per unit fiber size. Finally, marked reductions in mitochondrial content were apparent and more prominent in the subsarcolemmal compartment. Our study represents the most comprehensive evaluation of skeletal muscle cellular adaptations to TKA and uncovers novel effects of TKA on muscle fiber size and intrinsic contractility early after surgery that may contribute to functional disability.NEW & NOTEWORTHY We report the first evaluation of the effects of total knee arthroplasty (TKA) on skeletal muscle at the cellular and subcellular levels. We found marked effects of TKA to cause skeletal muscle fiber atrophy and contractile dysfunction in older adults, as well as molecular mechanisms underlying impaired contractility. Our results reveal profound effects of TKA on muscle fiber size and intrinsic contractility early after surgery that may contribute to functional disability.
Collapse
Affiliation(s)
- Michael J Toth
- Department of Medicine, College of Medicine, University of Vermont, Burlington, Vermont
- Department of Orthopedics and Rehabilitation, College of Medicine, University of Vermont, Burlington, Vermont
| | - Patrick D Savage
- Department of Medicine, College of Medicine, University of Vermont, Burlington, Vermont
| | - Thomas B Voigt
- Department of Medicine, College of Medicine, University of Vermont, Burlington, Vermont
| | - Bradley M Anair
- Department of Medicine, College of Medicine, University of Vermont, Burlington, Vermont
| | - Janice Y Bunn
- Department of Medical Biostatistics, College of Engineering and Mathematical Sciences, University of Vermont, Burlington, Vermont
- Department of Mathematics and Statistics, College of Engineering and Mathematical Sciences, University of Vermont, Burlington, Vermont
| | - Isaac B Smith
- Department of Medicine, College of Medicine, University of Vermont, Burlington, Vermont
| | - Timothy W Tourville
- Department of Orthopedics and Rehabilitation, College of Medicine, University of Vermont, Burlington, Vermont
- Department of Rehabilitation and Movement Science, College of Nursing and Health Sciences, University of Vermont, Burlington, Vermont
| | - Michael Blankstein
- Department of Orthopedics and Rehabilitation, College of Medicine, University of Vermont, Burlington, Vermont
| | - Jennifer Stevens-Lapsley
- Department of Physical Medicine and Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- VA Eastern Colorado Geriatric Research Education and Clinical Center, Aurora, Colorado
| | - Nathaniel J Nelms
- Department of Orthopedics and Rehabilitation, College of Medicine, University of Vermont, Burlington, Vermont
| |
Collapse
|
7
|
Hostrup M, Cairns SP, Bangsbo J. Muscle Ionic Shifts During Exercise: Implications for Fatigue and Exercise Performance. Compr Physiol 2021; 11:1895-1959. [PMID: 34190344 DOI: 10.1002/cphy.c190024] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Exercise causes major shifts in multiple ions (e.g., K+ , Na+ , H+ , lactate- , Ca2+ , and Cl- ) during muscle activity that contributes to development of muscle fatigue. Sarcolemmal processes can be impaired by the trans-sarcolemmal rundown of ion gradients for K+ , Na+ , and Ca2+ during fatiguing exercise, while changes in gradients for Cl- and Cl- conductance may exert either protective or detrimental effects on fatigue. Myocellular H+ accumulation may also contribute to fatigue development by lowering glycolytic rate and has been shown to act synergistically with inorganic phosphate (Pi) to compromise cross-bridge function. In addition, sarcoplasmic reticulum Ca2+ release function is severely affected by fatiguing exercise. Skeletal muscle has a multitude of ion transport systems that counter exercise-related ionic shifts of which the Na+ /K+ -ATPase is of major importance. Metabolic perturbations occurring during exercise can exacerbate trans-sarcolemmal ionic shifts, in particular for K+ and Cl- , respectively via metabolic regulation of the ATP-sensitive K+ channel (KATP ) and the chloride channel isoform 1 (ClC-1). Ion transport systems are highly adaptable to exercise training resulting in an enhanced ability to counter ionic disturbances to delay fatigue and improve exercise performance. In this article, we discuss (i) the ionic shifts occurring during exercise, (ii) the role of ion transport systems in skeletal muscle for ionic regulation, (iii) how ionic disturbances affect sarcolemmal processes and muscle fatigue, (iv) how metabolic perturbations exacerbate ionic shifts during exercise, and (v) how pharmacological manipulation and exercise training regulate ion transport systems to influence exercise performance in humans. © 2021 American Physiological Society. Compr Physiol 11:1895-1959, 2021.
Collapse
Affiliation(s)
- Morten Hostrup
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Simeon Peter Cairns
- SPRINZ, School of Sport and Recreation, Auckland University of Technology, Auckland, New Zealand.,Health and Rehabilitation Research Institute, Auckland University of Technology, Auckland, New Zealand
| | - Jens Bangsbo
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
8
|
Cardinale DA, Gejl KD, Petersen KG, Nielsen J, Ørtenblad N, Larsen FJ. Short-term intensified training temporarily impairs mitochondrial respiratory capacity in elite endurance athletes. J Appl Physiol (1985) 2021; 131:388-400. [PMID: 34110230 DOI: 10.1152/japplphysiol.00829.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The maintenance of healthy and functional mitochondria is the result of a complex mitochondrial turnover and herein quality-control program that includes both mitochondrial biogenesis and autophagy of mitochondria. The aim of this study was to examine the effect of an intensified training load on skeletal muscle mitochondrial quality control in relation to changes in mitochondrial oxidative capacity, maximal oxygen consumption, and performance in highly trained endurance athletes. Elite endurance athletes (n = 27) performed high-intensity interval exercise followed by moderate-intensity continuous exercise 3 days per week for 4 wk in addition to their usual volume of training. Mitochondrial oxidative capacity, abundance of mitochondrial proteins, markers of autophagy, and antioxidant capacity of skeletal muscle were assessed in skeletal muscle biopsies before and after the intensified training period. The intensified training period increased several autophagy markers suggesting an increased turnover of mitochondrial and cytosolic proteins. In permeabilized muscle fibers, mitochondrial respiration was ∼20% lower after training although some markers of mitochondrial density increased by 5%-50%, indicative of a reduced mitochondrial quality by the intensified training intervention. The antioxidative proteins UCP3, ANT1, and SOD2 were increased after training, whereas we found an inactivation of aconitase. In agreement with the lower aconitase activity, the amount of mitochondrial LON protease that selectively degrades oxidized aconitase was doubled. Together, this suggests that mitochondrial respiratory function is impaired during the initial recovery from a period of intensified endurance training whereas mitochondrial quality control is slightly activated in highly trained skeletal muscle.NEW & NOTEWORTHY We show that mitochondrial respiration is temporarily impaired after a period of intensified exercise training in elite athletes. In parallel, proteins involved in the antioxidative response including SOD2, UCP3, and ANT2 were upregulated, whereas mitochondrial biogenesis was slightly activated. Despite the mitochondrial respiratory impairments, physical performance was improved a few days after the intense training period.
Collapse
Affiliation(s)
- Daniele A Cardinale
- Åstrand Laboratory, Department of Physiology, Nutrition, and Biomechanics, The Swedish School of Sport and Health Sciences (GIH), Stockholm, Sweden.,Elite Performance Centre, Bosön-Swedish Sports Confederation, Lidingö, Sweden
| | - Kasper D Gejl
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Kristine G Petersen
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Joachim Nielsen
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Niels Ørtenblad
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Filip J Larsen
- Åstrand Laboratory, Department of Physiology, Nutrition, and Biomechanics, The Swedish School of Sport and Health Sciences (GIH), Stockholm, Sweden
| |
Collapse
|
9
|
Kolodziej F, O’Halloran KD. Re-Evaluating the Oxidative Phenotype: Can Endurance Exercise Save the Western World? Antioxidants (Basel) 2021; 10:609. [PMID: 33921022 PMCID: PMC8071436 DOI: 10.3390/antiox10040609] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/06/2021] [Accepted: 04/10/2021] [Indexed: 01/16/2023] Open
Abstract
Mitochondria are popularly called the "powerhouses" of the cell. They promote energy metabolism through the tricarboxylic acid (TCA) cycle and oxidative phosphorylation, which in contrast to cytosolic glycolysis are oxygen-dependent and significantly more substrate efficient. That is, mitochondrial metabolism provides substantially more cellular energy currency (ATP) per macronutrient metabolised. Enhancement of mitochondrial density and metabolism are associated with endurance training, which allows for the attainment of high relative VO2 max values. However, the sedentary lifestyle and diet currently predominant in the Western world lead to mitochondrial dysfunction. Underdeveloped mitochondrial metabolism leads to nutrient-induced reducing pressure caused by energy surplus, as reduced nicotinamide adenine dinucleotide (NADH)-mediated high electron flow at rest leads to "electron leak" and a chronic generation of superoxide radicals (O2-). Chronic overload of these reactive oxygen species (ROS) damages cell components such as DNA, cell membranes, and proteins. Counterintuitively, transiently generated ROS during exercise contributes to adaptive reduction-oxidation (REDOX) signalling through the process of cellular hormesis or "oxidative eustress" defined by Helmut Sies. However, the unaccustomed, chronic oxidative stress is central to the leading causes of mortality in the 21st century-metabolic syndrome and the associated cardiovascular comorbidities. The endurance exercise training that improves mitochondrial capacity and the protective antioxidant cellular system emerges as a universal intervention for mitochondrial dysfunction and resultant comorbidities. Furthermore, exercise might also be a solution to prevent ageing-related degenerative diseases, which are caused by impaired mitochondrial recycling. This review aims to break down the metabolic components of exercise and how they translate to athletic versus metabolically diseased phenotypes. We outline a reciprocal relationship between oxidative metabolism and inflammation, as well as hypoxia. We highlight the importance of oxidative stress for metabolic and antioxidant adaptation. We discuss the relevance of lactate as an indicator of critical exercise intensity, and inferring from its relationship with hypoxia, we suggest the most appropriate mode of exercise for the case of a lost oxidative identity in metabolically inflexible patients. Finally, we propose a reciprocal signalling model that establishes a healthy balance between the glycolytic/proliferative and oxidative/prolonged-ageing phenotypes. This model is malleable to adaptation with oxidative stress in exercise but is also susceptible to maladaptation associated with chronic oxidative stress in disease. Furthermore, mutations of components involved in the transcriptional regulatory mechanisms of mitochondrial metabolism may lead to the development of a cancerous phenotype, which progressively presents as one of the main causes of death, alongside the metabolic syndrome.
Collapse
Affiliation(s)
- Filip Kolodziej
- Department of Physiology, School of Medicine, College of Medicine & Health, University College Cork, T12 XF62 Cork, Ireland;
| | | |
Collapse
|
10
|
Jensen R, Ørtenblad N, Stausholm MLH, Skjaerbaek MC, Larsen DN, Hansen M, Holmberg HC, Plomgaard P, Nielsen J. Glycogen supercompensation is due to increased number, not size, of glycogen particles in human skeletal muscle. Exp Physiol 2021; 106:1272-1284. [PMID: 33675088 DOI: 10.1113/ep089317] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/01/2021] [Indexed: 01/10/2023]
Abstract
NEW FINDINGS What is the central question of this study? Glycogen supercompensation after glycogen-depleting exercise can be achieved by consuming a carbohydrate-enriched diet, but the associated effects on the size, number and localization of intramuscular glycogen particles are unknown. What is the main finding and its importance? Using transmission electron microscopy to inspect individual glycogen particles visually, we show that glycogen supercompensation is achieved by increasing the number of particles while keeping them at submaximal sizes. This might be a strategy to ensure that glycogen particles can be used fast, because particles that are too large might impair utilization rate. ABSTRACT Glycogen supercompensation after glycogen-depleting exercise can be achieved by consuming a carbohydrate-enriched diet, but the associated effects on the size, number and localization of intramuscular glycogen particles are unknown. We investigated how a glycogen-loading protocol affects fibre type-specific glycogen volume density, particle diameter and numerical density in three subcellular pools: between (intermyofibrillar) or within (intramyofibrillar) the myofibrils or beneath the sarcolemma (subsarcolemmal). Resting muscle biopsies from 11 physically active men were analysed using transmission electron microscopy after mixed (MIX), LOW or HIGH carbohydrate consumption separated by glycogen-lowering cycling at 75% of maximal oxygen consumption until exhaustion. After HIGH, the total volumetric glycogen content was 40% [95% confidence interval 16, 68] higher than after MIX in type I fibres (P < 0.001), with little to no difference in type II fibres (9% [95% confidence interval -9, 27]). Median particle diameter was 22.5 (interquartile range 20.8-24.7) nm across glycogen pools and fibre types, and the numerical density was 61% [25, 107] and 40% [9, 80] higher in the subsarcolemmal (P < 0.001) and intermyofibrillar (P < 0.01) pools of type I fibres, respectively, with little to no difference in the intramyofibrillar pool (3% [-20, 32]). In LOW, total glycogen was in the range of 21-23% lower, relative to MIX, in both fibre types, reflected in a 21-46% lower numerical density across pools. In comparison to MIX, particle diameter was unaffected by other diets ([-1.4, 1.3] nm). In conclusion, glycogen supercompensation after prolonged cycling is exclusive to type I fibres, predominantly in the subsarcolemmal pool, and involves an increase in the numerical density rather than the size of existing glycogen particles.
Collapse
Affiliation(s)
- Rasmus Jensen
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Niels Ørtenblad
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Marie-Louise H Stausholm
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Mette C Skjaerbaek
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Daniel N Larsen
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Mette Hansen
- Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Hans-Christer Holmberg
- Department of Physiology and Pharmacology, Biomedicum C5, Karolinska Institutet, Stockholm, Sweden
| | - Peter Plomgaard
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Joachim Nielsen
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
11
|
Hokken R, Laugesen S, Aagaard P, Suetta C, Frandsen U, Ørtenblad N, Nielsen J. Subcellular localization- and fibre type-dependent utilization of muscle glycogen during heavy resistance exercise in elite power and Olympic weightlifters. Acta Physiol (Oxf) 2021; 231:e13561. [PMID: 32961628 DOI: 10.1111/apha.13561] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 09/13/2020] [Accepted: 09/14/2020] [Indexed: 12/16/2022]
Abstract
AIM Glycogen particles are found in different subcellular localizations, which are utilized heterogeneously in different fibre types during endurance exercise. Although resistance exercise typically involves only a moderate use of mixed muscle glycogen, the hypothesis of the present study was that high-volume heavy-load resistance exercise would mediate a pattern of substantial glycogen depletion in specific subcellular localizations and fibre types. METHODS 10 male elite weightlifters performed resistance exercise consisting of four sets of five (4 × 5) repetitions at 75% of 1RM back squats, 4 × 5 at 75% of 1RM deadlifts and 4 × 12 at 65% of 1RM rear foot elevated split squats. Muscle biopsies (vastus lateralis) were obtained before and after the exercise session. The volumetric content of intermyofibrillar (between myofibrils), intramyofibrillar (within myofibrils) and subsarcolemmal glycogen was assessed by transmission electron microscopy. RESULTS After exercise, biochemically determined muscle glycogen decreased by 38 (31:45)%. Location-specific glycogen analyses revealed in type 1 fibres a large decrement in intermyofibrillar glycogen, but no or only minor changes in intramyofibrillar or subsarcolemmal glycogen. In type 2 fibres, large decrements in glycogen were observed in all subcellular localizations. Notably, a substantial fraction of the type 2 fibres demonstrated near-depleted levels of intramyofibrillar glycogen after the exercise session. CONCLUSION Heavy resistance exercise mediates a substantial utilization of glycogen from all three subcellular localization in type 2 fibres, while mostly taxing intermyofibrillar glycogen stores in type 1 fibres. Thus, a better understanding of the impact of resistance training on myocellular metabolism and performance requires a focus on compartmentalized glycogen utilization.
Collapse
Affiliation(s)
- Rune Hokken
- Department of Sports Science and Clinical Biomechanics University of Southern Denmark Odense M Denmark
| | - Simon Laugesen
- Department of Sports Science and Clinical Biomechanics University of Southern Denmark Odense M Denmark
| | - Per Aagaard
- Department of Sports Science and Clinical Biomechanics University of Southern Denmark Odense M Denmark
| | - Charlotte Suetta
- Geriatric Research Unit Department of Geriatrics Bispebjerg‐Frederiksberg and Herlev‐Gentofte HospitalsUniversity of Copenhagen Kobenhavn Denmark
| | - Ulrik Frandsen
- Department of Sports Science and Clinical Biomechanics University of Southern Denmark Odense M Denmark
| | - Niels Ørtenblad
- Department of Sports Science and Clinical Biomechanics University of Southern Denmark Odense M Denmark
| | - Joachim Nielsen
- Department of Sports Science and Clinical Biomechanics University of Southern Denmark Odense M Denmark
| |
Collapse
|
12
|
Jensen R, Ørtenblad N, Stausholm MLH, Skjaerbaek MC, Larsen DN, Hansen M, Holmberg HC, Plomgaard P, Nielsen J. Heterogeneity in subcellular muscle glycogen utilisation during exercise impacts endurance capacity in men. J Physiol 2020; 598:4271-4292. [PMID: 32686845 DOI: 10.1113/jp280247] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/17/2020] [Indexed: 02/06/2023] Open
Abstract
KEY POINTS When muscle biopsies first began to be used routinely in research on exercise physiology five decades ago, it soon become clear that the muscle content of glycogen is an important determinant of exercise performance. Glycogen particles are stored in distinct pools within the muscles, but the role of each pool during exercise and how this is affected by diet is unknown. Here, the effects of diet and exercise on these pools, as well as their relation to endurance during prolonged cycling were examined. We demonstrate here that an improved endurance capacity with high carbohydrate loading is associated with a temporal shift in the utilisation of the distinct stores of glycogen pools and is closely linked to the content of the glycogen pool closest to actin and myosin (intramyofibrillar glycogen). These findings highlight the functional importance of distinguishing between different subcellular microcompartments of glycogen in individual muscle fibres. ABSTRACT In muscle cells, glycogen is stored in three distinct subcellular pools: between or within myofibrils (inter- and intramyofibrillar glycogen, respectively) or beneath the sarcolemma (subsarcolemmal glycogen) and these pools may well have different functions. Here, we investigated the effect of diet and exercise on the content of these distinct pools and their relation to endurance capacity in type 1 and 2 muscle fibres. Following consumption of three different diets (normal, mixed diet = MIX, high in carbohydrate = HIGH, or low in carbohydrate = LOW) for 72 h, 11 men cycled at 75% of V ̇ O 2 max until exhaustion. The volumetric content of the glycogen pools in muscle biopsies obtained before, during, and after exercise were quantified by transmission electron micrographs. The mean (SD) time to exhaustion was 150 (30), 112 (22), and 69 (18) minutes in the HIGH, MIX and LOW trials, respectively (P < 0.001). As shown by multiple regression analyses, the intramyofibrillar glycogen content in type 1 fibres, particularly after 60 min of exercise, correlated most strongly with time to exhaustion. In the HIGH trial, intramyofibrillar glycogen was spared during the initial 60 min of exercise, which was associated with levels and utilisation of subsarcolemmal glycogen above normal. In all trials, utilisation of subsarcolemmal and intramyofibrillar glycogen was more pronounced than that of intermyofibrillar glycogen in relative terms. In conclusion, the muscle pool of intramyofibrillar glycogen appears to be the most important for endurance capacity in humans. In addition, a local abundance of subsarcolemmal glycogen reduces the utilisation of intramyofibrillar glycogen during exercise.
Collapse
Affiliation(s)
- Rasmus Jensen
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Denmark
| | - Niels Ørtenblad
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Denmark
| | | | - Mette Carina Skjaerbaek
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Denmark
| | - Daniel Nykvist Larsen
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Denmark
| | - Mette Hansen
- Department of Public Health, Aarhus University, Denmark
| | - Hans-Christer Holmberg
- Department of Health Sciences, Mid Sweden University, Sweden.,Department of Physiology and Pharmacology, Biomedicum C5, Karolinska Institutet, Stockholm, Sweden
| | - Peter Plomgaard
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Denmark.,Department of Clinical Medicine, University of Copenhagen, Denmark
| | - Joachim Nielsen
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Denmark
| |
Collapse
|
13
|
Poisa-Beiro L, Thoma J, Landry J, Sauer S, Yamamoto A, Eckstein V, Romanov N, Raffel S, Hoffmann GF, Bork P, Benes V, Gavin AC, Tanaka M, Ho AD. Glycogen accumulation, central carbon metabolism, and aging of hematopoietic stem and progenitor cells. Sci Rep 2020; 10:11597. [PMID: 32665666 PMCID: PMC7360735 DOI: 10.1038/s41598-020-68396-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/24/2020] [Indexed: 11/09/2022] Open
Abstract
Inspired by recent proteomic data demonstrating the upregulation of carbon and glycogen metabolism in aging human hematopoietic stem and progenitor cells (HPCs, CD34+ cells), this report addresses whether this is caused by elevated glycolysis of the HPCs on a per cell basis, or by a subpopulation that has become more glycolytic. The average glycogen content in individual CD34+ cells from older subjects (> 50 years) was 3.5 times higher and more heterogeneous compared to younger subjects (< 35 years). Representative glycolytic enzyme activities in HPCs confirmed a significant increase in glycolysis in older subjects. The HPCs from older subjects can be fractionated into three distinct subsets with high, intermediate, and low glucose uptake (GU) capacity, while the subset with a high GU capacity could scarcely be detected in younger subjects. Thus, we conclude that upregulated glycolysis in aging HPCs is caused by the expansion of a more glycolytic HPC subset. Since single-cell RNA analysis has also demonstrated that this subpopulation is linked to myeloid differentiation and increased proliferation, isolation and mechanistic characterization of this subpopulation can be utilized to elucidate specific targets for therapeutic interventions to restore the lineage balance of aging HPCs.
Collapse
Affiliation(s)
- Laura Poisa-Beiro
- Department of Medicine V, Heidelberg University, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.,Molecular Medicine Partnership Unit Heidelberg, EMBL and Heidelberg University, 69120, Heidelberg, Germany
| | - Judith Thoma
- Physical Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg University, Im Neuenheimer Feld 253, 69120, Heidelberg, Germany.,Center for Integrative Medicine and Physics, Institute for Advanced Study, Kyoto University, Kyoto, 606-8501, Japan
| | - Jonathan Landry
- Genomics Core Facility, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Sven Sauer
- Division of Child Neurology and Metabolic Diseases, Centre for Child and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Akihisa Yamamoto
- Center for Integrative Medicine and Physics, Institute for Advanced Study, Kyoto University, Kyoto, 606-8501, Japan
| | - Volker Eckstein
- Department of Medicine V, Heidelberg University, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Natalie Romanov
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117, Heidelberg, Germany.,Max Planck Institute of Biophysics, Max-von-Laue Straße 3, 60438, Frankfurt am Main, Germany
| | - Simon Raffel
- Department of Medicine V, Heidelberg University, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Georg F Hoffmann
- Division of Child Neurology and Metabolic Diseases, Centre for Child and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Peer Bork
- Molecular Medicine Partnership Unit Heidelberg, EMBL and Heidelberg University, 69120, Heidelberg, Germany.,Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Vladimir Benes
- Genomics Core Facility, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Anne-Claude Gavin
- Molecular Medicine Partnership Unit Heidelberg, EMBL and Heidelberg University, 69120, Heidelberg, Germany.,Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117, Heidelberg, Germany.,Department for Cell Physiology and Metabolism, Centre Medical Universitaire, University of Geneva, Rue Michel-Servet 1, 1211, Geneva 4, Switzerland
| | - Motomu Tanaka
- Physical Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg University, Im Neuenheimer Feld 253, 69120, Heidelberg, Germany. .,Center for Integrative Medicine and Physics, Institute for Advanced Study, Kyoto University, Kyoto, 606-8501, Japan.
| | - Anthony D Ho
- Department of Medicine V, Heidelberg University, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany. .,Molecular Medicine Partnership Unit Heidelberg, EMBL and Heidelberg University, 69120, Heidelberg, Germany. .,Center for Integrative Medicine and Physics, Institute for Advanced Study, Kyoto University, Kyoto, 606-8501, Japan.
| |
Collapse
|
14
|
Sun RC, Dukhande VV, Zhou Z, Young LEA, Emanuelle S, Brainson CF, Gentry MS. Nuclear Glycogenolysis Modulates Histone Acetylation in Human Non-Small Cell Lung Cancers. Cell Metab 2019; 30:903-916.e7. [PMID: 31523006 PMCID: PMC6834909 DOI: 10.1016/j.cmet.2019.08.014] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 06/20/2019] [Accepted: 08/13/2019] [Indexed: 12/24/2022]
Abstract
Nuclear glycogen was first documented in the early 1940s, but its role in cellular physiology remained elusive. In this study, we utilized pure nuclei preparations and stable isotope tracers to define the origin and metabolic fate of nuclear glycogen. Herein, we describe a key function for nuclear glycogen in epigenetic regulation through compartmentalized pyruvate production and histone acetylation. This pathway is altered in human non-small cell lung cancers, as surgical specimens accumulate glycogen in the nucleus. We demonstrate that the decreased abundance of malin, an E3 ubiquitin ligase, impaired nuclear glycogenolysis by preventing the nuclear translocation of glycogen phosphorylase and causing nuclear glycogen accumulation. Re-introduction of malin in lung cancer cells restored nuclear glycogenolysis, increased histone acetylation, and decreased growth of cancer cells transplanted into mice. This study uncovers a previously unknown role for glycogen metabolism in the nucleus and elucidates another mechanism by which cellular metabolites control epigenetic regulation.
Collapse
Affiliation(s)
- Ramon C Sun
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA; Markey Cancer Center, University of Kentucky, Lexington, KY, USA.
| | - Vikas V Dukhande
- Department of Pharmaceutical Science, College of Pharmacy and Health Sciences, St John's University, Jamaica, NY, USA
| | - Zhengqiu Zhou
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| | - Lyndsay E A Young
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| | - Shane Emanuelle
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| | - Christine Fillmore Brainson
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA; Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, USA
| | - Matthew S Gentry
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA; Markey Cancer Center, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
15
|
Kitaoka Y, Watanabe D, Nonaka Y, Yagishita K, Kano Y, Hoshino D. Effects of clenbuterol administration on mitochondrial morphology and its regulatory proteins in rat skeletal muscle. Physiol Rep 2019; 7:e14266. [PMID: 31599131 PMCID: PMC6785658 DOI: 10.14814/phy2.14266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/18/2019] [Accepted: 09/20/2019] [Indexed: 12/14/2022] Open
Abstract
Clenbuterol induces a slow-to-fast fiber type transition in skeletal muscle. This muscle fiber transition decreased mitochondrial oxidative capacity and respiratory function. We hypothesized that the clenbuterol-mediated reduction in oxidative capacity is associated with the alteration in mitochondrial morphology. To verify this hypothesis, we examined whether clenbuterol alters mitochondrial morphology and mitochondrial regulatory proteins in rat skeletal muscle. Clenbuterol was administered to rats via drinking water (30 mg/L) for 3 weeks. Myosin heavy chain (MHC) isoform composition, mitochondrial morphology, and fusion and fission regulatory protein levels in deep region and superficial region in tibialis anterior (TA) muscles were assessed. Clenbuterol induced the fiber type transition from slow to fast in both the regions of TA. The levels of optic atrophy protein 1, mitofusin 2, and mitochondrial fission 1, but not of dynamin-related protein 1, significantly decreased in deep and superficial muscles after clenbuterol administration (P < 0.01). Also, observation using the transmission electron microscopy showed a decrease in mitochondrial volume (P < 0.05) and an increase in proportion of continuous or interacting mitochondria across Z-lines (P < 0.05). We showed that clenbuterol administration induces a transition in the muscle fiber type composition toward fast phenotype and causes alterations in mitochondrial morphology with a concomitant decrease in mitochondrial fusion and fission regulatory protein levels. These mitochondrial morphological alterations may influence deleterious effects on skeletal muscle metabolism.
Collapse
Affiliation(s)
- Yu Kitaoka
- Department of Human SciencesKanagawa UniversityYokohamaJapan
| | - Daiki Watanabe
- Graduate School of Integrated Arts and SciencesHiroshima UniversityHiroshimaJapan
| | - Yudai Nonaka
- Department of Engineering ScienceThe University of Electro‐communicationsChofuTokyoJapan
| | - Kazuyoshi Yagishita
- Clinical Center for Sports Medicine and Sports DentistryHyperbaric Medical Center/Sports Medicine Clinical CenterMedical Hospital of Tokyo Medical and Dental UniversityBunkyo‐kuTokyoJapan
| | - Yutaka Kano
- Department of Engineering ScienceThe University of Electro‐communicationsChofuTokyoJapan
| | - Daisuke Hoshino
- Department of Engineering ScienceThe University of Electro‐communicationsChofuTokyoJapan
| |
Collapse
|
16
|
Vanden Hole C, Ayuso M, Aerts P, Prims S, Van Cruchten S, Van Ginneken C. Glucose and glycogen levels in piglets that differ in birth weight and vitality. Heliyon 2019; 5:e02510. [PMID: 31687599 PMCID: PMC6819853 DOI: 10.1016/j.heliyon.2019.e02510] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/13/2019] [Accepted: 09/19/2019] [Indexed: 11/19/2022] Open
Abstract
In the pig, intrauterine crowding can greatly affect postnatal characteristics, among which birth weight and locomotion. In a previous study, we discovered that piglets with a low birth weight/low vitality (L piglets) have a reduced motor performance compared to piglets with a normal birth weight/normal vitality (N piglets). A possible explanation is that L piglets lack the energy to increase their motor performance to the level of that of N piglets. Blood glucose levels (GLU) and glycogen concentrations in skeletal muscle of the front (GLYFRONT) and hind leg (GLYHIND) and the liver (GLYLIVER) at birth and during the first 96 h postpartum were compared between L and N piglets. GLU at birth was the same for both groups. After birth, GLU immediately increased in N piglets, whereas it only increased after 8 h in L piglets. L piglets showed a lower GLYHIND at birth and did not use this glycogen during the first 8 h postpartum, while N piglets showed a gradual depletion. GLYLIVER at birth was 50% lower for L piglets and was unused during the studied period while N piglets consumed half of their GLYLIVER during the first 8 h. Based on these results, it is possible that lower glycogen concentrations at birth, the delayed increase in GLU and the lower use of glycogen during the first 8 h after birth negatively affect motor performance in L piglets. However, based on this study, it is unclear whether the low mobilization of glycogen by L piglets is a consequence, rather than a cause of their lower motor performance.
Collapse
Affiliation(s)
- Charlotte Vanden Hole
- Laboratory of Applied Veterinary Morphology, Department of Veterinary Sciences, Faculty of Biomedical, Pharmaceutical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, Wilrijk, Belgium
| | - Miriam Ayuso
- Laboratory of Applied Veterinary Morphology, Department of Veterinary Sciences, Faculty of Biomedical, Pharmaceutical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, Wilrijk, Belgium
| | - Peter Aerts
- Laboratory of Functional Morphology, Department of Biology, Faculty of Sciences, Universiteitsplein 1, University of Antwerp, Wilrijk, Belgium
- Department of Movement and Sports Sciences, Faculty of Medicine and Health Sciences, Ghent University, De Pintelaan 185 (3K3), Ghent, Belgium
| | - Sara Prims
- Laboratory of Applied Veterinary Morphology, Department of Veterinary Sciences, Faculty of Biomedical, Pharmaceutical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, Wilrijk, Belgium
| | - Steven Van Cruchten
- Laboratory of Applied Veterinary Morphology, Department of Veterinary Sciences, Faculty of Biomedical, Pharmaceutical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, Wilrijk, Belgium
| | - Chris Van Ginneken
- Laboratory of Applied Veterinary Morphology, Department of Veterinary Sciences, Faculty of Biomedical, Pharmaceutical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, Wilrijk, Belgium
- Corresponding author.
| |
Collapse
|
17
|
Ørtenblad N, Nielsen J, Boushel R, Söderlund K, Saltin B, Holmberg HC. The Muscle Fiber Profiles, Mitochondrial Content, and Enzyme Activities of the Exceptionally Well-Trained Arm and Leg Muscles of Elite Cross-Country Skiers. Front Physiol 2018; 9:1031. [PMID: 30116201 PMCID: PMC6084043 DOI: 10.3389/fphys.2018.01031] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 07/11/2018] [Indexed: 01/11/2023] Open
Abstract
As one of the most physically demanding sports in the Olympic Games, cross-country skiing poses considerable challenges with respect to both force generation and endurance during the combined upper- and lower-body effort of varying intensity and duration. The isoforms of myosin in skeletal muscle have long been considered not only to define the contractile properties, but also to determine metabolic capacities. The current investigation was designed to explore the relationship between these isoforms and metabolic profiles in the arms (triceps brachii) and legs (vastus lateralis) as well as the range of training responses in the muscle fibers of elite cross-country skiers with equally and exceptionally well-trained upper and lower bodies. The proportion of myosin heavy chain (MHC)-1 was higher in the leg (58 ± 2% [34-69%]) than arm (40 ± 3% [24-57%]), although the mitochondrial volume percentages [8.6 ± 1.6 (leg) and 9.0 ± 2.0 (arm)], and average number of capillaries per fiber [5.8 ± 0.8 (leg) and 6.3 ± 0.3 (arm)] were the same. In these comparable highly trained leg and arm muscles, the maximal citrate synthase (CS) activity was the same. Still, 3-hydroxy-acyl-CoA-dehydrogenase (HAD) capacity was 52% higher (P < 0.05) in the leg compared to arm muscles, suggesting a relatively higher capacity for lipid oxidation in leg muscle, which cannot be explained by the different fiber type distributions. For both limbs combined, HAD activity was correlated with the content of MHC-1 (r2 = 0.32, P = 0.011), whereas CS activity was not. Thus, in these highly trained cross-country skiers capillarization of and mitochondrial volume in type 2 fiber can be at least as high as in type 1 fibers, indicating a divergence between fiber type pattern and aerobic metabolic capacity. The considerable variability in oxidative metabolism with similar MHC profiles provides a new perspective on exercise training. Furthermore, the clear differences between equally well-trained arm and leg muscles regarding HAD activity cannot be explained by training status or MHC distribution, thereby indicating an intrinsic metabolic difference between the upper and lower body. Moreover, trained type 1 and type 2A muscle fibers exhibited similar aerobic capacity regardless of whether they were located in an arm or leg muscle.
Collapse
Affiliation(s)
- Niels Ørtenblad
- Department of Sports Science and Clinical Biomechanics, SDU Muscle Research Cluster, University of Southern Denmark, Odense, Denmark.,School of Kinesiology, University of British Columbia, Vancouver, BC, Canada
| | - Joachim Nielsen
- Department of Sports Science and Clinical Biomechanics, SDU Muscle Research Cluster, University of Southern Denmark, Odense, Denmark
| | - Robert Boushel
- School of Kinesiology, University of British Columbia, Vancouver, BC, Canada
| | - Karin Söderlund
- Åstrand Laboratory, The Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Bengt Saltin
- Copenhagen Muscle Research Centre, Copenhagen, Denmark
| | - Hans-Christer Holmberg
- Swedish Winter Sports Research Centre, Mid Sweden University, Östersund, Sweden.,School of Sport Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
18
|
Mead AF, Osinalde N, Ørtenblad N, Nielsen J, Brewer J, Vellema M, Adam I, Scharff C, Song Y, Frandsen U, Blagoev B, Kratchmarova I, Elemans CP. Fundamental constraints in synchronous muscle limit superfast motor control in vertebrates. eLife 2017; 6. [PMID: 29165242 PMCID: PMC5699865 DOI: 10.7554/elife.29425] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 10/29/2017] [Indexed: 12/12/2022] Open
Abstract
Superfast muscles (SFMs) are extremely fast synchronous muscles capable of contraction rates up to 250 Hz, enabling precise motor execution at the millisecond time scale. SFM phenotypes have been discovered in most major vertebrate lineages, but it remains unknown whether all SFMs share excitation-contraction coupling pathway adaptations for speed, and if SFMs arose once, or from independent evolutionary events. Here, we demonstrate that to achieve rapid actomyosin crossbridge kinetics bat and songbird SFM express myosin heavy chain genes that are evolutionarily and ontologically distinct. Furthermore, we show that all known SFMs share multiple functional adaptations that minimize excitation-contraction coupling transduction times. Our results suggest that SFM evolved independently in sound-producing organs in ray-finned fish, birds, and mammals, and that SFM phenotypes operate at a maximum operational speed set by fundamental constraints in synchronous muscle. Consequentially, these constraints set a fundamental limit to the maximum speed of fine motor control. Across animals, different muscle types have evolved to perform vastly different tasks at different speeds. For example, tortoise leg muscles move slowly over several seconds, while the flight muscles of a hummingbird move quickly dozens of times per second. The speed record holders among vertebrates are the so-called superfast muscles, which can move up to 250 times per second. Superfast muscles power the alarming rattle of rattlesnakes, courtship calls in fish, rapid echolocation calls in bats and the elaborate vocal gymnastics of songbirds. Thus these extreme muscles are all around us and are always involved in sound production. Did superfast muscles evolve from a common ancestor? And how do different superfast muscles achieve their extreme behavior? To answer these questions, Mead et al. studied the systems known to limit contraction speed in all currently known superfast muscles found in rattlesnakes, toadfish, bats and songbirds. This revealed that all the muscles share certain specific adaptations that allow superfast contractions. Furthermore, the three fastest examples – toadfish, songbird and bat – have nearly identical maximum speeds. Although this appears to support the idea that the adaptations all evolved from a shared ancestor, Mead et al. found evidence that suggests otherwise. Each of the three superfast muscles are powered by a different motor protein, which argues strongly in favor of the muscles evolving independently. The existence of such similar mechanisms and performance in independently evolved muscles raises the possibility that the fastest contraction rates measured by Mead et al. represent a maximum speed limit for all vertebrate muscles. Any technical failure in a racecar most likely will slow it down, while the same failure in a robustly engineered family car may not be so noticeable. Similarly in superfast muscle many cellular and molecular systems need to perform maximally. Therefore by understanding how these extreme muscles work, we also gain a better understanding of how normal muscles contract.
Collapse
Affiliation(s)
- Andrew F Mead
- Department of Biology, University of Vermont, Burlington, United States
| | - Nerea Osinalde
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Niels Ørtenblad
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Joachim Nielsen
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Jonathan Brewer
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Michiel Vellema
- Department of Biology, University of Southern Denmark, Odense, Denmark
| | - Iris Adam
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | | | - Yafeng Song
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Ulrik Frandsen
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Blagoy Blagoev
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Irina Kratchmarova
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Coen Ph Elemans
- Department of Biology, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
19
|
Nielsen J, Gejl KD, Hey‐Mogensen M, Holmberg H, Suetta C, Krustrup P, Elemans CPH, Ørtenblad N. Plasticity in mitochondrial cristae density allows metabolic capacity modulation in human skeletal muscle. J Physiol 2017; 595:2839-2847. [PMID: 27696420 PMCID: PMC5407961 DOI: 10.1113/jp273040] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 09/28/2016] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS In human skeletal muscles, the current view is that the capacity for mitochondrial energy production, and thus endurance capacity, is set by the mitochondria volume. However, increasing the mitochondrial inner membrane surface comprises an alternative mechanism for increasing the energy production capacity. In the present study, we show that mitochondrial inner membranes in leg muscles of endurance-trained athletes have an increased ratio of surface per mitochondrial volume. We show a positive correlation between this ratio and whole body oxygen uptake and muscle fibre mitochondrial content. The results obtained in the present study help us to understand modulation of mitochondrial function, as well as how mitochondria can increase their oxidative capacity with increased demand. ABSTRACT Mitochondrial energy production involves the movement of protons down a large electrochemical gradient via ATP synthase located on the folded inner membrane, known as cristae. In mammalian skeletal muscle, the density of cristae in mitochondria is assumed to be constant. However, recent experimental studies have shown that respiration per mitochondria varies. Modelling studies have hypothesized that this variation in respiration per mitochondria depends on plasticity in cristae density, although current evidence for such a mechanism is lacking. In the present study, we confirm this hypothesis by showing that, in human skeletal muscle, and in contrast to the current view, the mitochondrial cristae density is not constant but, instead, exhibits plasticity with long-term endurance training. Furthermore, we show that frequently recruited mitochondria-enriched fibres have significantly increased cristae density and that, at the whole-body level, muscle mitochondrial cristae density is a better predictor of maximal oxygen uptake rate than muscle mitochondrial volume. Our findings establish an elevating mitochondrial cristae density as a regulatory mechanism for increasing metabolic power in human skeletal muscle. We propose that this mechanism allows evasion of the trade-off between cell occupancy by mitochondria and other cellular constituents, as well as improved metabolic capacity and fuel catabolism during prolonged elevated energy requirements.
Collapse
Affiliation(s)
- Joachim Nielsen
- Department of Sports Science and Clinical BiomechanicsSDU Muscle Research Cluster, University of Southern DenmarkOdenseDenmark
- Department of PathologySDU Muscle Research ClusterOdense University HospitalOdenseDenmark
| | - Kasper D. Gejl
- Department of Sports Science and Clinical BiomechanicsSDU Muscle Research Cluster, University of Southern DenmarkOdenseDenmark
| | - Martin Hey‐Mogensen
- Department of Sports Science and Clinical BiomechanicsSDU Muscle Research Cluster, University of Southern DenmarkOdenseDenmark
| | - Hans‐Christer Holmberg
- Swedish Winter Sports Research CentreDepartment of Health SciencesMid Sweden UniversityÖstersundSweden
| | - Charlotte Suetta
- Department of Clinical PhysiologyNuclear Medicine & PETRigshospitaletUniversity of CopenhagenCopenhagenDenmark
| | - Peter Krustrup
- Department of Sports Science and Clinical BiomechanicsSDU Muscle Research Cluster, University of Southern DenmarkOdenseDenmark
- Sport and Health SciencesCollege of Life and Environmental SciencesUniversity of ExeterExeterUnited Kingdom
| | | | - Niels Ørtenblad
- Department of Sports Science and Clinical BiomechanicsSDU Muscle Research Cluster, University of Southern DenmarkOdenseDenmark
- Swedish Winter Sports Research CentreDepartment of Health SciencesMid Sweden UniversityÖstersundSweden
| |
Collapse
|
20
|
Gejl KD, Ørtenblad N, Andersson E, Plomgaard P, Holmberg H, Nielsen J. Local depletion of glycogen with supramaximal exercise in human skeletal muscle fibres. J Physiol 2017; 595:2809-2821. [PMID: 27689320 PMCID: PMC5407966 DOI: 10.1113/jp273109] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 09/26/2016] [Indexed: 01/29/2023] Open
Abstract
KEY POINTS Glycogen is stored in local spatially distinct compartments within skeletal muscle fibres and is the main energy source during supramaximal exercise. Using quantitative electron microscopy, we show that supramaximal exercise induces a differential depletion of glycogen from these compartments and also demonstrate how this varies with fibre types. Repeated exercise alters this compartmentalized glycogen depletion. The results obtained in the present study help us understand the muscle metabolic dynamics of whole body repeated supramaximal exercise, and suggest that the muscle has a compartmentalized local adaptation to repeated exercise, which affects glycogen depletion. ABSTRACT Skeletal muscle glycogen is heterogeneously distributed in three separated compartments (intramyofibrillar, intermyofibrillar and subsarcolemmal). Although only constituting 3-13% of the total glycogen volume, the availability of intramyofibrillar glycogen is of particular importance to muscle function. The present study aimed to investigate the depletion of these three subcellular glycogen compartments during repeated supramaximal exercise in elite athletes. Ten elite cross-country skiers (aged 25 ± 4 years, V̇O2 max : 65 ± 4 ml kg-1 min-1 ; mean ± SD) performed four ∼4 min supramaximal sprint time trials (STT 1-4) with 45 min of recovery. The subcellular glycogen volumes in musculus triceps brachii were quantified from electron microscopy images before and after both STT 1 and 4. During STT 1, the depletion of intramyofibrillar glycogen was higher in type 1 fibres [-52%; (-89:-15%)] than type 2 fibres [-15% (-52:22%)] (P = 0.02), whereas the depletion of intermyofibrillar glycogen [main effect: -19% (-33:0%), P = 0.006] and subsarcolemmal glycogen [main effect: -35% (-66:0%), P = 0.03] was similar between fibre types. By contrast, only intermyofibrillar glycogen volume was significantly reduced during STT 4, in both fibre types [main effect: -31% (-50:-11%), P = 0.002]. Furthermore, for each of the subcellular compartments, the depletion of glycogen during STT 1 was associated with the volumes of glycogen before STT 1. In conclusion, the depletion of spatially distinct glycogen compartments differs during supramaximal exercise. Furthermore, the depletion changes with repeated exercise and is fibre type-dependent.
Collapse
Affiliation(s)
- Kasper D. Gejl
- Department of Sports Science and Clinical BiomechanicsSDU Muscle Research ClusterUniversity of Southern DenmarkOdenseDenmark
| | - Niels Ørtenblad
- Department of Sports Science and Clinical BiomechanicsSDU Muscle Research ClusterUniversity of Southern DenmarkOdenseDenmark
- Swedish Winter Sports Research CentreDepartment of Health SciencesMid Sweden UniversityÖstersundSweden
| | - Erik Andersson
- Swedish Winter Sports Research CentreDepartment of Health SciencesMid Sweden UniversityÖstersundSweden
| | - Peter Plomgaard
- The Centre of Inflammation and MetabolismDepartment of Infectious Diseases and CMRCRigshospitaletCopenhagenDenmark
- Department of Clinical BiochemistryRigshospitaletCopenhagenDenmark
| | - Hans‐Christer Holmberg
- Swedish Winter Sports Research CentreDepartment of Health SciencesMid Sweden UniversityÖstersundSweden
- Swedish Olympic CommitteeStockholmSweden
| | - Joachim Nielsen
- Department of Sports Science and Clinical BiomechanicsSDU Muscle Research ClusterUniversity of Southern DenmarkOdenseDenmark
- Department of PathologySDU Muscle Research ClusterOdense University HospitalOdense
| |
Collapse
|
21
|
Marmonti E, Busquets S, Toledo M, Ricci M, Beltrà M, Gudiño V, Oliva F, López-Pedrosa JM, Manzano M, Rueda R, López-Soriano FJ, Argilés JM. A Rat Immobilization Model Based on Cage Volume Reduction: A Physiological Model for Bed Rest? Front Physiol 2017; 8:184. [PMID: 28424626 PMCID: PMC5372807 DOI: 10.3389/fphys.2017.00184] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 03/10/2017] [Indexed: 11/13/2022] Open
Abstract
Bed rest has been an established treatment in the past prescribed for critically illness or convalescing patients, in order to preserve their body metabolic resource, to prevent serious complications and to support their rapid path to recovery. However, it has been reported that prolonged bed rest can have detrimental consequences that may delay or prevent the recovery from clinical illness. In order to study disuse-induced changes in muscle and bone, as observed during prolonged bed rest in humans, an innovative new model of muscle disuse for rodents is presented. Basically, the animals are confined to a reduced space designed to restrict their locomotion movements and allow them to drink and eat easily, without generating physical stress. The animals were immobilized for either 7, 14, or 28 days. The immobilization procedure induced a significant decrease of food intake, both at 14 and 28 days of immobilization. The reduced food intake was not a consequence of a stress condition induced by the model since plasma corticosterone levels –an indicator of a stress response– were not altered following the immobilization period. The animals showed a significant decrease in soleus muscle mass, grip force and cross-sectional area (a measure of fiber size), together with a decrease in bone mineral density. The present model may potentially serve to investigate the effects of bed-rest in pathological states characterized by a catabolic condition, such as diabetes or cancer.
Collapse
Affiliation(s)
- Enrica Marmonti
- Cancer Research Group, Facultat de Biologia, Departament de Bioquímica i Biomedicina Molecular, Universitat de BarcelonaBarcelona, Spain
| | - Sílvia Busquets
- Cancer Research Group, Facultat de Biologia, Departament de Bioquímica i Biomedicina Molecular, Universitat de BarcelonaBarcelona, Spain.,Institut de Biomedicina de la Universitat de BarcelonaBarcelona, Spain
| | - Míriam Toledo
- Cancer Research Group, Facultat de Biologia, Departament de Bioquímica i Biomedicina Molecular, Universitat de BarcelonaBarcelona, Spain
| | - Marina Ricci
- Cancer Research Group, Facultat de Biologia, Departament de Bioquímica i Biomedicina Molecular, Universitat de BarcelonaBarcelona, Spain
| | - Marc Beltrà
- Cancer Research Group, Facultat de Biologia, Departament de Bioquímica i Biomedicina Molecular, Universitat de BarcelonaBarcelona, Spain
| | - Victòria Gudiño
- Cancer Research Group, Facultat de Biologia, Departament de Bioquímica i Biomedicina Molecular, Universitat de BarcelonaBarcelona, Spain
| | - Francesc Oliva
- Facultat de Biologia, Departament de Genètica, Microbiologia i Estadística, Universitat de BarcelonaBarcelona, Spain
| | | | | | | | - Francisco J López-Soriano
- Cancer Research Group, Facultat de Biologia, Departament de Bioquímica i Biomedicina Molecular, Universitat de BarcelonaBarcelona, Spain.,Institut de Biomedicina de la Universitat de BarcelonaBarcelona, Spain
| | - Josep M Argilés
- Cancer Research Group, Facultat de Biologia, Departament de Bioquímica i Biomedicina Molecular, Universitat de BarcelonaBarcelona, Spain.,Institut de Biomedicina de la Universitat de BarcelonaBarcelona, Spain
| |
Collapse
|
22
|
Knuiman P, Hopman MTE, Mensink M. Glycogen availability and skeletal muscle adaptations with endurance and resistance exercise. Nutr Metab (Lond) 2015; 12:59. [PMID: 26697098 PMCID: PMC4687103 DOI: 10.1186/s12986-015-0055-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 12/11/2015] [Indexed: 11/22/2022] Open
Abstract
It is well established that glycogen depletion affects endurance exercise performance negatively. Moreover, numerous studies have demonstrated that post-exercise carbohydrate ingestion improves exercise recovery by increasing glycogen resynthesis. However, recent research into the effects of glycogen availability sheds new light on the role of the widely accepted energy source for adenosine triphosphate (ATP) resynthesis during endurance exercise. Indeed, several studies showed that endurance training with low glycogen availability leads to similar and sometimes even better adaptations and performance compared to performing endurance training sessions with replenished glycogen stores. In the case of resistance exercise, a few studies have been performed on the role of glycogen availability on the early post-exercise anabolic response. However, the effects of low glycogen availability on phenotypic adaptations and performance following prolonged resistance exercise remains unclear to date. This review summarizes the current knowledge about the effects of glycogen availability on skeletal muscle adaptations for both endurance and resistance exercise. Furthermore, it describes the role of glycogen availability when both exercise modes are performed concurrently.
Collapse
Affiliation(s)
- Pim Knuiman
- Division of Human Nutrition, Wageningen University, Bomenweg 4, 6703 HD Wageningen, The Netherlands
| | - Maria T E Hopman
- Division of Human Nutrition, Wageningen University, Bomenweg 4, 6703 HD Wageningen, The Netherlands ; Radboud University, Radboud Institute for Health Sciences, Department of Physiology, Geert Grooteplein-West 32, 6525 GA Nijmegen, The Netherlands
| | - Marco Mensink
- Division of Human Nutrition, Wageningen University, Bomenweg 4, 6703 HD Wageningen, The Netherlands
| |
Collapse
|
23
|
Vigelsø A, Gram M, Wiuff C, Hansen CN, Prats C, Dela F, Helge JW. Effects of immobilization and aerobic training on proteins related to intramuscular substrate storage and metabolism in young and older men. Eur J Appl Physiol 2015; 116:481-94. [DOI: 10.1007/s00421-015-3302-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 11/16/2015] [Indexed: 12/12/2022]
|
24
|
Holmberg H. The elite cross‐country skier provides unique insights into human exercise physiology. Scand J Med Sci Sports 2015; 25 Suppl 4:100-9. [DOI: 10.1111/sms.12601] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2015] [Indexed: 01/01/2023]
Affiliation(s)
- H.‐C. Holmberg
- Swedish Winter Sports Research Centre Department of Health Sciences Mid Sweden University Östersund Sweden
- Swedish Olympic Committee Stockholm Sweden
| |
Collapse
|
25
|
Santalla A, Nogales-Gadea G, Ørtenblad N, Brull A, de Luna N, Pinós T, Lucia A. McArdle disease: a unique study model in sports medicine. Sports Med 2015; 44:1531-44. [PMID: 25028051 DOI: 10.1007/s40279-014-0223-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
McArdle disease is arguably the paradigm of exercise intolerance in humans. This disorder is caused by inherited deficiency of myophosphorylase, the enzyme isoform that initiates glycogen breakdown in skeletal muscles. Because patients are unable to obtain energy from their muscle glycogen stores, this disease provides an interesting model of study for exercise physiologists, allowing insight to be gained into the understanding of glycogen-dependent muscle functions. Of special interest in the field of muscle physiology and sports medicine are also some specific (if not unique) characteristics of this disorder, such as the so-called 'second wind' phenomenon, the frequent exercise-induced rhabdomyolysis and myoglobinuria episodes suffered by patients (with muscle damage also occurring under basal conditions), or the early appearance of fatigue and contractures, among others. In this article we review the main pathophysiological features of this disorder leading to exercise intolerance as well as the currently available therapeutic possibilities. Patients have been traditionally advised by clinicians to refrain from exercise, yet sports medicine and careful exercise prescription are their best allies at present because no effective enzyme replacement therapy is expected to be available in the near future. As of today, although unable to restore myophosphorylase deficiency, the 'simple' use of exercise as therapy seems probably more promising and practical for patients than more 'complex' medical approaches.
Collapse
|
26
|
Nielsen J, Farup J, Rahbek SK, de Paoli FV, Vissing K. Enhanced Glycogen Storage of a Subcellular Hot Spot in Human Skeletal Muscle during Early Recovery from Eccentric Contractions. PLoS One 2015; 10:e0127808. [PMID: 25996774 PMCID: PMC4440641 DOI: 10.1371/journal.pone.0127808] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 04/18/2015] [Indexed: 12/22/2022] Open
Abstract
Unaccustomed eccentric exercise is accompanied by muscle damage and impaired glucose uptake and glycogen synthesis during subsequent recovery. Recently, it was shown that the role and regulation of glycogen in skeletal muscle are dependent on its subcellular localization, and that glycogen synthesis, as described by the product of glycogen particle size and number, is dependent on the time course of recovery after exercise and carbohydrate availability. In the present study, we investigated the subcellular distribution of glycogen in fibers with high (type I) and low (type II) mitochondrial content during post-exercise recovery from eccentric contractions. Analysis was completed on five male subjects performing an exercise bout consisting of 15 x 10 maximal eccentric contractions. Carbohydrate-rich drinks were subsequently ingested throughout a 48 h recovery period and muscle biopsies for analysis included time points 3, 24 and 48 h post exercise from the exercising leg, whereas biopsies corresponding to prior to and at 48 h after the exercise bout were collected from the non-exercising, control leg. Quantitative imaging by transmission electron microscopy revealed an early (post 3 and 24 h) enhanced storage of intramyofibrillar glycogen (defined as glycogen particles located within the myofibrils) of type I fibers, which was associated with an increase in the number of particles. In contrast, late in recovery (post 48 h), intermyofibrillar, intramyofibrillar and subsarcolemmal glycogen in both type I and II fibers were lower in the exercise leg compared with the control leg, and this was associated with a smaller size of the glycogen particles. We conclude that in the carbohydrate-supplemented state, the effect of eccentric contractions on glycogen metabolism depends on the subcellular localization, muscle fiber’s oxidative capacity, and the time course of recovery. The early enhanced storage of intramyofibrillar glycogen after the eccentric contractions may entail important implications for muscle function and fatigue resistance.
Collapse
Affiliation(s)
- Joachim Nielsen
- Department of Sports Science and Clinical Biomechanics, SDU Muscle Research Cluster (SMRC), University of Southern Denmark, Odense M, Denmark
- Department of Pathology, SDU Muscle Research Cluster (SMRC), Odense University Hospital, Odense C, Denmark
- * E-mail:
| | - Jean Farup
- Section of Sport Science, Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Stine Klejs Rahbek
- Section of Sport Science, Department of Public Health, Aarhus University, Aarhus, Denmark
| | | | - Kristian Vissing
- Section of Sport Science, Department of Public Health, Aarhus University, Aarhus, Denmark
| |
Collapse
|
27
|
Skeletal muscle mitochondrial energetic efficiency and aging. Int J Mol Sci 2015; 16:10674-85. [PMID: 25970752 PMCID: PMC4463669 DOI: 10.3390/ijms160510674] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 05/05/2015] [Accepted: 05/05/2015] [Indexed: 02/06/2023] Open
Abstract
Aging is associated with a progressive loss of maximal cell functionality, and mitochondria are considered a key factor in aging process, since they determine the ATP availability in the cells. Mitochondrial performance during aging in skeletal muscle is reported to be either decreased or unchanged. This heterogeneity of results could partly be due to the method used to assess mitochondrial performance. In addition, in skeletal muscle the mitochondrial population is heterogeneous, composed of subsarcolemmal and intermyofibrillar mitochondria. Therefore, the purpose of the present review is to summarize the results obtained on the functionality of the above mitochondrial populations during aging, taking into account that the mitochondrial performance depends on organelle number, organelle activity, and energetic efficiency of the mitochondrial machinery in synthesizing ATP from the oxidation of fuels.
Collapse
|
28
|
Callahan DM, Tourville TW, Miller MS, Hackett SB, Sharma H, Cruickshank NC, Slauterbeck JR, Savage PD, Ades PA, Maughan DW, Beynnon BD, Toth MJ. Chronic disuse and skeletal muscle structure in older adults: sex-specific differences and relationships to contractile function. Am J Physiol Cell Physiol 2015; 308:C932-43. [PMID: 25810256 DOI: 10.1152/ajpcell.00014.2015] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 03/24/2015] [Indexed: 11/22/2022]
Abstract
In older adults, we examined the effect of chronic muscle disuse on skeletal muscle structure at the tissue, cellular, organellar, and molecular levels and its relationship to muscle function. Volunteers with advanced-stage knee osteoarthritis (OA, n = 16) were recruited to reflect the effects of chronic lower extremity muscle disuse and compared with recreationally active controls (n = 15) without knee OA but similar in age, sex, and health status. In the OA group, quadriceps muscle and single-fiber cross-sectional area were reduced, with the largest reduction in myosin heavy chain IIA fibers. Myosin heavy chain IIAX fibers were more prevalent in the OA group, and their atrophy was sex-specific: men showed a reduction in cross-sectional area, and women showed no differences. Myofibrillar ultrastructure, myonuclear content, and mitochondrial content and morphology generally did not differ between groups, with the exception of sex-specific adaptations in subsarcolemmal (SS) mitochondria, which were driven by lower values in OA women. SS mitochondrial content was also differently related to cellular and molecular functional parameters by sex: greater SS mitochondrial content was associated with improved contractility in women but reduced function in men. Collectively, these results demonstrate sex-specific structural phenotypes at the cellular and organellar levels with chronic disuse in older adults, with novel associations between energetic and contractile systems.
Collapse
Affiliation(s)
- Damien M Callahan
- Department of Medicine, College of Medicine, University of Vermont, Burlington, Vermont
| | - Timothy W Tourville
- Department of Orthopaedics and Rehabilitation, College of Medicine, University of Vermont, Burlington, Vermont
| | - Mark S Miller
- Department of Molecular Physiology and Biophysics, College of Medicine, University of Vermont, Burlington, Vermont; and
| | - Sarah B Hackett
- Department of Medicine, College of Medicine, University of Vermont, Burlington, Vermont
| | - Himani Sharma
- Department of Medicine, College of Medicine, University of Vermont, Burlington, Vermont
| | | | - James R Slauterbeck
- Department of Orthopaedics and Rehabilitation, College of Medicine, University of Vermont, Burlington, Vermont
| | - Patrick D Savage
- Department of Medicine, College of Medicine, University of Vermont, Burlington, Vermont
| | - Philip A Ades
- Department of Medicine, College of Medicine, University of Vermont, Burlington, Vermont
| | - David W Maughan
- Department of Molecular Physiology and Biophysics, College of Medicine, University of Vermont, Burlington, Vermont; and
| | - Bruce D Beynnon
- Department of Orthopaedics and Rehabilitation, College of Medicine, University of Vermont, Burlington, Vermont
| | - Michael J Toth
- Department of Medicine, College of Medicine, University of Vermont, Burlington, Vermont; Department of Molecular Physiology and Biophysics, College of Medicine, University of Vermont, Burlington, Vermont; and
| |
Collapse
|
29
|
Picard M, Azuelos I, Jung B, Giordano C, Matecki S, Hussain S, White K, Li T, Liang F, Benedetti A, Gentil BJ, Burelle Y, Petrof BJ. Mechanical ventilation triggers abnormal mitochondrial dynamics and morphology in the diaphragm. J Appl Physiol (1985) 2015; 118:1161-71. [PMID: 25767033 DOI: 10.1152/japplphysiol.00873.2014] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 03/09/2015] [Indexed: 11/22/2022] Open
Abstract
The diaphragm is a unique skeletal muscle designed to be rhythmically active throughout life, such that its sustained inactivation by the medical intervention of mechanical ventilation (MV) represents an unanticipated physiological state in evolutionary terms. Within a short period after initiating MV, the diaphragm develops muscle atrophy, damage, and diminished strength, and many of these features appear to arise from mitochondrial dysfunction. Notably, in response to metabolic perturbations, mitochondria fuse, divide, and interact with neighboring organelles to remodel their shape and functional properties-a process collectively known as mitochondrial dynamics. Using a quantitative electron microscopy approach, here we show that diaphragm contractile inactivity induced by 6 h of MV in mice leads to fragmentation of intermyofibrillar (IMF) but not subsarcolemmal (SS) mitochondria. Furthermore, physical interactions between adjacent organellar membranes were less abundant in IMF mitochondria during MV. The profusion proteins Mfn2 and OPA1 were unchanged, whereas abundance and activation status of the profission protein Drp1 were increased in the diaphragm following MV. Overall, our results suggest that mitochondrial morphological abnormalities characterized by excessive fission-fragmentation represent early events during MV, which could potentially contribute to the rapid onset of mitochondrial dysfunction, maladaptive signaling, and associated contractile dysfunction of the diaphragm.
Collapse
Affiliation(s)
- Martin Picard
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ilan Azuelos
- Meakins-Christie Laboratories, McGill University Health Centre Research Institute, Montreal, Quebec, Canada; Critical Care and Respiratory Divisions, McGill University Health Centre, Montreal, Quebec, Canada
| | - Boris Jung
- Meakins-Christie Laboratories, McGill University Health Centre Research Institute, Montreal, Quebec, Canada; Department of Critical Care Medicine and Anesthesiology, Saint Eloi Teaching Hospital, and Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale (INSERM U-1046), Montpellier University, Montpellier, France
| | - Christian Giordano
- Meakins-Christie Laboratories, McGill University Health Centre Research Institute, Montreal, Quebec, Canada
| | - Stefan Matecki
- Department of Critical Care Medicine and Anesthesiology, Saint Eloi Teaching Hospital, and Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale (INSERM U-1046), Montpellier University, Montpellier, France
| | - Sabah Hussain
- Meakins-Christie Laboratories, McGill University Health Centre Research Institute, Montreal, Quebec, Canada; Critical Care and Respiratory Divisions, McGill University Health Centre, Montreal, Quebec, Canada
| | - Kathryn White
- EM Research Services, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Tong Li
- Meakins-Christie Laboratories, McGill University Health Centre Research Institute, Montreal, Quebec, Canada
| | - Feng Liang
- Meakins-Christie Laboratories, McGill University Health Centre Research Institute, Montreal, Quebec, Canada
| | - Andrea Benedetti
- Department of Medicine and Department of Epidemiology, Biostatistics & Occupational Health, McGill University, Montreal, Quebec, Canada
| | - Benoit J Gentil
- Department of Neurology/Neurosurgery and Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada; and
| | - Yan Burelle
- Faculty of Pharmacy, Université de Montréal, Montreal, Quebec, Canada
| | - Basil J Petrof
- Meakins-Christie Laboratories, McGill University Health Centre Research Institute, Montreal, Quebec, Canada; Critical Care and Respiratory Divisions, McGill University Health Centre, Montreal, Quebec, Canada;
| |
Collapse
|
30
|
Gouspillou G, Scheede-Bergdahl C, Spendiff S, Vuda M, Meehan B, Mlynarski H, Archer-Lahlou E, Sgarioto N, Purves-Smith FM, Konokhova Y, Rak J, Chevalier S, Taivassalo T, Hepple RT, Jagoe RT. Anthracycline-containing chemotherapy causes long-term impairment of mitochondrial respiration and increased reactive oxygen species release in skeletal muscle. Sci Rep 2015; 5:8717. [PMID: 25732599 PMCID: PMC4346812 DOI: 10.1038/srep08717] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 01/26/2015] [Indexed: 01/23/2023] Open
Abstract
Anticancer treatments for childhood acute lymphoblastic leukaemia (ALL) are highly effective but are now implicated in causing impaired muscle function in long-term survivors. However, no comprehensive assessment of skeletal muscle mitochondrial functions in long-term survivors has been performed and the presence of persistent chemotherapy-induced skeletal muscle mitochondrial dysfunction remains a strong possibility. Non-tumour-bearing mice were treated with two drugs that have been used frequently in ALL treatment (doxorubicin and dexamethasone) for up to 4 cycles at 3-week intervals and euthanized 3 months after the 4th cycle. Treated animals had impaired growth and lower muscle mass as well as reduced mitochondrial respiration and increased reactive oxygen species production per unit oxygen consumption. Mitochondrial DNA content and protein levels of key mitochondrial membrane proteins and markers of mitochondrial biogenesis were unchanged, but protein levels of Parkin were reduced. This suggests a novel pattern of chemotherapy-induced mitochondrial dysfunction in skeletal muscle that persists because of an acquired defect in mitophagy signaling. The results could explain the observed functional impairments in adult survivors of childhood ALL and may also be relevant to long-term survivors of other cancers treated with similar regimes.
Collapse
Affiliation(s)
- Gilles Gouspillou
- 1] McGill University Health Centre, Montreal, Quebec, Canada [2] Département de Kinanthropologie, Université du Québec à Montréal, Montreal, Quebec, Canada
| | - Celena Scheede-Bergdahl
- 1] Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada [2] Department of Kinesiology, McGill University, Montreal, Quebec, Canada
| | - Sally Spendiff
- 1] McGill University Health Centre, Montreal, Quebec, Canada [2] Department of Kinesiology, McGill University, Montreal, Quebec, Canada
| | | | - Brian Meehan
- 1] Department of Oncology, McGill University, Montreal, Quebec, Canada [2] Montreal Children's Hospital Research Institute, Montreal, Quebec, Canada
| | - Heather Mlynarski
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Elodie Archer-Lahlou
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | | | - Fennigje M Purves-Smith
- 1] McGill University Health Centre, Montreal, Quebec, Canada [2] Department of Kinesiology, McGill University, Montreal, Quebec, Canada
| | - Yana Konokhova
- 1] McGill University Health Centre, Montreal, Quebec, Canada [2] Department of Kinesiology, McGill University, Montreal, Quebec, Canada
| | - Janusz Rak
- 1] Department of Oncology, McGill University, Montreal, Quebec, Canada [2] Montreal Children's Hospital Research Institute, Montreal, Quebec, Canada
| | | | - Tanja Taivassalo
- Department of Kinesiology, McGill University, Montreal, Quebec, Canada
| | - Russell T Hepple
- 1] McGill University Health Centre, Montreal, Quebec, Canada [2] Department of Kinesiology, McGill University, Montreal, Quebec, Canada
| | - R Thomas Jagoe
- 1] Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada [2] Department of Oncology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
31
|
Homma T, Hamaoka T, Osada T, Murase N, Kime R, Kurosawa Y, Ichimura S, Esaki K, Nakamura F, Katsumura T. Once-weekly muscle endurance and strength training prevents deterioration of muscle oxidative function and attenuates the degree of strength decline during 3-week forearm immobilization. Eur J Appl Physiol 2014; 115:555-63. [PMID: 25344799 DOI: 10.1007/s00421-014-3029-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 10/14/2014] [Indexed: 10/24/2022]
Abstract
PURPOSE Muscle unloading causes muscle function deterioration, but the extent to which training frequency or volume can be reduced while preserving muscle function during muscle unloading is unknown. We examined the effects of low-volume muscle endurance and strength training on forearm muscle oxidative capacity, endurance, and strength during a 3-week immobilization. METHODS Twenty-seven, healthy, male volunteers were divided into four groups: immobilization only (IMM); immobilization with endurance and strength training, once-weekly (IMM + EST1) or twice-weekly (IMM + EST2); and control, without immobilization or training (CNT). Endurance training involved dynamic handgrip exercise, at 30% of maximal voluntary contraction (MVC), until exhaustion (~60 s). Strength training involved intermittent isometric handgrip exercise at 70% MVC (40 s). Muscle oxidative capacity was evaluated after exercise using the phosphocreatine recovery time constant using (31)phosphorus magnetic resonance spectroscopy. Endurance performance was evaluated according to the total work during dynamic handgrip exercise at 30% MVC at 1 Hz until exhaustion. RESULTS Muscle oxidative capacity and total work deterioration was restricted to the IMM (P < 0.05) group. MVC decreased in the IMM and IMM + EST1 (P < 0.05) groups. However, the MVC amplitude decrease in the IMM + EST1 group was smaller than that in the IMM (P < 0.05) group. MVC remained unchanged in the other groups. CONCLUSION During the 3-week immobilization, twice-weekly low-volume muscle endurance and strength training prevented deterioration in muscle strength, oxidative capacity, and endurance performance. Moreover, once-weekly muscle endurance and strength training prevented the deterioration of muscle oxidative capacity and endurance performance, and attenuated the degree of muscle strength decline.
Collapse
Affiliation(s)
- Toshiyuki Homma
- Faculty of Sport and Health Science, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Gejl KD, Hvid LG, Frandsen U, Jensen K, Sahlin K, Ørtenblad N. Muscle glycogen content modifies SR Ca2+ release rate in elite endurance athletes. Med Sci Sports Exerc 2014; 46:496-505. [PMID: 24091991 DOI: 10.1249/mss.0000000000000132] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE The aim of the present study was to investigate the influence of muscle glycogen content on sarcoplasmic reticulum (SR) function and peak power output (Wpeak) in elite endurance athletes. METHODS Fourteen highly trained male triathletes (VO2max = 66.5 ± 1.3 mL O2·kg·min), performed 4 h of glycogen-depleting cycling exercise (HRmean = 73% ± 1% of maximum). During the first 4 h of recovery, athletes received either water (H2O) or carbohydrate (CHO), separating alterations in muscle glycogen content from acute changes affecting SR function and performance. Thereafter, all subjects received CHO-enriched food for the remaining 20-h recovery period. RESULTS Immediately after exercise, muscle glycogen content and SR Ca release rate was reduced to 32% ± 4% (225 ± 28 mmol·kg dw) and 86% ± 2% of initial levels, respectively (P < 0.01). Glycogen markedly recovered after 4 h of recovery with CHO (61% ± 2% of preexercise) and SR Ca release rate returned to preexercise level. However, in the absence of CHO during the first 4 h of recovery, glycogen and SR Ca release rate remained depressed, with the normalization of both parameters at the end of the 24 h of recovery after receiving a CHO-enriched diet. Linear regression demonstrated a significant correlation between SR Ca release rate and muscle glycogen content (P < 0.01, r = 0.30). The 4 h of cycling exercise reduced Wpeak by 5.5%-8.9% at different cadences (P < 0.05), and Wpeak was normalized after 4 h of recovery with CHO, whereas Wpeak remained depressed (P < 0.05) after water provision. Wpeak was fully recovered after 24 h in both the H2O and the CHO group. CONCLUSION In conclusion, the present results suggest that low muscle glycogen depresses muscle SR Ca release rate, which may contribute to fatigue and delayed recovery of Wpeak 4 h postexercise.
Collapse
Affiliation(s)
- Kasper Degn Gejl
- 1Institute of Sports Science and Clinical Biomechanics, SDU Muscle Research Cluster (SMRC), University of Southern Denmark, Odense, DENMARK; 2Swedish Winter Sports Research Centre, Department of Health Sciences, Mid Sweden University, Östersund, SWEDEN; and 3The Åstrand Laboratory, Swedish School of Sport and Health Sciences, Stockholm, SWEDEN
| | | | | | | | | | | |
Collapse
|
33
|
Callahan DM, Bedrin NG, Subramanian M, Berking J, Ades PA, Toth MJ, Miller MS. Age-related structural alterations in human skeletal muscle fibers and mitochondria are sex specific: relationship to single-fiber function. J Appl Physiol (1985) 2014; 116:1582-92. [PMID: 24790014 DOI: 10.1152/japplphysiol.01362.2013] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Age-related loss of skeletal muscle mass and function is implicated in the development of disease and physical disability. However, little is known about how age affects skeletal muscle structure at the cellular and ultrastructural levels or how such alterations impact function. Thus we examined skeletal muscle structure at the tissue, cellular, and myofibrillar levels in young (21-35 yr) and older (65-75 yr) male and female volunteers, matched for habitual physical activity level. Older adults had smaller whole muscle tissue cross-sectional areas (CSAs) and mass. At the cellular level, older adults had reduced CSAs in myosin heavy chain II (MHC II) fibers, with no differences in MHC I fibers. In MHC II fibers, older men tended to have fewer fibers with large CSAs, while older women showed reduced fiber size across the CSA range. Older adults showed a decrease in intermyofibrillar mitochondrial size; however, the age effect was driven primarily by women (i.e., age by sex interaction effect). Mitochondrial size was inversely and directly related to isometric tension and myosin-actin cross-bridge kinetics, respectively. Notably, there were no intermyofibrillar or subsarcolemmal mitochondrial fractional content or myofilament ultrastructural differences in the activity-matched young and older adults. Collectively, our results indicate age-related reductions in whole muscle size do not vary by sex. However, age-related structural alterations at the cellular and subcellular levels are different between the sexes and may contribute to different functional phenotypes in ways that modulate sex-specific reductions in physical capacity with age.
Collapse
Affiliation(s)
- Damien M Callahan
- Department of Medicine, University of Vermont, Burlington, Vermont; and
| | - Nicholas G Bedrin
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont
| | - Meenakumari Subramanian
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont
| | - James Berking
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont
| | - Philip A Ades
- Department of Medicine, University of Vermont, Burlington, Vermont; and
| | - Michael J Toth
- Department of Medicine, University of Vermont, Burlington, Vermont; and Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont
| | - Mark S Miller
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont
| |
Collapse
|
34
|
Gram M, Dahl R, Dela F. Physical inactivity and muscle oxidative capacity in humans. Eur J Sport Sci 2013; 14:376-83. [DOI: 10.1080/17461391.2013.823466] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
35
|
Lira VA, Okutsu M, Zhang M, Greene NP, Laker RC, Breen DS, Hoehn KL, Yan Z. Autophagy is required for exercise training-induced skeletal muscle adaptation and improvement of physical performance. FASEB J 2013; 27:4184-93. [PMID: 23825228 DOI: 10.1096/fj.13-228486] [Citation(s) in RCA: 308] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Pathological and physiological stimuli, including acute exercise, activate autophagy; however, it is unknown whether exercise training alters basal levels of autophagy and whether autophagy is required for skeletal muscle adaptation to training. We observed greater autophagy flux (i.e., a combination of increased LC3-II/LC3-I ratio and LC3-II levels and reduced p62 protein content indicating a higher rate of initiation and resolution of autophagic events), autophagy protein expression (i.e., Atg6/Beclin1, Atg7, and Atg8/LC3) and mitophagy protein Bnip3 expression in tonic, oxidative muscle compared to muscles of either mixed fiber types or of predominant glycolytic fibers in mice. Long-term voluntary running (4 wk) resulted in increased basal autophagy flux and expression of autophagy proteins and Bnip3 in parallel to mitochondrial biogenesis in plantaris muscle with mixed fiber types. Conversely, exercise training promoted autophagy protein expression with no significant increases of autophagy flux and mitochondrial biogenesis in the oxidative soleus muscle. We also observed increased basal autophagy flux and Bnip3 content without increases in autophagy protein expression in the plantaris muscle of sedentary muscle-specific Pgc-1α transgenic mice, a genetic model of augmented mitochondrial biogenesis. These findings reveal that endurance exercise training-induced increases in basal autophagy, including mitophagy, only take place if an enhanced oxidative phenotype is achieved. However, autophagy protein expression is mainly dictated by contractile activity independently of enhancements in oxidative phenotype. Exercise-trained mice heterozygous for the critical autophagy protein Atg6 showed attenuated increases of basal autophagy flux, mitochondrial content, and angiogenesis in skeletal muscle, along with impaired improvement of endurance capacity. These results demonstrate that increased basal autophagy is required for endurance exercise training-induced skeletal muscle adaptation and improvement of physical performance.
Collapse
Affiliation(s)
- Vitor A Lira
- 1University of Virginia School of Medicine, 409 Ln. Rd., MR4-6041A, Charlottesville, VA 22908, USA.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Studies performed at the beginning of the last century revealed the importance of carbohydrate as a fuel during exercise, and the importance of muscle glycogen on performance has subsequently been confirmed in numerous studies. However, the link between glycogen depletion and impaired muscle function during fatigue is not well understood and a direct cause-and-effect relationship between glycogen and muscle function remains to be established. The use of electron microscopy has revealed that glycogen is not homogeneously distributed in skeletal muscle fibres, but rather localized in distinct pools. Furthermore, each glycogen granule has its own metabolic machinery with glycolytic enzymes and regulating proteins. One pool of such glycogenolytic complexes is localized within the myofibrils in close contact with key proteins involved in the excitation-contraction coupling and Ca2+ release from the sarcoplasmic reticulum (SR). We and others have provided experimental evidence in favour of a direct role of decreased glycogen, localized within the myofibrils, for the reduction in SR Ca2+ release during fatigue. This is consistent with compartmentalized energy turnover and distinctly localized glycogen pools being of key importance for SR Ca2+ release and thereby affecting muscle contractility and fatigability.
Collapse
Affiliation(s)
- Niels Ørtenblad
- N. Ørtenblad: Institute of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, DK-5230 Odense M, Denmark.
| | | | | |
Collapse
|
37
|
Abstract
Interleukin-6 (IL-6) is a multifunctional cytokine that exerts its modulatory effects on cells that express membrane bound IL-6 receptors; however, IL-6 in a complex with soluble IL-6R can bind to any cell that express glycoprotein 130 (gp130). Thus, all cell types may respond to the pro- as well as anti-inflammatory properties of IL-6. Since the first report of acute exercise-induced increase in plasma IL-6 in the early 1990s, scientists have tried to elucidate the factors that influence the magnitude of change of plasma IL-6, as well as the possible biological roles of this cytokine. Evidence suggests that exercise intensity and duration as well as the form of contraction (e.g., eccentric or concentric) and muscle damage all influence IL-6 response to acute exercise. However, data on training status and performance on plasma IL-6 concentration changes during exercise are more inconclusive, as discussed in this review. In the last decade, most of the studies have focused on IL-6 as an 'energy sensor' possibly secreted by skeletal muscle that activates glycogenolysis in the liver and lipolysis in fat tissue in order to provide muscle with the growing energy demands during exercise.
Collapse
|
38
|
Nielsen J, Ørtenblad N. Physiological aspects of the subcellular localization of glycogen in skeletal muscle. Appl Physiol Nutr Metab 2013; 38:91-9. [DOI: 10.1139/apnm-2012-0184] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Glucose is stored in skeletal muscle fibers as glycogen, a branched-chain polymer observed in electron microscopy images as roughly spherical particles (known as β-particles of 10–45 nm in diameter), which are distributed in distinct localizations within the myofibers and are physically associated with metabolic and scaffolding proteins. Although the subcellular localization of glycogen has been recognized for more than 40 years, the physiological role of the distinct localizations has received sparse attention. Recently, however, studies involving stereological, unbiased, quantitative methods have investigated the role and regulation of these distinct deposits of glycogen. In this report, we review the available literature regarding the subcellular localization of glycogen in skeletal muscle as investigated by electron microscopy studies and put this into perspective in terms of the architectural, topological, and dynamic organization of skeletal muscle fibers. In summary, the distribution of glycogen within skeletal muscle fibers has been shown to depend on the fiber phenotype, individual training status, short-term immobilization, and exercise and to influence both muscle contractility and fatigability. Based on all these data, the available literature strongly indicates that the subcellular localization of glycogen has to be taken into consideration to fully understand and appreciate the role and regulation of glycogen metabolism and signaling in skeletal muscle. A full understanding of these phenomena may prove vital in elucidating the mechanisms that integrate basic cellular events with changing glycogen content.
Collapse
Affiliation(s)
- Joachim Nielsen
- SDU Muscle Research Cluster (SMRC), Institute of Sports Science and Clinical Biomechanics, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark; Swedish Winter Sports Research Centre, Department of Health Sciences, Mid Sweden University, 83125 Östersund, Sweden
| | - Niels Ørtenblad
- SDU Muscle Research Cluster (SMRC), Institute of Sports Science and Clinical Biomechanics, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark; Swedish Winter Sports Research Centre, Department of Health Sciences, Mid Sweden University, 83125 Östersund, Sweden
| |
Collapse
|
39
|
Philp A, Hargreaves M, Baar K. More than a store: regulatory roles for glycogen in skeletal muscle adaptation to exercise. Am J Physiol Endocrinol Metab 2012; 302:E1343-51. [PMID: 22395109 DOI: 10.1152/ajpendo.00004.2012] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The glycogen content of muscle determines not only our capacity for exercise but also the signaling events that occur in response to exercise. The result of the shift in signaling is that frequent training in a low-glycogen state results in improved fat oxidation during steady-state submaximal exercise. This review will discuss how the amount or localization of glycogen particles can directly or indirectly result in this differential response to training. The key direct effect discussed is carbohydrate binding, whereas the indirect effects include the metabolic shift toward fat oxidation, the increase in catecholamines, and osmotic stress. Although our understanding of the role of glycogen in response to training has expanded exponentially over the past 5 years, there are still many questions remaining as to how stored carbohydrate affects the muscular adaptation to exercise.
Collapse
Affiliation(s)
- Andrew Philp
- Dept. of Neurobiology, Physiology and Behavior, University of California-Davis, 1 Shields Ave., Davis, CA 95616, USA
| | | | | |
Collapse
|
40
|
Obel LF, Müller MS, Walls AB, Sickmann HM, Bak LK, Waagepetersen HS, Schousboe A. Brain glycogen-new perspectives on its metabolic function and regulation at the subcellular level. FRONTIERS IN NEUROENERGETICS 2012; 4:3. [PMID: 22403540 PMCID: PMC3291878 DOI: 10.3389/fnene.2012.00003] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 02/13/2012] [Indexed: 11/14/2022]
Abstract
Glycogen is a complex glucose polymer found in a variety of tissues, including brain, where it is localized primarily in astrocytes. The small quantity found in brain compared to e.g., liver has led to the understanding that brain glycogen is merely used during hypoglycemia or ischemia. In this review evidence is brought forward highlighting what has been an emerging understanding in brain energy metabolism: that glycogen is more than just a convenient way to store energy for use in emergencies—it is a highly dynamic molecule with versatile implications in brain function, i.e., synaptic activity and memory formation. In line with the great spatiotemporal complexity of the brain and thereof derived focus on the basis for ensuring the availability of the right amount of energy at the right time and place, we here encourage a closer look into the molecular and subcellular mechanisms underlying glycogen metabolism. Based on (1) the compartmentation of the interconnected second messenger pathways controlling glycogen metabolism (calcium and cAMP), (2) alterations in the subcellular location of glycogen-associated enzymes and proteins induced by the metabolic status and (3) a sequential component in the intermolecular mechanisms of glycogen metabolism, we suggest that glycogen metabolism in astrocytes is compartmentalized at the subcellular level. As a consequence, the meaning and importance of conventional terms used to describe glycogen metabolism (e.g., turnover) is challenged. Overall, this review represents an overview of contemporary knowledge about brain glycogen and its metabolism and function. However, it also has a sharp focus on what we do not know, which is perhaps even more important for the future quest of uncovering the roles of glycogen in brain physiology and pathology.
Collapse
Affiliation(s)
- Linea F Obel
- Faculty of Health and Medical Sciences, Department of Drug Design and Pharmacology, University of Copenhagen Copenhagen, Denmark
| | | | | | | | | | | | | |
Collapse
|
41
|
Nielsen J, Krustrup P, Nybo L, Gunnarsson TP, Madsen K, Schrøder HD, Bangsbo J, Ortenblad N. Skeletal muscle glycogen content and particle size of distinct subcellular localizations in the recovery period after a high-level soccer match. Eur J Appl Physiol 2012; 112:3559-67. [PMID: 22323299 DOI: 10.1007/s00421-012-2341-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Accepted: 01/27/2012] [Indexed: 10/14/2022]
Abstract
Whole muscle glycogen levels remain low for a prolonged period following a soccer match. The present study was conducted to investigate how this relates to glycogen content and particle size in distinct subcellular localizations. Seven high-level male soccer players had a vastus lateralis muscle biopsy collected immediately after and 24, 48, 72 and 120 h after a competitive soccer match. Transmission electron microscopy was used to estimate the subcellular distribution of glycogen and individual particle size. During the first day of recovery, glycogen content increased by ~60% in all subcellular localizations, but during the subsequent second day of recovery glycogen content located within the myofibrils (Intramyofibrillar glycogen, a minor deposition constituting 10-15% of total glycogen) did not increase further compared with an increase in subsarcolemmal glycogen (-7 vs. +25%, respectively, P = 0.047). Conversely, from the second to the fifth day of recovery, glycogen content increased (53%) within the myofibrils compared to no change in subsarcolemmal or intermyofibrillar glycogen (P < 0.005). Independent of location, increment in particle size preceded increment in number of particles. Intriguingly, average particle size decreased; however, in the period from 3 to 5 days after the match. These findings suggest that glycogen storage in skeletal muscle is influenced by subcellular localization-specific mechanisms, which account for an increase in number of glycogen particles located within the myofibrils in the period from 2 to 5 days after the soccer match.
Collapse
Affiliation(s)
- Joachim Nielsen
- Institute of Sports Science and Clinical Biomechanics, University of Southern Denmark, 5230 Odense M, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Jonkers RAM, Dirks ML, Nabuurs CIHC, De Feyter HM, Praet SFE, Nicolay K, van Loon LJC, Prompers JJ. Myofibrillar distribution of succinate dehydrogenase activity and lipid stores differs in skeletal muscle tissue of paraplegic subjects. Am J Physiol Endocrinol Metab 2012; 302:E365-73. [PMID: 22068603 DOI: 10.1152/ajpendo.00270.2011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Lack of physical activity has been related to an increased risk of developing insulin resistance. This study aimed to assess the impact of chronic muscle deconditioning on whole body insulin sensitivity, muscle oxidative capacity, and intramyocellular lipid (IMCL) content in subjects with paraplegia. Nine subjects with paraplegia and nine able-bodied, lean controls were recruited. An oral glucose tolerance test was performed to assess whole body insulin sensitivity. IMCL content was determined both in vivo and in vitro using (1)H-magnetic resonance spectroscopy and fluorescence microscopy, respectively. Muscle biopsy samples were stained for succinate dehydrogenase (SDH) activity to measure muscle fiber oxidative capacity. Subcellular distributions of IMCL and SDH activity were determined by defining subsarcolemmal and intermyofibrillar areas on histological samples. SDH activity was 57 ± 14% lower in muscle fibers derived from subjects with paraplegia when compared with controls (P < 0.05), but IMCL content and whole body insulin sensitivity did not differ between groups. In muscle fibers taken from controls, both SDH activity and IMCL content were higher in the subsarcolemmal region than in the intermyofibrillar area. This typical subcellular SDH and IMCL distribution pattern was lost in muscle fibers collected from subjects with paraplegia and had changed toward a more uniform distribution. In conclusion, the lower metabolic demand in deconditioned muscle of subjects with paraplegia results in a significant decline in muscle fiber oxidative capacity and is accompanied by changes in the subcellular distribution patterns of SDH activity and IMCL. However, loss of muscle activity due to paraplegia is not associated with substantial lipid accumulation in skeletal muscle tissue.
Collapse
Affiliation(s)
- Richard A M Jonkers
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Nielsen J, Holmberg HC, Schrøder HD, Saltin B, Ortenblad N. Human skeletal muscle glycogen utilization in exhaustive exercise: role of subcellular localization and fibre type. J Physiol 2011; 589:2871-85. [PMID: 21486810 DOI: 10.1113/jphysiol.2010.204487] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Although glycogen is known to be heterogeneously distributed within skeletal muscle cells, there is presently little information available about the role of fibre types, utilization and resynthesis during and after exercise with respect to glycogen localization. Here, we tested the hypothesis that utilization of glycogen with different subcellular localizations during exhaustive arm and leg exercise differs and examined the influence of fibre type and carbohydrate availability on its subsequent resynthesis. When 10 elite endurance athletes (22 ± 1 years, VO2 max = 68 ± 5 ml kg-1 min-1, mean ± SD) performed one hour of exhaustive arm and leg exercise, transmission electron microscopy revealed more pronounced depletion of intramyofibrillar than of intermyofibrillar and subsarcolemmal glycogen. This phenomenon was the same for type I and II fibres, although at rest prior to exercise, the former contained more intramyofibrillar and subsarcolemmal glycogen than the latter. In highly glycogen-depleted fibres, the remaining small intermyofibrillar and subsarcolemmal glycogen particles were often found to cluster in groupings. In the recovery period, when the athletes received either a carbohydrate-rich meal or only water the impaired resynthesis of glycogen with water alone was associated primarily with intramyofibrillar glycogen. In conclusion, after prolonged high-intensity exercise the depletion of glycogen is dependent on subcellular localization. In addition, the localization of glycogen appears to be influenced by fibre type prior to exercise, as well as carbohydrate availability during the subsequent period of recovery. These findings provide insight into the significance of fibre type-specific compartmentalization of glycogen metabolism in skeletal muscle during exercise and subsequent recovery. .
Collapse
Affiliation(s)
- Joachim Nielsen
- Institute of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark, DK-5230 Odense M, Denmark.
| | | | | | | | | |
Collapse
|