1
|
Jang KW, Hur J, Lee DW, Kim SR. Metabolic Syndrome, Kidney-Related Adiposity, and Kidney Microcirculation: Unraveling the Damage. Biomedicines 2024; 12:2706. [PMCID: PMC11673429 DOI: 10.3390/biomedicines12122706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/24/2024] [Accepted: 11/25/2024] [Indexed: 01/03/2025] Open
Abstract
Metabolic syndrome (MetS) is a cluster of interrelated risk factors, including insulin resistance, hypertension, dyslipidemia, and visceral adiposity, all of which contribute to kidney microvascular injury and the progression of chronic kidney disease (CKD). However, the specific impact of each component of MetS on kidney microcirculation remains unclear. Given the increasing prevalence of obesity, understanding how visceral fat—particularly fat surrounding the kidneys—affects kidney microcirculation is critical. This review examines the consequences of visceral obesity and other components of MetS on renal microcirculation. These kidney-related fat deposits can contribute to the mechanical compression of renal vasculature, promote inflammation and oxidative stress, and induce endothelial dysfunction, all of which accelerate kidney damage. Each factor of MetS initiates a series of hemodynamic and metabolic disturbances that impair kidney microcirculation, leading to vascular remodeling and microvascular rarefaction. The review concludes by discussing therapeutic strategies targeting the individual components of MetS, which have shown promise in alleviating inflammation and oxidative stress. Integrated approaches that address both of the components of MetS and kidney-related adiposity may improve renal outcomes and slow the progression of CKD.
Collapse
Affiliation(s)
- Kyu Won Jang
- Division of Nephrology and Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea; (K.W.J.); (J.H.); (D.W.L.)
| | - Jin Hur
- Division of Nephrology and Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea; (K.W.J.); (J.H.); (D.W.L.)
- Department of Convergence Medicine, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea
| | - Dong Won Lee
- Division of Nephrology and Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea; (K.W.J.); (J.H.); (D.W.L.)
- Department of Internal Medicine, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea
| | - Seo Rin Kim
- Division of Nephrology and Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea; (K.W.J.); (J.H.); (D.W.L.)
- Department of Internal Medicine, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea
| |
Collapse
|
2
|
Okita T, Kita S, Fukuda S, Kondo Y, Sakaue TA, Iioka M, Fukuoka K, Kawada K, Nagao H, Obata Y, Fujishima Y, Ebihara T, Matsumoto H, Nakagawa S, Kimura T, Nishizawa H, Shimomura I. Soluble T-cadherin secretion from endothelial cells is regulated via insulin/PI3K/Akt signalling. Biochem Biophys Res Commun 2024; 732:150403. [PMID: 39047402 DOI: 10.1016/j.bbrc.2024.150403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/27/2024] [Accepted: 07/12/2024] [Indexed: 07/27/2024]
Abstract
AIM AND OBJECTIVE Our recent report showed that soluble T-cadherin promotes pancreatic beta-cell proliferation. However, how and where the secretion of soluble T-cadherin is regulated remain unclear. METHODS AND RESULTS Soluble T-cadherin levels significantly increased in leptin receptor-deficient db/db mice with hypoinsulinaemia or in wild-type mice treated with insulin receptor blockade by S961. Similar results were observed in human subjects; Diabetic ketoacidosis patients at the time of hospitalization had increased plasma soluble T-cadherin levels, which decreased after insulin infusion therapy. Patients with recurrent ovarian cancer who were administered a phosphatidylinositol-3 kinase (PI3K)-alpha inhibitor (a new anticancer drug) had increased plasma soluble T-cadherin and plasma C-peptide levels. Endothelial cell-specific T-cadherin knockout mice, but not skeletal muscle- or cardiac muscle-specific T-cadherin knockout mice, showed a 26 % reduction in plasma soluble T-cadherin levels and a significant increase in blood glucose levels in streptozocin-induced diabetes. The secretion of soluble T-cadherin from human endothelial cells was approximately 20 % decreased by insulin and this decrease was canceled by blockade of insulin receptor/Akt signalling, not Erk signalling. CONCLUSION We conclude that insulin regulates soluble T-cadherin levels and soluble T-cadherin secretion from endothelial cells is positively regulated by insulin/insulin receptor/Akt signalling.
Collapse
Affiliation(s)
- Tomonori Okita
- Departments of Metabolic Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Shunbun Kita
- Departments of Metabolic Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan.
| | - Shiro Fukuda
- Departments of Metabolic Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan.
| | - Yuta Kondo
- Departments of Metabolic Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Taka-Aki Sakaue
- Departments of Metabolic Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Masahito Iioka
- Departments of Metabolic Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Keita Fukuoka
- Departments of Metabolic Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Keitaro Kawada
- Departments of Metabolic Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hirofumi Nagao
- Departments of Metabolism and Atherosclerosis, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yoshinari Obata
- Departments of Metabolic Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yuya Fujishima
- Departments of Metabolic Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Takeshi Ebihara
- Departments of Traumatology and Acute Critical Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hisatake Matsumoto
- Departments of Traumatology and Acute Critical Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Satoshi Nakagawa
- Departments of Obstetrics and Gynecology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Tadashi Kimura
- Departments of Obstetrics and Gynecology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hitoshi Nishizawa
- Departments of Metabolism and Atherosclerosis, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Iichiro Shimomura
- Departments of Metabolic Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| |
Collapse
|
3
|
Qiu X, Lan X, Li L, Chen H, Zhang N, Zheng X, Xie X. The role of perirenal adipose tissue deposition in chronic kidney disease progression: Mechanisms and therapeutic implications. Life Sci 2024; 352:122866. [PMID: 38936605 DOI: 10.1016/j.lfs.2024.122866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/11/2024] [Accepted: 06/20/2024] [Indexed: 06/29/2024]
Abstract
Chronic kidney disease (CKD) represents a significant and escalating global health challenge, with morbidity and mortality rates rising steadily. Evidence increasingly implicates perirenal adipose tissue (PRAT) deposition as a contributing factor in the pathogenesis of CKD. This review explores how PRAT deposition may exert deleterious effects on renal structure and function. The anatomical proximity of PRAT to the kidneys not only potentially causes mechanical compression but also leads to the dysregulated secretion of adipokines and inflammatory mediators, such as adiponectin, leptin, visfatin, tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and exosomes. Additionally, PRAT deposition may contribute to renal lipotoxicity through elevated levels of free fatty acids (FFA), triglycerides (TAG), diacylglycerol (DAG), and ceramides (Cer). PRAT deposition is also linked to the hyperactivation of the renin-angiotensin-aldosterone system (RAAS), which further exacerbates CKD progression. Recognizing PRAT deposition as an independent risk factor for CKD underscores the potential of targeting PRAT as a novel strategy for the prevention and management of CKD. This review further discusses interventions that could include measuring PRAT thickness to establish a baseline, managing metabolic risk factors that promote its deposition, and inhibiting key PRAT-induced signaling pathways.
Collapse
Affiliation(s)
- Xiang Qiu
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Public Center of Experimental Technology, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Xin Lan
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Public Center of Experimental Technology, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Langhui Li
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Public Center of Experimental Technology, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Huan Chen
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Public Center of Experimental Technology, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China; Nucleic Acid Medicine of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Ningjuan Zhang
- The School of Clinical Medical Sciences, Southwest Medical University, Luzhou, China
| | - Xiaoli Zheng
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China.
| | - Xiang Xie
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Public Center of Experimental Technology, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China.
| |
Collapse
|
4
|
Pasten C, Lozano M, Osorio LA, Cisterna M, Jara V, Sepúlveda C, Ramírez-Balaguera D, Moreno-Hidalgo V, Arévalo-Gil D, Soto P, Hurtado V, Morales A, Méndez GP, Busso D, Leon P, Michea L, Corvalán D, Luarte A, Irarrazabal CE. The protective effect of 1400W against ischaemia and reperfusion injury is countered by transient medullary kidney endothelial dysregulation. J Physiol 2024. [PMID: 39057844 DOI: 10.1113/jp285944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 06/12/2024] [Indexed: 07/28/2024] Open
Abstract
Renal ischaemia and reperfusion (I/R) is caused by a sudden temporary impairment of the blood flow. I/R is a prevalent cause of acute kidney injury. As nitric oxide generated by inducible nitric oxide synthase (iNOS) has detrimental effects during I/R, the pharmacological blockade of iNOS has been proposed as a potential strategy to prevent I/R injury. The aim of this study was to improve the understanding of 1400W (an iNOS inhibitor) on renal I/R as a pharmacological strategy against kidney disease. BALB/c mice received 30 min of bilateral ischaemia, followed by 48 h or 28 days of reperfusion. Vehicle or 1400W (10 mg/kg) was administered 30 min before inducing ischaemia. We found that after 48 h of reperfusion 1400W decreased the serum creatinine, blood urea nitrogen, neutrophil gelatinase-associated lipocalin and proliferating cell nuclear antigen 3 in the I/R animals. Unexpectedly, we observed mRNA upregulation of genes involved in kidney injury, cell-cycle arrest, inflammation, mesenchymal transition and endothelial activation in the renal medulla of sham animals treated with 1400W. We also explored if 1400W promoted chronic kidney dysfunction 28 days after I/R and did not find significant alterations in renal function, fibrosis, blood pressure or mortality. The results provide evidence that 1400W may have adverse effects in the renal medulla. Importantly, our data point to 1400W-induced endothelial dysfunction, establishing therapeutic limitations for its use. KEY POINTS: Acute kidney injury is a global health problem associated with high morbidity and mortality. The pharmacological blockade of inducible nitric oxide synthase (iNOS) has been proposed as a potential strategy to prevent AKI induced by ischaemia and reperfusion (I/R). Our main finding is that 1400W, a selective and irreversible iNOS inhibitor with low toxicity that is proposed as a therapeutic strategy to prevent kidney I/R injury, produces aberrant gene expression in the medulla associated to tissue injury, cell cycle arrest, inflammation, mesenchymal transition and endothelial activation. The negative effect of 1400W observed in the renal medulla at 48 h from drug administration, is transient as it did not translate into a chronic kidney disease condition.
Collapse
Affiliation(s)
- Consuelo Pasten
- Centro de Investigación e Innovación Biomédica (CiiB), Programa de Fisiología, Laboratorio de Fisiología Integrativa y Molecular, Universidad de los Andes, Chile
- Facultad de Medicina, Universidad de los Andes, Chile
| | - Mauricio Lozano
- Centro de Investigación e Innovación Biomédica (CiiB), Programa de Fisiología, Laboratorio de Fisiología Integrativa y Molecular, Universidad de los Andes, Chile
| | - Luis A Osorio
- Centro de Investigación e Innovación Biomédica (CiiB), Programa de Fisiología, Laboratorio de Fisiología Integrativa y Molecular, Universidad de los Andes, Chile
| | - Matías Cisterna
- Centro de Investigación e Innovación Biomédica (CiiB), Programa de Fisiología, Laboratorio de Fisiología Integrativa y Molecular, Universidad de los Andes, Chile
| | - Valeria Jara
- Centro de Investigación e Innovación Biomédica (CiiB), Programa de Fisiología, Laboratorio de Fisiología Integrativa y Molecular, Universidad de los Andes, Chile
| | - Catalina Sepúlveda
- Centro de Investigación e Innovación Biomédica (CiiB), Programa de Fisiología, Laboratorio de Fisiología Integrativa y Molecular, Universidad de los Andes, Chile
| | - Daniela Ramírez-Balaguera
- Centro de Investigación e Innovación Biomédica (CiiB), Programa de Fisiología, Laboratorio de Fisiología Integrativa y Molecular, Universidad de los Andes, Chile
| | - Viviana Moreno-Hidalgo
- Centro de Investigación e Innovación Biomédica (CiiB), Programa de Fisiología, Laboratorio de Fisiología Integrativa y Molecular, Universidad de los Andes, Chile
| | - Dayana Arévalo-Gil
- Centro de Investigación e Innovación Biomédica (CiiB), Programa de Fisiología, Laboratorio de Fisiología Integrativa y Molecular, Universidad de los Andes, Chile
| | - Paola Soto
- Centro de Investigación e Innovación Biomédica (CiiB), Programa de Fisiología, Laboratorio de Fisiología Integrativa y Molecular, Universidad de los Andes, Chile
| | - Valeria Hurtado
- Centro de Investigación e Innovación Biomédica (CiiB), Programa de Fisiología, Laboratorio de Fisiología Integrativa y Molecular, Universidad de los Andes, Chile
| | - Antonia Morales
- Centro de Investigación e Innovación Biomédica (CiiB), Programa de Fisiología, Laboratorio de Fisiología Integrativa y Molecular, Universidad de los Andes, Chile
| | | | - Dolores Busso
- Centro de Investigación e Innovación Biomédica (CiiB), Programa de Biología de la Reproducción, Universidad de los Andes, Chile
| | - Pablo Leon
- Programa de Fisiología y Biofísica, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Luis Michea
- Programa de Fisiología y Biofísica, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Daniela Corvalán
- Neuroscience Program, Center of Interventional Medicine for Precision and Advanced Cellular Therapy (IMPACT), Universidad de los Andes, Chile
| | - Alejandro Luarte
- Neuroscience Program, Center of Interventional Medicine for Precision and Advanced Cellular Therapy (IMPACT), Universidad de los Andes, Chile
| | - Carlos E Irarrazabal
- Centro de Investigación e Innovación Biomédica (CiiB), Programa de Fisiología, Laboratorio de Fisiología Integrativa y Molecular, Universidad de los Andes, Chile
- Facultad de Medicina, Universidad de los Andes, Chile
| |
Collapse
|
5
|
Zheng J, Zhang W, Xu R, Liu L. The role of adiponectin and its receptor signaling in ocular inflammation-associated diseases. Biochem Biophys Res Commun 2024; 717:150041. [PMID: 38710142 DOI: 10.1016/j.bbrc.2024.150041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/13/2024] [Accepted: 04/29/2024] [Indexed: 05/08/2024]
Abstract
Ocular inflammation-associated diseases are leading causes of global visual impairment, with limited treatment options. Adiponectin, a hormone primarily secreted by adipose tissue, binds to its receptors, which are widely distributed throughout the body, exerting powerful physiological regulatory effects. The protective role of adiponectin in various inflammatory diseases has gained increasing attention in recent years. Previous studies have confirmed the presence of adiponectin and its receptors in the eyes. Furthermore, adiponectin and its analogs have shown potential as novel drugs for the treatment of inflammatory eye diseases. This article summarizes the evidence for the interplay between adiponectin and inflammatory eye diseases and provides new perspectives on the diagnostic and therapeutic possibilities of adiponectin.
Collapse
Affiliation(s)
- Jing Zheng
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China; Department of Optometry and Visual Science, West China Hospital, Sichuan University, Chengdu, China
| | - Wenqiu Zhang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China; Department of Optometry and Visual Science, West China Hospital, Sichuan University, Chengdu, China
| | - Ran Xu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China; Department of Optometry and Visual Science, West China Hospital, Sichuan University, Chengdu, China
| | - Longqian Liu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China; Department of Optometry and Visual Science, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
6
|
da Silva IO, de Menezes NK, Jacobina HD, Parra AC, Souza FL, Castro LC, Roelofs JJTH, Tammaro A, Gomes SA, Sanches TR, Andrade L. Obesity aggravates acute kidney injury resulting from ischemia and reperfusion in mice. Sci Rep 2024; 14:9820. [PMID: 38684767 PMCID: PMC11059346 DOI: 10.1038/s41598-024-60365-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 04/22/2024] [Indexed: 05/02/2024] Open
Abstract
In critically ill patients, overweight and obesity are associated with acute respiratory distress syndrome and acute kidney injury (AKI). However, the effect of obesity on ischemia-reperfusion injury (IRI)-induced AKI is unknown. We hypothesized that obesity would aggravate renal IRI in mice. We fed mice a standard or high-fat diet for eight weeks. The mice were divided into four groups and submitted to sham surgery or IRI: obese, normal, normal + IRI, obese, and obese + IRI. All studies were performed 48 h after the procedures. Serum glucose, cholesterol, and creatinine clearance did not differ among the groups. Survival and urinary osmolality were lower in the obese + IRI group than in the normal + IRI group, whereas urinary neutrophil gelatinase-associated lipocalin levels, tubular injury scores, and caspase 3 expression were higher. Proliferating cell nuclear antigen expression was highest in the obese + IRI group, as were the levels of oxidative stress (urinary levels of thiobarbituric acid-reactive substances and renal heme oxygenase-1 protein expression), whereas renal Klotho protein expression was lowest in that group. Expression of glutathione peroxidase 4 and peroxiredoxin 6, proteins that induce lipid peroxidation, a hallmark of ferroptosis, was lower in the obese + IRI group. Notably, among the mice not induced to AKI, macrophage infiltration was greater in the obese group. In conclusion, greater oxidative stress and ferroptosis might aggravate IRI in obese individuals, and Klotho could be a therapeutic target in those with AKI.
Collapse
Affiliation(s)
- Igor Oliveira da Silva
- Laboratory of Basic Science in Renal Diseases (LIM-12), Division of Nephrology, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Nicole K de Menezes
- Laboratory of Basic Science in Renal Diseases (LIM-12), Division of Nephrology, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Heloisa D Jacobina
- Laboratory of Basic Science in Renal Diseases (LIM-12), Division of Nephrology, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Antonio Carlos Parra
- Laboratory of Basic Science in Renal Diseases (LIM-12), Division of Nephrology, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Felipe Lima Souza
- Laboratory of Cellular Genetic and Molecular Nephrology, Division of Nephrology, Av. Dr. Arnaldo, 455, 3º Andar, sala 3310, University of São Paulo School of Medicine, São Paulo, SP, CEP 01246-903, Brazil
| | - Leticia Cardoso Castro
- Laboratory of Basic Science in Renal Diseases (LIM-12), Division of Nephrology, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Joris J T H Roelofs
- Department of Pathology, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Alessandra Tammaro
- Department of Pathology, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Samirah Abreu Gomes
- Laboratory of Cellular Genetic and Molecular Nephrology, Division of Nephrology, Av. Dr. Arnaldo, 455, 3º Andar, sala 3310, University of São Paulo School of Medicine, São Paulo, SP, CEP 01246-903, Brazil
| | - Talita Rojas Sanches
- Laboratory of Basic Science in Renal Diseases (LIM-12), Division of Nephrology, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Lucia Andrade
- Laboratory of Basic Science in Renal Diseases (LIM-12), Division of Nephrology, University of São Paulo School of Medicine, São Paulo, Brazil.
| |
Collapse
|
7
|
Fujii K, Fujishima Y, Kita S, Kawada K, Fukuoka K, Sakaue TA, Okita T, Kawada-Horitani E, Nagao H, Fukuda S, Maeda N, Nishizawa H, Shimomura I. Pharmacological HIF-1 activation upregulates extracellular vesicle production synergistically with adiponectin through transcriptional induction and protein stabilization of T-cadherin. Sci Rep 2024; 14:3620. [PMID: 38351156 PMCID: PMC10864391 DOI: 10.1038/s41598-024-51935-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/11/2024] [Indexed: 02/16/2024] Open
Abstract
Pharmacological activation of hypoxia-inducible factor 1 (HIF-1), a hypoxia-responsive transcription factor, has attracted increasing attention due to its efficacy not only in renal anemia but also in various disease models. Our study demonstrated that a HIF-1 activator enhanced extracellular vesicle (EV) production from cultured endothelial cells synergistically with adiponectin, an adipocyte-derived factor, through both transcriptional induction and posttranscriptional stabilization of an adiponectin binding partner, T-cadherin. Increased EV levels were observed in wild-type mice but not in T-cadherin null mice after consecutive administration of roxadustat. Adiponectin- and T-cadherin-dependent increased EV production may be involved in the pleiotropic effects of HIF-1 activators.
Collapse
Affiliation(s)
- Kohei Fujii
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, 2-2, Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Yuya Fujishima
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, 2-2, Yamada-oka, Suita, Osaka, 565-0871, Japan.
| | - Shunbun Kita
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, 2-2, Yamada-oka, Suita, Osaka, 565-0871, Japan.
- Department of Adipose Management, Graduate School of Medicine, Osaka University, 2-2, Yamada-oka, Suita, Osaka, 565-0871, Japan.
| | - Keitaro Kawada
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, 2-2, Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Keita Fukuoka
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, 2-2, Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Taka-Aki Sakaue
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, 2-2, Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Tomonori Okita
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, 2-2, Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Emi Kawada-Horitani
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, 2-2, Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Hirofumi Nagao
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, 2-2, Yamada-oka, Suita, Osaka, 565-0871, Japan
- Department of Metabolism and Atherosclerosis, Graduate School of Medicine, Osaka University, 2-2, Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Shiro Fukuda
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, 2-2, Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Norikazu Maeda
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, 2-2, Yamada-oka, Suita, Osaka, 565-0871, Japan
- Department of Endocrinology, Metabolism and Diabetes, Faculty of Medicine, Kindai University, 377-2, Ohno-higashi, Osaka-Sayama, Osaka, 589-8511, Japan
| | - Hitoshi Nishizawa
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, 2-2, Yamada-oka, Suita, Osaka, 565-0871, Japan
- Department of Metabolism and Atherosclerosis, Graduate School of Medicine, Osaka University, 2-2, Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Iichiro Shimomura
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, 2-2, Yamada-oka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
8
|
Zhang X, Wang J, Zhang J, Tan Y, Li Y, Peng Z. Exosomes Highlight Future Directions in the Treatment of Acute Kidney Injury. Int J Mol Sci 2023; 24:15568. [PMID: 37958550 PMCID: PMC10650293 DOI: 10.3390/ijms242115568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Acute kidney injury (AKI) is a severe health problem associated with high morbidity and mortality rates. It currently lacks specific therapeutic strategies. This review focuses on the mechanisms underlying the actions of exosomes derived from different cell sources, including red blood cells, macrophages, monocytes, mesenchymal stem cells, and renal tubular cells, in AKI. We also investigate the effects of various exosome contents (such as miRNA, lncRNA, circRNA, mRNA, and proteins) in promoting renal tubular cell regeneration and angiogenesis, regulating autophagy, suppressing inflammatory responses and oxidative stress, and preventing fibrosis to facilitate AKI repair. Moreover, we highlight the interactions between macrophages and renal tubular cells through exosomes, which contribute to the progression of AKI. Additionally, exosomes and their contents show promise as potential biomarkers for diagnosing AKI. The engineering of exosomes has improved their clinical potential by enhancing isolation and enrichment, target delivery to injured renal tissues, and incorporating small molecular modifications for clinical use. However, further research is needed to better understand the specific mechanisms underlying exosome actions, their delivery pathways to renal tubular cells, and the application of multi-omics research in studying AKI.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Department of Critical Care Medicine, Zhongnan Hospital, Wuhan University, Wuhan 430071, China; (X.Z.); (J.W.); (J.Z.); (Y.T.)
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan 430071, China
| | - Jing Wang
- Department of Critical Care Medicine, Zhongnan Hospital, Wuhan University, Wuhan 430071, China; (X.Z.); (J.W.); (J.Z.); (Y.T.)
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan 430071, China
| | - Jing Zhang
- Department of Critical Care Medicine, Zhongnan Hospital, Wuhan University, Wuhan 430071, China; (X.Z.); (J.W.); (J.Z.); (Y.T.)
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan 430071, China
| | - Yuwei Tan
- Department of Critical Care Medicine, Zhongnan Hospital, Wuhan University, Wuhan 430071, China; (X.Z.); (J.W.); (J.Z.); (Y.T.)
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan 430071, China
| | - Yiming Li
- Department of Critical Care Medicine, Zhongnan Hospital, Wuhan University, Wuhan 430071, China; (X.Z.); (J.W.); (J.Z.); (Y.T.)
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan 430071, China
| | - Zhiyong Peng
- Department of Critical Care Medicine, Zhongnan Hospital, Wuhan University, Wuhan 430071, China; (X.Z.); (J.W.); (J.Z.); (Y.T.)
- Clinical Research Center of Hubei Critical Care Medicine, Wuhan 430071, China
- Department of Critical Care Medicine, Center of Critical Care Nephrology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
9
|
Onodera T, Wang MY, Rutkowski JM, Deja S, Chen S, Balzer MS, Kim DS, Sun X, An YA, Field BC, Lee C, Matsuo EI, Mizerska M, Sanjana I, Fujiwara N, Kusminski CM, Gordillo R, Gautron L, Marciano DK, Hu MC, Burgess SC, Susztak K, Moe OW, Scherer PE. Endogenous renal adiponectin drives gluconeogenesis through enhancing pyruvate and fatty acid utilization. Nat Commun 2023; 14:6531. [PMID: 37848446 PMCID: PMC10582045 DOI: 10.1038/s41467-023-42188-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 10/03/2023] [Indexed: 10/19/2023] Open
Abstract
Adiponectin is a secretory protein, primarily produced in adipocytes. However, low but detectable expression of adiponectin can be observed in cell types beyond adipocytes, particularly in kidney tubular cells, but its local renal role is unknown. We assessed the impact of renal adiponectin by utilizing male inducible kidney tubular cell-specific adiponectin overexpression or knockout mice. Kidney-specific adiponectin overexpression induces a doubling of phosphoenolpyruvate carboxylase expression and enhanced pyruvate-mediated glucose production, tricarboxylic acid cycle intermediates and an upregulation of fatty acid oxidation (FAO). Inhibition of FAO reduces the adiponectin-induced enhancement of glucose production, highlighting the role of FAO in the induction of renal gluconeogenesis. In contrast, mice lacking adiponectin in the kidney exhibit enhanced glucose tolerance, lower utilization and greater accumulation of lipid species. Hence, renal adiponectin is an inducer of gluconeogenesis by driving enhanced local FAO and further underlines the important systemic contribution of renal gluconeogenesis.
Collapse
Affiliation(s)
- Toshiharu Onodera
- Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, Dallas, US
| | - May-Yun Wang
- Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, Dallas, US
| | - Joseph M Rutkowski
- Division of Lymphatic Biology, Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX, USA
| | - Stanislaw Deja
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX, US
| | - Shiuhwei Chen
- Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, Dallas, US
| | - Michael S Balzer
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Department of Nephrology and Medical Intensive Care, Charité, Universitätsmedizin Berlin, 10117, Berlin, Germany
- Berlin Institute of Health at Charité, Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Clinician Scientist Program, 10117, Berlin, Germany
| | - Dae-Seok Kim
- Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, Dallas, US
| | - Xuenan Sun
- Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, Dallas, US
| | - Yu A An
- Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, Dallas, US
- Department of Anesthesiology, Critical Care and Pain Medicine, UT Health Science Center at Houston, Houston, TX, USA
| | - Bianca C Field
- Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, Dallas, US
| | - Charlotte Lee
- Center for Hypothalamic Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ei-Ichi Matsuo
- Solutions COE, Analytical & Measuring Instruments Division, Shimadzu Corporation, Kyoto, Japan
| | - Monika Mizerska
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX, US
| | - Ina Sanjana
- Solutions COE, Analytical & Measuring Instruments Division, Shimadzu Corporation, Kyoto, Japan
| | - Naoto Fujiwara
- Liver Tumor Translational Research Program, Simmons Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
| | - Christine M Kusminski
- Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, Dallas, US
| | - Ruth Gordillo
- Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, Dallas, US
| | - Laurent Gautron
- Center for Hypothalamic Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Denise K Marciano
- Departments of Cell Biology and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ming Chang Hu
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Shawn C Burgess
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX, US
| | - Katalin Susztak
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Orson W Moe
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Philipp E Scherer
- Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, Dallas, US.
- Departments of Cell Biology and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
10
|
Popov VS, Brodsky IB, Balatskaya MN, Balatskiy AV, Ozhimalov ID, Kulebyakina MA, Semina EV, Arbatskiy MS, Isakova VS, Klimovich PS, Sysoeva VY, Kalinina NI, Tkachuk VA, Rubina KA. T-Cadherin Deficiency Is Associated with Increased Blood Pressure after Physical Activity. Int J Mol Sci 2023; 24:14204. [PMID: 37762507 PMCID: PMC10531645 DOI: 10.3390/ijms241814204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
T-cadherin is a regulator of blood vessel remodeling and angiogenesis, involved in adiponectin-mediated protective effects in the cardiovascular system and in skeletal muscles. GWAS study has previously demonstrated a SNP in the Cdh13 gene to be associated with hypertension. However, the role of T-cadherin in regulating blood pressure has not been experimentally elucidated. Herein, we generated Cdh13∆Exon3 mice lacking exon 3 in the Cdh13 gene and described their phenotype. Cdh13∆Exon3 mice exhibited normal gross morphology, life expectancy, and breeding capacity. Meanwhile, their body weight was considerably lower than of WT mice. When running on a treadmill, the time spent running and the distance covered by Cdh13∆Exon3 mice was similar to that of WT. The resting blood pressure in Cdh13∆Exon3 mice was slightly higher than in WT, however, upon intensive physical training their systolic blood pressure was significantly elevated. While adiponectin content in the myocardium of Cdh13∆Exon3 and WT mice was within the same range, adiponectin plasma level was 4.37-fold higher in Cdh13∆Exon3 mice. Moreover, intensive physical training augmented the AMPK phosphorylation in the skeletal muscles and myocardium of Cdh13∆Exon3 mice as compared to WT. Our data highlight a critically important role of T-cadherin in regulation of blood pressure and stamina in mice, and may shed light on the pathogenesis of hypertension.
Collapse
Affiliation(s)
- Vladimir S. Popov
- Faculty of Medicine, Lomonosov Moscow State University, Lomonosovsky Ave., 27/1, 119991 Moscow, Russia (I.B.B.); (M.N.B.)
| | - Ilya B. Brodsky
- Faculty of Medicine, Lomonosov Moscow State University, Lomonosovsky Ave., 27/1, 119991 Moscow, Russia (I.B.B.); (M.N.B.)
| | - Maria N. Balatskaya
- Faculty of Medicine, Lomonosov Moscow State University, Lomonosovsky Ave., 27/1, 119991 Moscow, Russia (I.B.B.); (M.N.B.)
| | - Alexander V. Balatskiy
- Faculty of Medicine, Lomonosov Moscow State University, Lomonosovsky Ave., 27/1, 119991 Moscow, Russia (I.B.B.); (M.N.B.)
| | - Ilia D. Ozhimalov
- Faculty of Medicine, Lomonosov Moscow State University, Lomonosovsky Ave., 27/1, 119991 Moscow, Russia (I.B.B.); (M.N.B.)
| | - Maria A. Kulebyakina
- Faculty of Medicine, Lomonosov Moscow State University, Lomonosovsky Ave., 27/1, 119991 Moscow, Russia (I.B.B.); (M.N.B.)
| | - Ekaterina V. Semina
- Faculty of Medicine, Lomonosov Moscow State University, Lomonosovsky Ave., 27/1, 119991 Moscow, Russia (I.B.B.); (M.N.B.)
| | - Mikhail S. Arbatskiy
- Faculty of Medicine, Lomonosov Moscow State University, Lomonosovsky Ave., 27/1, 119991 Moscow, Russia (I.B.B.); (M.N.B.)
| | - Viktoria S. Isakova
- V.I. Kulakov National Medical Center of Obstetrics Gynecology and Perinatology, Akademika Oparina Street, 4, 117198 Moscow, Russia
| | - Polina S. Klimovich
- Faculty of Medicine, Lomonosov Moscow State University, Lomonosovsky Ave., 27/1, 119991 Moscow, Russia (I.B.B.); (M.N.B.)
| | - Veronika Y. Sysoeva
- Faculty of Medicine, Lomonosov Moscow State University, Lomonosovsky Ave., 27/1, 119991 Moscow, Russia (I.B.B.); (M.N.B.)
| | - Natalia I. Kalinina
- Faculty of Medicine, Lomonosov Moscow State University, Lomonosovsky Ave., 27/1, 119991 Moscow, Russia (I.B.B.); (M.N.B.)
| | - Vsevolod A. Tkachuk
- Faculty of Medicine, Lomonosov Moscow State University, Lomonosovsky Ave., 27/1, 119991 Moscow, Russia (I.B.B.); (M.N.B.)
| | - Kseniya A. Rubina
- Faculty of Medicine, Lomonosov Moscow State University, Lomonosovsky Ave., 27/1, 119991 Moscow, Russia (I.B.B.); (M.N.B.)
| |
Collapse
|
11
|
Fukuoka K, Mineo R, Kita S, Fukuda S, Okita T, Kawada-Horitani E, Iioka M, Fujii K, Kawada K, Fujishima Y, Nishizawa H, Maeda N, Shimomura I. ER stress decreases exosome production through adiponectin/T-cadherin-dependent and -independent pathways. J Biol Chem 2023; 299:105114. [PMID: 37524131 PMCID: PMC10474463 DOI: 10.1016/j.jbc.2023.105114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 07/19/2023] [Accepted: 07/22/2023] [Indexed: 08/02/2023] Open
Abstract
Exosomes, extracellular vesicles (EVs) produced within cells, mediate both the disposal of intracellular waste and communication with distant cells, and they are involved in a variety of disease processes. Although disease modifications of exosome cargos have been well studied, it has been poorly investigated how disease processes, such as endoplasmic reticulum (ER) stress, affect EV production. We previously reported that adiponectin, an adipocyte-secreted salutary factor, increases systemic exosome levels through T-cadherin-mediated enhancement of exosome biogenesis. In the present study, we demonstrated that adiponectin/T-cadherin-dependent EV production was susceptible to ER stress and that low-dose tunicamycin significantly reduced EV production in the presence, but not in the absence, of adiponectin. Moreover, pharmacological or genetic activation of inositol-requiring enzyme 1α, a central regulator of ER stress, downregulated T-cadherin at the mRNA and protein levels as well as attenuated EV production. In addition, adiponectin/T-cadherin-independent EV production was attenuated under ER stress conditions. Repeated administration of tunicamycin to mice decreased circulating small EVs without decreasing tissue T-cadherin expression. Mechanistically, inositol-requiring enzyme 1α activation by silencing of the X-box binding protein 1 transcription factor upregulated the canonical interferon pathway and decreased EV production. The interferon pathway, when it was activated by polyinosinic-polycytidylic acid, also significantly attenuated EV production. Thus, we concluded that ER stress decreases exosome production through adiponectin/T-cadherin-dependent and -independent pathways.
Collapse
Affiliation(s)
- Keita Fukuoka
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Ryohei Mineo
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Shunbun Kita
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan; Department of Adipose Management, Graduate School of Medicine, Osaka University, Osaka, Japan.
| | - Shiro Fukuda
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Tomonori Okita
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Emi Kawada-Horitani
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Masahito Iioka
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Kohei Fujii
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Keitaro Kawada
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yuya Fujishima
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hitoshi Nishizawa
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Norikazu Maeda
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan; Department of Metabolism and Atherosclerosis, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Iichiro Shimomura
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| |
Collapse
|
12
|
Jiang J, Li W, Zhou L, Liu D, Wang Y, An J, Qiao S, Xie Z. Platelet ITGA2B inhibits caspase-8 and Rip3/Mlkl-dependent platelet death though PTPN6 during sepsis. iScience 2023; 26:107414. [PMID: 37554440 PMCID: PMC10404729 DOI: 10.1016/j.isci.2023.107414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/04/2023] [Accepted: 07/14/2023] [Indexed: 08/10/2023] Open
Abstract
Platelets play an important role in the pathogenesis of sepsis and platelet transfusion is a therapeutic option for sepsis patients, although the exact mechanisms have not been elucidated so far. ITGA2B encodes the αIIb protein in platelets, and its upregulation in sepsis is associated with increased mortality rate. Here, we generated a Itga2b (Q887X) knockin mouse, which significantly reduced ITGA2B expression of platelet and megakaryocyte. The decrease of ITGA2B level aggravated the death of septic mice. We analyzed the transcriptomic profiles of the platelets using RNA sequencing. Our findings suggest that ITGA2B upregulates PTPN6 in megakaryocytes via the transcription factors Nfkb1 and Rel. Furthermore, PTPN6 inhibits platelet apoptosis and necroptosis during sepsis by targeting the Ripk1/Ripk3/Mlkl and caspase-8 pathways. This prevents Kupffer cells from rapidly clearing activated platelets, and eventually maintains vascular integrity during sepsis. Our findings indicate a new function of ITGA2B in the regulation of platelet death during sepsis.
Collapse
Affiliation(s)
- Jiang Jiang
- Department of Nuclear Medicine, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Wei Li
- Institute of Clinical Medicine Research, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, China
| | - Lu Zhou
- Hematology Department, Affiliated Hospital of Nantong University, Nantong, China
| | - Dengping Liu
- Suzhou Center for Disease Control and Prevention, Suzhou, China
| | - Yuanyuan Wang
- Department of Intensive Care Unit, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, China
| | - Jianzhong An
- Institute of Clinical Medicine Research, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, China
| | - Shigang Qiao
- Institute of Clinical Medicine Research, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, China
- Faculty of Anesthesiology, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, China
| | - Zhanli Xie
- Institute of Clinical Medicine Research, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, China
| |
Collapse
|
13
|
Kiełbowski K, Bakinowska E, Ostrowski P, Pala B, Gromowska E, Gurazda K, Dec P, Modrzejewski A, Pawlik A. The Role of Adipokines in the Pathogenesis of Psoriasis. Int J Mol Sci 2023; 24:ijms24076390. [PMID: 37047363 PMCID: PMC10094354 DOI: 10.3390/ijms24076390] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Psoriasis is a chronic and immune-mediated skin condition characterized by pro-inflammatory cytokines and keratinocyte hyperproliferation. Dendritic cells, T lymphocytes, and keratinocytes represent the main cell subtypes involved in the pathogenesis of psoriasis, while the interleukin-23 (IL-23)/IL-17 pathway enhances the disease progression. Human adipose tissue is an endocrine organ, which secretes multiple proteins, known as adipokines, such as adiponectin, leptin, visfatin, or resistin. Current evidence highlights the immunomodulatory roles of adipokines, which may contribute to the progression or suppression of psoriasis. A better understanding of the complexity of psoriasis pathophysiology linked with adipokines could result in developing novel diagnostic or therapeutic strategies. This review aims to present the pathogenesis of psoriasis and the roles of adipokines in this process.
Collapse
|
14
|
The Relationship between Serum Adiponectin, Urinary Albumin/Creatinine Ratio and Type 2 Diabetes: A Population-Based Cross-Sectional Study. J Clin Med 2022; 11:jcm11237232. [PMID: 36498806 PMCID: PMC9738010 DOI: 10.3390/jcm11237232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
The relationship between serum adiponectin concentration (S-Adipo) and various diseases, such as type 2 diabetes (T2D) is conflicting. We hypothesized that the extent of kidney damage in patients with T2D may be responsible for this inconsistency and, thus, examined association between S-Adipo and T2D after consideration for the extent of kidney damage present. Of the 1816 participants in the population-based Iwaki study of Japanese people, 1751 participants with a complete dataset were included. Multivariate logistic regression analyses revealed that low S-Adipo was independently associated with T2D (<0.001), as was high urinary albumin to creatinine ratio (uACR) (<0.001). Principal components analysis showed that the relative value of S-Adipo to uACR (adiponectin relative excess) was significantly associated with T2D (odds ratio: 0.49, p < 0.001). Receiver operating curve analyses revealed that an index of adiponectin relative excess the ratio of S-Adipo to uACR was superior to S-Adipo per se as a marker of T2D (area under the curve: 0.746 vs. 0.579, p < 0.001). This finding indicates that the relationship between S-Adipo and T2D should be evaluated according to the extent of kidney damage present and may warrant similar analyses of the relationships between S-Adipo and other medicalconditions, such as cardiovascular disease.
Collapse
|
15
|
Iioka M, Fukuda S, Maeda N, Natsukawa T, Kita S, Fujishima Y, Sawano H, Nishizawa H, Shimomura I. Time-Series Change of Serum Soluble T-Cadherin Concentrations and Its Association with Creatine Kinase-MB Levels in ST-Segment Elevation Myocardial Infarction. J Atheroscler Thromb 2022; 29:1823-1834. [PMID: 35228485 PMCID: PMC9881537 DOI: 10.5551/jat.63305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
AIMS T-cadherin (T-cad) is a specific binding partner of adiponectin (APN), adipocyte-specific secretory protein. APN exhibits organ protection via the T-cad-dependent accumulation onto several tissues such as the aorta, heart, and muscle. Recently, for the first time, we showed that three forms (130, 100, and 30 kDa) of soluble T-cad existed in human serum and correlated with several clinical parameters in patients with type 2 diabetes. Nevertheless, the significance of soluble T-cad has not been elucidated in the acute stage of cardiovascular diseases. We herein examined soluble T-cad concentrations and investigated their clinical significance in patients with emergency hospital admission due to ST-segment elevation myocardial infarction (STEMI). METHODS This observational study enrolled 47 patients with STEMI who were treated via primary percutaneous coronary intervention (PCI). Soluble T-cad and APN concentrations were measured by using an enzyme-linked immunosorbent assay. This study is registered with the University Hospital Medical Information Network (Number: UMIN 000014418). RESULTS Serum concentrations of soluble 130 and 100 kDa T-cad rapidly and significantly decreased after hospitalization and reached the bottom at 72 h after admission (p<0.001 and p<0.001, respectively). The patients with high soluble T-cad and low APN concentrations on admission showed a significantly higher area under the curve of serum creatine kinase-MB (p<0.01). CONCLUSION Serum soluble T-cad concentration changed dramatically in patients with STEMI, and the high T-cad and low APN concentrations on admission were associated with the myocardial infarction size. Further study is needed to investigate the usefulness of categorizing patients with STEMI by serum T-cad and APN for the prediction of severe prognoses.
Collapse
Affiliation(s)
- Masahito Iioka
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Shiro Fukuda
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Norikazu Maeda
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan,Department of Metabolism and Atherosclerosis, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Tomoaki Natsukawa
- Department of Emergency and Intensive care, Yodogawa Christian Hospital, Osaka, Japan
| | - Shunbun Kita
- Department of Adipose Management, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yuya Fujishima
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hirotaka Sawano
- Senri Critical Care Medical Center, Osaka Saiseikai Senri Hospital, Osaka, Japan
| | - Hitoshi Nishizawa
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Iichiro Shimomura
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| |
Collapse
|
16
|
Kita S, Shimomura I. Extracellular Vesicles as an Endocrine Mechanism Connecting Distant Cells. Mol Cells 2022; 45:771-780. [PMID: 36380729 PMCID: PMC9676990 DOI: 10.14348/molcells.2022.0110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/01/2022] [Accepted: 08/15/2022] [Indexed: 11/18/2022] Open
Abstract
The field of extracellular vesicles (EVs) has expanded tremendously over the last decade. The role of cell-to-cell communication in neighboring or distant cells has been increasingly ascribed to EVs generated by various cells. Initially, EVs were thought to a means of cellular debris or disposal system of unwanted cellular materials that provided an alternative to autolysis in lysosomes. Intercellular exchange of information has been considered to be achieved by well-known systems such as hormones, cytokines, and nervous networks. However, most research in this field has searched for and found evidence to support paracrine or endocrine roles of EV, which inevitably leads to a new concept that EVs are synthesized to achieve their paracrine or endocrine purposes. Here, we attempted to verify the endocrine role of EV production and their contents, such as RNAs and bioactive proteins, from the regulation of biogenesis, secretion, and action mechanisms while discussing the current technical limitations. It will also be important to discuss how blood EV concentrations are regulated as if EVs are humoral endocrine machinery.
Collapse
Affiliation(s)
- Shunbun Kita
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
- Adipose Management, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Iichiro Shimomura
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
17
|
Okita T, Kita S, Fukuda S, Fukuoka K, Kawada-Horitani E, Iioka M, Nakamura Y, Fujishima Y, Nishizawa H, Kawamori D, Matsuoka TA, Norikazu M, Shimomura I. Soluble T-cadherin promotes pancreatic β-cell proliferation by upregulating Notch signaling. iScience 2022; 25:105404. [DOI: 10.1016/j.isci.2022.105404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/31/2022] [Accepted: 10/14/2022] [Indexed: 11/09/2022] Open
|
18
|
Sakaue TA, Fujishima Y, Fukushima Y, Tsugawa-Shimizu Y, Fukuda S, Kita S, Nishizawa H, Ranscht B, Nishida K, Maeda N, Shimomura I. Adiponectin accumulation in the retinal vascular endothelium and its possible role in preventing early diabetic microvascular damage. Sci Rep 2022; 12:4159. [PMID: 35264685 PMCID: PMC8907357 DOI: 10.1038/s41598-022-08041-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/28/2022] [Indexed: 12/15/2022] Open
Abstract
Adiponectin (APN), a protein abundantly secreted from adipocytes, has been reported to possess beneficial effects on cardiovascular diseases in association with its accumulation on target organs and cells by binding to T-cadherin. However, little is known about the role of APN in the development of diabetic microvascular complications, such as diabetic retinopathy (DR). Here we investigated the impact of APN on the progression of early retinal vascular damage using a streptozotocin (STZ)-induced diabetic mouse model. Our immunofluorescence results clearly showed T-cadherin-dependent localization of APN in the vascular endothelium of retinal arterioles, which was progressively decreased during the course of diabetes. Such reduction of retinal APN accompanied the early features of DR, represented by increased vascular permeability, and was prevented by glucose-lowering therapy with dapagliflozin, a selective sodium-glucose co-transporter 2 inhibitor. In addition, APN deficiency resulted in severe vascular permeability under relatively short-term hyperglycemia, together with a significant increase in vascular cellular adhesion molecule-1 (VCAM-1) and a reduction in claudin-5 in the retinal endothelium. The present study demonstrated a possible protective role of APN against the development of DR.
Collapse
Affiliation(s)
- Taka-Aki Sakaue
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, 2-2-B5, Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Yuya Fujishima
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, 2-2-B5, Yamada-oka, Suita, Osaka, 565-0871, Japan.
| | - Yoko Fukushima
- Department of Ophthalmology, Graduate School of Medicine, Osaka University, 2-2-B5, Yamada-oka, Suita, Osaka, 565-0871, Japan.,Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 2-2, Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Yuri Tsugawa-Shimizu
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, 2-2-B5, Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Shiro Fukuda
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, 2-2-B5, Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Shunbun Kita
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, 2-2-B5, Yamada-oka, Suita, Osaka, 565-0871, Japan.,Department of Adipose Management, Graduate School of Medicine, Osaka University, 2-2, Yamada-oka, Suita, Osaka, Japan
| | - Hitoshi Nishizawa
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, 2-2-B5, Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Barbara Ranscht
- Sanford Burnham Prebys Medical Discovery Institute, NIH-Designated Cancer Center, Development, Aging and Regeneration Program, La Jolla, CA, USA
| | - Kohji Nishida
- Department of Ophthalmology, Graduate School of Medicine, Osaka University, 2-2-B5, Yamada-oka, Suita, Osaka, 565-0871, Japan.,Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 2-2, Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Norikazu Maeda
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, 2-2-B5, Yamada-oka, Suita, Osaka, 565-0871, Japan.,Department of Metabolism and Atherosclerosis, Graduate School of Medicine Osaka University, 2-2, Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Iichiro Shimomura
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, 2-2-B5, Yamada-oka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
19
|
Rubina KA, Semina EV, Kalinina NI, Sysoeva VY, Balatskiy AV, Tkachuk VA. Revisiting the multiple roles of T-cadherin in health and disease. Eur J Cell Biol 2021; 100:151183. [PMID: 34798557 DOI: 10.1016/j.ejcb.2021.151183] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/08/2021] [Accepted: 11/08/2021] [Indexed: 01/02/2023] Open
Abstract
As a non-canonical member of cadherin superfamily, T-cadherin was initially described as a molecule involved in homophilic recognition in the nervous and vascular systems. The ensuing decades clearly demonstrated that T-cadherin is a remarkably multifunctional molecule. It was validated as a bona fide receptor for both: LDL exerting adverse atherogenic action and adiponectin mediating many protective metabolic and cardiovascular effects. Motivated by the latest progress and accumulated data unmasking important roles of T-cadherin in blood vessel function and tissue regeneration, here we revisit the original function of T-cadherin as a guidance receptor for the growing axons and blood vessels, consider the recent data on T-cadherin-induced exosomes' biogenesis and their role in myocardial regeneration and revascularization. The review expands upon T-cadherin contribution to mesenchymal stem/stromal cell compartment in adipose tissue. We also dwell upon T-cadherin polymorphisms (SNP) and their possible therapeutic applications. Furthermore, we scrutinize the molecular hub of insulin and adiponectin receptors (AdipoR1 and AdipoR2) conveying signals to their downstream targets in quest for defining a putative place of T-cadherin in this molecular circuitry.
Collapse
Affiliation(s)
- K A Rubina
- Faculty of Medicine, Lomonosov Moscow State University, 119192 Moscow, Russia.
| | - E V Semina
- Institute of Experimental Cardiology, National Cardiology Research Center of the Ministry of Health of the Russian Federation, 121552 Moscow, Russia
| | - N I Kalinina
- Faculty of Medicine, Lomonosov Moscow State University, 119192 Moscow, Russia
| | - V Yu Sysoeva
- Faculty of Medicine, Lomonosov Moscow State University, 119192 Moscow, Russia
| | - A V Balatskiy
- Faculty of Medicine, Lomonosov Moscow State University, 119192 Moscow, Russia
| | - V A Tkachuk
- Faculty of Medicine, Lomonosov Moscow State University, 119192 Moscow, Russia; Institute of Experimental Cardiology, National Cardiology Research Center of the Ministry of Health of the Russian Federation, 121552 Moscow, Russia
| |
Collapse
|