1
|
Munro SK, Balakrishnan B, Lissaman AC, Gujral P, Ponnampalam AP. Cytokines and pregnancy: Potential regulation by histone deacetylases. Mol Reprod Dev 2021; 88:321-337. [PMID: 33904218 DOI: 10.1002/mrd.23430] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 10/04/2020] [Accepted: 10/12/2020] [Indexed: 12/26/2022]
Abstract
Cytokines are important regulators of pregnancy and parturition. Aberrant expression of proinflammatory cytokines during pregnancy contributes towards preterm labor, pre-eclampsia, and gestational diabetes mellitus. The regulation of cytokine expression in human cells is highly complex, involving interactions between environment, transcription factors, and feedback mechanisms. Recent developments in epigenetic research have made tremendous advancements in exploring histone modifications as a key epigenetic regulator of cytokine expression and the effect of their signaling molecules on various organ systems in the human body. Histone acetylation and subsequent deacetylation by histone deacetylases (HDACs) are major epigenetic regulators of protein expression in the human body. The expression of various proinflammatory cytokines, their role in normal and abnormal pregnancy, and their epigenetic regulation via HDACs will be discussed in this review.
Collapse
Affiliation(s)
- Sheryl K Munro
- Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Biju Balakrishnan
- Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Abbey C Lissaman
- Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Palak Gujral
- Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Anna P Ponnampalam
- Liggins Institute, The University of Auckland, Auckland, New Zealand.,Department of Physiology, Faculty of Medicine and Health Sciences, University of Auckland, Auckland, New Zealand.,Department of Obstetrics and Gynaecology, Faculty of Medicine and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
2
|
Vincent ZL, Mitchell MD, Ponnampalam AP. Regulation of TIMP-1 in Human Placenta and Fetal Membranes by lipopolysaccharide and demethylating agent 5-aza-2'-deoxycytidine. Reprod Biol Endocrinol 2015; 13:136. [PMID: 26691525 PMCID: PMC4687108 DOI: 10.1186/s12958-015-0132-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 12/09/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND An appropriate transcriptional profile in the placenta and fetal membranes is required for successful pregnancy; any variations may lead to inappropriate timing of birth. Epigenetic regulation through reversible modification of chromatin has emerged as a fundamental mechanism for the control of gene expression in a range of biological systems and can be modified by pharmacological intervention, thus providing novel therapeutic avenues. TIMP-1 is an endogenous inhibitor of MMPs, and hence is intimately involved in maintaining the integrity of the fetal membranes until labor. OBJECTIVE AND METHODS To determine if TIMP-1 is regulated by DNA methylation in gestational tissues we employed an in vitro model in which gestational tissue explants were treated with demethylating agent 5-aza-2'-deoxycytidine (AZA) and lipopolysaccharide (LPS). RESULTS Quantitative Real-Time PCR (qRT-PCR) revealed that TIMP-1 transcription was significantly increased by combined treatment of AZA and LPS, but not LPS alone, in villous, amnion and choriodecidua explants after 24 and 48 hrs, whilst western blotting showed protein production was stimulated after 24 hrs only. Upon interrogation of the TIMP-1 promoter using Sequenom EpiTyper MassARRAY, we discovered sex-specific differential methylation, in part explained by x-linked methylation in females. Increased TIMP-1 in the presence of LPS was potentiated by AZA treatment, signifying that a change in chromatin structure, but not in DNA methylation at the promoter region, is required for transcriptional activators to access the promoter region of TIMP-1. CONCLUSIONS Collectively, these observations support a potential role for pharmacological agents that modify chromatin structure to be utilized in the therapeutic targeting of TIMP-1 to prevent premature rupture of the fetal membranes in an infectious setting.
Collapse
Affiliation(s)
- Zoë L Vincent
- Liggins Institute, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
- Gravida: National Centre for Growth and Development, Palmerston North, New Zealand
| | - Murray D Mitchell
- Liggins Institute, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
- University of Queensland Centre for Clinical Research, Brisbane, Australia
| | - Anna P Ponnampalam
- Liggins Institute, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand.
- Gravida: National Centre for Growth and Development, Palmerston North, New Zealand.
- The Heart Foundation, Auckland, New Zealand.
| |
Collapse
|
3
|
Chabchoub G. Epigenetic targets of rheumatoid arthritis. World J Rheumatol 2015; 5:127-130. [DOI: 10.5499/wjr.v5.i3.127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 05/13/2015] [Accepted: 09/08/2015] [Indexed: 02/07/2023] Open
Abstract
Rheumatoid arthritis (RA) is a systemic, inflammatory and autoimmune disorder, characterized by chronic arthritis with progressive joint destruction. It has a multifactorial aetiology involving both genetic and environmental factors. Epigenetics can be defined as modifications of DNA that result in altered gene expression. The two main epigenetic mechanisms are post translational modifications to histone tails and DNA methylation. Recent evidence has suggested that epigenetic mechanisms may be an important contributor to RA susceptibility. The aim of this editorial is to present evidence for the role of epigenetic mechanisms in the pathogenesis of RA and the potential to therapeutic target. Several studies targeting histone modification and DNA methylation in animal models of inflammatory arthritis will be reviewed and alterations in the epigenetic signature of genes of key RA related pathways such as pro-inflammatory cytokines, proteases and regulators of cellular proliferation.
Collapse
|
4
|
Ganguly E, Bock ME, Cattini PA. Expression of Placental Members of the Human Growth Hormone Gene Family Is Increased in Response to Sequential Inhibition of DNA Methylation and Histone Deacetylation. Biores Open Access 2015; 4:446-56. [PMID: 26634190 PMCID: PMC4657510 DOI: 10.1089/biores.2015.0036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The genes coding for human (h) chorionic somatomammotropin (CS), hCS-A and hCS-B, and placental growth hormone (GH-V), hGH-V, are located at a single locus on chromosome 17. Efficient expression of these placental genes has been linked to local regulatory (5′ P and 3′ enhancer) sequences and a remote locus control region (LCR), in part, through gene transfer in placental and nonplacental tumor cells. However, low levels of endogenous hCS/GH-V transcripts are reported in the same cells compared with term placenta, suggesting that chromatin structure, or regulatory region accessibility, versus transcription factor availability contributes to the relatively low levels. To assess individual hCS-A, CS-B, and GH-V gene expression in placental and nonplacental tumor cells and the effect of increasing chromatin accessibility by inhibiting DNA methylation and histone deacetylation using 5-aza-2′-deoxycytidine (azadC) and trichostatin A (TSA). Low levels of hCS-A, CS-B, and GH-V were detected in placental and nonplacental tumor cells compared with term placenta. A significant >5-fold increase in activity was seen in placental, but not nonplacental, cells transfected with hybrid hCS promoter luciferase genes containing 3′ enhancer sequences. Pretreatment of placental JEG-3 cells with azadC resulted in a >10-fold increase in hCS-A, CS-B, and GH-V RNA levels with TSA treatment compared with TSA treatment alone. This effect was specific as reversing the treatment regimen did not have the same effect. An assessment of hyperacetylated H3/H4 in JEG-3 cells treated with azadC and TSA versus TSA alone revealed significant increases consistent with a more open chromatin structure, including the hCS 3′ enhancer sequences and LCR. These observations suggest that accessibility of remote and local regulatory regions required for efficient placental hGH/CS expression can be restricted by DNA methylation and histone acetylation status. This includes restricting access of the hCS 3′ enhancer sequences to available placental enhancer transcription factors.
Collapse
Affiliation(s)
- Esha Ganguly
- Department of Physiology and Pathophysiology, University of Manitoba , Winnipeg, Canada
| | - Margaret E Bock
- Department of Physiology and Pathophysiology, University of Manitoba , Winnipeg, Canada
| | - Peter A Cattini
- Department of Physiology and Pathophysiology, University of Manitoba , Winnipeg, Canada
| |
Collapse
|
5
|
Vincent ZL, Mitchell MD, Ponnampalam AP. Regulation of MT1-MMP/MMP-2/TIMP-2 axis in human placenta. J Inflamm Res 2015; 8:193-200. [PMID: 26491367 PMCID: PMC4599070 DOI: 10.2147/jir.s88039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Matrix metalloproteinases (MMPs) and specific endogenous tissue inhibitors of metalloproteinases (TIMPs) mediate rupture of the fetal membranes in both physiological and pathological conditions. MMPs and TIMPs are subject to regulation by DNA methylation in human malignancies and pre-eclampsia. To determine if membrane type 1 MMP (MT1-MMP), MMP2, and TIMP2 are regulated by DNA methylation in human placentas, we employed an in vitro model where human placental tissues were collected at term gestation and cultured with methylation inhibiting agent 5-AZA-2′-deoxycytidine (AZA) and lipopolysaccharide. The results suggest that DNA methylation is not directly involved in the regulation of MT1-MMP in placental tissue; however, remodeling of chromatin by a pharmacologic agent such as AZA potentiates an infection-related increase in MT1-MMP. MT1-MMP is a powerful activator of MMP2 and this action, coupled with either no change or a decrease in TIMP2 concentrations, favors a gelatinolytic state leading to extracellular matrix degradation, which could predispose fetal membranes to rupture prematurely during inflammation.
Collapse
Affiliation(s)
- Zoë L Vincent
- Liggins Institute, University of Auckland, Auckland, New Zealand ; Gravida: National Centre for Growth and Development, University of Auckland, Auckland, New Zealand
| | - Murray D Mitchell
- University of Queensland Centre for Clinical Research, Brisbane, QLD, Australia
| | - Anna P Ponnampalam
- Liggins Institute, University of Auckland, Auckland, New Zealand ; Gravida: National Centre for Growth and Development, University of Auckland, Auckland, New Zealand
| |
Collapse
|
6
|
HDAC is essential for epigenetic regulation of Thy-1 gene expression during LPS/TLR4-mediated proliferation of lung fibroblasts. J Transl Med 2015; 95:1105-16. [PMID: 26214583 DOI: 10.1038/labinvest.2015.97] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Revised: 06/05/2015] [Accepted: 06/23/2015] [Indexed: 11/09/2022] Open
Abstract
Lipopolysaccharide (LPS)-induced proliferation of lung fibroblasts is closely correlated with loss of gene expression of thymocyte differentiation antigen-1 (Thy-1), accompanied with deacetylation of histones H3 and H4 at the Thy-1 gene promoter region; however, the mechanism remains enigmatic. We report here that LPS downregulates Thy-1 gene expression by activating histone deacetylases (HDACs) via Toll-like receptor 4 (TLR4) signaling. Treatment of primary cultured mouse lung fibroblasts with LPS resulted in significant upregulation of TLR4 and enhanced cell proliferation that was abolished by silencing TLR4 with lentivirus-delivered TLR4 shRNA. Interestingly, LPS increased the mRNA and protein levels of HDAC-4, -5, and -7, an effect that was abrogated by HDAC inhibitor trichostatin A (TSA) or TLR4-shRNA-lentivirus. Consistent with these findings, Ace-H3 and Ace-H4 were decreased by LPS that was prevented by TSA. Most importantly, chromosome immunoprecipitation (ChIP) analysis demonstrated that LPS decreased the association of Ace-H4 at the Thy-1 promoter region that was efficiently restored by pretreatment with TSA. Accordingly, LPS decreased the mRNA and protein levels of Thy-1 that was inhibited by TSA. Furthermore, silencing the Thy-1 gene by lentivirus-delivered Thy-1 shRNA could promote lung fibroblast proliferation, even in the absence of LPS. Conversely, overexpressing Thy-1 gene could inhibit lung fibroblast proliferation and reduce LPS-induced lung fibroblast proliferation. Our data suggest that LPS upregulates and activates HDACs through TLR4, resulting in deacetylation of histones H3 and H4 at the Thy-1 gene promoter that may contribute to Thy-1 gene silencing and lung fibroblast proliferation.
Collapse
|
7
|
Munro S, Mitchell M, Ponnampalam A. Histone deacetylase inhibition by trichostatin A mitigates LPS induced TNFα and IL-10 production in human placental explants. Placenta 2013; 34:567-73. [DOI: 10.1016/j.placenta.2013.04.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 03/17/2013] [Accepted: 04/07/2013] [Indexed: 11/28/2022]
|
8
|
Mitchell CM, Sykes SD, Pan X, Pringle KG, Lumbers ER, Hirst JJ, Zakar T. Inflammatory and steroid receptor gene methylation in the human amnion and decidua. J Mol Endocrinol 2013; 50:267-77. [PMID: 23393306 DOI: 10.1530/jme-12-0211] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Correct timing of parturition requires inflammatory gene activation in the gestational tissues at term and repression during pregnancy. Promoter methylation at CpG dinucleotides represses gene activity; therefore, we examined the possibility that DNA methylation is involved in the regulation of labour-associated genes in human pregnancy. Amnion and decidua were collected at 11-17 weeks of gestation and at term following elective Caesarean delivery or spontaneous labour. Methylation of the inflammatory genes PTGS2, BMP2, NAMPT and CXCL2 was analysed using the Methyl-Profiler PCR System and bisulphite sequencing. Methylation of the glucocorticoid, progesterone and oestrogen receptor genes, involved in the hormonal regulation of gestational tissue function, and the expression of the DNA methyltransferases DNMT1, -3A and -3B were also determined. Variable proportions of inflammatory and steroid receptor gene copies, to a maximum of 50.9%, were densely methylated in both tissues consistent with repression. Densely methylated copy proportions were significantly different between genes showing no relationship with varying expression during pregnancy, between tissues and in individuals. Methylated copy proportions of all genes in amnion and most genes in decidua were highly correlated in individuals. DNMT1 and -3A were expressed in both tissues with significantly higher levels in the amnion at 11-17 weeks than at term. We conclude that the unmethylated portion of gene copies is responsible for the full range of regulated expression in the amnion and decidua during normal pregnancy. Dense methylation of individually variable gene copy proportions happens in the first trimester amnion influenced by sequence context and affected strongly by individual circumstances.
Collapse
Affiliation(s)
- Carolyn M Mitchell
- Mothers and Babies Research Centre, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | | | | | | | | | | | | |
Collapse
|
9
|
Wessels I, Rosenkranz E, Ventura Ferreira M, Neuss S, Zenke M, Rink L, Uciechowski P. Activation of IL-1β and TNFα genes is mediated by the establishment of permissive chromatin structures during monopoiesis. Immunobiology 2012. [PMID: 23195574 DOI: 10.1016/j.imbio.2012.10.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
IL-1β and TNFα participate in a wide range of immunoregulatory activities. The overproduction of these cytokines can result in inflammatory and autoimmune diseases. Monocytes are the main producers of both cytokines. In contrast, studies with highly purified polymorphonuclear leukocytes (PMN) showed their inability to synthesize IL-1β and TNFα. Mature monocytes and PMN are derived from the same precursors. However, the reason for the differential IL-1β and TNFα expression is not elucidated. Our study investigates the epigenetic mechanisms that may explain this apparent discrepancy. The expression and promoter accessibilities of IL-1β and TNFα genes of primary and in vitro differentiated monocytes and PMN and their common precursors were compared. The effects of histone deacetylase (HDAC)-inhibition by trichostatin A (TSA) on IL-1β and TNFα expression and their promoter structures were measured in promyeloid HL-60 cells. Cytokine expression was assessed by real-time PCR and ELISA. Chromatin structures were analyzed using chromatin accessibility by real-time PCR (CHART) assay. The proximal IL-1β promoter was remodeled into an open conformation during monopoiesis, but not granulopoiesis. Although stimulation-dependent, remodeling of the TNFα promoter was again only observed in monocytes. TSA activated IL-1β and TNFα expression and supported chromatin remodeling of their promoters in HL-60 cells. The ability to express IL-1β and TNFα is linked to a cell type specific promoter structure, which is established during monocytic but not granulocytic differentiation. The participation of acetylation in IL-1β and TNFα promoter activation shed new light on the regulation of IL-1β or TNFα expression. These data may have implications for understanding the progression from normal to disease conditions.
Collapse
Affiliation(s)
- Inga Wessels
- Institute of Immunology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | | | | | | | | | | | | |
Collapse
|
10
|
Ghadimi D, Helwig U, Schrezenmeir J, Heller KJ, de Vrese M. Epigenetic imprinting by commensal probiotics inhibits the IL-23/IL-17 axis in an in vitro model of the intestinal mucosal immune system. J Leukoc Biol 2012; 92:895-911. [PMID: 22730546 DOI: 10.1189/jlb.0611286] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The pathophysiology of IBD is characterized by a complex interaction between genes and the environment. Genetic and environmental differences are attributed to the heterogeneity of the disease pathway and to the epigenetic modifications that lead to altered gene expression in the diseased tissues. The epigenetic machinery consists of short interfering RNA, histone modifications, and DNA methylation. We evaluated the effects of Bifidobacterium breve (DSMZ 20213) and LGG (ATCC 53103), as representatives of commensal probiotics on the expression of IL-17 and IL-23, which play an important role in IBD, and on the epigenetic machinery in a 3D coculture model composed of human intestinal HT-29/B6 or T84 cells and PBMCs. The cells were treated with LPS in the presence or absence of bacteria for 48 h, and the expression of IL-17, IL-23, and CD40 at the mRNA and protein levels was assessed using TaqMan qRT-PCR and ELISA, respectively. Western blotting was used to assess the expression of the MyD88, the degradation of IRAK-1 and IκBα, the expression of the NF-κB p50/p65 subunits, the p-p38 MAPK and p-MEK1, as well as histone modifications. NF-κB activity was assessed by NF-κB-dependent luciferase reporter gene assays. The accumulation of Ac-H4 and DNA methylation was quantitatively assessed using colorimetric assays. B. breve and LGG diminished the LPS-induced expression of IL-17, IL-23, CD40, and histone acetylation, while slightly enhancing DNA methylation. These effects were paralleled by a decrease in the nuclear translocation of NF-κB, as demonstrated by a decrease in the expression of MyD88, degradation of IRAK-1 and IκBα expression of the nuclear NF-κB p50/p65 subunits, p-p38 MAPK and p-MEK1, and NF-κB-dependent luciferase reporter gene activity in LPS-stimulated cells. B. breve and LGG may exert their anti-inflammatory effects in the gut by down-regulating the expression of the IBD-causing factors (IL-23/IL-17/CD40) associated with epigenetic processes involving the inhibition of histone acetylation and the optimal enhancement of DNA methylation, reflected in the limited access of NF-κB to gene promoters and reduced NF-κB-mediated transcriptional activation. We describe a new regulatory mechanism in which commensal probiotics inhibit the NF-κB-mediated transcriptional activation of IBD-causing factors (IL-23/IL-17/CD40), thereby simultaneously reducing histone acetylation and enhancing DNA methylation.
Collapse
Affiliation(s)
- Darab Ghadimi
- Department of Microbiology and Biotechnology, Max Rubner-Institute, Kiel, Germany.
| | | | | | | | | |
Collapse
|
11
|
Epigenetic regulation of cytokine production in human amnion and villous placenta. Mediators Inflamm 2012; 2012:159709. [PMID: 22665947 PMCID: PMC3361274 DOI: 10.1155/2012/159709] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 03/11/2012] [Indexed: 11/17/2022] Open
Abstract
The mechanisms of human preterm labour appear inextricably linked to cytokine biosynthesis by gestational tissues. In turn, cytokine production by gestational tissues has been shown to be regulated by epigenetic mechanisms. In this paper, we demonstrate that cytokine production in gestational tissues is regulated epigenetically in a tissue-specific manner. Furthermore, we show that treatment with a histone deacetylation inhibitor can partially abrogate LPS-stimulated TNFα production in villous placenta but not amnion. LPS treatment significantly (P < 0.05) increased the production of IL-1β (∼10–34-fold), TNFα (∼23–>100-fold) and IL10 (∼6–10-fold) after 24 h of treatment in villous explants, as expected. There were no significant LPS effects on IL1Ra production. AZA treatment did not have any significant effect on any cytokines' production tested either alone or in combination with LPS. Interestingly, however, the stimulatory effects of LPS on TNFα production were partially mitigated (P < 0.05) by TSA treatment in villous explants. We suggest caution in the consideration of histone deacetylation inhibitors in pregnancy due to the different responses in gestational tissues.
Collapse
|
12
|
Larsson L, Thorbert-Mros S, Rymo L, Berglundh T. Influence of epigenetic modifications of the interleukin-10 promoter on IL10 gene expression. Eur J Oral Sci 2012; 120:14-20. [DOI: 10.1111/j.1600-0722.2011.00917.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
13
|
Wang QH, Nishiyama C, Nakano N, Kanada S, Hara M, Kitamura N, Shimokawa N, Lu CL, Ogawa H, Okumura K. Opposite effects of Trichostatin A on activation of mast cells by different stimulants. FEBS Lett 2010; 584:2315-20. [PMID: 20371366 DOI: 10.1016/j.febslet.2010.03.047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Revised: 03/18/2010] [Accepted: 03/31/2010] [Indexed: 11/18/2022]
Abstract
Mast cells (MCs) are activated upon stimulation via TLRs or FcepsilonRI, contributing to immune protection and/or leading to allergic diseases. In the present study, the effects of Trichostatin A (TSA) on the activation of MCs were analyzed with bone marrow-derived (BM) MCs. TSA increased the transcription and protein secretion of IL-6 in case of LPS-stimulation, in contrast to the suppressive effect on IgE-mediated activation of BMMCs. Chromatin immunoprecipitation assay showed IgE-mediated signaling-specific suppression of transcription factors recruitment to the IL-6 promoter. TSA-treatment inhibited nuclear translocation of NF-kappaB following IgE-mediated, but not LPS-induced activation in MCs.
Collapse
Affiliation(s)
- Qing-hui Wang
- Atopy Research Center, Juntendo University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Wessels I, Fleischer D, Rink L, Uciechowski P. Changes in chromatin structure and methylation of the human interleukin-1beta gene during monopoiesis. Immunology 2010; 130:410-7. [PMID: 20141541 DOI: 10.1111/j.1365-2567.2009.03243.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
SUMMARY Interleukin-1beta (IL-1beta) induces the expression of a variety of proteins responsible for acute inflammation and chronic inflammatory diseases. However, the molecular regulation of IL-1beta expression in myeloid differentiation has not been elucidated. In this study the chromatin structure of the IL-1beta promoter and the impact of methylation on IL-1beta expression in monocytic development were examined. The results revealed that the IL-1beta promoter was inaccessible in undifferentiated promyeloid HL-60 cells but highly accessible in differentiated monocytic cells which additionally acquired the ability to produce IL-1beta. Accessibilities of differentiated cells were comparable to those of primary monocytes. Lipopolysaccharide (LPS) stimulation did not affect promoter accessibility in promyeloid and monocytic HL-60 cells, demonstrating that the chromatin remodelling of the IL-1beta promoter depends on differentiation and not on the transcriptional status of the cell. Demethylation via 5-aza-2'-deoxycytodine led to the induction of IL-1beta expression in undifferentiated and differentiated cells, which could be increased after LPS stimulation. Our data indicate that the IL-1beta promoter is reorganized into an open poised conformation during monopoiesis being a privilege of mature monocytes but not of the entire myeloid lineage. As a second mechanism, IL-1beta expression is regulated by methylation acting independently of the developmental stage of myeloid cells.
Collapse
Affiliation(s)
- Inga Wessels
- Institute of Immunology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | | | | | | |
Collapse
|
15
|
Epigenetic differences in cortical neurons from a pair of monozygotic twins discordant for Alzheimer's disease. PLoS One 2009; 4:e6617. [PMID: 19672297 PMCID: PMC2719870 DOI: 10.1371/journal.pone.0006617] [Citation(s) in RCA: 214] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Accepted: 07/06/2009] [Indexed: 11/19/2022] Open
Abstract
DNA methylation [1], [2] is capable of modulating coordinate expression of large numbers of genes across many different pathways, and may therefore warrant investigation for their potential role between genes and disease phenotype. In a rare set of monozygotic twins discordant for Alzheimer's disease (AD), significantly reduced levels of DNA methylation were observed in temporal neocortex neuronal nuclei of the AD twin. These findings are consistent with the hypothesis that epigenetic mechanisms may mediate at the molecular level the effects of life events on AD risk, and provide, for the first time, a potential explanation for AD discordance despite genetic similarities.
Collapse
|