1
|
Pauk M, Amigo-Benavent M, Patel B, Jakeman PM, Carson BP. Comparative response of casein protein hydrolysate-fed young and older human serum on in vitro muscle protein metabolism and myotube size. Am J Physiol Cell Physiol 2025; 328:C595-C603. [PMID: 39804777 DOI: 10.1152/ajpcell.00117.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 12/18/2024] [Accepted: 12/18/2024] [Indexed: 01/16/2025]
Abstract
In this study, we used an ex vivo-in vitro model to assess the effect of feeding older (50-70 yr) adults a casein protein hydrolysate (CPH) compared with nonbioactive nonessential amino acid (NEAA) supplement on muscle protein synthesis (MPS) and markers of muscle protein breakdown (MPB). As a secondary objective, to assess any attenuation with aging, we compared the anabolic response to CPH-fed serum from older and young adults. Serum from seven healthy older and seven young men following overnight fast and 60-min postprandial ingestion of CPH or NEAA (0.33 g·kg-1 body mass) was used to condition C2C12 myotube media. Analysis by two-way ANOVA of the fed relative to fasted MPS response revealed a main effect for protein type in pmTOR (P = 0.009), p70S6K (P = 0.031), p4E-BP1 (P = 0.047), and MPS (P = 0.041) with a greater response to CPH-fed serum, and interaction effects (age × protein) between young and old serum for pmTOR (P = 0.009) and p70S6K (P = 0.016). In addition, significant changes in myotube diameter (P = 0.049), atrogin-1 (P = 0.004), and MuRF-1 (P = 0.012) in response to CPH-fed compared with fasted serum were observed with no differences between young and old serum. In conclusion, this study demonstrated that CPH-fed serum from both young and older (50-70 yr) adults can stimulate MPS and muscle growth and can suppress biomarkers of muscle protein breakdown processes.NEW & NOTEWORTHY This study extended previously developed coculture models and found that treating skeletal muscle cells with ex vivo human serum following feeding with a casein protein hydrolysate resulted in greater protein signaling, muscle protein synthesis, muscle growth, and lower expression of genes related to muscle protein breakdown compared with feeding with a nonessential amino acid control. These findings were similar using serum from young and older adults.
Collapse
Affiliation(s)
- Martina Pauk
- Food for Health Ireland, University of Limerick, Limerick, Ireland
- Department of Physical Education & Sport Sciences, Faculty of Education and Health Sciences, University of Limerick, Limerick, Ireland
- Institute of Musculoskeletal Medicine, University Hospital, LMU Munich, Munich, Germany
- Musculoskeletal University Center Munich, University Hospital, LMU Munich, Munich, Germany
| | | | - Bijal Patel
- Food for Health Ireland, University of Limerick, Limerick, Ireland
- Department of Physical Education & Sport Sciences, Faculty of Education and Health Sciences, University of Limerick, Limerick, Ireland
| | - Philip M Jakeman
- Food for Health Ireland, University of Limerick, Limerick, Ireland
- Department of Physical Education & Sport Sciences, Faculty of Education and Health Sciences, University of Limerick, Limerick, Ireland
- Health Research Institute, University of Limerick, Limerick, Ireland
| | - Brian P Carson
- Food for Health Ireland, University of Limerick, Limerick, Ireland
- Department of Physical Education & Sport Sciences, Faculty of Education and Health Sciences, University of Limerick, Limerick, Ireland
- Health Research Institute, University of Limerick, Limerick, Ireland
| |
Collapse
|
2
|
Kaspy MS, Hannaian SJ, Bell ZW, Churchward-Venne TA. The effects of branched-chain amino acids on muscle protein synthesis, muscle protein breakdown and associated molecular signalling responses in humans: an update. Nutr Res Rev 2024; 37:273-286. [PMID: 37681443 DOI: 10.1017/s0954422423000197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Branched-chain amino acids (BCAA: leucine, isoleucine and valine) are three of the nine indispensable amino acids, and are frequently consumed as a dietary supplement by athletes and recreationally active individuals alike. The popularity of BCAA supplements is largely predicated on the notion that they can stimulate rates of muscle protein synthesis (MPS) and suppress rates of muscle protein breakdown (MPB), the combination of which promotes a net anabolic response in skeletal muscle. To date, several studies have shown that BCAA (particularly leucine) increase the phosphorylation status of key proteins within the mechanistic target of rapamycin (mTOR) signalling pathway involved in the regulation of translation initiation in human muscle. Early research in humans demonstrated that BCAA provision reduced indices of whole-body protein breakdown and MPB; however, there was no stimulatory effect of BCAA on MPS. In contrast, recent work has demonstrated that BCAA intake can stimulate postprandial MPS rates at rest and can further increase MPS rates during recovery after a bout of resistance exercise. The purpose of this evidence-based narrative review is to critically appraise the available research pertaining to studies examining the effects of BCAA on MPS, MPB and associated molecular signalling responses in humans. Overall, BCAA can activate molecular pathways that regulate translation initiation, reduce indices of whole-body and MPB, and transiently stimulate MPS rates. However, the stimulatory effect of BCAA on MPS rates is less than the response observed following ingestion of a complete protein source providing the full complement of indispensable amino acids.
Collapse
Affiliation(s)
- Matthew S Kaspy
- Department of Kinesiology and Physical Education, McGill University, 475 Avenue Des Pins H2W 1S4, Montreal, QC, Canada
| | - Sarkis J Hannaian
- Department of Kinesiology and Physical Education, McGill University, 475 Avenue Des Pins H2W 1S4, Montreal, QC, Canada
- Research Institute of the McGill University Health Centre, Glen Site, 1001 Boul. Décarie, H4A 3J1 Montreal, QC, Canada
| | - Zachary W Bell
- Department of Kinesiology and Physical Education, McGill University, 475 Avenue Des Pins H2W 1S4, Montreal, QC, Canada
| | - Tyler A Churchward-Venne
- Department of Kinesiology and Physical Education, McGill University, 475 Avenue Des Pins H2W 1S4, Montreal, QC, Canada
- Division of Geriatric Medicine, McGill University, Montreal General Hospital, Room D6 237.F, 1650 Cedar Avenue, H3G 1A4, Montreal, QC, Canada
- Research Institute of the McGill University Health Centre, Glen Site, 1001 Boul. Décarie, H4A 3J1 Montreal, QC, Canada
| |
Collapse
|
3
|
Bird SP, Nienhuis M, Biagioli B, De Pauw K, Meeusen R. Supplementation Strategies for Strength and Power Athletes: Carbohydrate, Protein, and Amino Acid Ingestion. Nutrients 2024; 16:1886. [PMID: 38931241 PMCID: PMC11206787 DOI: 10.3390/nu16121886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/07/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
It is a common belief amongst strength and power athletes that nutritional supplementation strategies aid recovery by shifting the anabolic/catabolic profile toward anabolism. Factors such as nutrient quantity, nutrient quality, and nutrient timing significantly impact upon the effectiveness of nutritional strategies in optimizing the acute responses to resistance exercise and the adaptive response to resistance training (i.e., muscle growth and strength expression). Specifically, the aim of this review is to address carbohydrates (CHOs), protein (PRO), and/or amino acids (AAs) supplementation strategies, as there is growing evidence suggesting a link between nutrient signaling and the initiation of protein synthesis, muscle glycogen resynthesis, and the attenuation of myofibrillar protein degradation following resistance exercise. Collectively, the current scientific literature indicates that nutritional supplementation strategies utilizing CHO, PRO, and/or AA represents an important approach aimed at enhancing muscular responses for strength and power athletes, primarily increased muscular hypertrophy and enhanced strength expression. There appears to be a critical interaction between resistance exercise and nutrient-cell signaling associated with the principle of nutrient timing (i.e., pre-exercise, during, and post-exercise). Recommendations for nutritional supplementation strategies to promote muscular responses for strength and athletes are provided.
Collapse
Affiliation(s)
- Stephen P. Bird
- School of Health and Medical Sciences, University of Southern Queensland, Ipswich, QLD 4305, Australia
- Centre for Health Research, University of Southern Queensland, Ipswich, QLD 4305, Australia
| | - Mitch Nienhuis
- Movement Science, Grand Valley State University, Allendale, MI 49401, USA
| | - Brian Biagioli
- Kinesiology and Sport Sciences, School of Education and Human Development, University of Miami, Coral Gables, FL 33146, USA
| | - Kevin De Pauw
- Human Physiology and Sports Physiotherapy Research Group (MFYS), Vrije Universiteit Brussel, 1050 Brussel, Belgium
- Brussels Human Robotics Research Center (BruBotics), Vrije Universiteit Brussel, 1050 Brussel, Belgium
| | - Romain Meeusen
- Human Physiology and Sports Physiotherapy Research Group (MFYS), Vrije Universiteit Brussel, 1050 Brussel, Belgium
- Department of Sports, Recreation, Exercise and Sciences, University of the Western Cape, Cape Town 7535, South Africa
| |
Collapse
|
4
|
Moosavi D, Vuckovic I, Kunz HE, Lanza IR. Metabolomic response to acute resistance exercise in healthy older adults by 1H-NMR. PLoS One 2024; 19:e0301037. [PMID: 38547208 PMCID: PMC10977811 DOI: 10.1371/journal.pone.0301037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 03/03/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND The favorable health-promoting adaptations to exercise result from cumulative responses to individual bouts of physical activity. Older adults often exhibit anabolic resistance; a phenomenon whereby the anabolic responses to exercise and nutrition are attenuated in skeletal muscle. The mechanisms contributing to age-related anabolic resistance are emerging, but our understanding of how chronological age influences responsiveness to exercise is incomplete. The objective was to determine the effects of healthy aging on peripheral blood metabolomic response to a single bout of resistance exercise and whether any metabolites in circulation are predictive of anabolic response in skeletal muscle. METHODS Thirty young (20-35 years) and 49 older (65-85 years) men and women were studied in a cross-sectional manner. Participants completed a single bout of resistance exercise consisting of eight sets of 10 repetitions of unilateral knee extension at 70% of one-repetition maximum. Blood samples were collected before exercise, immediately post exercise, and 30-, 90-, and 180-minutes into recovery. Proton nuclear magnetic resonance spectroscopy was used to profile circulating metabolites at all timepoints. Serial muscle biopsies were collected for measuring muscle protein synthesis rates. RESULTS Our analysis revealed that one bout of resistance exercise elicits significant changes in 26 of 33 measured plasma metabolites, reflecting alterations in several biological processes. Furthermore, 12 metabolites demonstrated significant interactions between exercise and age, including organic acids, amino acids, ketones, and keto-acids, which exhibited distinct responses to exercise in young and older adults. Pre-exercise histidine and sarcosine were negatively associated with muscle protein synthesis, as was the pre/post-exercise fold change in plasma histidine. CONCLUSIONS This study demonstrates that while many exercise-responsive metabolites change similarly in young and older adults, several demonstrate age-dependent changes even in the absence of evidence of sarcopenia or frailty. TRIAL REGISTRATION Clinical trial registry: ClinicalTrials.gov NCT03350906.
Collapse
Affiliation(s)
- Darya Moosavi
- Department of Internal Medicine, Endocrine Research Unit, Division of Endocrinology, Mayo Clinic, Rochester, MN, United States of America
- Department of Biobehavioral Sciences, Teachers College, Columbia University, New York, NY, United States of America
| | - Ivan Vuckovic
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States of America
| | - Hawley E. Kunz
- Department of Internal Medicine, Endocrine Research Unit, Division of Endocrinology, Mayo Clinic, Rochester, MN, United States of America
| | - Ian R. Lanza
- Department of Internal Medicine, Endocrine Research Unit, Division of Endocrinology, Mayo Clinic, Rochester, MN, United States of America
| |
Collapse
|
5
|
Loureiro LL, Ferreira TJ, Cahuê FLC, Bittencourt VZ, Valente AP, Pierucci APTR. Comparison of the effects of pea protein and whey protein on the metabolic profile of soccer athletes: a randomized, double-blind, crossover trial. Front Nutr 2023; 10:1210215. [PMID: 37810915 PMCID: PMC10556705 DOI: 10.3389/fnut.2023.1210215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/31/2023] [Indexed: 10/10/2023] Open
Abstract
Introduction Pea protein (PP) concentrate is a plant-based alternative to animal protein sources, such as whey protein (WP). In addition to its valuable amino acid composition, PP has a low environmental impact, making it a sustainable, nutritious, and viable alternative for enhanced sports performance, such as in soccer. PP Therefore, this study aimed to evaluate the effects of PP and WP supplementation on biochemical and metabolic parameters in soccer players. Methods Twelve male under-20 soccer players were included in this double-blind, randomized crossover intervention study. For 10 consecutive days, each participant received either 0.5 g/kg of the PP or WP supplementation after training, starting 7 days before the test game, and continuing until 2 days after. After a 4-day washout period, the athletes switched groups and the intervention was restarted. Blood samples were collected before and after the game, as well as 24 h, 48 h, and 72 h intervals thereafter. Creatine kinase (CK), aspartate transaminase, alanine transaminase (ALT), lactate (LA), urea, creatinine, and uric acid were analyzed using commercial kits. Exploratory metabolic profiling of the serum samples was performed using nuclear magnetic resonance spectroscopy. Results A comparison of biochemical markers showed that the PP group had lower CK in the post-game moment, 24 h, and 48 h. Lower LA in the post-game moment, and lower ALT in the post-game moment and at 24 h. Of the 48 metabolites analyzed, 22 showed significant differences between the time points, such as amino acids, ketone bodies, and glucose metabolism. Glutamate and lactate levels significantly increased between the pre- and post-game moments in the WP group. After the game, the WP group exhibited reduced levels of metabolites such as arginine and taurine, whereas no such change was observed in the PP group. There was no difference in metabolites 72 h after the game. Conclusions Despite the slight advantage of the PP group in specific biochemical markers, these differences are not sufficient to justify the choice of a particular type of protein. However, the results highlight the viability of plant protein as a potential alternative to animal protein without compromising athletic performance or recovery.
Collapse
Affiliation(s)
- Luiz Lannes Loureiro
- DAFEE Laboratory, Institute of Nutrition, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tathiany Jéssica Ferreira
- DAFEE Laboratory, Institute of Nutrition, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fábio Luiz Candido Cahuê
- DAFEE Laboratory, Institute of Nutrition, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Victor Zaban Bittencourt
- DAFEE Laboratory, Institute of Nutrition, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Paula Valente
- CNRMN, Structural Biology, Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | |
Collapse
|
6
|
Lilja M, Moberg M, Apró W, Martínez-Aranda LM, Rundqvist H, Langlet B, Gustafsson T, Lundberg TR. Limited effect of over-the-counter doses of ibuprofen on mechanisms regulating muscle hypertrophy during resistance training in young adults. J Appl Physiol (1985) 2023; 134:753-765. [PMID: 36794689 DOI: 10.1152/japplphysiol.00698.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
We have previously shown that maximal over-the-counter doses of ibuprofen, compared with low doses of acetylsalicylic acid, reduce muscle hypertrophy in young individuals after 8 wk of resistance training. Because the mechanism behind this effect has not been fully elucidated, we here investigated skeletal muscle molecular responses and myofiber adaptations in response to acute and chronic resistance training with concomitant drug intake. Thirty-one young (aged 18-35 yr) healthy men (n = 17) and women (n = 14) were randomized to receive either ibuprofen (IBU; 1,200 mg daily; n = 15) or acetylsalicylic acid (ASA; 75 mg daily; n = 16) while undergoing 8 wk of knee extension training. Muscle biopsies from the vastus lateralis were obtained before, at week 4 after an acute exercise session, and after 8 wk of resistance training and analyzed for mRNA markers and mTOR signaling, as well as quantification of total RNA content (marker of ribosome biogenesis) and immunohistochemical analysis of muscle fiber size, satellite cell content, myonuclear accretion, and capillarization. There were only two treatment × time interaction in selected molecular markers after acute exercise (atrogin-1 and MuRF1 mRNA), but several exercise effects. Muscle fiber size, satellite cell and myonuclear accretion, and capillarization were not affected by chronic training or drug intake. RNA content increased comparably (∼14%) in both groups. Collectively, these data suggest that established acute and chronic hypertrophy regulators (including mTOR signaling, ribosome biogenesis, satellite cell content, myonuclear accretion, and angiogenesis) were not differentially affected between groups and therefore do not explain the deleterious effects of ibuprofen on muscle hypertrophy in young adults.NEW & NOTEWORTHY Here we show that mTOR signaling, fiber size, ribosome biogenesis, satellite cell content, myonuclear accretion, and angiogenesis were not differentially affected between groups undergoing 8 wk of resistance training with concomitant anti-inflammatory medication (ibuprofen versus low-dose aspirin). Atrogin-1 and MuRF-1 mRNA were more downregulated after acute exercise in the low-dose aspirin group than in the ibuprofen group. Taken together it appears that these established hypertrophy regulators do not explain the previously reported deleterious effects of high doses of ibuprofen on muscle hypertrophy in young adults.
Collapse
Affiliation(s)
- Mats Lilja
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.,Unit of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden
| | - Marcus Moberg
- Department of Physiology, Nutrition and Biomechanics, Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - William Apró
- Department of Physiology, Nutrition and Biomechanics, Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Luis Manuel Martínez-Aranda
- Movement Analysis Laboratory for Sport and Health (MALab), Faculty of Sport, Catholic University of Murcia, Murcia, Spain
| | - Håkan Rundqvist
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.,Unit of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden
| | - Billy Langlet
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Thomas Gustafsson
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.,Unit of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden
| | - Tommy R Lundberg
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.,Unit of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
7
|
Hajj-Boutros G, Karelis AD, Cefis M, Morais JA, Casgrain J, Gouspillou G, Sonjak V. Potential mechanisms involved in regulating muscle protein turnover after acute exercise: A brief review. Front Physiol 2023; 13:1106425. [PMID: 36699675 PMCID: PMC9870712 DOI: 10.3389/fphys.2022.1106425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
It is well established that resistance training increases muscle mass. Indeed, there is evidence to suggest that a single session of resistance training is associated with an increase in muscle protein synthesis in young adults. However, the fundamental mechanisms that are involved in regulating muscle protein turnover rates after an acute bout of physical exercise are unclear. Therefore, this review will briefly focus on summarizing the potential mechanisms behind the growth of skeletal muscle after physical exercise. We also present mechanistic differences that may exist between young and older individuals during muscle protein synthesis and breakdown after physical exercise. Pathways leading to the activation of AKT/mTOR signals after resistance exercise and the activation of AMPK signaling pathway following a HIIT (High intensity interval training) are discussed.
Collapse
Affiliation(s)
- Guy Hajj-Boutros
- Research Institute of the McGill University Health Center (MUHC), Montreal, QC, Canada
| | - Antony D. Karelis
- Department of Exercise Science, Université du Québec à Montréal, Montreal, QC, Canada
| | - Marina Cefis
- Department of Exercise Science, Université du Québec à Montréal, Montreal, QC, Canada
| | - José A. Morais
- Research Institute of the McGill University Health Center (MUHC), Montreal, QC, Canada,Division of Geriatric Medicine, McGill University, Montreal, QC, Canada
| | - Juliette Casgrain
- Department of Exercise Science, Université du Québec à Montréal, Montreal, QC, Canada
| | - Gilles Gouspillou
- Department of Exercise Science, Université du Québec à Montréal, Montreal, QC, Canada
| | - Vita Sonjak
- Research Institute of the McGill University Health Center (MUHC), Montreal, QC, Canada,*Correspondence: Vita Sonjak,
| |
Collapse
|
8
|
Transcription factor NRF2 as potential therapeutic target for preventing muscle wasting in aging chronic kidney disease patients. J Nephrol 2022; 35:2215-2225. [PMID: 36322291 PMCID: PMC9700608 DOI: 10.1007/s40620-022-01484-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/01/2022] [Indexed: 11/27/2022]
Abstract
Increased muscle protein catabolism leading to muscle wasting is a prominent feature of the syndrome of protein-energy wasting (PEW) in patients with chronic kidney disease (CKD). PEW and muscle wasting are induced by factors such as inflammation, oxidative stress and metabolic acidosis that activate the ubiquitin-proteasome system, the main regulatory mechanism of skeletal muscle degradation. Whether deficiency of nuclear factor erythroid 2-related factor 2 (NRF2), which regulates expression of antioxidant proteins protecting against oxidative damage triggered by inflammation, may exacerbate PEW has yet to be examined in aging patients with CKD. This review focuses on the hypothesis that NRF2 is involved in the maintenance of muscle mass and explores whether sustained activation of NRF2 by non-pharmacological interventions using nutraceutical activators to improve redox homeostasis could be a plausible strategy to prevent skeletal muscle disorders, including muscle wasting, sarcopenia and frailty associated with PEW in aging CKD patients.
Collapse
|
9
|
Iwai S, Hasegawa T, Ikeda HO, Tsujikawa A. Branched Chain Amino Acids Promote ATP Production Via Translocation of Glucose Transporters. Invest Ophthalmol Vis Sci 2022; 63:7. [PMID: 35930269 PMCID: PMC9363681 DOI: 10.1167/iovs.63.9.7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose We have previously shown that maintenance of ATP levels is a promising strategy for preventing neuronal cell death, and that branched chain amino acids (BCAAs) enhanced cellular ATP levels in cultured cells and antagonized cell death. BCAAs attenuated photoreceptor degeneration and retinal ganglion cell death in rodent models of retinal degeneration or glaucoma. This study aimed to elucidate the mechanisms through which BCAAs enhance ATP production. Methods Intracellular ATP concentration was measured in HeLa cells under glycolysis and citric acid cycle inhibited conditions. Next, glucose uptake was quantified in HeLa cells and in 661W retinal photoreceptor-derived cells under glycolysis inhibition, endoplasmic reticulum stress, and glucose transporters (GLUTs) inhibited conditions, by measuring the fluorescence of fluorescently labeled deoxy-glucose analog using flow cytometry. Then, the intracellular behavior of GLUT1 and GLUT3 were observed in HeLa or 661W cells transfected with enhanced green fluorescent protein-GLUTs. Results BCAAs recovered intracellular ATP levels during glycolysis inhibition and during citric acid cycle inhibition. BCAAs significantly increased glucose uptake and recovered decreased glucose uptake induced by endoplasmic reticulum stress or glycolysis inhibition. However, BCAAs were unable to increase intracellular ATP levels or glucose uptake when GLUTs were inhibited. Fluorescence microscopy revealed that supplementation of BCAAs enhanced the translocation of GLUTs proteins to the plasma membrane over time. Conclusions BCAAs increase ATP production by promoting glucose uptake through promotion of glucose transporters translocation to the plasma membrane. These results may help expand the clinical application of BCAAs in retinal neurodegenerative diseases, such as glaucoma and retinal degeneration.
Collapse
Affiliation(s)
- Sachiko Iwai
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tomoko Hasegawa
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Research Fellow of the Japan Society for the Promotion of Science, Tokyo, Japan
| | - Hanako Ohashi Ikeda
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akitaka Tsujikawa
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
10
|
Lv X, Zhou C, Yan Q, Tan Z, Kang J, Tang S. Elucidating the underlying mechanism of amino acids to regulate muscle protein synthesis: impact on human health. Nutrition 2022; 103-104:111797. [DOI: 10.1016/j.nut.2022.111797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 10/31/2022]
|
11
|
Impact of Precompetitive Training on Metabolites in Modern Pentathletes. Int J Sports Physiol Perform 2021; 17:489-494. [PMID: 34936983 DOI: 10.1123/ijspp.2020-0836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 06/14/2021] [Accepted: 07/13/2021] [Indexed: 11/18/2022]
Abstract
PURPOSE Modern pentathlon is a multidisciplinary sport that involves exhaustive training which can cause tissue damage and metabolic changes. However, few studies have evaluated the metabolic changes that occur in pentathletes. Accordingly, we aimed to evaluate the metabolomic profile of pentathletes during a 3-week training period before competition using nuclear magnetic resonance. METHODS Blood samples from 6 members of a Brazilian modern pentathlon team were collected at the beginning (Pre1, Pre2, and Pre3) and end (Post1, Post2, and Post3) of each week. Low molecular-weight metabolite profiles were analyzed by nuclear magnetic resonance spectroscopy, and biochemical markers were assessed using enzyme-linked immunosorbent assays. Data were assessed using partial least-squares discriminant analysis and univariate statistical model. RESULTS Metabolic changes were observed between pre- and postdata of each week and over the 3 weeks before the competition in the partial least-squares discriminant analysis. Creatine kinase concentration increased in the first 2 weeks (P = .045 and P = .039), but there was no difference in the last week (P > .05). Lactate levels increased significantly after training in each week (P < .001). Cortisol levels at Post3 were different from all other time points (P < .05) and the concentrations of peroxides increased over the weeks (P < .05). Among all metabolites, sarcosine showed the greatest differences (P = .004) in the pretraining and posttraining periods of the 3 weeks. CONCLUSION Serum analysis of athletes using nuclear magnetic resonance showed metabolic changes depending on the intensity of the training performed each week.
Collapse
|
12
|
Jonsson WO, Ponette J, Horwath O, Rydenstam T, Söderlund K, Ekblom B, Azzolini M, Ruas JL, Blomstrand E. Changes in plasma concentration of kynurenine following intake of branched-chain amino acids are not caused by alterations in muscle kynurenine metabolism. Am J Physiol Cell Physiol 2021; 322:C49-C62. [PMID: 34817270 DOI: 10.1152/ajpcell.00285.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Administration of branched-chain amino acids (BCAA) has been suggested to enhance mitochondrial biogenesis, including levels of PGC-1α, which may, in turn, alter kynurenine metabolism. Ten healthy subjects performed 60 min of dynamic one-leg exercise at ~70% of Wmax on two occasions. They were in random order supplied either a mixture of BCAA or flavored water (placebo) during the experiment. Blood samples were collected during exercise and recovery, and muscle biopsies were taken from both legs before, after and 90 and 180 min following exercise. Ingestion of BCAA doubled their concentration in both plasma and muscle while causing a 30-40% reduction (P<0.05 vs. placebo) in levels of aromatic amino acids in both resting and exercising muscle during 3-h recovery. The muscle concentration of kynurenine decreased by 25% (P<0.05) during recovery, similar in both resting and exercising leg and with both supplements, although plasma concentration of kynurenine during recovery was 10% lower (P<0.05) when BCAA were ingested. Ingestion of BCAA reduced the plasma concentration of kynurenic acid by 60% (P<0.01) during exercise and recovery, while the level remained unchanged with placebo. Exercise induced a 3-4-fold increase (P<0.05) in muscle content of PGC-1a1 mRNA after 90 min of recovery under both conditions, whereas levels of KAT4 mRNA and protein were unaffected by exercise or supplement. In conclusion, the reduction of plasma levels of kynurenine and kynurenic acid caused by BCAA were not associated with any changes in the level of muscle kynurenine, suggesting that kynurenine metabolism was altered in tissues other than muscle.
Collapse
Affiliation(s)
- William O Jonsson
- Department of Physiology, Biomechanics and Nutrition, The Swedish School of Sport and Health Sciences and Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Jonathan Ponette
- Department of Physiology, Biomechanics and Nutrition, The Swedish School of Sport and Health Sciences and Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Oscar Horwath
- Department of Physiology, Biomechanics and Nutrition, The Swedish School of Sport and Health Sciences and Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Tomas Rydenstam
- Department of Physiology, Biomechanics and Nutrition, The Swedish School of Sport and Health Sciences and Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Karin Söderlund
- Department of Physiology, Biomechanics and Nutrition, The Swedish School of Sport and Health Sciences and Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Björn Ekblom
- Department of Physiology, Biomechanics and Nutrition, The Swedish School of Sport and Health Sciences and Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Michele Azzolini
- Department of Physiology, Biomechanics and Nutrition, The Swedish School of Sport and Health Sciences and Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Jorge L Ruas
- Department of Physiology, Biomechanics and Nutrition, The Swedish School of Sport and Health Sciences and Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Eva Blomstrand
- Department of Physiology, Biomechanics and Nutrition, The Swedish School of Sport and Health Sciences and Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
13
|
Takeda S, Kaji K, Nishimura N, Enomoto M, Fujimoto Y, Murata K, Takaya H, Kawaratani H, Moriya K, Namisaki T, Akahane T, Yoshiji H. Angiotensin Receptor Blockers Potentiate the Protective Effect of Branched-Chain Amino Acids on Skeletal Muscle Atrophy in Cirrhotic Rats. Mol Nutr Food Res 2021; 65:e2100526. [PMID: 34687151 DOI: 10.1002/mnfr.202100526] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 10/11/2021] [Indexed: 12/11/2022]
Abstract
SCOPE This study investigated the combined effect of the angiotensin II (AT-II) receptor blocker losartan and branched-chain amino acids (BCAAs) on skeletal muscle atrophy in rats with cirrhosis and steatohepatitis. METHOD AND RESULTS Fischer 344 rats are fed a choline-deficient l-amino acid-defined (CDAA) diet for 12 weeks and treated with oral losartan (30 mg kg-1 day-1 ) and/or BCAAs (Aminoleban EN, 2500 mg kg-1 day-1 ). Treatment with losartan and BCAAs attenuated hepatic inflammation and fibrosis and improved skeletal muscle atrophy and strength in CDAA-fed rats. Both agents reduced intramuscular myostatin and pro-inflammatory cytokine levels, resulting in inhibition of the ubiquitin-proteasome system (UPS) through interference with the SMAD and nuclear factor-kappa B pathways, respectively. Losartan also augmented the BCAA-mediated increase of skeletal muscle mass by promoting insulin growth factor-I production and mitochondrial biogenesis. Moreover, losartan decreased the intramuscular expression of transcription factor EB (TFEB), a transcriptional inducer of E3 ubiquitin ligase regulated by AT-II. In vitro assays illustrated that losartan promoted mitochondrial biogenesis and reduced TFEB expression in AT-II-stimulated rat myocytes, thereby potentiating the inhibitory effects of BCAAs on the UPS and caspase-3 cleavage. CONCLUSION These results indicate that this regimen could serve as a novel treatment for patients with sarcopenia and liver cirrhosis.
Collapse
Affiliation(s)
- Soichi Takeda
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Kosuke Kaji
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Norihisa Nishimura
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Masahide Enomoto
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Yuki Fujimoto
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Koji Murata
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Hiroaki Takaya
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Hideto Kawaratani
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Kei Moriya
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Tadashi Namisaki
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Takemi Akahane
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Hitoshi Yoshiji
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| |
Collapse
|
14
|
Toyokawa Y, Koonthongkaew J, Takagi H. An overview of branched-chain amino acid aminotransferases: functional differences between mitochondrial and cytosolic isozymes in yeast and human. Appl Microbiol Biotechnol 2021; 105:8059-8072. [PMID: 34622336 DOI: 10.1007/s00253-021-11612-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 09/20/2021] [Accepted: 09/20/2021] [Indexed: 01/07/2023]
Abstract
Branched-chain amino acid aminotransferase (BCAT) catalyzes bidirectional transamination in the cell between branched-chain amino acids (BCAAs; valine, leucine, and isoleucine) and branched-chain α-keto acids (BCKAs; α-ketoisovalerate, α-ketoisocaproate, and α-keto-β-methylvalerate). Eukaryotic cells contain two types of paralogous BCATs: mitochondrial BCAT (BCATm) and cytosolic BCAT (BCATc). Both isozymes have identical enzymatic functions, so they have long been considered to perform similar physiological functions in the cells. However, many studies have gradually revealed the differences in physiological functions and regulatory mechanisms between them. In this article, we present overviews of BCATm and BCATc in both yeast and human. We also introduce BCAT variants found natively or constructed artificially, which could have significant implications for research into the relationship between the primary structures and protein functions of BCATs. KEY POINTS: • BCAT catalyzes bidirectional transamination in the cell between BCAAs and BCKAs. • BCATm and BCATc are different in the metabolic roles and regulatory mechanisms. • BCAT variants offer insight into a relationship between the structure and function.
Collapse
Affiliation(s)
- Yoichi Toyokawa
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
| | - Jirasin Koonthongkaew
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
| | - Hiroshi Takagi
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan.
| |
Collapse
|
15
|
Sadri S, Sharifi G, Jalali Dehkordi K. Nano branched-chain amino acids enhance the effect of uphill (concentric) and downhill (eccentric) treadmill exercise on muscle gene expression of Akt and mTOR on aged rats. SPORT SCIENCES FOR HEALTH 2021. [DOI: 10.1007/s11332-021-00828-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
16
|
McKendry J, Stokes T, Mcleod JC, Phillips SM. Resistance Exercise, Aging, Disuse, and Muscle Protein Metabolism. Compr Physiol 2021; 11:2249-2278. [PMID: 34190341 DOI: 10.1002/cphy.c200029] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Skeletal muscle is the organ of locomotion, its optimal function is critical for athletic performance, and is also important for health due to its contribution to resting metabolic rate and as a site for glucose uptake and storage. Numerous endogenous and exogenous factors influence muscle mass. Much of what is currently known regarding muscle protein turnover is owed to the development and use of stable isotope tracers. Skeletal muscle mass is determined by the meal- and contraction-induced alterations of muscle protein synthesis and muscle protein breakdown. Increased loading as resistance training is the most potent nonpharmacological strategy by which skeletal muscle mass can be increased. Conversely, aging (sarcopenia) and muscle disuse lead to the development of anabolic resistance and contribute to the loss of skeletal muscle mass. Nascent omics-based technologies have significantly improved our understanding surrounding the regulation of skeletal muscle mass at the gene, transcript, and protein levels. Despite significant advances surrounding the mechanistic intricacies that underpin changes in skeletal muscle mass, these processes are complex, and more work is certainly needed. In this article, we provide an overview of the importance of skeletal muscle, describe the influence that resistance training, aging, and disuse exert on muscle protein turnover and the molecular regulatory processes that contribute to changes in muscle protein abundance. © 2021 American Physiological Society. Compr Physiol 11:2249-2278, 2021.
Collapse
Affiliation(s)
- James McKendry
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Tanner Stokes
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Jonathan C Mcleod
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Stuart M Phillips
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
17
|
D’Hulst G, Masschelein E, De Bock K. Dampened Muscle mTORC1 Response Following Ingestion of High-Quality Plant-Based Protein and Insect Protein Compared to Whey. Nutrients 2021; 13:1396. [PMID: 33919313 PMCID: PMC8143359 DOI: 10.3390/nu13051396] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/09/2021] [Accepted: 04/14/2021] [Indexed: 12/19/2022] Open
Abstract
Increased amino acid availability acutely stimulates protein synthesis partially via activation of mechanistic target of rapamycin complex 1 (mTORC1). Plant-and insect-based protein sources matched for total protein and/or leucine to animal proteins induce a lower postprandial rise in amino acids, but their effects on mTOR activation in muscle are unknown. C57BL/6J mice were gavaged with different protein solutions: whey, a pea-rice protein mix matched for total protein or leucine content to whey, worm protein matched for total protein, or saline. Blood was drawn 30, 60, 105 and 150 min after gavage and muscle samples were harvested 60 min and 150 min after gavage to measure key components of the mTORC1 pathway. Ingestion of plant-based proteins induced a lower rise in blood leucine compared to whey, which coincided with a dampened mTORC1 activation, both acutely and 150 min after administration. Matching total leucine content to whey did not rescue the reduced rise in plasma amino acids, nor the lower increase in mTORC1 compared to whey. Insect protein elicits a similar activation of downstream mTORC1 kinases as plant-based proteins, despite lower postprandial aminoacidemia. The mTORC1 response following ingestion of high-quality plant-based and insect proteins is dampened compared to whey in mouse skeletal muscle.
Collapse
Affiliation(s)
- Gommaar D’Hulst
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zurich, 8603 Zurich, Switzerland; (E.M.); (K.D.B.)
- Laboratory of Regenerative and Movement Biology, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zurich, 8093 Zurich, Switzerland
| | - Evi Masschelein
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zurich, 8603 Zurich, Switzerland; (E.M.); (K.D.B.)
| | - Katrien De Bock
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zurich, 8603 Zurich, Switzerland; (E.M.); (K.D.B.)
| |
Collapse
|
18
|
Moberg M, Apró W, Cervenka I, Ekblom B, van Hall G, Holmberg HC, Ruas JL, Blomstrand E. High-intensity leg cycling alters the molecular response to resistance exercise in the arm muscles. Sci Rep 2021; 11:6453. [PMID: 33742064 PMCID: PMC7979871 DOI: 10.1038/s41598-021-85733-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/02/2021] [Indexed: 11/09/2022] Open
Abstract
This study examined acute molecular responses to concurrent exercise involving different muscles. Eight men participated in a randomized crossover-trial with two sessions, one where they performed interval cycling followed by upper body resistance exercise (ER-Arm), and one with upper body resistance exercise only (R-Arm). Biopsies were taken from the triceps prior to and immediately, 90- and 180-min following exercise. Immediately after resistance exercise, the elevation in S6K1 activity was smaller and the 4E-BP1:eIF4E interaction greater in ER-Arm, but this acute attenuation disappeared during recovery. The protein synthetic rate in triceps was greater following exercise than at rest, with no difference between trials. The level of PGC-1α1 mRNA increased to greater extent in ER-Arm than R-Arm after 90 min of recovery, as was PGC-1α4 mRNA after both 90 and 180 min. Levels of MuRF-1 mRNA was unchanged in R-Arm, but elevated during recovery in ER-Arm, whereas MAFbx mRNA levels increased slightly in both trials. RNA sequencing in a subgroup of subjects revealed 862 differently expressed genes with ER-Arm versus R-Arm during recovery. These findings suggest that leg cycling prior to arm resistance exercise causes systemic changes that potentiate induction of specific genes in the triceps, without compromising the anabolic response.
Collapse
Affiliation(s)
- Marcus Moberg
- Department of Physiology, Nutrition and Biomechanics, Swedish School of Sport and Health Sciences, Stockholm, Sweden. .,The Swedish School of Sport and Health Sciences, Box 5626, 114 86, Stockholm, Sweden.
| | - William Apró
- Department of Physiology, Nutrition and Biomechanics, Swedish School of Sport and Health Sciences, Stockholm, Sweden.,Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Igor Cervenka
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Björn Ekblom
- Department of Physiology, Nutrition and Biomechanics, Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Gerrit van Hall
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Clinical Metabolomics Core Facility, Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark
| | | | - Jorge L Ruas
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Eva Blomstrand
- Department of Physiology, Nutrition and Biomechanics, Swedish School of Sport and Health Sciences, Stockholm, Sweden.,Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
19
|
Takegaki J, Sase K, Yasuda J, Shindo D, Kato H, Toyoda S, Yamada T, Shinohara Y, Fujita S. The Effect of Leucine-Enriched Essential Amino Acid Supplementation on Anabolic and Catabolic Signaling in Human Skeletal Muscle after Acute Resistance Exercise: A Randomized, Double-Blind, Placebo-Controlled, Parallel-Group Comparison Trial. Nutrients 2020; 12:nu12082421. [PMID: 32806711 PMCID: PMC7468954 DOI: 10.3390/nu12082421] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/28/2020] [Accepted: 08/03/2020] [Indexed: 11/16/2022] Open
Abstract
Resistance exercise transiently activates anabolic and catabolic systems in skeletal muscle. Leucine-enriched essential amino acids (LEAAs) are reported to stimulate the muscle anabolic response at a lower dose than whey protein. However, little is known regarding the effect of LEAA supplementation on the resistance exercise-induced responses of the anabolic and catabolic systems. Here, we conducted a randomized, double-blind, placebo-controlled, parallel-group comparison trial to investigate the effect of LEAA supplementation on mechanistic target of rapamycin complex 1 (mTORC1), the ubiquitin-proteasome system and inflammatory cytokines after a single bout of resistance exercise in young men. A total of 20 healthy young male subjects were supplemented with either 5 g of LEAA or placebo, and then they performed 10 reps in three sets of leg extensions and leg curls (70% one-repetition maximum). LEAA supplementation augmented the phosphorylation of mTORSer2448 (+77.1%, p < 0.05), p70S6KThr389 (+1067.4%, p < 0.05), rpS6Ser240/244 (+171.3%, p < 0.05) and 4EBP1Thr37/46 (+33.4%, p < 0.05) after resistance exercise. However, LEAA supplementation did not change the response of the ubiquitinated proteins, MuRF-1 and Atrogin-1 expression. Additionally, the mRNA expression of IL-1β and IL-6 did not change. These data indicated that LEAA supplementation augments the effect of resistance exercise by enhancing mTORC1 signal activation after exercise.
Collapse
Affiliation(s)
- Junya Takegaki
- Ritsumeikan Global Innovation Research Organization, Ritsumeikan University, Kusatsu 525-8577, Japan;
| | - Kohei Sase
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu 525-8577, Japan; (K.S.); (J.Y.); (Y.S.)
| | - Jun Yasuda
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu 525-8577, Japan; (K.S.); (J.Y.); (Y.S.)
| | - Daichi Shindo
- Ajinomoto Co., Inc., Tokyo 104-8315, Japan; (D.S.); (H.K.); (S.T.); (T.Y.)
| | - Hiroyuki Kato
- Ajinomoto Co., Inc., Tokyo 104-8315, Japan; (D.S.); (H.K.); (S.T.); (T.Y.)
| | - Sakiko Toyoda
- Ajinomoto Co., Inc., Tokyo 104-8315, Japan; (D.S.); (H.K.); (S.T.); (T.Y.)
| | - Toshiyuki Yamada
- Ajinomoto Co., Inc., Tokyo 104-8315, Japan; (D.S.); (H.K.); (S.T.); (T.Y.)
| | - Yasushi Shinohara
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu 525-8577, Japan; (K.S.); (J.Y.); (Y.S.)
| | - Satoshi Fujita
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu 525-8577, Japan; (K.S.); (J.Y.); (Y.S.)
- Correspondence: ; Tel.: +81-77-561-5229
| |
Collapse
|
20
|
Nagata S, Kato A, Isobe S, Fujikura T, Ohashi N, Miyajima H, Yasuda H. Regular exercise and branched-chain amino acids prevent ischemic acute kidney injury-related muscle wasting in mice. Physiol Rep 2020; 8:e14557. [PMID: 32845566 PMCID: PMC7448801 DOI: 10.14814/phy2.14557] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 12/20/2022] Open
Abstract
Acute kidney injury (AKI) causes glucose and protein metabolism abnormalities that result in muscle wasting, thereby affecting the long-term prognosis of critical illness survivors. Here, we examined whether early intervention with treadmill exercise and branched-chain amino acids (BCAA) can prevent AKI-related muscle wasting and reduced physical performance in mice. Unilateral 15 min ischemia-reperfusion injury was induced in contralateral nephrectomized mice, and muscle histological and physiological changes were assessed and compared with those of pair-fed control mice, since AKI causes severe anorexia. Mice exercised for 30 min each day and received oral BCAA for 7 days after AKI insult. By day 7, ischemic AKI significantly decreased wet weight, myofiber cross-sectional area, and central mitochondrial volume density of the anterior tibialis muscle, and significantly reduced maximal exercise time. Regular exercise and BCAA prevented AKI-related muscle wasting and low physical performance by suppressing myostatin and atrogin-1 mRNA upregulation, and restoring reduced phosphorylated Akt and PGC-1α mRNA expression in the muscle. Ischemic AKI induces muscle wasting by accelerating muscle protein degradation and reducing protein synthesis; however, we found that regular exercise and BCAA prevented AKI-related muscle wasting without worsening kidney damage, suggesting that early rehabilitation with nutritional support could prevent AKI-related muscle wasting.
Collapse
Affiliation(s)
- Soichiro Nagata
- Internal Medicine 1Hamamatsu University School of MedicineHamamatsuJapan
| | - Akihiko Kato
- Blood Purification UnitHamamatsu University HospitalHamamatsuJapan
| | - Shinsuke Isobe
- Internal Medicine 1Hamamatsu University School of MedicineHamamatsuJapan
| | - Tomoyuki Fujikura
- Internal Medicine 1Hamamatsu University School of MedicineHamamatsuJapan
| | - Naro Ohashi
- Internal Medicine 1Hamamatsu University School of MedicineHamamatsuJapan
| | - Hiroaki Miyajima
- Internal Medicine 1Hamamatsu University School of MedicineHamamatsuJapan
| | - Hideo Yasuda
- Internal Medicine 1Hamamatsu University School of MedicineHamamatsuJapan
| |
Collapse
|
21
|
Zhao Y, Li JY, Jiang Q, Zhou XQ, Feng L, Liu Y, Jiang WD, Wu P, Zhou J, Zhao J, Jiang J. Leucine Improved Growth Performance, Muscle Growth, and Muscle Protein Deposition Through AKT/TOR and AKT/FOXO3a Signaling Pathways in Hybrid Catfish Pelteobagrus v achelli × Leiocassis longirostris. Cells 2020; 9:cells9020327. [PMID: 32019276 PMCID: PMC7072317 DOI: 10.3390/cells9020327] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/21/2020] [Accepted: 01/29/2020] [Indexed: 02/06/2023] Open
Abstract
(1) Background: l-leucine (Leu) plays a positive role in regulating protein turnover in skeletal muscle in mammal. However, the molecular mechanism for the effects of Leu on muscle growth and protein deposition is not clearly demonstrated in fish. This study investigated the effects of dietary Leu on growth performance and muscle growth, protein synthesis, and degradation-related signaling pathways of hybrid catfish (Pelteobagrus vachelli♀ × Leiocassis longirostris♂). (2) Methods: A total of 630 hybrid catfish (23.19 ± 0.20 g) were fed 6 different experimental diets containing graded levels of Leu at 10.0 (control), 15.0, 20.0, 25.0, 30.0, 35.0, and 40.0 g Leu kg-1 for 8 weeks. (3) Results: Results showed that dietary Leu increased percent weight gain (PWG), specific growth rate (SGR), FI (feed intake), feed efficiency (FE), protein efficiency ratio (PER), muscle fibers diameter, and muscle fibers density; up-regulated insulin-like growth factor I (IGF-I), insulin-like growth factor I receptor (IGF-IR), proliferating cell nuclear antigen (PCNA), myogenic regulation factors (MyoD, Myf5, MyoG, and Mrf4), and MyHC mRNA levels; increased muscle protein synthesis via regulating the AKT/TOR signaling pathway; and attenuated protein degradation via regulating the AKT/FOXO3a signaling pathway. (4) Conclusions: These results suggest that Leu has potential role to improve muscle growth and protein deposition in fish, which might be due to the regulation of IGF mRNA expression, muscle growth related gene, and protein synthesis and degradation-related signaling pathways. Based on the broken-line model, the Leu requirement of hybrid catfish (23.19-54.55 g) for PWG was estimated to be 28.10 g kg-1 of the diet (73.04 g kg-1 of dietary protein). These results will improve our understanding of the mechanisms responsible for muscle growth and protein deposition effects of Leu in fish.
Collapse
Affiliation(s)
- Ye Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Jin-Yang Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Qin Jiang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Jian Zhou
- Fisheries Institute of Sichuan Academy of Agricultural Science, Chengdu 611731, China
| | - Juan Zhao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Jun Jiang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: ; Tel.: +86-28-8629-1133
| |
Collapse
|
22
|
Makanae Y, Ato S, Kido K, Fujita S. Dietary Aronia melanocarpa extract enhances mTORC1 signaling, but has no effect on protein synthesis and protein breakdown-related signaling, in response to resistance exercise in rat skeletal muscle. J Int Soc Sports Nutr 2019; 16:60. [PMID: 31829236 PMCID: PMC6907222 DOI: 10.1186/s12970-019-0328-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 11/29/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ursolic acid altered muscle protein metabolism in normal and resting conditions after acute resistance exercise, suggesting that eating fruits rich in ursolic acid could enhance muscle protein synthesis and decrease muscle degradation. Aronia melanocarpa, a member of the family Rosaceae and native to North America and Eastern Canada, is rich in ursolic acid. In this study, we examined the effects of A. melanocarpa extract (AME) supplementation on the mTORC1 signaling pathway and muscle degradation-related factors in rats, both alone and in combination with resistance exercise. METHODS Male Sprague-Dawley rats were divided into AME and normal chow (NOR) groups. AME group was fed chow providing a dose of 3 g/kg of AME and 115 mg/kg of ursolic acid for 7 days, whereas NOR rats were fed normal powder chow. The right gastrocnemius muscle of each animal was isometrically exercised (5 sets of ten 3-s contractions, with a 7-s interval between contractions and 3-min rest intervals between sets), while the left gastrocnemius muscle served as an internal control. Western blotting and real-time polymerase chain reaction were used to assess expression of factors involved in the mTORC1 signaling pathway and muscle degradation. RESULTS At 1 h after resistance exercise, phosphorylation of ERK1/2 was significantly increased by AME consumption. At 6 h after resistance exercise, AME consumption significantly increased the phosphorylation of Akt, p70S6K, rpS6, and AMPK. It also increased MAFbx expression. Furthermore, AME significantly increased the phosphorylation of p70S6K and rpS6 in response to resistance exercise. However, AME did not increase muscle protein synthesis (MPS) after resistance exercise. AME did not affect the expression of any of the mediators of protein degradation, with the exception of MAFbx. CONCLUSIONS Dietary AME enhanced mTORC1 activation in response to resistance exercise without increasing MPS. Moreover, it neither accelerated muscle protein degradation nor otherwise negatively affected protein metabolism. Further study is needed to clarify the effect of the combination of AME and chronic resistance training on muscle hypertrophy.
Collapse
Affiliation(s)
- Yuhei Makanae
- Department of Physical Education, National Defense Academy, Yokosuka, Kanagawa Japan
- Ritsumeikan Global Innovation Research Organization, Ritsumeikan University, Kusatsu, Shiga Japan
- Faculty of Sports and Health Science, Ritsumeikan University, Kusatsu, Shiga Japan
| | - Satoru Ato
- Faculty of Sports and Health Science, Ritsumeikan University, Kusatsu, Shiga Japan
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Japan
| | - Kohei Kido
- Faculty of Sports and Health Science, Ritsumeikan University, Kusatsu, Shiga Japan
- Laboratory of Sports and Exercise Medicine, Graduate School of Human and Envionmental Studies, Kyoto University, Kyoto, Japan
| | - Satoshi Fujita
- Ritsumeikan Global Innovation Research Organization, Ritsumeikan University, Kusatsu, Shiga Japan
- Faculty of Sports and Health Science, Ritsumeikan University, Kusatsu, Shiga Japan
| |
Collapse
|
23
|
Exercise Mitigates the Loss of Muscle Mass by Attenuating the Activation of Autophagy during Severe Energy Deficit. Nutrients 2019; 11:nu11112824. [PMID: 31752260 PMCID: PMC6893734 DOI: 10.3390/nu11112824] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 10/30/2019] [Accepted: 11/14/2019] [Indexed: 01/07/2023] Open
Abstract
The loss of skeletal muscle mass with energy deficit is thought to be due to protein breakdown by the autophagy-lysosome and the ubiquitin-proteasome systems. We studied the main signaling pathways through which exercise can attenuate the loss of muscle mass during severe energy deficit (5500 kcal/day). Overweight men followed four days of caloric restriction (3.2 kcal/kg body weight day) and prolonged exercise (45 min of one-arm cranking and 8 h walking/day), and three days of control diet and restricted exercise, with an intra-subject design including biopsies from muscles submitted to distinct exercise volumes. Gene expression and signaling data indicate that the main catabolic pathway activated during severe energy deficit in skeletal muscle is the autophagy-lysosome pathway, without apparent activation of the ubiquitin-proteasome pathway. Markers of autophagy induction and flux were reduced by exercise primarily in the muscle submitted to an exceptional exercise volume. Changes in signaling are associated with those in circulating cortisol, testosterone, cortisol/testosterone ratio, insulin, BCAA, and leucine. We conclude that exercise mitigates the loss of muscle mass by attenuating autophagy activation, blunting the phosphorylation of AMPK/ULK1/Beclin1, and leading to p62/SQSTM1 accumulation. This includes the possibility of inhibiting autophagy as a mechanism to counteract muscle loss in humans under severe energy deficit.
Collapse
|
24
|
Moro T, Brightwell CR, Phalen DE, McKenna CF, Lane SJ, Porter C, Volpi E, Rasmussen BB, Fry CS. Low skeletal muscle capillarization limits muscle adaptation to resistance exercise training in older adults. Exp Gerontol 2019; 127:110723. [PMID: 31518665 DOI: 10.1016/j.exger.2019.110723] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 08/06/2019] [Accepted: 09/03/2019] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Adequate muscle perfusion supports the transport of nutrients, oxygen and hormones into muscle fibers. Aging is associated with a substantial decrease in skeletal muscle capillarization, fiber size and oxidative capacity, which may be improved with regular physical activity. The aim of this study was to investigate the relationship between muscle capillarization and indices of muscle hypertrophy (i.e. lean mass; fiber cross sectional area (CSA)) in older adults before and after 12 weeks of progressive resistance exercise training (RET). DESIGN Interventional study SETTING AND PARTICIPANTS: 19 subjects (10 male and 9 female; 71.1 ± 4.3 years; 27.6 ± 3.2 BMI) were enrolled in the study and performed a whole body RET program for 12 weeks. Subjects where then retrospectively divided into a LOW or HIGH group, based on their pre-RET capillary-to-fiber perimeter exchange index (CFPE). Physical activity level, indices of capillarization (capillaries-to-fiber ratio, C:Fi; CFPE index and capillary-to-fiber interface, LC-PF index), muscle hypertrophy, muscle protein turnover and mitochondrial function were assessed before and after RET. RESULTS Basal capillarization (C:Fi; CFPE and LP-CF index) correlates with daily physical activity level (C:Fi, r = 0.57, p = 0.019; CFPE index, r = 0.55, p = 0.024; LC-PF index, r = 0.56, p = 0.022) and CFPE and LC-PF indices were also positively associated with oxidative capacity (respectively r = 0.45, p = 0.06; r = 0.67, p = 0.004). Following RET, subjects in the HIGH group underwent hypertrophy with significant improvements in muscle protein synthesis and muscle fiber CSA (p < 0.05). However, RET did not promote muscle hypertrophy in the LOW group, but RET significantly increased muscle capillary density (p < 0.05). CONCLUSION/IMPLICATIONS Muscle fiber capillarization before starting an exercise training program may be predictive of the muscle hypertrophic response to RET in older adults. Increases in muscle fiber size following RET appear to be blunted when muscle capillarization is low, suggesting that an adequate initial capillarization is critical to achieve a meaningful degree of muscle adaptation to RET.
Collapse
Affiliation(s)
- Tatiana Moro
- Department of Nutrition & Metabolism, School of Health Professions, University of Texas Medical Branch, Galveston, TX, USA; Sealy Center on Aging, University of Texas Medical Branch, Galveston, TX, USA
| | - Camille R Brightwell
- Department of Nutrition & Metabolism, School of Health Professions, University of Texas Medical Branch, Galveston, TX, USA
| | - Danielle E Phalen
- Department of Nutrition & Metabolism, School of Health Professions, University of Texas Medical Branch, Galveston, TX, USA
| | - Colleen F McKenna
- Department of Nutrition & Metabolism, School of Health Professions, University of Texas Medical Branch, Galveston, TX, USA
| | - Samantha J Lane
- Department of Nutrition & Metabolism, School of Health Professions, University of Texas Medical Branch, Galveston, TX, USA
| | - Craig Porter
- Metabolism Unit, Shriners Hospitals for Children, Galveston, TX, USA; Department of Surgery, University of Texas Medical Branch, Galveston, TX, USA
| | - Elena Volpi
- Sealy Center on Aging, University of Texas Medical Branch, Galveston, TX, USA; Department of Internal Medicine/Geriatrics, University of Texas Medical Branch, Galveston, TX, USA
| | - Blake B Rasmussen
- Department of Nutrition & Metabolism, School of Health Professions, University of Texas Medical Branch, Galveston, TX, USA; Sealy Center on Aging, University of Texas Medical Branch, Galveston, TX, USA
| | - Christopher S Fry
- Department of Nutrition & Metabolism, School of Health Professions, University of Texas Medical Branch, Galveston, TX, USA; Sealy Center on Aging, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
25
|
Estoche JM, Jacinto JL, Roveratti MC, Gabardo JM, Buzzachera CF, de Oliveira EP, Ribeiro AS, da Silva RA, Aguiar AF. Branched-chain amino acids do not improve muscle recovery from resistance exercise in untrained young adults. Amino Acids 2019; 51:1387-1395. [PMID: 31468208 DOI: 10.1007/s00726-019-02776-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 08/20/2019] [Indexed: 01/24/2023]
Abstract
The purpose of this study was to investigate the effects of BCAA supplementation on muscle recovery from resistance exercise (RE) in untrained young adults. Twenty-four young adults (24.0 ± 4.3 years old) were assigned to 1 of 2 groups (n = 12 per group): a placebo-supplement group or a BCAA-supplement group. The groups were supplemented for a period of 5 days. On day 1 and 3, both groups underwent a RE session involving two lower body exercises (hack squat and leg press) and then were evaluated for muscle recovery on the 3 subsequent moments after the RE session [30 min (day 3), 24 h (day 4), and 48 h (day 5)]. The following indicators of muscle recovery were assessed: number of repetitions, rating of perceived exertion in the last RE session, muscle soreness and countermovement jump (CMJ) during recovery period (30 min, 24 h, and 48 h after RE session). Number of repetitions remained unchanged over time (time, P > 0.05), while the rating of perceived exertion increased (time, P < 0.05) over 3 sets, with no difference between groups (group × time, P > 0.05). Muscle soreness increased (time, P < 0.05) and jumping weight decreased (time, P < 0.05) at 30 min post-exercise and then progressively returned to baseline at 24 and 48 h post-exercise, with no difference between groups (group × time, P > 0.05). The results indicate that BCAA supplementation does not improve muscle recovery from RE in untrained young adults.
Collapse
Affiliation(s)
- José Maria Estoche
- Center of Research in Health Sciences, North University of Paraná (UNOPAR), Avenue Paris, 675, Jardim Piza, Londrina, Paraná, CEP 86041-120, Brazil
| | - Jeferson Lucas Jacinto
- Center of Research in Health Sciences, North University of Paraná (UNOPAR), Avenue Paris, 675, Jardim Piza, Londrina, Paraná, CEP 86041-120, Brazil
| | - Mirela Casonato Roveratti
- Center of Research in Health Sciences, North University of Paraná (UNOPAR), Avenue Paris, 675, Jardim Piza, Londrina, Paraná, CEP 86041-120, Brazil
| | - Juliano Moro Gabardo
- Center of Research in Health Sciences, North University of Paraná (UNOPAR), Avenue Paris, 675, Jardim Piza, Londrina, Paraná, CEP 86041-120, Brazil
| | - Cosme Franklim Buzzachera
- Center of Research in Health Sciences, North University of Paraná (UNOPAR), Avenue Paris, 675, Jardim Piza, Londrina, Paraná, CEP 86041-120, Brazil
| | | | - Alex Silva Ribeiro
- Center of Research in Health Sciences, North University of Paraná (UNOPAR), Avenue Paris, 675, Jardim Piza, Londrina, Paraná, CEP 86041-120, Brazil
| | - Rubens Alexandre da Silva
- Center of Research in Health Sciences, North University of Paraná (UNOPAR), Avenue Paris, 675, Jardim Piza, Londrina, Paraná, CEP 86041-120, Brazil.,Département des Sciences de la Santé, Programme de Physiothérapie de L'université McGill Offert em Extension à l'université du Québec à Chicoutimi (UQAC) et Laboratoire de recherche BioNR, 555 boul. De L'université, ville du Saguenay, Québec, QC, G7H 5B8, Canada
| | - Andreo Fernando Aguiar
- Center of Research in Health Sciences, North University of Paraná (UNOPAR), Avenue Paris, 675, Jardim Piza, Londrina, Paraná, CEP 86041-120, Brazil.
| |
Collapse
|
26
|
Dietary Protein for Training Adaptation and Body Composition Manipulation in Track and Field Athletes. Int J Sport Nutr Exerc Metab 2019; 29:165-174. [PMID: 30507259 DOI: 10.1123/ijsnem.2018-0267] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Track and field athletes engage in vigorous training that places stress on physiological systems requiring nutritional support for optimal recovery. Of paramount importance when optimizing recovery nutrition are rehydration and refueling which are covered in other papers in this volume. Here, we highlight the benefits for dietary protein intake over and above requirements set out in various countries at ∼0.8-1.0 g·kg body mass (BM)-1·day-1 for training adaptation, manipulating body composition, and optimizing performance in track and field athletes. To facilitate the remodeling of protein-containing structures, which are turning over rapidly due to their training volumes, track and field athletes with the goal of weight maintenance or weight gain should aim for protein intakes of ∼1.6 g·kg BM-1·day-1. Protein intakes at this level would not necessarily require an overemphasis on protein-containing foods and, beyond convenience, does not suggest a need to use protein or amino acid-based supplements. This review also highlights that optimal protein intakes may exceed 1.6 g·kg BM-1·day-1 for athletes who are restricting energy intake and attempting to minimize loss of lean BM. We discuss the underpinning rationale for weight loss in track and field athletes, explaining changes in metabolic pathways that occur in response to energy restriction when manipulating protein intake and training. Finally, this review offers practical advice on protein intakes that warrant consideration in allowing an optimal adaptive response for track and field athletes seeking to train effectively and to lose fat mass while energy restricted with minimal (or no) loss of lean BM.
Collapse
|
27
|
Valenzuela PL, Morales JS, Emanuele E, Pareja-Galeano H, Lucia A. Supplements with purported effects on muscle mass and strength. Eur J Nutr 2019; 58:2983-3008. [PMID: 30604177 DOI: 10.1007/s00394-018-1882-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 12/13/2018] [Indexed: 02/07/2023]
Abstract
PURPOSE Several supplements are purported to promote muscle hypertrophy and strength gains in healthy subjects, or to prevent muscle wasting in atrophying situations (e.g., ageing or disuse periods). However, their effectiveness remains unclear. METHODS This review summarizes the available evidence on the beneficial impacts of several popular supplements on muscle mass or strength. RESULTS Among the supplements tested, nitrate and caffeine returned sufficient evidence supporting their acute beneficial effects on muscle strength, whereas the long-term consumption of creatine, protein and polyunsaturated fatty acids seems to consistently increase or preserve muscle mass and strength (evidence level A). On the other hand, mixed or unclear evidence was found for several popular supplements including branched-chain amino acids, adenosine triphosphate, citrulline, β-Hydroxy-β-methylbutyrate, minerals, most vitamins, phosphatidic acid or arginine (evidence level B), weak or scarce evidence was found for conjugated linoleic acid, glutamine, resveratrol, tribulus terrestris or ursolic acid (evidence level C), and no evidence was found for other supplements such as ornithine or α-ketoglutarate (evidence D). Of note, although most supplements appear to be safe when consumed at typical doses, some adverse events have been reported for some of them (e.g., caffeine, vitamins, α-ketoglutarate, tribulus terrestris, arginine) after large intakes, and there is insufficient evidence to determine the safety of many frequently used supplements (e.g., ornithine, conjugated linoleic acid, ursolic acid). CONCLUSION In summary, despite their popularity, there is little evidence supporting the use of most supplements, and some of them have been even proven ineffective or potentially associated with adverse effects.
Collapse
Affiliation(s)
- Pedro L Valenzuela
- Department of Sport and Health, Spanish Agency for Health Protection in Sport (AEPSAD), Madrid, Spain.,Physiology Unit. Systems Biology Department, University of Alcalá, Madrid, Spain
| | - Javier S Morales
- Faculty of Sport Sciences, Universidad Europea De Madrid, Villaviciosa De Odón, 28670, Madrid, Spain
| | | | - Helios Pareja-Galeano
- Faculty of Sport Sciences, Universidad Europea De Madrid, Villaviciosa De Odón, 28670, Madrid, Spain. .,Research Institute of the Hospital 12 De Octubre (i+12), Madrid, Spain.
| | - Alejandro Lucia
- Faculty of Sport Sciences, Universidad Europea De Madrid, Villaviciosa De Odón, 28670, Madrid, Spain.,Research Institute of the Hospital 12 De Octubre (i+12), Madrid, Spain
| |
Collapse
|
28
|
Duan Y, Li F, Song B, Zheng C, Zhong Y, Xu K, Kong X, Yin Y, Wang W, Shu G. β-hydroxy-β-methyl butyrate, but not α-ketoisocaproate and excess leucine, stimulates skeletal muscle protein metabolism in growing pigs fed low-protein diets. J Funct Foods 2019. [DOI: 10.1016/j.jff.2018.10.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
29
|
Abstract
Muscle protein breakdown (MPB) is an important metabolic component of muscle remodeling, adaptation to training, and increasing muscle mass. Degradation of muscle proteins occurs via the integration of three main systems—autophagy and the calpain and ubiquitin-proteasome systems. These systems do not operate independently, and the regulation is complex. Complete degradation of a protein requires some combination of the systems. Determination of MPB in humans is technically challenging, leading to a relative dearth of information. Available information on the dynamic response of MPB primarily comes from stable isotopic methods with expression and activity measures providing complementary information. It seems clear that resistance exercise increases MPB, but not as much as the increase in muscle protein synthesis. Both hyperaminoacidemia and hyperinsulinemia inhibit the post-exercise response of MPB. Available data do not allow a comprehensive examination of the mechanisms behind these responses. Practical nutrition recommendations for interventions to suppress MPB following exercise are often made. However, it is likely that some degree of increased MPB following exercise is an important component for optimal remodeling. At this time, it is not possible to determine the impact of nutrition on any individual muscle protein. Thus, until we can develop and employ better methods to elucidate the role of MPB following exercise and the response to nutrition, recommendations to optimize post exercise nutrition should focus on the response of muscle protein synthesis. The aim of this review is to provide a comprehensive examination of the state of knowledge, including methodological considerations, of the response of MPB to exercise and nutrition in humans.
Collapse
|
30
|
Moberg M, Hendo G, Jakobsson M, Mattsson CM, Ekblom-Bak E, Flockhart M, Pontén M, Söderlund K, Ekblom B. Increased autophagy signaling but not proteasome activity in human skeletal muscle after prolonged low-intensity exercise with negative energy balance. Physiol Rep 2018; 5. [PMID: 29208687 PMCID: PMC5727276 DOI: 10.14814/phy2.13518] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 11/02/2017] [Indexed: 01/01/2023] Open
Abstract
Little is known about the molecular regulation of skeletal muscle protein turnover during exercise in field conditions where energy is intake inadequate. Here, 17 male and 7 female soldiers performed an 8 days long field-based military operation. Vastus lateralis muscle biopsies, in which autophagy, the ubiquitin-proteasome system, and the mTORC1 signaling pathway were studied, were collected before and after the operation. The 187 h long operation resulted in a 15% and 29% negative energy balance as well as a 4.1% and 4.6% loss of body mass in women and men, respectively. After the operation protein levels of ULK1 as well as the phosphorylation of ULK1Ser317 and ULK1Ser555 had increased by 11%, 39%, and 13%, respectively, and this was supported by a 17% increased phosphorylation of AMPKThr172 (P < 0.05). The LC3b-I/II ratio was threefold higher after compared to before the operation (P < 0.05), whereas protein levels of p62/SQSTM1 were unchanged. The β1, β2, and β5 activity of the proteasome and protein levels of MAFbx did not change, whereas levels of MuRF-1 were slightly reduced (6%, P < 0.05). Protein levels and phosphorylation status of key components in the mTORC1 signaling pathway remained at basal levels after the operation. Muscle levels of glycogen decreased from 269 ± 12 to 181 ± 9 mmol·kg dry·muscle-1 after the exercise period (P < 0.05). In conclusion, the 8 days of field-based exercise resulted in induction of autophagy without any increase in proteasome activity or protein ubiquitination. Simultaneously, the regulation of protein synthesis through the mTORC1 signaling pathway was maintained.
Collapse
Affiliation(s)
- Marcus Moberg
- Åstrand Laboratory of Work Physiology, the Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Gina Hendo
- Åstrand Laboratory of Work Physiology, the Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Madelene Jakobsson
- Åstrand Laboratory of Work Physiology, the Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - C Mikael Mattsson
- Åstrand Laboratory of Work Physiology, the Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Elin Ekblom-Bak
- Åstrand Laboratory of Work Physiology, the Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Mikael Flockhart
- Åstrand Laboratory of Work Physiology, the Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Marjan Pontén
- Åstrand Laboratory of Work Physiology, the Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Karin Söderlund
- Åstrand Laboratory of Work Physiology, the Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Björn Ekblom
- Åstrand Laboratory of Work Physiology, the Swedish School of Sport and Health Sciences, Stockholm, Sweden
| |
Collapse
|
31
|
Ato S, Makanae Y, Kido K, Sase K, Yoshii N, Fujita S. The effect of different acute muscle contraction regimens on the expression of muscle proteolytic signaling proteins and genes. Physiol Rep 2018; 5:5/15/e13364. [PMID: 28778992 PMCID: PMC5555890 DOI: 10.14814/phy2.13364] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 06/27/2017] [Accepted: 06/28/2017] [Indexed: 01/07/2023] Open
Abstract
Previous studies have reported that different modes of muscle contraction (i.e., eccentric or concentric contraction) with similar contraction times can affect muscle proteolytic responses. However, the effect of different contraction modes on muscle proteolytic response under the same force-time integral (FTI: contraction force × time) has not been investigated. The purpose of this study was to investigate the effect of different contraction modes, with the same FTI, on acute proteolytic signaling responses. Eleven-week-old male Sprague-Dawley rats were randomly assigned to eccentric (EC), concentric (CC), or isometric contraction (IC) groups. Different modes of muscle contraction were performed on the right gastrocnemius muscle using electrical stimulation, with the left muscle acting as a control. In order to apply an equivalent FTI, the number of stimulation sets was modified between the groups. Muscle samples were taken immediately and three hours after exercise. Phosphorylation of FoxO3a at Ser253 was significantly increased immediately after exercise compared to controls irrespective of contraction mode. The mRNA levels of the ubiquitin ligases, MuRF1, and MAFbx mRNA were unchanged by contraction mode or time. Phosphorylation of ULK1 at Ser317 (positive regulatory site) and Ser757 (negative regulatory site) was significantly increased compared to controls, immediately or 3 h after exercise, in all contraction modes. The autophagy markers (LC3B-II/I ratio and p62 expression) were unchanged, regardless of contraction mode. These data suggest that differences in contraction mode during resistance exercise with a constant FTI, are not factors in regulating proteolytic signaling in the early phase of skeletal muscle contraction.
Collapse
Affiliation(s)
- Satoru Ato
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Yuhei Makanae
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Kohei Kido
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Kohei Sase
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Naomi Yoshii
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Satoshi Fujita
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan
| |
Collapse
|
32
|
Sabag A, Najafi A, Michael S, Esgin T, Halaki M, Hackett D. The compatibility of concurrent high intensity interval training and resistance training for muscular strength and hypertrophy: a systematic review and meta-analysis. J Sports Sci 2018; 36:2472-2483. [PMID: 29658408 DOI: 10.1080/02640414.2018.1464636] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The purpose of this systematic review and meta-analysis is to assess the effect of concurrent high intensity interval training (HIIT) and resistance training (RT) on strength and hypertrophy. Five electronic databases were searched using terms related to HIIT, RT, and concurrent training. Effect size (ES), calculated as standardised differences in the means, were used to examine the effect of concurrent HIIT and RT compared to RT alone on muscle strength and hypertrophy. Sub-analyses were performed to assess region-specific strength and hypertrophy, HIIT modality (cycling versus running), and inter-modal rest responses. Compared to RT alone, concurrent HIIT and RT led to similar changes in muscle hypertrophy and upper body strength. Concurrent HIIT and RT resulted in a lower increase in lower body strength compared to RT alone (ES = -0.248, p = 0.049). Sub analyses showed a trend for lower body strength to be negatively affected by cycling HIIT (ES = -0.377, p = 0.074) and not running (ES = -0.176, p = 0.261). Data suggests concurrent HIIT and RT does not negatively impact hypertrophy or upper body strength, and that any possible negative effect on lower body strength may be ameliorated by incorporating running based HIIT and longer inter-modal rest periods.
Collapse
Affiliation(s)
- Angelo Sabag
- a Discipline of Exercise and Sport Science, Faculty of Health Sciences , The University of Sydney , Lidcombe NSW Australia
| | - Abdolrahman Najafi
- b Department of Sports Science , Shahid Beheshti University , Tehran , Iran
| | - Scott Michael
- c Centre for Human and Applied Physiology , University of Wollongong , Wollongong , Australia
| | - Tuguy Esgin
- a Discipline of Exercise and Sport Science, Faculty of Health Sciences , The University of Sydney , Lidcombe NSW Australia
| | - Mark Halaki
- a Discipline of Exercise and Sport Science, Faculty of Health Sciences , The University of Sydney , Lidcombe NSW Australia
| | - Daniel Hackett
- a Discipline of Exercise and Sport Science, Faculty of Health Sciences , The University of Sydney , Lidcombe NSW Australia
| |
Collapse
|
33
|
Protein ingestion preserves proteasome activity during intense aseptic inflammation and facilitates skeletal muscle recovery in humans. Br J Nutr 2017; 118:189-200. [DOI: 10.1017/s0007114517001829] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
AbstractThe ubiquitin–proteasome system (UPS) is the main cellular proteolytic system responsible for the degradation of normal and abnormal (e.g. oxidised) proteins. Under catabolic conditions characterised by chronic inflammation, the UPS is activated resulting in proteolysis, muscle wasting and impaired muscle function. Milk proteins provide sulphur-containing amino acid and have been proposed to affect muscle inflammation. However, the response of the UPS to aseptic inflammation and protein supplementation is largely unknown. The aim of this study was to investigate how milk protein supplementation affects UPS activity and skeletal muscle function under conditions of aseptic injury induced by intense, eccentric exercise. In a double-blind, cross-over, repeated measures design, eleven men received either placebo (PLA) or milk protein concentrate (PRO, 4×20 g on exercise day and 20 g/d for the following 8 days), following an acute bout of eccentric exercise (twenty sets of fifteen eccentric contractions at 30°/s) on an isokinetic dynamometer. In each trial, muscle biopsies were obtained from the vastus lateralis muscle at baseline, as well as at 2 and 8 d post exercise, whereas blood samples were collected before exercise and at 6 h, 1 d, 2 d and 8 d post exercise. Muscle strength and soreness were assessed before exercise, 6 h post exercise and then daily for 8 consecutive days. PRO preserved chymotrypsin-like activity and attenuated the decrease of strength, facilitating its recovery. PRO also prevented the increase of NF-κB phosphorylation and HSP70 expression throughout recovery. We conclude that milk PRO supplementation following exercise-induced muscle trauma preserves proteasome activity and attenuates strength decline during the pro-inflammatory phase.
Collapse
|
34
|
Yoshida T, Kakizawa S, Totsuka Y, Sugimoto M, Miura S, Kumagai H. Effect of endurance training and branched-chain amino acids on the signaling for muscle protein synthesis in CKD model rats fed a low-protein diet. Am J Physiol Renal Physiol 2017; 313:F805-F814. [PMID: 28701315 DOI: 10.1152/ajprenal.00592.2015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 06/28/2017] [Accepted: 07/02/2017] [Indexed: 12/21/2022] Open
Abstract
A low-protein diet (LPD) protects against the progression of renal injury in patients with chronic kidney disease (CKD). However, LPD may accelerate muscle wasting in these patients. Both exercise and branched-chain amino acids (BCAA) are known to increase muscle protein synthesis by activating the mammalian target of rapamycin (mTOR) pathway. The aim of this study was to investigate whether endurance exercise and BCAA play a role for increasing muscle protein synthesis in LPD-fed CKD (5/6 nephrectomized) rats. Both CKD and sham rats were pair-fed on LPD or LPD fortified with a BCAA diet (BD), and approximately one-half of the animals in each group was subjected to treadmill exercise (15 m/min, 1 h/day, 5 days/wk). After 7 wk, renal function was measured, and soleus muscles were collected to evaluate muscle protein synthesis. Renal function did not differ between LPD- and BD-fed CKD rats, and the treadmill exercise did not accelerate renal damage in either group. The treadmill exercise slightly increased the phosphorylation of p70s6 kinase, a marker of mTOR activity, in the soleus muscle of LPD-fed CKD rats compared with the sham group. Furthermore, BCAA supplementation of the LPD-fed, exercise-trained CKD rats restored the phosphorylation of p70s6 kinase to the same level observed in the sham group; however, the corresponding induced increase in muscle protein synthesis and muscle mass was marginal. These results indicate that the combination of treadmill exercise and BCAA stimulates cell signaling to promote muscle protein synthesis; however, the implications of this effect for muscle growth remain to be clarified.
Collapse
Affiliation(s)
- Takuya Yoshida
- Department of Clinical Nutrition, School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan; and
| | - Sachika Kakizawa
- Department of Clinical Nutrition, School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan; and
| | - Yuri Totsuka
- Department of Clinical Nutrition, School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan; and
| | - Miho Sugimoto
- Department of Clinical Nutrition, School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan; and
| | - Shinji Miura
- Laboratory of Nutritional Biochemistry, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, Japan
| | - Hiromichi Kumagai
- Department of Clinical Nutrition, School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan; and
| |
Collapse
|
35
|
Jackman SR, Witard OC, Philp A, Wallis GA, Baar K, Tipton KD. Branched-Chain Amino Acid Ingestion Stimulates Muscle Myofibrillar Protein Synthesis following Resistance Exercise in Humans. Front Physiol 2017. [PMID: 28638350 PMCID: PMC5461297 DOI: 10.3389/fphys.2017.00390] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The ingestion of intact protein or essential amino acids (EAA) stimulates mechanistic target of rapamycin complex-1 (mTORC1) signaling and muscle protein synthesis (MPS) following resistance exercise. The purpose of this study was to investigate the response of myofibrillar-MPS to ingestion of branched-chain amino acids (BCAAs) only (i.e., without concurrent ingestion of other EAA, intact protein, or other macronutrients) following resistance exercise in humans. Ten young (20.1 ± 1.3 years), resistance-trained men completed two trials, ingesting either 5.6 g BCAA or a placebo (PLA) drink immediately after resistance exercise. Myofibrillar-MPS was measured during exercise recovery with a primed, constant infusion of L-[ring13C6] phenylalanine and collection of muscle biopsies pre and 4 h-post drink ingestion. Blood samples were collected at time-points before and after drink ingestion. Western blotting was used to measure the phosphorylation status of mTORC1 signaling proteins in biopsies collected pre, 1-, and 4 h-post drink. The percentage increase from baseline in plasma leucine (300 ± 96%), isoleucine (300 ± 88%), and valine (144 ± 59%) concentrations peaked 0.5 h-post drink in BCAA. A greater phosphorylation status of S6K1Thr389 (P = 0.017) and PRAS40 (P = 0.037) was observed in BCAA than PLA at 1 h-post drink ingestion. Myofibrillar-MPS was 22% higher (P = 0.012) in BCAA (0.110 ± 0.009%/h) than PLA (0.090 ± 0.006%/h). Phenylalanine Ra was ~6% lower in BCAA (18.00 ± 4.31 μmol·kgBM−1) than PLA (21.75 ± 4.89 μmol·kgBM−1; P = 0.028) after drink ingestion. We conclude that ingesting BCAAs alone increases the post-exercise stimulation of myofibrillar-MPS and phosphorylation status mTORC1 signaling.
Collapse
Affiliation(s)
- Sarah R Jackman
- Sport and Health Sciences, College of Life and Environmental Sciences, University of ExeterExeter, United Kingdom
| | - Oliver C Witard
- Physiology, Exercise and Nutrition Research Group, University of StirlingStirling, United Kingdom
| | - Andrew Philp
- School of Sport, Exercise and Rehabilitation Sciences, University of BirminghamBirmingham, United Kingdom
| | - Gareth A Wallis
- School of Sport, Exercise and Rehabilitation Sciences, University of BirminghamBirmingham, United Kingdom
| | - Keith Baar
- Department of Neurobiology, Physiology and Behavior, University of California, DavisDavis, CA, United States
| | - Kevin D Tipton
- Physiology, Exercise and Nutrition Research Group, University of StirlingStirling, United Kingdom
| |
Collapse
|
36
|
Martin NRW, Turner MC, Farrington R, Player DJ, Lewis MP. Leucine elicits myotube hypertrophy and enhances maximal contractile force in tissue engineered skeletal muscle in vitro. J Cell Physiol 2017; 232:2788-2797. [PMID: 28409828 PMCID: PMC5518187 DOI: 10.1002/jcp.25960] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 04/13/2017] [Indexed: 01/07/2023]
Abstract
The amino acid leucine is thought to be important for skeletal muscle growth by virtue of its ability to acutely activate mTORC1 and enhance muscle protein synthesis, yet little data exist regarding its impact on skeletal muscle size and its ability to produce force. We utilized a tissue engineering approach in order to test whether supplementing culture medium with leucine could enhance mTORC1 signaling, myotube growth, and muscle function. Phosphorylation of the mTORC1 target proteins 4EBP-1 and rpS6 and myotube hypertrophy appeared to occur in a dose dependent manner, with 5 and 20 mM of leucine inducing similar effects, which were greater than those seen with 1 mM. Maximal contractile force was also elevated with leucine supplementation; however, although this did not appear to be enhanced with increasing leucine doses, this effect was completely ablated by co-incubation with the mTOR inhibitor rapamycin, showing that the augmented force production in the presence of leucine was mTOR sensitive. Finally, by using electrical stimulation to induce chronic (24 hr) contraction of engineered skeletal muscle constructs, we were able to show that the effects of leucine and muscle contraction are additive, since the two stimuli had cumulative effects on maximal contractile force production. These results extend our current knowledge of the efficacy of leucine as an anabolic nutritional aid showing for the first time that leucine supplementation may augment skeletal muscle functional capacity, and furthermore validates the use of engineered skeletal muscle for highly-controlled investigations into nutritional regulation of muscle physiology.
Collapse
Affiliation(s)
- Neil R W Martin
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK.,National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Mark C Turner
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK.,National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Robert Farrington
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Darren J Player
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK.,National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK.,Arthritis Research UK Centre for Sport, Exercise and Osteoarthritis, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Mark P Lewis
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK.,National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK.,Arthritis Research UK Centre for Sport, Exercise and Osteoarthritis, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| |
Collapse
|
37
|
Gentil P, de Lira CAB, Paoli A, dos Santos JAB, da Silva RDT, Junior JRP, da Silva EP, Magosso RF. Nutrition, Pharmacological and Training Strategies Adopted by Six Bodybuilders: Case Report and Critical Review. Eur J Transl Myol 2017; 27:6247. [PMID: 28458804 PMCID: PMC5391526 DOI: 10.4081/ejtm.2017.6247] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The purpose of this study was to report and analyze the practices adopted by bodybuilders in light of scientific evidence and to propose evidence-based alternatives. Six (four male and two female) bodybuilders and their coaches were directly interviewed. According to the reports, the quantity of anabolic steroids used by the men was 500-750 mg/week during the bulking phase and 720-1160 mg during the cutting phase. The values for women were 400 and 740 mg, respectively. The participants also used ephedrine and hydrochlorothiazide during the cutting phase. Resistance training was designed to train each muscle once per week and all participants performed aerobic exercise in the fasted state in order to reduce body fat. During the bulking phase, bodybuilders ingested ~2.5 g of protein/kg of body weight. During the cutting phase, protein ingestion increased to ~3 g/kg and carbohydrate ingestion decreased by 10-20%. During all phases, fat ingestion corresponded to ~15% of the calories ingested. The supplements used were whey protein, chromium picolinate, omega 3 fatty acids, branched chain amino acids, poly-vitamins, glutamine and caffeine. The men also used creatine in the bulking phase. In general, the participants gained large amounts of fat-free mass during the bulking phase; however, much of that fat-free mass was lost during the cutting phase along with fat mass. Based on our analysis, we recommend an evidence-based approach by people involved in bodybuilding, with the adoption of a more balanced and less artificial diet. One important alert should be given for the combined use of anabolic steroids and stimulants, since both are independently associated with serious cardiovascular events. A special focus should be given to revisiting resistance training and avoiding fasted cardio in order to decrease the reliance on drugs and thus preserve bodybuilders' health and integrity.
Collapse
Affiliation(s)
- Paulo Gentil
- College of Physical Education and Dance, Federal University of Goiás, Goiânia, Brazil
| | | | - Antonio Paoli
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | | | | | | | | | - Rodrigo Ferro Magosso
- Post Graduation Program in Movement Sciences, UNESP – Universidade Estadual Paulista, Rio Claro, Brazil
| |
Collapse
|
38
|
Duan Y, Guo Q, Wen C, Wang W, Li Y, Tan B, Li F, Yin Y. Free Amino Acid Profile and Expression of Genes Implicated in Protein Metabolism in Skeletal Muscle of Growing Pigs Fed Low-Protein Diets Supplemented with Branched-Chain Amino Acids. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:9390-9400. [PMID: 27960294 DOI: 10.1021/acs.jafc.6b03966] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Revealing the expression patterns of genes involved in protein metabolism as affected by diets would be useful for further clarifying the importance of the balance among the branched-chain amino acids (BCAAs), which include leucine (Leu), isoleucine (Ile), and valine (Val). Therefore, we used growing pigs to explore the effects of different dietary BCAA ratios on muscle protein metabolism. The Leu:Ile:Val ratio was 1:0.51:0.63 (20% crude protein, CP), 1:1:1 (17% CP), 1:0.75:0.75 (17% CP), 1:0.51:0.63 (17% CP), and 1:0.25:0.25 (17% CP), respectively. Results showed that compared with the control group, low-protein diets with the BCAA ratio ranging from 1:0.75:0.75 to 1:0.25:0.25 elevated muscle free amino acid (AA) concentrations and AA transporter expression, significantly activated the mammalian target of rapamycin complex 1 pathway, and decreased serum urea nitrogen content and the mRNA expression of genes related to muscle protein degradation (P < 0.05). In conclusion, these results indicated that maintaining the dietary Leu:Ile:Val ratio within 1:0.25:0.25-1:0.75:0.75 in low-protein diets (17% CP) would facilitate the absorption and utilization of free AA and result in improved protein metabolism and muscle growth.
Collapse
Affiliation(s)
- Yehui Duan
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences ; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha 410125, China
- University of Chinese Academy of Sciences , Beijing 100039, China
| | - Qiuping Guo
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences ; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha 410125, China
- University of Chinese Academy of Sciences , Beijing 100039, China
| | - Chaoyue Wen
- Laboratory of Animal Nutrition and Human Health, School of Biology, Hunan Normal University , Changsha, Hunan 410018, China
| | - Wenlong Wang
- Laboratory of Animal Nutrition and Human Health, School of Biology, Hunan Normal University , Changsha, Hunan 410018, China
| | - Yinghui Li
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences ; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha 410125, China
- University of Chinese Academy of Sciences , Beijing 100039, China
| | - Bie Tan
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences ; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha 410125, China
| | - Fengna Li
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences ; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha 410125, China
- Hunan Co-Innovation Center of Animal Production Safety, CICAPS; Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients , Changsha 410128, China
| | - Yulong Yin
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences ; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha 410125, China
- Laboratory of Animal Nutrition and Human Health, School of Biology, Hunan Normal University , Changsha, Hunan 410018, China
| |
Collapse
|
39
|
Smiles WJ, Hawley JA, Camera DM. Effects of skeletal muscle energy availability on protein turnover responses to exercise. ACTA ACUST UNITED AC 2016; 219:214-25. [PMID: 26792333 DOI: 10.1242/jeb.125104] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Skeletal muscle adaptation to exercise training is a consequence of repeated contraction-induced increases in gene expression that lead to the accumulation of functional proteins whose role is to blunt the homeostatic perturbations generated by escalations in energetic demand and substrate turnover. The development of a specific 'exercise phenotype' is the result of new, augmented steady-state mRNA and protein levels that stem from the training stimulus (i.e. endurance or resistance based). Maintaining appropriate skeletal muscle integrity to meet the demands of training (i.e. increases in myofibrillar and/or mitochondrial protein) is regulated by cyclic phases of synthesis and breakdown, the rate and turnover largely determined by the protein's half-life. Cross-talk among several intracellular systems regulating protein synthesis, breakdown and folding is required to ensure protein equilibrium is maintained. These pathways include both proteasomal and lysosomal degradation systems (ubiquitin-mediated and autophagy, respectively) and the protein translational and folding machinery. The activities of these cellular pathways are bioenergetically expensive and are modified by intracellular energy availability (i.e. macronutrient intake) and the 'training impulse' (i.e. summation of the volume, intensity and frequency). As such, exercise-nutrient interactions can modulate signal transduction cascades that converge on these protein regulatory systems, especially in the early post-exercise recovery period. This review focuses on the regulation of muscle protein synthetic response-adaptation processes to divergent exercise stimuli and how intracellular energy availability interacts with contractile activity to impact on muscle remodelling.
Collapse
Affiliation(s)
- William J Smiles
- Centre for Exercise and Nutrition, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC 3065, Australia
| | - John A Hawley
- Centre for Exercise and Nutrition, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC 3065, Australia Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Donny M Camera
- Centre for Exercise and Nutrition, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC 3065, Australia
| |
Collapse
|
40
|
Rom O, Reznick AZ. The role of E3 ubiquitin-ligases MuRF-1 and MAFbx in loss of skeletal muscle mass. Free Radic Biol Med 2016; 98:218-230. [PMID: 26738803 DOI: 10.1016/j.freeradbiomed.2015.12.031] [Citation(s) in RCA: 154] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 11/30/2015] [Accepted: 12/25/2015] [Indexed: 12/21/2022]
Abstract
The ubiquitin-proteasome system (UPS) is the main regulatory mechanism of protein degradation in skeletal muscle. The ubiquitin-ligase enzymes (E3s) have a central role in determining the selectivity and specificity of the UPS. Since their identification in 2001, the muscle specific E3s, muscle RING finger-1 (MuRF-1) and muscle atrophy F-box (MAFbx), have been shown to be implicated in the regulation of skeletal muscle atrophy in various pathological and physiological conditions. This review aims to explore the involvement of MuRF-1 and MAFbx in catabolism of skeletal muscle during various pathologies, such as cancer cachexia, sarcopenia of aging, chronic kidney disease (CKD), diabetes, and chronic obstructive pulmonary disease (COPD). In addition, the effects of various lifestyle and modifiable factors (e.g. nutrition, exercise, cigarette smoking, and alcohol) on MuRF-1 and MAFbx regulation will be discussed. Finally, evidence of potential strategies to protect against skeletal muscle wasting through inhibition of MuRF-1 and MAFbx expression will be explored.
Collapse
Affiliation(s)
- Oren Rom
- Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, P.O. Box 9649, Haifa, Israel.
| | - Abraham Z Reznick
- Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, P.O. Box 9649, Haifa, Israel
| |
Collapse
|
41
|
Berton R, Conceição MS, Libardi CA, Canevarolo RR, Gáspari AF, Chacon-Mikahil MPT, Zeri AC, Cavaglieri CR. Metabolic time-course response after resistance exercise: A metabolomics approach. J Sports Sci 2016; 35:1211-1218. [PMID: 27686013 DOI: 10.1080/02640414.2016.1218035] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
This study analysed the time course of the global metabolic acute response after resistance exercise (RE), with the use of proton nuclear magnetic resonance (1H NMR) spectroscopy. Ten young healthy males performed 4 sets of 10 repetitions at 70% of one-repetition maximum in the leg press and knee extension exercises and had the serum metabolome assessed at 5, 15, 30 and 60 min post-RE. Measurements were also performed 1 h earlier and immediately before the exercises, as an attempt to characterise each participant's serum metabolome at rest. One-way ANOVA was applied and the significance level was set at P ≤ 0.05. RE promoted an increase in 2-hydroxybutyrate, 2-oxoisocaproate, 3-hydroxyisobutyrate, alanine, hypoxanthine, lactate, pyruvate and succinate concentrations. However, isoleucine, leucine, lysine, ornithine and valine had their concentrations decreased post-RE compared with at rest. This is the first study to show significant changes in serum concentration of metabolites such as 2-oxoisocaproate, 2-hydroxybutyrate, 3-hydroxyisobutyrate, lysine, hypoxanthine and pyruvate post-RE, attesting metabolomics as an interesting approach to advance in the understanding of global RE-induced metabolic changes. Moreover, the present data could influence the time point of blood collection in the future studies that aims to investigate metabolism and exercise.
Collapse
Affiliation(s)
- Ricardo Berton
- a Laboratory of Exercise Physiology, Faculty of Physical Education , University of Campinas , Campinas , Brazil
| | - Miguel S Conceição
- a Laboratory of Exercise Physiology, Faculty of Physical Education , University of Campinas , Campinas , Brazil
| | - Cleiton A Libardi
- b Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education , Federal University of São Carlos , São Carlos , Brazil
| | - Rafael R Canevarolo
- c Molecular Biology Laboratory , Boldrini Children Hospital , Campinas , Brazil.,d Brazilian Biosciences National Laboratory , Center for Research in Energy and Materials , Campinas , Brazil
| | - Arthur F Gáspari
- a Laboratory of Exercise Physiology, Faculty of Physical Education , University of Campinas , Campinas , Brazil
| | | | - Ana C Zeri
- d Brazilian Biosciences National Laboratory , Center for Research in Energy and Materials , Campinas , Brazil
| | - Cláudia R Cavaglieri
- a Laboratory of Exercise Physiology, Faculty of Physical Education , University of Campinas , Campinas , Brazil
| |
Collapse
|
42
|
Samuelsson H, Moberg M, Apró W, Ekblom B, Blomstrand E. Intake of branched-chain or essential amino acids attenuates the elevation in muscle levels of PGC-1α4 mRNA caused by resistance exercise. Am J Physiol Endocrinol Metab 2016; 311:E246-51. [PMID: 27245337 DOI: 10.1152/ajpendo.00154.2016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 05/28/2016] [Indexed: 11/22/2022]
Abstract
The transcriptional coactivator peroxisome proliferator-activated receptor-γ coactivator (PGC)-1α is recognized as the master regulator of mitochondrial biogenesis. However, recently a novel isoform, PGC-1α4, that specifically regulates muscle hypertrophy was discovered. Because stimulation of mechanistic target of rapamycin complex 1 (mTORC1) activity is tightly coupled to hypertrophy, we hypothesized that activation of this pathway would upregulate PGC-1α4. Eight male subjects performed heavy resistance exercise (10 × 8-12 repetitions at ∼75% of 1 repetition maximum in leg press) on four different occasions, ingesting in random order a solution containing essential amino acids (EAA), branched-chain amino acids (BCAA), leucine, or flavored water (placebo) during and after the exercise. Biopsies were taken from the vastus lateralis muscle before and immediately after exercise, as well as following 90 and 180 min of recovery. Signaling through mTORC1, as reflected in p70S6 kinase phosphorylation, was stimulated to a greater extent by the EAA and BCAA than the leucine or placebo supplements. Unexpectedly, intake of EAA or BCAA attenuated the stimulatory effect of exercise on PGC-1α4 expression by ∼50% (from a 10- to 5-fold increase with BCAA and EAA, P < 0.05) 3 h after exercise, whereas intake of leucine alone did not reduce this response. The 60% increase (P < 0.05) in the level of PGC-1α1 mRNA 90 min after exercise was uninfluenced by amino acid intake. Muscle glycogen levels were reduced and AMP-activated protein kinase α2 activity and phosphorylation of p38 mitogen-activated protein kinase enhanced to the same extent with all four supplements. In conclusion, induction of PGC-1α4 does not appear to regulate the nutritional (BCAA or EAA)-mediated activation of mTORC1 in human muscle.
Collapse
Affiliation(s)
- Hedvig Samuelsson
- The Åstrand Laboratory, The Swedish School of Sport and Health Sciences, Stockholm, Sweden; and
| | - Marcus Moberg
- The Åstrand Laboratory, The Swedish School of Sport and Health Sciences, Stockholm, Sweden; and
| | - William Apró
- The Åstrand Laboratory, The Swedish School of Sport and Health Sciences, Stockholm, Sweden; and
| | - Björn Ekblom
- The Åstrand Laboratory, The Swedish School of Sport and Health Sciences, Stockholm, Sweden; and
| | - Eva Blomstrand
- The Åstrand Laboratory, The Swedish School of Sport and Health Sciences, Stockholm, Sweden; and Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
43
|
Leucine-enriched essential amino acids attenuate inflammation in rat muscle and enhance muscle repair after eccentric contraction. Amino Acids 2016; 48:2145-55. [PMID: 27168073 PMCID: PMC4989025 DOI: 10.1007/s00726-016-2240-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 04/12/2016] [Indexed: 01/07/2023]
Abstract
Eccentric exercise results in prolonged muscle damage that may lead to muscle dysfunction. Although inflammation is essential to recover from muscle damage, excessive inflammation may also induce secondary damage, and should thus be suppressed. In this study, we investigated the effect of leucine-enriched essential amino acids on muscle inflammation and recovery after eccentric contraction. These amino acids are known to stimulate muscle protein synthesis via mammalian target of rapamycin (mTOR), which, is also considered to alleviate inflammation. Five sets of 10 eccentric contractions were induced by electrical stimulation in the tibialis anterior muscle of male SpragueDawley rats (8–9 weeks old) under anesthesia. Animals received a 1 g/kg dose of a mixture containing 40 % leucine and 60 % other essential amino acids or distilled water once a day throughout the experiment. Muscle dysfunction was assessed based on isometric dorsiflexion torque, while inflammation was evaluated by histochemistry. Gene expression of inflammatory cytokines and myogenic regulatory factors was also measured. We found that leucine-enriched essential amino acids restored full muscle function within 14 days, at which point rats treated with distilled water had not fully recovered. Indeed, muscle function was stronger 3 days after eccentric contraction in rats treated with amino acids than in those treated with distilled water. The amino acid mix also alleviated expression of interleukin-6 and impeded infiltration of inflammatory cells into muscle, but did not suppress expression of myogenic regulatory factors. These results suggest that leucine-enriched amino acids accelerate recovery from muscle damage by preventing excessive inflammation.
Collapse
|
44
|
Moberg M, Apró W, Ekblom B, van Hall G, Holmberg HC, Blomstrand E. Activation of mTORC1 by leucine is potentiated by branched-chain amino acids and even more so by essential amino acids following resistance exercise. Am J Physiol Cell Physiol 2016; 310:C874-84. [PMID: 27053525 DOI: 10.1152/ajpcell.00374.2015] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 03/31/2016] [Indexed: 12/31/2022]
Abstract
Protein synthesis is stimulated by resistance exercise and intake of amino acids, in particular leucine. Moreover, activation of mammalian target of rapamycin complex 1 (mTORC1) signaling by leucine is potentiated by the presence of other essential amino acids (EAA). However, the contribution of the branched-chain amino acids (BCAA) to this effect is yet unknown. Here we compare the stimulatory role of leucine, BCAA, and EAA ingestion on anabolic signaling following exercise. Accordingly, eight trained volunteers completed four sessions of resistance exercise during which they ingested either placebo, leucine, BCAA, or EAA (including the BCAA) in random order. Muscle biopsies were taken at rest, immediately after exercise, and following 90 and 180 min of recovery. Following 90 min of recovery the activity of S6 kinase 1 (S6K1) was greater than at rest in all four trials (Placebo<Leucine<BCAA<EAA; P < 0.05 time × supplement), with a ninefold increase in the EAA trial. At this same time point, phosphorylation of eukaryotic translation initiation factor 4E (eIF4E)-binding protein 1 (4E-BP1) at Thr(37/46) was unaffected by supplementation, while that of Thr(46) alone exhibited a pattern similar to that of S6K1, being 18% higher with EAA than BCAA. However, after 180 min of recovery this difference between EAA and BCAA had disappeared, although with both these supplements the increases were still higher than with leucine (40%, P < 0.05) and placebo (100%, P < 0.05). In summary, EAA ingestion appears to stimulate translation initiation more effectively than the other supplements, although the results also suggest that this effect is primarily attributable to the BCAA.
Collapse
Affiliation(s)
- Marcus Moberg
- Åstrand Laboratory, Swedish School of Sport and Health Sciences, Stockholm, Sweden;
| | - William Apró
- Åstrand Laboratory, Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Björn Ekblom
- Åstrand Laboratory, Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Gerrit van Hall
- Clinical Metabolomics Core Facility, Rigshopitalet and Department of Biomedical Sciences, Rigshospitalet, University of Copenhagen, Copenhagen Denmark
| | - Hans-Christer Holmberg
- Swedish Winter Sports Research Centre, Department of Health Sciences, Mid Sweden University, Östersund, Sweden; and
| | - Eva Blomstrand
- Åstrand Laboratory, Swedish School of Sport and Health Sciences, Stockholm, Sweden; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
45
|
Sanders KJC, Kneppers AEM, van de Bool C, Langen RCJ, Schols AMWJ. Cachexia in chronic obstructive pulmonary disease: new insights and therapeutic perspective. J Cachexia Sarcopenia Muscle 2016; 7:5-22. [PMID: 27066314 PMCID: PMC4799856 DOI: 10.1002/jcsm.12062] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Revised: 07/05/2015] [Accepted: 07/12/2015] [Indexed: 12/19/2022] Open
Abstract
Cachexia and muscle wasting are well recognized as common and partly reversible features of chronic obstructive pulmonary disease (COPD), adversely affecting disease progression and prognosis. This argues for integration of weight and muscle maintenance in patient care. In this review, recent insights are presented in the diagnosis of muscle wasting in COPD, the pathophysiology of muscle wasting, and putative mechanisms involved in a disturbed energy balance as cachexia driver. We discuss the therapeutic implications of these new insights for optimizing and personalizing management of COPD-induced cachexia.
Collapse
Affiliation(s)
- Karin J C Sanders
- Department of Respiratory Medicine NUTRIM School of Nutrition and Translational Research in Metabolism Maastricht The Netherlands
| | - Anita E M Kneppers
- Department of Respiratory Medicine NUTRIM School of Nutrition and Translational Research in Metabolism Maastricht The Netherlands
| | - Coby van de Bool
- Department of Respiratory Medicine NUTRIM School of Nutrition and Translational Research in Metabolism Maastricht The Netherlands
| | - Ramon C J Langen
- Department of Respiratory Medicine NUTRIM School of Nutrition and Translational Research in Metabolism Maastricht The Netherlands
| | - Annemie M W J Schols
- Department of Respiratory Medicine NUTRIM School of Nutrition and Translational Research in Metabolism Maastricht The Netherlands
| |
Collapse
|
46
|
Kazior Z, Willis SJ, Moberg M, Apró W, Calbet JAL, Holmberg HC, Blomstrand E. Endurance Exercise Enhances the Effect of Strength Training on Muscle Fiber Size and Protein Expression of Akt and mTOR. PLoS One 2016; 11:e0149082. [PMID: 26885978 PMCID: PMC4757413 DOI: 10.1371/journal.pone.0149082] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 01/26/2016] [Indexed: 12/21/2022] Open
Abstract
Reports concerning the effect of endurance exercise on the anabolic response to strength training have been contradictory. This study re-investigated this issue, focusing on training effects on indicators of protein synthesis and degradation. Two groups of male subjects performed 7 weeks of resistance exercise alone (R; n = 7) or in combination with preceding endurance exercise, including both continuous and interval cycling (ER; n = 9). Muscle biopsies were taken before and after the training period. Similar increases in leg-press 1 repetition maximum (30%; P<0.05) were observed in both groups, whereas maximal oxygen uptake was elevated (8%; P<0.05) only in the ER group. The ER training enlarged the areas of both type I and type II fibers, whereas the R protocol increased only the type II fibers. The mean fiber area increased by 28% (P<0.05) in the ER group, whereas no significant increase was observed in the R group. Moreover, expression of Akt and mTOR protein was enhanced in the ER group, whereas only the level of mTOR was elevated following R training. Training-induced alterations in the levels of both Akt and mTOR protein were correlated to changes in type I fiber area (r = 0.55-0.61, P<0.05), as well as mean fiber area (r = 0.55-0.61, P<0.05), reflecting the important role played by these proteins in connection with muscle hypertrophy. Both training regimes reduced the level of MAFbx protein (P<0.05) and tended to elevate that of MuRF-1. The present findings indicate that the larger hypertrophy observed in the ER group is due more to pronounced stimulation of anabolic rather than inhibition of catabolic processes.
Collapse
Affiliation(s)
- Zuzanna Kazior
- Swedish Winter Sports Research Centre, Department of Health Sciences, Mid Sweden University, Östersund, Sweden
| | - Sarah J. Willis
- Swedish Winter Sports Research Centre, Department of Health Sciences, Mid Sweden University, Östersund, Sweden
| | - Marcus Moberg
- Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - William Apró
- Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - José A. L. Calbet
- Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
- Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, Canary Island, Spain
| | - Hans-Christer Holmberg
- Swedish Winter Sports Research Centre, Department of Health Sciences, Mid Sweden University, Östersund, Sweden
| | - Eva Blomstrand
- Swedish School of Sport and Health Sciences, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
47
|
Xu W, Bai K, He J, Su W, Dong L, Zhang L, Wang T. Leucine improves growth performance of intrauterine growth retardation piglets by modifying gene and protein expression related to protein synthesis. Nutrition 2016; 32:114-21. [DOI: 10.1016/j.nut.2015.07.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 05/31/2015] [Accepted: 07/07/2015] [Indexed: 01/10/2023]
|
48
|
Smiles WJ, Areta JL, Coffey VG, Phillips SM, Moore DR, Stellingwerff T, Burke LM, Hawley JA, Camera DM. Modulation of autophagy signaling with resistance exercise and protein ingestion following short-term energy deficit. Am J Physiol Regul Integr Comp Physiol 2015; 309:R603-12. [DOI: 10.1152/ajpregu.00413.2014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 06/30/2015] [Indexed: 12/31/2022]
Abstract
Autophagy contributes to remodeling of skeletal muscle and is sensitive to contractile activity and prevailing energy availability. We investigated changes in targeted genes and proteins with roles in autophagy following 5 days of energy balance (EB), energy deficit (ED), and resistance exercise (REX) after ED. Muscle biopsies from 15 subjects (8 males, 7 females) were taken at rest following 5 days of EB [45 kcal·kg fat free mass (FFM)−1·day−1] and 5 days of ED (30 kcal·kg FFM−1·day−1). After ED, subjects completed a bout of REX and consumed either placebo (PLA) or 30 g whey protein (PRO) immediately postexercise. Muscle biopsies were obtained at 1 and 4 h into recovery in each trial. Resting protein levels of autophagy-related gene protein 5 (Atg5) decreased after ED compared with EB (∼23%, P < 0.001) and remained below EB from 1 to 4 h postexercise in PLA (∼17%) and at 1 h in PRO (∼18%, P < 0.05). In addition, conjugated Atg5 (cAtg12) decreased below EB in PLA at 4 h (∼20, P < 0.05); however, its values were increased above this time point in PRO at 4 h alongside increases in FOXO1 above EB (∼22–26%, P < 0.05). Notably, these changes were subsequent to increases in unc-51-like kinase 1Ser757 phosphorylation (∼60%) 1 h postexercise in PRO. No significant changes in gene expression of selected autophagy markers were found, but EGR-1 increased above ED and EB in PLA (∼417–864%) and PRO (∼1,417–2,731%) trials 1 h postexercise ( P < 0.001). Postexercise protein availability, compared with placebo, can selectively promote autophagic responses to REX in ED.
Collapse
Affiliation(s)
- William J. Smiles
- Mary MacKillop Institute for Health Research, Centre for Exercise and Nutrition, Australian Catholic University, Melbourne, Victoria, Australia
| | - José L. Areta
- Mary MacKillop Institute for Health Research, Centre for Exercise and Nutrition, Australian Catholic University, Melbourne, Victoria, Australia
| | - Vernon G. Coffey
- Bond Institute of Health and Sport and Faculty of Health Sciences and Medicine, Bond University, Queensland, Australia
| | - Stuart M. Phillips
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Daniel R. Moore
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| | | | - Louise M. Burke
- Department of Sports Nutrition, Australian Institute of Sport, Canberra, Australia
| | - John A. Hawley
- Mary MacKillop Institute for Health Research, Centre for Exercise and Nutrition, Australian Catholic University, Melbourne, Victoria, Australia
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Donny M. Camera
- Mary MacKillop Institute for Health Research, Centre for Exercise and Nutrition, Australian Catholic University, Melbourne, Victoria, Australia
| |
Collapse
|
49
|
Russ DW, Acksel C, Boyd IM, Maynard J, McCorkle KW, Edens NK, Garvey SM. Dietary HMB and β-alanine co-supplementation does not improve in situ muscle function in sedentary, aged male rats. Appl Physiol Nutr Metab 2015; 40:1294-301. [PMID: 26579948 DOI: 10.1139/apnm-2015-0391] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
This study evaluated the effects of dietary β-hydroxy-β-methylbutyrate (HMB) combined with β-alanine (β-Ala) in sedentary, aged male rats. It has been suggested that dietary HMB or β-Ala supplementation may mitigate age-related declines in muscle strength and fatigue resistance. A total of 20 aged Sprague-Dawley rats were studied. At age 20 months, 10 rats were administered a control, purified diet and 10 rats were administered a purified diet supplemented with both HMB and β-Ala (HMB+β-Ala) for 8 weeks (approximately equivalent to 3 and 2.4 g per day human dose). We measured medial gastrocnemius (MG) size, force, fatigability, and myosin composition. We also evaluated an array of protein markers related to muscle mitochondria, protein synthesis and breakdown, and autophagy. HMB+β-Ala had no significant effects on body weight, MG mass, force or fatigability, myosin composition, or muscle quality. Compared with control rats, those fed HMB+β-Ala exhibited a reduced (41%, P = 0.039) expression of muscle RING-finger protein 1 (MURF1), a common marker of protein degradation. Muscle from rats fed HMB+β-Ala also exhibited a 45% reduction (P = 0.023) in p70s6K phosphorylation following fatiguing stimulation. These data suggest that HMB+β-Ala at the dose studied may reduce muscle protein breakdown by reducing MURF1 expression, but has minimal effects on muscle function in this model of uncomplicated aging. They do not, however, rule out potential benefits of HMB+β-Ala co-supplementation at other doses or durations of supplementation in combination with exercise or in situations where extreme muscle protein breakdown and loss of mass occur (e.g., bedrest, cachexia, failure-to-thrive).
Collapse
Affiliation(s)
- David W Russ
- a Laboratory for Integrative Muscle Biology, Division of Physical Therapy, School of Rehabilitation and Communication Sciences, Ohio University, Athens, OH 45701, USA.,b Ohio Musculoskeletal and Neurological Institute (OMNI), Heritage College of Osteopathic Medicine, Athens, OH 45701, USA
| | - Cara Acksel
- a Laboratory for Integrative Muscle Biology, Division of Physical Therapy, School of Rehabilitation and Communication Sciences, Ohio University, Athens, OH 45701, USA.,c Division of Nutrition, School of Applied Health Sciences and Wellness, Ohio University, Athens, OH 45701, USA
| | - Iva M Boyd
- a Laboratory for Integrative Muscle Biology, Division of Physical Therapy, School of Rehabilitation and Communication Sciences, Ohio University, Athens, OH 45701, USA
| | - John Maynard
- a Laboratory for Integrative Muscle Biology, Division of Physical Therapy, School of Rehabilitation and Communication Sciences, Ohio University, Athens, OH 45701, USA
| | - Katherine W McCorkle
- a Laboratory for Integrative Muscle Biology, Division of Physical Therapy, School of Rehabilitation and Communication Sciences, Ohio University, Athens, OH 45701, USA
| | - Neile K Edens
- d Abbott Nutrition R&D, 3300 Stelzer Road, Columbus, OH 43219, USA
| | - Sean M Garvey
- d Abbott Nutrition R&D, 3300 Stelzer Road, Columbus, OH 43219, USA
| |
Collapse
|
50
|
Apró W, Moberg M, Hamilton DL, Ekblom B, Rooyackers O, Holmberg H, Blomstrand E. Leucine does not affect mechanistic target of rapamycin complex 1 assembly but is required for maximal ribosomal protein s6 kinase 1 activity in human skeletal muscle following resistance exercise. FASEB J 2015; 29:4358-73. [DOI: 10.1096/fj.15-273474] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 06/30/2015] [Indexed: 12/21/2022]
Affiliation(s)
- William Apró
- Åstrand LaboratorySwedish School of Sport and Health SciencesStockholmSweden
- Department of Clinical Science, Intervention, and TechnologyKarolinska InstitutetStockholmSweden
| | - Marcus Moberg
- Åstrand LaboratorySwedish School of Sport and Health SciencesStockholmSweden
| | - D. Lee Hamilton
- Health and Exercise Sciences Research GroupUniversity of StirlingStirlingUnited Kingdom
| | - Björn Ekblom
- Åstrand LaboratorySwedish School of Sport and Health SciencesStockholmSweden
| | - Olav Rooyackers
- Department of Clinical Science, Intervention, and TechnologyKarolinska InstitutetStockholmSweden
| | - Hans‐Christer Holmberg
- Swedish Winter Sports Research CentreDepartment of Health SciencesMid Sweden UniversityÖstersundSweden
| | - Eva Blomstrand
- Åstrand LaboratorySwedish School of Sport and Health SciencesStockholmSweden
- Department of Physiology and PharmacologyKarolinska InstitutetStockholmSweden
| |
Collapse
|