1
|
Warnhoff K, Bhattacharya S, Snoozy J, Breen PC, Ruvkun G. Hypoxia-inducible factor induces cysteine dioxygenase and promotes cysteine homeostasis in Caenorhabditis elegans. eLife 2024; 12:RP89173. [PMID: 38349720 PMCID: PMC10942545 DOI: 10.7554/elife.89173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024] Open
Abstract
Dedicated genetic pathways regulate cysteine homeostasis. For example, high levels of cysteine activate cysteine dioxygenase, a key enzyme in cysteine catabolism in most animal and many fungal species. The mechanism by which cysteine dioxygenase is regulated is largely unknown. In an unbiased genetic screen for mutations that activate cysteine dioxygenase (cdo-1) in the nematode Caenorhabditis elegans, we isolated loss-of-function mutations in rhy-1 and egl-9, which encode proteins that negatively regulate the stability or activity of the oxygen-sensing hypoxia inducible transcription factor (hif-1). EGL-9 and HIF-1 are core members of the conserved eukaryotic hypoxia response. However, we demonstrate that the mechanism of HIF-1-mediated induction of cdo-1 is largely independent of EGL-9 prolyl hydroxylase activity and the von Hippel-Lindau E3 ubiquitin ligase, the classical hypoxia signaling pathway components. We demonstrate that C. elegans cdo-1 is transcriptionally activated by high levels of cysteine and hif-1. hif-1-dependent activation of cdo-1 occurs downstream of an H2S-sensing pathway that includes rhy-1, cysl-1, and egl-9. cdo-1 transcription is primarily activated in the hypodermis where it is also sufficient to drive sulfur amino acid metabolism. Thus, the regulation of cdo-1 by hif-1 reveals a negative feedback loop that maintains cysteine homeostasis. High levels of cysteine stimulate the production of an H2S signal. H2S then acts through the rhy-1/cysl-1/egl-9 signaling pathway to increase HIF-1-mediated transcription of cdo-1, promoting degradation of cysteine via CDO-1.
Collapse
Affiliation(s)
- Kurt Warnhoff
- Pediatrics and Rare Diseases Group, Sanford ResearchSioux FallsUnited States
- Department of Pediatrics, Sanford School of Medicine, University of South DakotaSioux FallsUnited States
| | | | - Jennifer Snoozy
- Pediatrics and Rare Diseases Group, Sanford ResearchSioux FallsUnited States
| | - Peter C Breen
- Department of Molecular Biology, Massachusetts General HospitalBostonUnited States
| | - Gary Ruvkun
- Department of Molecular Biology, Massachusetts General HospitalBostonUnited States
| |
Collapse
|
2
|
Warnhoff K, Bhattacharya S, Snoozy J, Breen PC, Ruvkun G. Hypoxia-inducible factor induces cysteine dioxygenase and promotes cysteine homeostasis in Caenorhabditis elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.04.538701. [PMID: 37205365 PMCID: PMC10187278 DOI: 10.1101/2023.05.04.538701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Dedicated genetic pathways regulate cysteine homeostasis. For example, high levels of cysteine activate cysteine dioxygenase, a key enzyme in cysteine catabolism in most animal and many fungal species. The mechanism by which cysteine dioxygenase is regulated is largely unknown. In an unbiased genetic screen for mutations that activate cysteine dioxygenase (cdo-1) in the nematode C. elegans, we isolated loss-of-function mutations in rhy-1 and egl-9, which encode proteins that negatively regulate the stability or activity of the oxygen-sensing hypoxia inducible transcription factor (hif-1). EGL-9 and HIF-1 are core members of the conserved eukaryotic hypoxia response. However, we demonstrate that the mechanism of HIF-1-mediated induction of cdo-1 is largely independent of EGL-9 prolyl hydroxylase activity and the von Hippel-Lindau E3 ubiquitin ligase, the classical hypoxia signaling pathway components. We demonstrate that C. elegans cdo-1 is transcriptionally activated by high levels of cysteine and hif-1. hif-1-dependent activation of cdo-1 occurs downstream of an H2S-sensing pathway that includes rhy-1, cysl-1, and egl-9. cdo-1 transcription is primarily activated in the hypodermis where it is also sufficient to drive sulfur amino acid metabolism. Thus, the regulation of cdo-1 by hif-1 reveals a negative feedback loop that maintains cysteine homeostasis. High levels of cysteine stimulate the production of an H2S signal. H2S then acts through the rhy-1/cysl-1/egl-9 signaling pathway to increase HIF-1-mediated transcription of cdo-1, promoting degradation of cysteine via CDO-1.
Collapse
Affiliation(s)
- Kurt Warnhoff
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD 57105 USA
| | - Sushila Bhattacharya
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA
| | - Jennifer Snoozy
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA
| | - Peter C. Breen
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Gary Ruvkun
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
3
|
Klaessens S, Stroobant V, De Plaen E, Van den Eynde BJ. Systemic tryptophan homeostasis. Front Mol Biosci 2022; 9:897929. [PMID: 36188218 PMCID: PMC9515494 DOI: 10.3389/fmolb.2022.897929] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 08/01/2022] [Indexed: 11/27/2022] Open
Abstract
Tryptophan is an essential amino acid, which is not only a building block for protein synthesis, but also a precursor for the biosynthesis of co-enzymes and neuromodulators, such as NAD/NADP(H), kynurenic acid, melatonin and serotonin. It also plays a role in immune homeostasis, as local tryptophan catabolism impairs T-lymphocyte mediated immunity. Therefore, tryptophan plasmatic concentration needs to be stable, in spite of large variations in dietary supply. Here, we review the main checkpoints accounting for tryptophan homeostasis, including absorption, transport, metabolism and elimination, and we discuss the physiopathology of disorders associated with their dysfunction. Tryptophan is catabolized along the kynurenine pathway through the action of two enzymes that mediate the first and rate-limiting step of the pathway: indoleamine 2,3-dioxygenase 1 (IDO1) and tryptophan 2,3-dioxygenase (TDO). While IDO1 expression is restricted to peripheral sites of immune modulation, TDO is massively expressed in the liver and accounts for 90% of tryptophan catabolism. Recent data indicated that the stability of the TDO protein is regulated by tryptophan and that this regulation allows a tight control of tryptophanemia. TDO is stabilized when tryptophan is abundant in the plasma, resulting in rapid degradation of dietary tryptophan. In contrast, when tryptophan is scarce, TDO is degraded by the proteasome to avoid excessive tryptophan catabolism. This is triggered by the unmasking of a degron in a non-catalytic tryptophan-binding site, resulting in TDO ubiquitination by E3 ligase SKP1-CUL1-F-box. Deficiency in TDO or in the hepatic aromatic transporter SLC16A10 leads to severe hypertryptophanemia, which can disturb immune and neurological homeostasis.
Collapse
Affiliation(s)
- Simon Klaessens
- Ludwig Institute for Cancer Research, Brussels, Belgium
- de Duve Institute, UCLouvain, Brussels, Belgium
- *Correspondence: Simon Klaessens, ; Benoit J. Van den Eynde,
| | - Vincent Stroobant
- Ludwig Institute for Cancer Research, Brussels, Belgium
- de Duve Institute, UCLouvain, Brussels, Belgium
| | - Etienne De Plaen
- Ludwig Institute for Cancer Research, Brussels, Belgium
- de Duve Institute, UCLouvain, Brussels, Belgium
| | - Benoit J. Van den Eynde
- Ludwig Institute for Cancer Research, Brussels, Belgium
- de Duve Institute, UCLouvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and Biotechnology, Wavre, Belgium
- Nuffield Department of Clinical Medicine, Ludwig Institute for Cancer Research, University of Oxford, Oxford, United Kingdom
- *Correspondence: Simon Klaessens, ; Benoit J. Van den Eynde,
| |
Collapse
|
4
|
Tariq M, Ozbek P, Moin ST. Hydration modulates oxygen channel residues for oxygenation of cysteine dioxygenase: Perspectives from molecular dynamics simulations. J Mol Graph Model 2021; 110:108060. [PMID: 34768230 DOI: 10.1016/j.jmgm.2021.108060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/25/2021] [Accepted: 10/25/2021] [Indexed: 11/26/2022]
Abstract
Cysteine dioxygenase (CDO) regulates the concentration of l-cysteine substrate by its oxidation in the body to prevent different diseases, including neurodegenerative and autoimmune diseases. CDO catalyzes the oxidation of thiol group of l-cysteine to l-cysteine sulfinic acid using molecular oxygen. In this study, molecular dynamics simulations were applied to ligand-free CDO, cysteine-bound CDO, and oxygen-bound CDO-cysteine complex which were primarily subjected to the evaluation of their structural and dynamical properties. The simulation data provided significant information not only on the conformational changes of the enzyme after its ligation but also on the co-ligation by sequential binding of l-cysteine and molecular oxygen. It was found that the ligation and co-ligation perturbed the active site region as well as the overall protein dynamics which were analyzed in terms of root mean square deviation, root mean square fluctuation and dynamic cross correlation matrices as well as principal component analysis. Furthermore, oxygen transport pathways were successfully explored by taking various tunnel clusters into account and one of those clusters was given preference based on the throughput value. The bottleneck formed by different amino acid residues was examined to figure out their role in the oxygenation process of the enzyme. The residues forming the tunnel's bottleneck and their dynamics mediated by water molecules were further investigated using radial distribution functions which gave insights into the hydration behavior of these residues. The findings based on the hydration behavior in turn served to explore the water-mediated dynamics of these residues in the modulation of the pathway, including tunnel gating for the oxygen entry and diffusion to the active site, which is essential for the CDO's catalytic function.
Collapse
Affiliation(s)
- Muhammad Tariq
- Third World Center for Science and Technology, H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Pemra Ozbek
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, 34722, Turkey.
| | - Syed Tarique Moin
- Third World Center for Science and Technology, H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan.
| |
Collapse
|
5
|
Tryptophanemia is controlled by a tryptophan-sensing mechanism ubiquitinating tryptophan 2,3-dioxygenase. Proc Natl Acad Sci U S A 2021; 118:2022447118. [PMID: 34074763 DOI: 10.1073/pnas.2022447118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Maintaining stable tryptophan levels is required to control neuronal and immune activity. We report that tryptophan homeostasis is largely controlled by the stability of tryptophan 2,3-dioxygenase (TDO), the hepatic enzyme responsible for tryptophan catabolism. High tryptophan levels stabilize the active tetrameric conformation of TDO through binding noncatalytic exosites, resulting in rapid catabolism of tryptophan. In low tryptophan, the lack of tryptophan binding in the exosites destabilizes the tetramer into inactive monomers and dimers and unmasks a four-amino acid degron that triggers TDO polyubiquitination by SKP1-CUL1-F-box complexes, resulting in proteasome-mediated degradation of TDO and rapid interruption of tryptophan catabolism. The nonmetabolizable analog alpha-methyl-tryptophan stabilizes tetrameric TDO and thereby stably reduces tryptophanemia. Our results uncover a mechanism allowing a rapid adaptation of tryptophan catabolism to ensure quick degradation of excess tryptophan while preventing further catabolism below physiological levels. This ensures a tight control of tryptophanemia as required for both neurological and immune homeostasis.
Collapse
|
6
|
The Role of the Transsulfuration Pathway in Non-Alcoholic Fatty Liver Disease. J Clin Med 2021; 10:jcm10051081. [PMID: 33807699 PMCID: PMC7961611 DOI: 10.3390/jcm10051081] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/21/2021] [Accepted: 03/01/2021] [Indexed: 02/07/2023] Open
Abstract
The prevalence of non-alcoholic fatty liver disease (NAFLD) is increasing and approximately 25% of the global population may have NAFLD. NAFLD is associated with obesity and metabolic syndrome, but its pathophysiology is complex and only partly understood. The transsulfuration pathway (TSP) is a metabolic pathway regulating homocysteine and cysteine metabolism and is vital in controlling sulfur balance in the organism. Precise control of this pathway is critical for maintenance of optimal cellular function. The TSP is closely linked to other pathways such as the folate and methionine cycles, hydrogen sulfide (H2S) and glutathione (GSH) production. Impaired activity of the TSP will cause an increase in homocysteine and a decrease in cysteine levels. Homocysteine will also be increased due to impairment of the folate and methionine cycles. The key enzymes of the TSP, cystathionine β-synthase (CBS) and cystathionine γ-lyase (CSE), are highly expressed in the liver and deficient CBS and CSE expression causes hepatic steatosis, inflammation, and fibrosis in animal models. A causative link between the TSP and NAFLD has not been established. However, dysfunctions in the TSP and related pathways, in terms of enzyme expression and the plasma levels of the metabolites (e.g., homocysteine, cystathionine, and cysteine), have been reported in NAFLD and liver cirrhosis in both animal models and humans. Further investigation of the TSP in relation to NAFLD may reveal mechanisms involved in the development and progression of NAFLD.
Collapse
|
7
|
Asano A, Roman HB, Hirschberger LL, Ushiyama A, Nelson JL, Hinchman MM, Stipanuk MH, Travis AJ. Cysteine dioxygenase is essential for mouse sperm osmoadaptation and male fertility. FEBS J 2018; 285:1827-1839. [PMID: 29604178 PMCID: PMC5992081 DOI: 10.1111/febs.14449] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 02/11/2018] [Accepted: 03/26/2018] [Indexed: 01/17/2023]
Abstract
Sperm entering the epididymis are immotile and cannot respond to stimuli that will enable them to fertilize. The epididymis is a highly complex organ, with multiple histological zones and cell types that together change the composition and functional abilities of sperm through poorly understood mechanisms. Sperm take up taurine during epididymal transit, which may play antioxidant or osmoregulatory roles. Cysteine dioxygenase (CDO) is a critical enzyme for taurine synthesis. A previous study reported that male CDO-/- mice exhibit idiopathic infertility, prompting us to investigate the functions of CDO in male fertility. Immunoblotting and quantitative reverse transcription-polymerase chain reaction analysis of epididymal segments showed that androgen-dependent CDO expression was highest in the caput epididymidis. CDO-/- mouse sperm demonstrated a severe lack of in vitro fertilization ability. Acrosome exocytosis and tyrosine phosphorylation profiles in response to stimuli were normal, suggesting normal functioning of pathways associated with capacitation. CDO-/- sperm had a slight increase in head abnormalities. Taurine and hypotaurine concentrations in CDO-/- sperm decreased in the epididymal intraluminal fluid and sperm cytosol. We found no evidence of antioxidant protection against lipid peroxidation. However, CDO-/- sperm exhibited severe defects in volume regulation, swelling in response to the relatively hypo-osmotic conditions found in the female reproductive tract. Our findings suggest that epididymal CDO plays a key role in post-testicular sperm maturation, enabling sperm to osmoregulate as they transition from the male to the female reproductive tract, and provide new understanding of the compartmentalized functions of the epididymis.
Collapse
Affiliation(s)
- Atsushi Asano
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
- The Baker Institute for Animal Health, Cornell University, Ithaca New York 14853
| | - Heather B. Roman
- Department of Nutritional Sciences, Cornell University, Ithaca, New York 14853
| | | | - Ai Ushiyama
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Jacquelyn L. Nelson
- The Baker Institute for Animal Health, Cornell University, Ithaca New York 14853
| | - Meleana M. Hinchman
- The Baker Institute for Animal Health, Cornell University, Ithaca New York 14853
| | - Martha H. Stipanuk
- Department of Nutritional Sciences, Cornell University, Ithaca, New York 14853
| | - Alexander J. Travis
- The Baker Institute for Animal Health, Cornell University, Ithaca New York 14853
| |
Collapse
|
8
|
Driggers CM, Kean KM, Hirschberger LL, Cooley RB, Stipanuk MH, Karplus PA. Structure-Based Insights into the Role of the Cys-Tyr Crosslink and Inhibitor Recognition by Mammalian Cysteine Dioxygenase. J Mol Biol 2016; 428:3999-4012. [PMID: 27477048 DOI: 10.1016/j.jmb.2016.07.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 07/15/2016] [Accepted: 07/18/2016] [Indexed: 10/21/2022]
Abstract
In mammals, the non-heme iron enzyme cysteine dioxygenase (CDO) helps regulate Cys levels through converting Cys to Cys sulfinic acid. Its activity is in part modulated by the formation of a Cys93-Tyr157 crosslink that increases its catalytic efficiency over 10-fold. Here, 21 high-resolution mammalian CDO structures are used to gain insight into how the Cys-Tyr crosslink promotes activity and how select competitive inhibitors bind. Crystal structures of crosslink-deficient C93A and Y157F variants reveal similar ~1.0-Å shifts in the side chain of residue 157, and both variant structures have a new chloride ion coordinating the active site iron. Cys binding is also different from wild-type CDO, and no Cys-persulfenate forms in the C93A or Y157F active sites at pH6.2 or 8.0. We conclude that the crosslink enhances activity by positioning the Tyr157 hydroxyl to enable proper Cys binding, proper oxygen binding, and optimal chemistry. In addition, structures are presented for homocysteine (Hcy), D-Cys, thiosulfate, and azide bound as competitive inhibitors. The observed binding modes of Hcy and D-Cys clarify why they are not substrates, and the binding of azide shows that in contrast to what has been proposed, it does not bind in these crystals as a superoxide mimic.
Collapse
Affiliation(s)
- Camden M Driggers
- Department of Biochemistry and Biophysics, 2011 Ag & Life Sciences Building, Oregon State University, Corvallis, OR 97331, USA
| | - Kelsey M Kean
- Department of Biochemistry and Biophysics, 2011 Ag & Life Sciences Building, Oregon State University, Corvallis, OR 97331, USA
| | - Lawrence L Hirschberger
- Department of Nutritional Sciences, 227 Savage Hall, Cornell University, Ithaca, NY 14853, USA
| | - Richard B Cooley
- Department of Biochemistry and Biophysics, 2011 Ag & Life Sciences Building, Oregon State University, Corvallis, OR 97331, USA
| | - Martha H Stipanuk
- Department of Nutritional Sciences, 227 Savage Hall, Cornell University, Ithaca, NY 14853, USA.
| | - P Andrew Karplus
- Department of Biochemistry and Biophysics, 2011 Ag & Life Sciences Building, Oregon State University, Corvallis, OR 97331, USA.
| |
Collapse
|
9
|
Jurkowska H, Niewiadomski J, Hirschberger LL, Roman HB, Mazor KM, Liu X, Locasale JW, Park E, Stipanuk MH. Downregulation of hepatic betaine:homocysteine methyltransferase (BHMT) expression in taurine-deficient mice is reversed by taurine supplementation in vivo. Amino Acids 2015; 48:665-676. [PMID: 26481005 DOI: 10.1007/s00726-015-2108-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 09/26/2015] [Indexed: 01/25/2023]
Abstract
The cysteine dioxygenase (Cdo1)-null and the cysteine sulfinic acid decarboxylase (Csad)-null mouse are not able to synthesize hypotaurine/taurine by the cysteine/cysteine sulfinate pathway and have very low tissue taurine levels. These mice provide excellent models for studying the effects of taurine on biological processes. Using these mouse models, we identified betaine:homocysteine methyltransferase (BHMT) as a protein whose in vivo expression is robustly regulated by taurine. BHMT levels are low in liver of both Cdo1-null and Csad-null mice, but are restored to wild-type levels by dietary taurine supplementation. A lack of BHMT activity was indicated by an increase in the hepatic betaine level. In contrast to observations in liver of Cdo1-null and Csad-null mice, BHMT was not affected by taurine supplementation of primary hepatocytes from these mice. Likewise, CSAD abundance was not affected by taurine supplementation of primary hepatocytes, although it was robustly upregulated in liver of Cdo1-null and Csad-null mice and lowered to wild-type levels by dietary taurine supplementation. The mechanism by which taurine status affects hepatic CSAD and BHMT expression appears to be complex and to require factors outside of hepatocytes. Within the liver, mRNA abundance for both CSAD and BHMT was upregulated in parallel with protein levels, indicating regulation of BHMT and CSAD mRNA synthesis or degradation.
Collapse
Affiliation(s)
- Halina Jurkowska
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, 14853, USA.,Chair of Medical Biochemistry, Jagiellonian University Medical College, Kraków, Poland
| | - Julie Niewiadomski
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, 14853, USA
| | | | - Heather B Roman
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Kevin M Mazor
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Xiaojing Liu
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Jason W Locasale
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Eunkyue Park
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Martha H Stipanuk
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
10
|
Ahn CW, Kwon DY, Jun DS, Lee YM, Kim YC. Enhancement of cysteine catabolism into taurine impacts glutathione homeostasis in rats challenged with ethanol. Amino Acids 2015; 47:1273-7. [DOI: 10.1007/s00726-015-1969-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 03/18/2015] [Indexed: 01/26/2023]
|
11
|
Stipanuk MH, Jurkowska H, Roman HB, Niewiadomski J, Hirschberger LL. Insights into Taurine Synthesis and Function Based on Studies with Cysteine Dioxygenase (CDO1) Knockout Mice. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 803:29-39. [PMID: 25833485 DOI: 10.1007/978-3-319-15126-7_3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Martha H Stipanuk
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA,
| | | | | | | | | |
Collapse
|
12
|
Libiad M, Yadav PK, Vitvitsky V, Martinov M, Banerjee R. Organization of the human mitochondrial hydrogen sulfide oxidation pathway. J Biol Chem 2014; 289:30901-10. [PMID: 25225291 DOI: 10.1074/jbc.m114.602664] [Citation(s) in RCA: 189] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sulfide oxidation is expected to play an important role in cellular switching between low steady-state intracellular hydrogen sulfide levels and the higher concentrations where the physiological effects are elicited. Yet despite its significance, fundamental questions regarding how the sulfide oxidation pathway is wired remain unanswered, and competing proposals exist that diverge at the very first step catalyzed by sulfide quinone oxidoreductase (SQR). We demonstrate that, in addition to sulfite, glutathione functions as a persulfide acceptor for human SQR and that rhodanese preferentially synthesizes rather than utilizes thiosulfate. The kinetic behavior of these enzymes provides compelling evidence for the flow of sulfide via SQR to glutathione persulfide, which is then partitioned to thiosulfate or sulfite. Kinetic simulations at physiologically relevant metabolite concentrations provide additional support for the organizational logic of the sulfide oxidation pathway in which glutathione persulfide is the first intermediate formed.
Collapse
Affiliation(s)
- Marouane Libiad
- From the Department of Biological Chemistry, University of Michigan Medical Center, Ann Arbor, Michigan 48109-0600 and
| | - Pramod Kumar Yadav
- From the Department of Biological Chemistry, University of Michigan Medical Center, Ann Arbor, Michigan 48109-0600 and
| | - Victor Vitvitsky
- From the Department of Biological Chemistry, University of Michigan Medical Center, Ann Arbor, Michigan 48109-0600 and
| | - Michael Martinov
- the National Research Center for Hematology, Moscow 125167, Russia
| | - Ruma Banerjee
- From the Department of Biological Chemistry, University of Michigan Medical Center, Ann Arbor, Michigan 48109-0600 and
| |
Collapse
|
13
|
Kasperova A, Cahlikova R, Kunert J, Sebela M, Novak Z, Raska M. Exposition of dermatophyteTrichophyton mentagrophytesto L-cystine induces expression and activation of cysteine dioxygenase. Mycoses 2014; 57:672-8. [DOI: 10.1111/myc.12220] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Revised: 05/06/2014] [Accepted: 06/22/2014] [Indexed: 11/30/2022]
Affiliation(s)
- Alena Kasperova
- Department of Immunology; Faculty of Medicine and Dentistry; Palacky University in Olomouc; Olomouc Czech Republic
| | - Romana Cahlikova
- Department of Immunology; Faculty of Medicine and Dentistry; Palacky University in Olomouc; Olomouc Czech Republic
| | - Jiri Kunert
- Department of Biology; Faculty of Medicine and Dentistry; Palacky University in Olomouc; Olomouc Czech Republic
| | - Marek Sebela
- Department of Protein Biochemistry and Proteomics; Centre of the Region Hana for Biotechnological and Agricultural Research; Faculty of Science; Palacky University in Olomouc; Olomouc Czech Republic
| | - Zdenek Novak
- Department of Surgery; University of Alabama at Birmingham; Birmingham AL USA
| | - Milan Raska
- Department of Immunology; Faculty of Medicine and Dentistry; Palacky University in Olomouc; Olomouc Czech Republic
| |
Collapse
|
14
|
Jurkowska H, Roman HB, Hirschberger LL, Sasakura K, Nagano T, Hanaoka K, Krijt J, Stipanuk MH. Primary hepatocytes from mice lacking cysteine dioxygenase show increased cysteine concentrations and higher rates of metabolism of cysteine to hydrogen sulfide and thiosulfate. Amino Acids 2014; 46:1353-65. [PMID: 24609271 DOI: 10.1007/s00726-014-1700-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 02/14/2014] [Indexed: 01/12/2023]
Abstract
The oxidation of cysteine in mammalian cells occurs by two routes: a highly regulated direct oxidation pathway in which the first step is catalyzed by cysteine dioxygenase (CDO) and by desulfhydration-oxidation pathways in which the sulfur is released in a reduced oxidation state. To assess the effect of a lack of CDO on production of hydrogen sulfide (H2S) and thiosulfate (an intermediate in the oxidation of H2S to sulfate) and to explore the roles of both cystathionine γ-lyase (CTH) and cystathionine β-synthase (CBS) in cysteine desulfhydration by liver, we investigated the metabolism of cysteine in hepatocytes isolated from Cdo1-null and wild-type mice. Hepatocytes from Cdo1-null mice produced more H2S and thiosulfate than did hepatocytes from wild-type mice. The greater flux of cysteine through the cysteine desulfhydration reactions catalyzed by CTH and CBS in hepatocytes from Cdo1-null mice appeared to be the consequence of their higher cysteine levels, which were due to the lack of CDO and hence lack of catabolism of cysteine by the cysteinesulfinate-dependent pathways. Both CBS and CTH appeared to contribute substantially to cysteine desulfhydration, with estimates of 56 % by CBS and 44 % by CTH in hepatocytes from wild-type mice, and 63 % by CBS and 37 % by CTH in hepatocytes from Cdo1-null mice.
Collapse
Affiliation(s)
- Halina Jurkowska
- Division of Nutritional Sciences, Cornell University, 227 Savage Hall, Ithaca, NY, 14853, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Hagiwara A, Ishizaki S, Takehana K, Fujitani S, Sonaka I, Satsu H, Shimizu M. Branched-chain amino acids inhibit the TGF-beta-induced down-regulation of taurine biosynthetic enzyme cysteine dioxygenase in HepG2 cells. Amino Acids 2014; 46:1275-83. [PMID: 24553827 PMCID: PMC3984414 DOI: 10.1007/s00726-014-1693-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 02/04/2014] [Indexed: 11/30/2022]
Abstract
Taurine deficiency has been suggested to contribute to the pathogenesis and complications of advanced hepatic diseases. The molecular basis for a low level of taurine associated with hepatic failure is largely unknown. Using carbon tetrachloride (CCl4)-induced cirrhotic rat model, we found that the activity and expression of cysteine dioxygenase (CDO), a rate-limiting enzyme in taurine synthesis, were significantly decreased in the liver of these rats. To investigate the underlying mechanisms for the suppression, we examined the effects of pathological cytokines on CDO expression in human hepatoma HepG2 cells. Among the several cytokines, transforming growth factor-β (TGF-β), one of the key mediators of fibrogenesis, suppressed Cdo1 gene transcription through the MEK/ERK pathway. Finally, we further examined potential effects of branched-chain amino acids (BCAA) on CDO expression, as it has been reported that oral BCAA supplementation increased plasma taurine level in the patients with liver cirrhosis. BCAA, especially leucine, promoted Cdo1 gene transcription, and attenuated TGF-β-mediated suppression of Cdo1 gene expression. These results indicate that the low plasma level of taurine in advanced hepatic disease is due to decreased hepatic CDO expression, which can be partly attributed to suppressive effect of TGF-β on Cdo1 gene transcription. Furthermore, our observation that BCAA promotes Cdo1 expression suggests that BCAA may be therapeutically useful to improve hepatic taurine metabolism and further suppress dysfunctions associated with low level of taurine in hepatic diseases.
Collapse
Affiliation(s)
- Asami Hagiwara
- Research Institute, Ajinomoto Pharmaceuticals Co. Ltd., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki, 210-8681, Japan
| | | | | | | | | | | | | |
Collapse
|
16
|
Alleviation of alcoholic liver injury by betaine involves an enhancement of antioxidant defense via regulation of sulfur amino acid metabolism. Food Chem Toxicol 2013; 62:292-8. [PMID: 23994088 DOI: 10.1016/j.fct.2013.08.049] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 08/16/2013] [Accepted: 08/20/2013] [Indexed: 12/22/2022]
Abstract
Previous studies suggested that the hepatoprotective activity of betaine is associated with its effects on sulfur amino acid metabolism. We examined the mechanism by which betaine prevents the progression of alcoholic liver injury and its therapeutic potential. Rats received a liquid ethanol diet for 6 wk. Ethanol consumption elevated serum triglyceride and TNFα levels, alanine aminotransferase and aspartate aminotransferase activities, and lipid accumulation in liver. The oxyradical scavenging capacity of liver was reduced, and expression of CD14, TNFα, COX-2, and iNOS mRNAs was induced markedly. These ethanol-induced changes were all inhibited effectively by betaine supplementation. Hepatic S-adenosylmethionine, cysteine, and glutathione levels, reduced in the ethanol-fed rats, were increased by betaine supplementation. Methionine adenosyltransferase and cystathionine γ-lyase were induced, but cysteine dioxygenase was down-regulated, which appeared to account for the increment in cysteine availability for glutathione synthesis in the rats supplemented with betaine. Betaine supplementation for the final 2 wk of ethanol intake resulted in a similar degree of hepatoprotection, revealing its potential therapeutic value in alcoholic liver. It is concluded that the protective effects of betaine against alcoholic liver injury may be attributed to the fortification of antioxidant defense via improvement of impaired sulfur amino acid metabolism.
Collapse
|
17
|
Ueki I, Roman HB, Hirschberger LL, Junior C, Stipanuk MH. Extrahepatic tissues compensate for loss of hepatic taurine synthesis in mice with liver-specific knockout of cysteine dioxygenase. Am J Physiol Endocrinol Metab 2012; 302:E1292-9. [PMID: 22414809 PMCID: PMC3361984 DOI: 10.1152/ajpendo.00589.2011] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Because hepatic cysteine dioxygenase (CDO) appears to play the major role in controlling cysteine catabolism in the intact rat, we characterized the effect of a lack of hepatic CDO on the regulation of cysteine and its metabolites at the whole body level. In mice with liver-specific deletion of CDO expression, hepatic and plasma cysteine levels increased. In addition, in mice with liver-specific deletion of CDO expression, the abundance of CDO and the proportion of CDO existing as the mature, more active isoform increased in extrahepatic tissues that express CDO (kidney, brown fat, and gonadal fat). CDO abundance was also increased in the pancreas, where most of the enzyme in both control and liver CDO-knockout mice was in the more active isoform. This upregulation of CDO concentration and active-site cofactor formation were not associated with an increase in CDO mRNA and thus presumably were due to a decrease in CDO degradation and an increase in CDO cofactor formation in association with increased exposure of extrahepatic tissues to cysteine in mice lacking hepatic CDO. Extrahepatic tissues of liver CDO-knockout mice also had higher levels of hypotaurine, consistent with increased metabolism of cysteine by the CDO/cysteinesulfinate decarboxylase pathway. The hepatic CDO-knockout mice were able to maintain normal levels of glutathione, taurine, and sulfate. The maintenance of taurine concentrations in liver as well as in extrahepatic tissues is particularly notable, since mice were fed a taurine-free diet and liver is normally considered the major site of taurine biosynthesis. This redundant capacity for regulation of cysteine concentrations and production of hypotaurine/taurine is additional support for the body's robust mechanisms for control of body cysteine levels and indicates that extrahepatic tissues are able to compensate for a lack of hepatic capacity for cysteine catabolism.
Collapse
Affiliation(s)
- Iori Ueki
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | |
Collapse
|
18
|
Tchesnokov EP, Wilbanks SM, Jameson GNL. A Strongly Bound High-Spin Iron(II) Coordinates Cysteine and Homocysteine in Cysteine Dioxygenase. Biochemistry 2011; 51:257-64. [DOI: 10.1021/bi201597w] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Egor P. Tchesnokov
- Department of Chemistry & MacDiarmid Institute for Advanced Materials and Nanotechnology and ‡Department of Biochemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Sigurd M. Wilbanks
- Department of Chemistry & MacDiarmid Institute for Advanced Materials and Nanotechnology and ‡Department of Biochemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Guy N. L. Jameson
- Department of Chemistry & MacDiarmid Institute for Advanced Materials and Nanotechnology and ‡Department of Biochemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| |
Collapse
|
19
|
Crawford JA, Li W, Pierce BS. Single turnover of substrate-bound ferric cysteine dioxygenase with superoxide anion: enzymatic reactivation, product formation, and a transient intermediate. Biochemistry 2011; 50:10241-53. [PMID: 21992268 DOI: 10.1021/bi2011724] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cysteine dioxygenase (CDO) is a non-heme mononuclear iron enzyme that catalyzes the O(2)-dependent oxidation of L-cysteine (Cys) to produce cysteine sulfinic acid (CSA). In this study we demonstrate that the catalytic cycle of CDO can be "primed" by one electron through chemical oxidation to produce CDO with ferric iron in the active site (Fe(III)-CDO, termed 2). While catalytically inactive, the substrate-bound form of Fe(III)-CDO (2a) is more amenable to interrogation by UV-vis and EPR spectroscopy than the 'as-isolated' Fe(II)-CDO enzyme (1). Chemical-rescue experiments were performed in which superoxide (O(2)(•-)) anions were introduced to 2a to explore the possibility that a Fe(III)-superoxide species represents the first intermediate within the catalytic pathway of CDO. In principle, O(2)(•-) can serve as a suitable acceptor for the remaining 3-electrons necessary for CSA formation and regeneration of the active Fe(II)-CDO enzyme (1). Indeed, addition of O(2)(•-) to 2a resulted in the rapid formation of a transient species (termed 3a) observable at 565 nm by UV-vis spectroscopy. The subsequent decay of 3a is kinetically matched to CSA formation. Moreover, a signal attributed to 3a was also identified using parallel mode X-band EPR spectroscopy (g ~ 11). Spectroscopic simulations, observed temperature dependence, and the microwave power saturation behavior of 3a are consistent with a ground state S = 3 from a ferromagnetically coupled (J ~ -8 cm(-1)) high-spin ferric iron (S(A) = 5/2) with a bound radical (S(B) = 1/2), presumably O(2)(•-). Following treatment with O(2)(•-), the specific activity of recovered CDO increased to ~60% relative to untreated enzyme.
Collapse
Affiliation(s)
- Joshua A Crawford
- Department of Chemistry and Biochemistry, College of Sciences, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | | | | |
Collapse
|
20
|
Stipanuk MH, Ueki I. Dealing with methionine/homocysteine sulfur: cysteine metabolism to taurine and inorganic sulfur. J Inherit Metab Dis 2011; 34:17-32. [PMID: 20162368 PMCID: PMC2901774 DOI: 10.1007/s10545-009-9006-9] [Citation(s) in RCA: 317] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Revised: 09/22/2009] [Accepted: 09/24/2009] [Indexed: 11/30/2022]
Abstract
Synthesis of cysteine as a product of the transsulfuration pathway can be viewed as part of methionine or homocysteine degradation, with cysteine being the vehicle for sulfur conversion to end products (sulfate, taurine) that can be excreted in the urine. Transsulfuration is regulated by stimulation of cystathionine β-synthase and inhibition of methylene tetrahydrofolate reductase in response to changes in the level of S-adenosylmethionine, and this promotes homocysteine degradation when methionine availability is high. Cysteine is catabolized by several desulfuration reactions that release sulfur in a reduced oxidation state, generating sulfane sulfur or hydrogen sulfide (H₂S), which can be further oxidized to sulfate. Cysteine desulfuration is accomplished by alternate reactions catalyzed by cystathionine β-synthase and cystathionine γ-lyase. Cysteine is also catabolized by pathways that require the initial oxidation of the cysteine thiol by cysteine dioxygenase to form cysteinesulfinate. The oxidative pathway leads to production of taurine and sulfate in a ratio of approximately 2:1. Relative metabolism of cysteine by desulfuration versus oxidative pathways is influenced by cysteine dioxygenase activity, which is low in animals fed low-protein diets and high in animals fed excess sulfur amino acids. Thus, desulfuration reactions dominate when cysteine is deficient, whereas oxidative catabolism dominates when cysteine is in excess. In rats consuming a diet with an adequate level of sulfur amino acids, about two thirds of cysteine catabolism occurs by oxidative pathways and one third by desulfuration pathways. Cysteine dioxygenase is robustly regulated in response to cysteine availability and may function to provide a pathway to siphon cysteine to less toxic metabolites than those produced by cysteine desulfuration reactions.
Collapse
Affiliation(s)
- Martha H. Stipanuk
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Iori Ueki
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
21
|
Ueki I, Stipanuk MH. 3T3-L1 adipocytes and rat adipose tissue have a high capacity for taurine synthesis by the cysteine dioxygenase/cysteinesulfinate decarboxylase and cysteamine dioxygenase pathways. J Nutr 2009; 139:207-14. [PMID: 19106324 PMCID: PMC2635524 DOI: 10.3945/jn.108.099085] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Revised: 10/01/2008] [Accepted: 11/18/2008] [Indexed: 11/14/2022] Open
Abstract
Taurine is the most abundant free amino acid in the body and is synthesized in mammals by 2 pathways. Taurine is synthesized either from the oxidation of cysteine via cysteine dioxygenase (CDO), which generates cysteinesulfinate that is decarboxylated by cysteinesulfinic acid decarboxylase (CSAD), or from the oxidation of cysteamine by cysteamine (2-aminoethanethiol) dioxygenase (ADO). Both pathways generate hypotaurine, which is oxidized to taurine. To determine whether these pathways for taurine synthesis are present in the adipocyte, we studied 3T3-L1 cells during their adipogenic conversion and fat from rats fed diets with varied sulfur-amino acid content. CDO, CSAD, and ADO protein levels increased during adipogenic differentiation of 3T3-L1 cells and all of these enzymes were significantly increased when cells achieved a mature adipocyte phenotype. Furthermore, these changes were accompanied by an increased hypotaurine and taurine production, particularly when cells were treated with cysteine or cysteamine. CDO mRNA levels also responded robustly to cysteine or cysteamine treatment in adipocytes but not in undifferentiated 3T3-L1 cells. Furthermore, CDO protein and activity were greater in adipose tissue from rats fed a high protein or cystine-supplemented low protein (LP) diet than in adipose tissue from rats fed a LP diet. Overall, our results demonstrate that CDO is regulated at both the level of enzyme abundance and the level of mRNA in mature adipocytes.
Collapse
Affiliation(s)
- Iori Ueki
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
22
|
Stipanuk MH, Ueki I, Dominy JE, Simmons CR, Hirschberger LL. Cysteine dioxygenase: a robust system for regulation of cellular cysteine levels. Amino Acids 2008; 37:55-63. [PMID: 19011731 DOI: 10.1007/s00726-008-0202-y] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Accepted: 10/07/2008] [Indexed: 11/26/2022]
Abstract
Cysteine catabolism in mammals is dependent upon cysteine dioxygenase (CDO), an enzyme that adds molecular oxygen to the sulfur of cysteine, converting the thiol to a sulfinic acid known as cysteinesulfinic acid (3-sulfinoalanine). CDO is one of the most highly regulated metabolic enzymes responding to diet that is known. It undergoes up to 45-fold changes in concentration and up to 10-fold changes in catalytic efficiency. This provides a remarkable responsiveness of the cell to changes in sulfur amino acid availability: the ability to decrease CDO activity and conserve cysteine when cysteine is scarce and to rapidly increase CDO activity and catabolize cysteine to prevent cytotoxicity when cysteine supply is abundant. CDO in both liver and adipose tissues responds to changes in dietary intakes of protein and/or sulfur amino acids over a range that encompasses the requirement level, suggesting that cysteine homeostasis is very important to the living organism.
Collapse
Affiliation(s)
- M H Stipanuk
- Division of Nutritional Sciences, Cornell University, 227 Savage Hall, Ithaca, NY 14853, USA.
| | | | | | | | | |
Collapse
|
23
|
Stipanuk MH, Dominy JE, Ueki I, Hirschberger LL. Measurement of Cysteine Dioxygenase Activity and Protein Abundance. ACTA ACUST UNITED AC 2008; 38:6.15.1-6.15.25. [PMID: 19885389 DOI: 10.1002/0471140856.tx0615s38] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Cysteine dioxygenase is an iron (Fe(2+))-dependent thiol dioxygenase that uses molecular oxygen to oxidize the sulfhydryl group of cysteine to generate 3-sulfinoalanine (commonly called cysteinesulfinic acid). Cysteine dioxygenase activity is routinely assayed by measuring cysteinesulfinate formation from substrate L-cysteine at pH 6.1 in the presence of ferrous ions to saturate the enzyme with metal cofactor, a copper chelator to diminish substrate oxidation, and hydroxylamine to inhibit pyridoxal 5'-phosphate-dependent degradation of product. The amount of cysteine dioxygenase may be measured by immunoblotting. Upon SDS-PAGE, cysteine dioxygenase can be separated into two major bands, with the upper band representing the 23-kDa protein and the lower band representing the mature enzyme that has undergone formation of an internal thioether cross link in the active site. Formation of this cross link is dependent upon the catalytic turnover of substrate and produces an enzyme with a higher catalytic efficiency and catalytic half-life.
Collapse
Affiliation(s)
- Martha H Stipanuk
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853
| | | | | | | |
Collapse
|
24
|
Dominy JE, Hwang J, Guo S, Hirschberger LL, Zhang S, Stipanuk MH. Synthesis of amino acid cofactor in cysteine dioxygenase is regulated by substrate and represents a novel post-translational regulation of activity. J Biol Chem 2008; 283:12188-201. [PMID: 18308719 DOI: 10.1074/jbc.m800044200] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cysteine dioxygenase (CDO) catalyzes the conversion of cysteine to cysteinesulfinic acid and is important in the regulation of intracellular cysteine levels in mammals and in the provision of oxidized cysteine metabolites such as sulfate and taurine. Several crystal structure studies of mammalian CDO have shown that there is a cross-linked cofactor present in the active site of the enzyme. The cofactor consists of a thioether bond between the gamma-sulfur of residue cysteine 93 and the aromatic side chain of residue tyrosine 157. The exact requirements for cofactor synthesis and the contribution of the cofactor to the catalytic activity of the enzyme have yet to be fully described. In this study, therefore, we explored the factors necessary for cofactor biogenesis in vitro and in vivo and examined what effect cofactor formation had on activity in vitro. Like other cross-linked cofactor-containing enzymes, formation of the Cys-Tyr cofactor in CDO required a transition metal cofactor (Fe(2+)) and O(2). Unlike other enzymes, however, biogenesis was also strictly dependent upon the presence of substrate. Cofactor formation was also appreciably slower than the rates reported for other enzymes and, indeed, took hundreds of catalytic turnover cycles to occur. In the absence of the Cys-Tyr cofactor, CDO possessed appreciable catalytic activity, suggesting that the cofactor was not essential for catalysis. Nevertheless, at physiologically relevant cysteine concentrations, cofactor formation increased CDO catalytic efficiency by approximately 10-fold. Overall, the regulation of Cys-Tyr cofactor formation in CDO by ambient cysteine levels represents an unusual form of substrate-mediated feed-forward activation of enzyme activity with important physiological consequences.
Collapse
Affiliation(s)
- John E Dominy
- Department of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | |
Collapse
|
25
|
Deth R, Muratore C, Benzecry J, Power-Charnitsky VA, Waly M. How environmental and genetic factors combine to cause autism: A redox/methylation hypothesis. Neurotoxicology 2007; 29:190-201. [PMID: 18031821 DOI: 10.1016/j.neuro.2007.09.010] [Citation(s) in RCA: 196] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Revised: 07/27/2007] [Accepted: 09/27/2007] [Indexed: 01/17/2023]
Abstract
Recently higher rates of autism diagnosis suggest involvement of environmental factors in causing this developmental disorder, in concert with genetic risk factors. Autistic children exhibit evidence of oxidative stress and impaired methylation, which may reflect effects of toxic exposure on sulfur metabolism. We review the metabolic relationship between oxidative stress and methylation, with particular emphasis on adaptive responses that limit activity of cobalamin and folate-dependent methionine synthase. Methionine synthase activity is required for dopamine-stimulated phospholipid methylation, a unique membrane-delimited signaling process mediated by the D4 dopamine receptor that promotes neuronal synchronization and attention, and synchrony is impaired in autism. Genetic polymorphisms adversely affecting sulfur metabolism, methylation, detoxification, dopamine signaling and the formation of neuronal networks occur more frequently in autistic subjects. On the basis of these observations, a "redox/methylation hypothesis of autism" is described, in which oxidative stress, initiated by environment factors in genetically vulnerable individuals, leads to impaired methylation and neurological deficits secondary to reductions in the capacity for synchronizing neural networks.
Collapse
Affiliation(s)
- Richard Deth
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02468, United States.
| | | | | | | | | |
Collapse
|
26
|
Ueki I, Stipanuk MH. Enzymes of the taurine biosynthetic pathway are expressed in rat mammary gland. J Nutr 2007; 137:1887-94. [PMID: 17634260 PMCID: PMC2099301 DOI: 10.1093/jn/137.8.1887] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Taurine is the most abundant free amino acid in the body and is present at high concentrations during development and in the early milk. It is synthesized from cysteine via oxidation of cysteine to cysteinesulfinate by the enzyme cysteine dioxygenase (CDO), followed by the decarboxylation of cysteinesulfinate to hypotaurine, catalyzed by cysteine sulfinic acid decarboxylase (CSAD). To determine whether the taurine biosynthetic pathway is present in mammary gland and whether it is differentially expressed during pregnancy and lactation, and also to further explore the possible regulation of hepatic taurine synthesis during pregnancy and lactation, we measured mammary and hepatic CDO and CSAD mRNA and protein concentrations and tissue, plasma and milk taurine concentrations. CDO and CSAD mRNA and protein were expressed in mammary gland and liver regardless of physiological state. Immunohistochemistry demonstrated the expression of CDO in ductal cells of pregnant rats, but not in other mammary epithelial cells or in ductal cells of nonpregnant rats. CDO was also present in stromal adipocytes in mammary glands of both pregnant and nonpregnant rats. Our findings support an upregulation of taurine synthetic capacity in the mammary gland of pregnant rats, based on mammary taurine and hypotaurine concentrations and the intense immunohistochemical staining for CDO in ductal cells of pregnant rats. Hepatic taurine synthetic capacity, particularly CSAD, and taurine concentrations were highest in rats during the early stages of lactation, suggesting the liver may also play a role in the synthesis of taurine to support lactation or repletion of maternal reserves.
Collapse
Affiliation(s)
- Iori Ueki
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
27
|
Dominy JE, Hwang J, Stipanuk MH. Overexpression of cysteine dioxygenase reduces intracellular cysteine and glutathione pools in HepG2/C3A cells. Am J Physiol Endocrinol Metab 2007; 293:E62-9. [PMID: 17327371 DOI: 10.1152/ajpendo.00053.2007] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cysteine levels are carefully regulated in mammals to balance metabolic needs against the potential for cytotoxicity. It has been postulated that one of the major regulators of intracellular cysteine levels in mammals is cysteine dioxygenase (CDO). Hepatic expression of this catabolic enzyme increases dramatically in response to increased cysteine availability and may therefore be part of a homeostatic response to shunt excess toxic cysteine to more benign metabolites such as sulfate or taurine. Direct experimental evidence, however, is lacking to support the hypothesis that CDO is capable of altering steady-state intracellular cysteine levels. In this study, we expressed either the wild-type (WT) or a catalytically inactivated mutant (H86A) isoform of CDO in HepG2/C3A cells (which do not express endogenous CDO protein) and cultured them in different concentrations of extracellular cysteine. WT CDO, but not H86A CDO, was capable of reducing intracellular cysteine levels in cells incubated in physiologically relevant concentrations of cysteine. WT CDO also decreased the glutathione pool and potentiated the toxicity of CdCl(2). These results demonstrate that CDO is capable of altering intracellular cysteine levels as well as glutathione levels.
Collapse
Affiliation(s)
- John E Dominy
- Department of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
28
|
Dominy JE, Simmons CR, Hirschberger LL, Hwang J, Coloso RM, Stipanuk MH. Discovery and characterization of a second mammalian thiol dioxygenase, cysteamine dioxygenase. J Biol Chem 2007; 282:25189-98. [PMID: 17581819 DOI: 10.1074/jbc.m703089200] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
There are only two known thiol dioxygenase activities in mammals, and they are ascribed to the enzymes cysteine dioxygenase (CDO) and cysteamine (2-aminoethanethiol) dioxygenase (ADO). Although many studies have been dedicated to CDO, resulting in the identification of its gene and even characterization of the tertiary structure of the protein, relatively little is known about cysteamine dioxygenase. The failure to identify the gene for this protein has significantly hampered our understanding of the metabolism of cysteamine, a product of the constitutive degradation of coenzyme A, and the synthesis of taurine, the final product of cysteamine oxidation and the second most abundant amino acid in mammalian tissues. In this study we identified a hypothetical murine protein homolog of CDO (hereafter called ADO) that is encoded by the gene Gm237 and belongs to the DUF1637 protein family. When expressed as a recombinant protein, ADO exhibited significant cysteamine dioxygenase activity in vitro. The reaction was highly specific for cysteamine; cysteine was not oxidized by the enzyme, and structurally related compounds were not competitive inhibitors of the reaction. When overexpressed in HepG2/C3A cells, ADO increased the production of hypotaurine from cysteamine. Similarly, when endogenous expression of the human ADO ortholog C10orf22 in HepG2/C3A cells was reduced by RNA-mediated interference, hypotaurine production decreased. Western blots of murine tissues with an antibody developed against ADO showed that the protein is ubiquitously expressed with the highest levels in brain, heart, and skeletal muscle. Overall, these data suggest that ADO is responsible for endogenous cysteamine dioxygenase activity.
Collapse
Affiliation(s)
- John E Dominy
- Department of Nutritional Sciences, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | | | |
Collapse
|
29
|
Dominy JE, Hirschberger LL, Coloso RM, Stipanuk MH. In vivo regulation of cysteine dioxygenase via the ubiquitin-26S proteasome system. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 583:37-47. [PMID: 17153587 DOI: 10.1007/978-0-387-33504-9_4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Affiliation(s)
- John E Dominy
- Cornell University, Division of Nutritional Sciences, Ithaca, 14853 New York, USA.
| | | | | | | |
Collapse
|
30
|
Stipanuk MH, Dominy JE, Lee JI, Coloso RM. Mammalian cysteine metabolism: new insights into regulation of cysteine metabolism. J Nutr 2006; 136:1652S-1659S. [PMID: 16702335 DOI: 10.1093/jn/136.6.1652s] [Citation(s) in RCA: 366] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The mammalian liver tightly regulates its free cysteine pool, and intracellular cysteine in rat liver is maintained between 20 and 100 nmol/g even when sulfur amino acid intakes are deficient or excessive. By keeping cysteine levels within a narrow range and by regulating the synthesis of glutathione, which serves as a reservoir of cysteine, the liver addresses both the need to have adequate cysteine to support normal metabolism and the need to keep cysteine levels below the threshold of toxicity. Cysteine catabolism is tightly regulated via regulation of cysteine dioxygenase (CDO) levels in the liver, with the turnover of CDO protein being dramatically decreased when intracellular cysteine levels increase. This occurs in response to changes in the intracellular cysteine concentration via changes in the rate of CDO ubiquitination and degradation. Glutathione synthesis also increases when intracellular cysteine levels increase as a result of increased saturation of glutamate-cysteine ligase (GCL) with cysteine, and this contributes to removal of excess cysteine. When cysteine levels drop, GCL activity increases, and the increased capacity for glutathione synthesis facilitates conservation of cysteine in the form of glutathione (although the absolute rate of glutathione synthesis still decreases because of the lack of substrate). This increase in GCL activity is dependent on up-regulation of expression of both the catalytic and modifier subunits of GCL, resulting in an increase in total catalytic subunit plus an increase in the catalytic efficiency of the enzyme. An important role of cysteine utilization for coenzyme A synthesis in maintaining cellular cysteine levels in some tissues, and a possible connection between the necessity of controlling cellular cysteine levels to regulate the rate of hydrogen sulfide production, have been suggested by recent literature and are areas that deserve further study.
Collapse
Affiliation(s)
- Martha H Stipanuk
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA.
| | | | | | | |
Collapse
|
31
|
Simmons CR, Hirschberger LL, Machi MS, Stipanuk MH. Expression, purification, and kinetic characterization of recombinant rat cysteine dioxygenase, a non-heme metalloenzyme necessary for regulation of cellular cysteine levels. Protein Expr Purif 2006; 47:74-81. [PMID: 16325423 DOI: 10.1016/j.pep.2005.10.025] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2005] [Revised: 10/22/2005] [Accepted: 10/25/2005] [Indexed: 11/29/2022]
Abstract
Cysteine dioxygenase (CDO, EC 1.13.11.20) is a non-heme mononuclear iron enzyme that oxidizes cysteine to cysteinesulfinate. CDO catalyzes the first step in the pathway of taurine synthesis from cysteine as well as the first step in the catabolism of cysteine to pyruvate and sulfate. Previous attempts to purify CDO have been associated with partial or total inactivation of CDO. In an effort to obtain highly purified and active CDO, recombinant rat CDO was heterologously expressed and purified, and its activity profile was characterized. The protein was expressed as a fusion protein bearing a polyhistidine tag to facilitate purification, a thioredoxin tag to improve solubility, and a factor Xa cleavage site to permit removal of the entire N-terminus, leaving only the 200 amino acids inherent to the native protein. A multi-step purification scheme was used to achieve >95% purity of CDO. The approximately 40.3 kDa full-length fusion protein was purified to homogeneity using a three-column scheme, the fusion tag was then removed by digestion with factor Xa, and a final column step was used to purify homogeneous approximately 23 kDa CDO. The purified CDO had high specific activity and kinetic parameters that were similar to those for non-purified rat liver homogenate, including a Vmax of approximately 1880 nmol min-1 mg-1 CDO (kcat=43 min-1) and a Km of 0.45 mM for L-cysteine. The expression and purification of CDO in a stable, highly active form has yielded significant insight into the kinetic properties of this unique thiol dioxygenase.
Collapse
Affiliation(s)
- Chad R Simmons
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853-6301, USA
| | | | | | | |
Collapse
|
32
|
Dominy J, Hirschberger L, Coloso R, Stipanuk M. Regulation of cysteine dioxygenase degradation is mediated by intracellular cysteine levels and the ubiquitin-26 S proteasome system in the living rat. Biochem J 2006; 394:267-73. [PMID: 16262602 PMCID: PMC1386025 DOI: 10.1042/bj20051510] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mammalian metabolism of ingested cysteine is conducted principally within the liver. The liver tightly regulates its intracellular cysteine pool to keep levels high enough to meet the many catabolic and anabolic pathways for which cysteine is needed, but low enough to prevent toxicity. One of the enzymes the liver uses to regulate cysteine levels is CDO (cysteine dioxygenase). Catalysing the irreversible oxidation of cysteine, CDO protein is up-regulated in the liver in response to the dietary intake of cysteine. In the present study, we have evaluated the contribution of the ubiquitin-26 S proteasome pathway to the diet-induced changes in CDO half-life. In the living rat, inhibition of the proteasome with PS1 (proteasome inhibitor 1) dramatically stabilized CDO in the liver under dietary conditions that normally favour its degradation. Ubiquitinated CDO intermediates were also seen to accumulate in the liver. Metabolic analyses showed that PS1 had a significant effect on sulphoxidation flux secondary to the stabilization of CDO but no significant effect on the intracellular cysteine pool. Finally, by a combination of in vitro hepatocyte culture and in vivo whole animal studies, we were able to attribute the changes in CDO stability specifically to cysteine rather than the metabolite 2-mercaptoethylamine (cysteamine). The present study represents the first demonstration of regulated ubiquitination and degradation of a protein in a living mammal, inhibition of which had dramatic effects on cysteine catabolism.
Collapse
Affiliation(s)
| | | | - Relicardo M. Coloso
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, U.S.A
| | - Martha H. Stipanuk
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
33
|
Dominy JE, Stipanuk MH. New roles for cysteine and transsulfuration enzymes: production of H2S, a neuromodulator and smooth muscle relaxant. Nutr Rev 2004; 62:348-53. [PMID: 15497768 DOI: 10.1111/j.1753-4887.2004.tb00060.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The enzymes of the transsulfuration pathway also have the capacity to catalyze the desulfhydration of cysteine. Recent studies demonstrate a role of the transsulfuration enzymes, cystathionine gamma-lyase and cystathionine beta-synthase, in catalyzing the desulfhydration of cysteine in brain and smooth muscle. The H2S produced from cysteine functions as a neuromodulator and smooth muscle relaxant. In glutamatergic neurons, the production of H2S by cystathionine beta-synthase enhances N-methyl-D-aspartate (NMDA) receptor-mediated currents. In smooth muscle cells, H2S produced by cystathionine gamma-lyase enhances the outward flux of potassium by opening potassium channels, leading to hyperpolarization of membrane potential and smooth muscle relaxation.
Collapse
Affiliation(s)
- John E Dominy
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
34
|
Stipanuk MH. Sulfur amino acid metabolism: pathways for production and removal of homocysteine and cysteine. Annu Rev Nutr 2004; 24:539-77. [PMID: 15189131 DOI: 10.1146/annurev.nutr.24.012003.132418] [Citation(s) in RCA: 696] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Tissue concentrations of both homocysteine (Hcy) and cysteine (Cys) are maintained at low levels by regulated production and efficient removal of these thiols. The regulation of the metabolism of methionine and Cys is discussed from the standpoint of maintaining low levels of Hcy and Cys while, at the same time, ensuring an adequate supply of these thiols for their essential functions. S-Adenosylmethionine coordinately regulates the flux through remethylation and transsulfuration, and glycine N-methyltransferase regulates flux through transmethylation and hence the S-adenosylmethionine/S-adenosylhomocysteine ratio. Cystathionine beta-synthase activity is also regulated in response to the redox environment, and transcription of the gene is hormonally regulated in response to fuel supply (insulin, glucagon, and glucocorticoids). The H2S-producing capacity of cystathionine gamma-lyase may be regulated in response to nitric oxide. Cys is substrate for a variety of anabolic and catabolic enzymes. Its concentration is regulated primarily by hepatic Cys dioxygenase; the level of Cys dioxygenase is upregulated in a Cys-responsive manner via a decrease in the rate of polyubiquitination and, hence, degradation by the 26S proteasome.
Collapse
Affiliation(s)
- Martha H Stipanuk
- Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853, USA.
| |
Collapse
|