1
|
Lee MC, Hsu YJ, Chen MT, Kuo YW, Lin JH, Hsu YC, Huang YY, Li CM, Tsai SY, Hsia KC, Ho HH, Huang CC. Efficacy of Lactococcus lactis subsp. lactis LY-66 and Lactobacillus plantarum PL-02 in Enhancing Explosive Strength and Endurance: A Randomized, Double-Blinded Clinical Trial. Nutrients 2024; 16:1921. [PMID: 38931275 PMCID: PMC11206817 DOI: 10.3390/nu16121921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/14/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024] Open
Abstract
Probiotics are posited to enhance exercise performance by influencing muscle protein synthesis, augmenting glycogen storage, and reducing inflammation. This double-blind study randomized 88 participants to receive a six-week intervention with either a placebo, Lactococcus lactis subsp. lactis LY-66, Lactobacillus plantarum PL-02, or a combination of both strains, combined with a structured exercise training program. We assessed changes in maximal oxygen consumption (VO2max), exercise performance, and gut microbiota composition before and after the intervention. Further analyses were conducted to evaluate the impact of probiotics on exercise-induced muscle damage (EIMD), muscle integrity, and inflammatory markers in the blood, 24 and 48 h post-intervention. The results demonstrated that all probiotic groups exhibited significant enhancements in exercise performance and attenuation of muscle strength decline post-exercise exhaustion (p < 0.05). Notably, PL-02 intake significantly increased muscle mass, whereas LY-66 and the combination therapy significantly reduced body fat percentage (p < 0.05). Analysis of intestinal microbiota revealed an increase in beneficial bacteria, especially a significant rise in Akkermansia muciniphila following supplementation with PL-02 and LY-66 (p < 0.05). Overall, the combination of exercise training and supplementation with PL-02, LY-66, and their combination improved muscle strength, explosiveness, and endurance performance, and had beneficial effects on body composition and gastrointestinal health, as evidenced by data obtained from non-athlete participants.
Collapse
Affiliation(s)
- Mon-Chien Lee
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan 333325, Taiwan; (M.-C.L.); (Y.-J.H.)
- Center for General Education, Taipei Medical University, Taipei 110301, Taiwan
| | - Yi-Ju Hsu
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan 333325, Taiwan; (M.-C.L.); (Y.-J.H.)
| | - Mu-Tsung Chen
- Committee on General Studies, Shih Chien University, Taipei City 104, Taiwan;
| | - Yi-Wei Kuo
- Functional R&D Department, Research and Design Center, Glac Biotech Co., Ltd., Tainan City 744, Taiwan; (Y.-W.K.); (J.-H.L.); (Y.-Y.H.); (C.-M.L.); (H.-H.H.)
| | - Jia-Hung Lin
- Functional R&D Department, Research and Design Center, Glac Biotech Co., Ltd., Tainan City 744, Taiwan; (Y.-W.K.); (J.-H.L.); (Y.-Y.H.); (C.-M.L.); (H.-H.H.)
| | - Yu-Chieh Hsu
- Research Product Department, Research and Design Center, Glac Biotech Co., Ltd., Tainan City 744, Taiwan; (Y.-C.H.); (S.-Y.T.); (K.-C.H.)
| | - Yen-Yu Huang
- Functional R&D Department, Research and Design Center, Glac Biotech Co., Ltd., Tainan City 744, Taiwan; (Y.-W.K.); (J.-H.L.); (Y.-Y.H.); (C.-M.L.); (H.-H.H.)
| | - Ching-Min Li
- Functional R&D Department, Research and Design Center, Glac Biotech Co., Ltd., Tainan City 744, Taiwan; (Y.-W.K.); (J.-H.L.); (Y.-Y.H.); (C.-M.L.); (H.-H.H.)
| | - Shin-Yu Tsai
- Research Product Department, Research and Design Center, Glac Biotech Co., Ltd., Tainan City 744, Taiwan; (Y.-C.H.); (S.-Y.T.); (K.-C.H.)
| | - Ko-Chiang Hsia
- Research Product Department, Research and Design Center, Glac Biotech Co., Ltd., Tainan City 744, Taiwan; (Y.-C.H.); (S.-Y.T.); (K.-C.H.)
| | - Hsieh-Hsun Ho
- Functional R&D Department, Research and Design Center, Glac Biotech Co., Ltd., Tainan City 744, Taiwan; (Y.-W.K.); (J.-H.L.); (Y.-Y.H.); (C.-M.L.); (H.-H.H.)
- Research Product Department, Research and Design Center, Glac Biotech Co., Ltd., Tainan City 744, Taiwan; (Y.-C.H.); (S.-Y.T.); (K.-C.H.)
| | - Chi-Chang Huang
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan 333325, Taiwan; (M.-C.L.); (Y.-J.H.)
- Tajen University, Pingtung 907101, Taiwan
| |
Collapse
|
2
|
Zhang L, Li H, Song Z, Liu Y, Zhang X. Dietary Strategies to Improve Exercise Performance by Modulating the Gut Microbiota. Foods 2024; 13:1680. [PMID: 38890909 PMCID: PMC11171530 DOI: 10.3390/foods13111680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/19/2024] [Accepted: 05/24/2024] [Indexed: 06/20/2024] Open
Abstract
Numerous research studies have shown that moderate physical exercise exerts positive effects on gastrointestinal tract health and increases the variety and relative number of beneficial microorganisms in the intestinal microbiota. Increasingly, studies have shown that the gut microbiota is critical for energy metabolism, immunological response, oxidative stress, skeletal muscle metabolism, and the regulation of the neuroendocrine system, which are significant for the physiological function of exercise. Dietary modulation targeting the gut microbiota is an effective prescription for improving exercise performance and alleviating exercise fatigue. This article discusses the connection between exercise and the makeup of the gut microbiota, as well as the detrimental effects of excessive exercise on gut health. Herein, we elaborate on the possible mechanism of the gut microbiota in improving exercise performance, which involves enhancing skeletal muscle function, reducing oxidative stress, and regulating the neuroendocrine system. The effects of dietary nutrition strategies and probiotic supplementation on exercise from the perspective of the gut microbiota are also discussed in this paper. A deeper understanding of the potential mechanism by which the gut microbiota exerts positive effects on exercise and dietary nutrition recommendations targeting the gut microbiota is significant for improving exercise performance. However, further investigation is required to fully comprehend the intricate mechanisms at work.
Collapse
Affiliation(s)
- Li Zhang
- Department of Physical Education, China University of Mining and Technology, Beijing 100083, China; (L.Z.); (H.L.)
| | - Haoyu Li
- Department of Physical Education, China University of Mining and Technology, Beijing 100083, China; (L.Z.); (H.L.)
| | - Zheyi Song
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China; (Z.S.)
| | - Yanan Liu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China; (Z.S.)
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China; (Z.S.)
| |
Collapse
|
3
|
Gross K, Santiago M, Krieger JM, Hagele AM, Zielinska K, Scheiman J, Jäger R, Kostic A, Kerksick CM. Impact of probiotic Veillonella atypica FB0054 supplementation on anaerobic capacity and lactate. iScience 2024; 27:108643. [PMID: 38222109 PMCID: PMC10784697 DOI: 10.1016/j.isci.2023.108643] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/28/2023] [Accepted: 12/01/2023] [Indexed: 01/16/2024] Open
Abstract
Seven healthy, physically active men (n = 3) and women (n = 4) (30.7 ± 7.5 years, 172.7 ± 8.7 cm, 70.4 ± 11.6 kg, 23.6 ± 4.1 kg/m2, 49.2 ± 8.4 mL/kg/min) supplemented for 14 days with a placebo (PLA) or 1 × 1010 CFU doses of the probiotic Veillonella atypica FB0054 (FitBiomics, New York, NY). Participants had safety panels, hemodynamics, lactate, and anaerobic capacity assessed. Stool samples were collected to evaluate for metagenomic and metabolomic changes. Exhaustion times were not different between groups, whereas anaerobic capacity tended to shorten with PLA (61.14 ± 72.04 s; 95% CI: -5.49, 127.77 s, p = 0.066) with no change with VA (13.29 ± 100.13 s, 95% CI: -79.32, 105.89 s, p = 0.738). No changes in lactate, hemodynamics, or bacterial community changes were observed, whereas 14 metabolites exhibited differential expression patterns with VA supplementation. In conclusion, VA maintained exercise performance that tended to decline in PLA. Supplementation was well tolerated with no changes in safety markers or reported adverse events.
Collapse
Affiliation(s)
- Kristen Gross
- Exercise and Performance Nutrition Laboratory, Kinesiology Department, College of Science, Technology, and Health, Lindenwood University, St. Charles, MO, USA
| | | | - Joesi M. Krieger
- Exercise and Performance Nutrition Laboratory, Kinesiology Department, College of Science, Technology, and Health, Lindenwood University, St. Charles, MO, USA
| | - Anthony M. Hagele
- Exercise and Performance Nutrition Laboratory, Kinesiology Department, College of Science, Technology, and Health, Lindenwood University, St. Charles, MO, USA
| | - Kinga Zielinska
- FitBiomics, Inc, New York City, NY, USA
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, UK
| | | | | | - Alex Kostic
- FitBiomics, Inc, New York City, NY, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Section on Pathophysiology and Molecular Pharmacology, Joslin Diabetes Center, Boston, MA, USA
| | - Chad M. Kerksick
- Exercise and Performance Nutrition Laboratory, Kinesiology Department, College of Science, Technology, and Health, Lindenwood University, St. Charles, MO, USA
| |
Collapse
|
4
|
Mohr AE, Pyne DB, Leite GSF, Akins D, Pugh J. A systematic scoping review of study methodology for randomized controlled trials investigating probiotics in athletic and physically active populations. JOURNAL OF SPORT AND HEALTH SCIENCE 2024; 13:61-71. [PMID: 36539062 PMCID: PMC10818115 DOI: 10.1016/j.jshs.2022.12.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/25/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND The purported ergogenic and health effects of probiotics have been a topic of great intrigue among researchers, practitioners, and the lay public alike. There has also been an increased research focus within the realm of sports science and exercise medicine on the athletic gut microbiota. However, compared to other ergogenic aids and dietary supplements, probiotics present unique study challenges. The objectives of this systematic scoping review were to identify and characterize study methodologies of randomized controlled trials investigating supplementation with probiotics in athletes and physically active individuals. METHODS Four databases (MEDLINE, CINAHL, Cochrane CENTRAL, and Cochrane Database of Systematic Reviews) were searched for randomized controlled studies involving healthy athletes or physically active individuals. An intervention with probiotics and inclusion of a control and/or placebo group were essential. Only peer-reviewed articles in English were considered, and there were no date restrictions. Results were extracted and presented in tabular form to detail study protocols, characteristics, and outcomes. Bias in randomized controlled trials was determined with the RoB 2.0 tool. RESULTS A total of 45 studies were included in the review, with 35 using a parallel group design and 10 using a cross-over design. Approximately half the studies used a single probiotic and the other half a multi-strain preparation. The probiotic dose ranged from 2 × 108 to 1 × 1011 colony forming units daily, and the length of intervention was between 7 and 150 days. Fewer than half the studies directly assessed gastrointestinal symptoms, gut permeability, or the gut microbiota. The sex ratio of participants was heavily weighted toward males, and only 3 studies exclusively investigated females. Low-level adverse events were reported in only 2 studies, although the methodology of reporting varied widely. The risk of bias was generally low, although details on randomization were lacking in some studies. CONCLUSION There is a substantial body of research on the effects of probiotic supplementation in healthy athletes and physically active individuals. Considerable heterogeneity in probiotic selection and dosage as well as outcome measures has made clinical and mechanistic interpretation challenging for both health care practitioners and researchers. Attention to issues of randomization of participants, treatments and interventions, selection of outcomes, demographics, and reporting of adverse events will facilitate more trustworthy interpretation of probiotic study results and inform evidence-based guidelines.
Collapse
Affiliation(s)
- Alex E Mohr
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA.
| | - David B Pyne
- Research Institute for Sport and Exercise, University of Canberra, Canberra, ACT 2617, Australia
| | - Geovana Silva Fogaça Leite
- Laboratory of Functional Fermented Food, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-030, Brazil
| | - Deborah Akins
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA
| | - Jamie Pugh
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| |
Collapse
|
5
|
Fernández-Lázaro D, Sánchez-Serrano N, Rabail R, Aadil RM, Mielgo-Ayuso J, Radesca Fabiano K, Garrosa E. Is Probiotics Supplementation an Appropriate Strategy to Modulate Inflammation in Physically Active Healthy Adults or Athletes? A Systematic Review. APPLIED SCIENCES 2023; 13:3448. [DOI: 10.3390/app13063448] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Supplementation with probiotics in sports is on the rise with the aim of improving health and athletic performance. Since intense exercise-induced muscle damage leads to an inflammatory process by increasing circulating inflammatory cytokines, probiotic supplementation may modulate and correct the inflammation. We systematically reviewed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines in the Scopus, Web of Science, and Medline databases for the 10 years until January 2023. This review aimed to evaluate probiotic supplementation as a strategy for modulating inflammation in healthy physically active adults or athletes. Studies were indexed to assess the effect of probiotic supplementation on cytokine behavior in the inflammatory response in physically active individuals. Of the 136 studies identified in the search, 13 met the inclusion criteria, and their quality was assessed using the McMaster Critical Review Form. The results of these trials indicated a significant improvement in inflammatory cytokines in probiotic-supplemented participants, with a significant increase in anti-inflammatory cytokines (IL-10) and a significant decrease in proinflammatory cytokines (IL-6, TNF-α, and IL-8). This would create uncertainty about probiotics’ effect on interleukins’ behavior after exercise, and further clinical trials are needed to establish a solid basis.
Collapse
Affiliation(s)
- Diego Fernández-Lázaro
- Department of Cellular Biology, Genetics, Histology and Pharmacology, Faculty of Health Sciences, University of Valladolid, Campus of Soria, 42003 Soria, Spain
- Neurobiology Research Group, Faculty of Medicine, University of Valladolid, 47005 Valladolid, Spain
| | - Nerea Sánchez-Serrano
- Department of Cellular Biology, Genetics, Histology and Pharmacology, Faculty of Health Sciences, University of Valladolid, Campus of Soria, 42003 Soria, Spain
- Microbiology Unit of Soria University Assistance Complex (CAUSO), Santa Bárbara Hospital, Castille and Leon Health (SACyL), 42003 Soria, Spain
| | - Roshina Rabail
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Juan Mielgo-Ayuso
- Department of Health Sciences, Faculty of Health Sciences, University of Burgos, 09001 Burgos, Spain
| | - Krizia Radesca Fabiano
- Department of Sports Sciences, Faculty of Physical Activity and Sports Sciences, European University of Madrid, Villaviciosa de Odón, 28670 Madrid, Spain
| | - Evelina Garrosa
- Neurobiology Research Group, Faculty of Medicine, University of Valladolid, 47005 Valladolid, Spain
| |
Collapse
|
6
|
Di Dio M, Calella P, Pelullo CP, Liguori F, Di Onofrio V, Gallè F, Liguori G. Effects of Probiotic Supplementation on Sports Performance and Performance-Related Features in Athletes: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2226. [PMID: 36767593 PMCID: PMC9914962 DOI: 10.3390/ijerph20032226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/18/2023] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
This review aims to evaluate the effects of probiotic supplementation on performance and performance-related conditions in athletes by evaluating randomized controlled studies from the MEDLINE (Pubmed), Web of Science, Scopus, and SPORTDiscus (EBSCO) databases. From a total of 2304 relevant articles, 13 studies fulfilled the inclusion criteria. Seven studies concern endurance athletes, one to rugby players, three refer to non-specified athletes, one to badminton players, and one involves baseball players. The evidence suggests that the integration of athletes' diets with some bacterial strains and also the consumption of multi-strain compounds may lead to an improvement in performance and can positively affect performance-related aspects such as fatigue, muscle pain, body composition, and cardiorespiratory fitness. However, the type of supplementation and sport is very variable among the studies examined. Therefore, to obtain more solid evidence, further controlled and comparable studies are needed to expand the research regarding the possible repercussions of probiotics use on athletes' performance.
Collapse
Affiliation(s)
- Mirella Di Dio
- Department of Movement Sciences and Wellbeing, University of Naples “Parthenope”, 80133 Naples, Italy
| | - Patrizia Calella
- Department of Movement Sciences and Wellbeing, University of Naples “Parthenope”, 80133 Naples, Italy
| | - Concetta Paola Pelullo
- Department of Movement Sciences and Wellbeing, University of Naples “Parthenope”, 80133 Naples, Italy
| | - Fabrizio Liguori
- Department of Economics and Legal Studies, University of Naples “Parthenope”, Via Generale Parisi 13, 80132 Naples, Italy
| | - Valeria Di Onofrio
- Department of Sciences and Technologies, University of Naples “Parthenope”, 80143 Naples, Italy
| | - Francesca Gallè
- Department of Movement Sciences and Wellbeing, University of Naples “Parthenope”, 80133 Naples, Italy
| | - Giorgio Liguori
- Department of Movement Sciences and Wellbeing, University of Naples “Parthenope”, 80133 Naples, Italy
| |
Collapse
|
7
|
Rauch CE, Mika AS, McCubbin AJ, Huschtscha Z, Costa RJS. Effect of prebiotics, probiotics, and synbiotics on gastrointestinal outcomes in healthy adults and active adults at rest and in response to exercise-A systematic literature review. Front Nutr 2022; 9:1003620. [PMID: 36570133 PMCID: PMC9768503 DOI: 10.3389/fnut.2022.1003620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022] Open
Abstract
Introduction A systematic literature search was undertaken to assess the impact of pre-, pro-, and syn-biotic supplementation on measures of gastrointestinal status at rest and in response to acute exercise. Methods Six databases (Ovid MEDLINE, EMBASE, Cinahl, SportsDISCUS, Web of Science, and Scopus) were used. Included were human research studies in healthy sedentary adults, and healthy active adults, involving supplementation and control or placebo groups. Sedentary individuals with non-communicable disease risk or established gastrointestinal inflammatory or functional diseases/disorders were excluded. Results A total of n = 1,204 participants were included from n = 37 papers reported resting outcomes, and n = 13 reported exercise-induced gastrointestinal syndrome (EIGS) outcomes. No supplement improved gastrointestinal permeability or gastrointestinal symptoms (GIS), and systemic endotoxemia at rest. Only modest positive changes in inflammatory cytokine profiles were observed in n = 3/15 studies at rest. Prebiotic studies (n = 4/5) reported significantly increased resting fecal Bifidobacteria, but no consistent differences in other microbes. Probiotic studies (n = 4/9) increased the supplemented bacterial species-strain. Only arabinoxylan oligosaccharide supplementation increased total fecal short chain fatty acid (SCFA) and butyrate concentrations. In response to exercise, probiotics did not substantially influence epithelial injury and permeability, systemic endotoxin profile, or GIS. Two studies reported reduced systemic inflammatory cytokine responses to exercise. Probiotic supplementation did not substantially influence GIS during exercise. Discussion Synbiotic outcomes resembled probiotics, likely due to the minimal dose of prebiotic included. Methodological issues and high risk of bias were identified in several studies, using the Cochrane Risk of Bias Assessment Tool. A major limitation in the majority of included studies was the lack of a comprehensive approach of well-validated biomarkers specific to gastrointestinal outcomes and many included studies featured small sample sizes. Prebiotic supplementation can influence gut microbial composition and SCFA concentration; whereas probiotics increase the supplemented species-strain, with minimal effect on SCFA, and no effect on any other gastrointestinal status marker at rest. Probiotic and synbiotic supplementation does not substantially reduce epithelial injury and permeability, systemic endotoxin and inflammatory cytokine profiles, or GIS in response to acute exercise.
Collapse
Affiliation(s)
- Christopher E. Rauch
- Department of Nutrition Dietetics and Food, School of Clinical Sciences, Faculty of Medicine Nursing and Health Sciences, Monash University, Notting Hill, VIC, Australia
| | - Alice S. Mika
- Department of Nutrition Dietetics and Food, School of Clinical Sciences, Faculty of Medicine Nursing and Health Sciences, Monash University, Notting Hill, VIC, Australia
| | - Alan J. McCubbin
- Department of Nutrition Dietetics and Food, School of Clinical Sciences, Faculty of Medicine Nursing and Health Sciences, Monash University, Notting Hill, VIC, Australia
| | - Zoya Huschtscha
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, Australia
| | - Ricardo J. S. Costa
- Department of Nutrition Dietetics and Food, School of Clinical Sciences, Faculty of Medicine Nursing and Health Sciences, Monash University, Notting Hill, VIC, Australia,*Correspondence: Ricardo J. S. Costa
| |
Collapse
|
8
|
Hart TL, Townsend JR, Grady NJ, Johnson KD, Littlefield LA, Vergne MJ, Fundaro G. Resistance Exercise Increases Gastrointestinal Symptoms, Markers of Gut Permeability, and Damage in Resistance-Trained Adults. Med Sci Sports Exerc 2022; 54:1761-1770. [PMID: 35612399 DOI: 10.1249/mss.0000000000002967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE This study aimed to determine the influence of acute resistance exercise (RE) and biological sex on subjective gastrointestinal (GI) symptoms, GI epithelial damage, and GI permeability in resistance-trained males and females. METHODS Thirty resistance-trained men ( n = 15) and women ( n = 15) completed an RE bout and a nonexercise control (CON) session in a randomized counterbalanced design. The RE protocol used a load of 70% one-repetition maximum for 4 sets of 10 repetitions with a 90-s rest period length between sets and a 120-s rest period between exercises (squat, seated shoulder press, deadlift, bent-over row, and leg press). Blood samples were collected before exercise (PRE), immediately postexercise (IP), and 15-, 30-, and 60-min postexercise. Participants completed GI symptom questionnaires to assess subjective GI symptoms PRE, IP, and 60-min postexercise. Blood samples were assayed to quantify small intestine damage (I-FABP) and GI permeability (lactulose-rhamnose [L/R] ratio). Data were analyzed via separate repeated-measures ANOVA, and area under the curve (AUC) analyses were completed via one-way ANOVA. RESULTS Participants reported greater GI symptoms in RE at IP compared with CON ( P < 0.001) with 70% of participants reporting at least one GI symptom with no differences between sexes. Nausea was the most reported GI symptom (63.3%), followed by vomiting (33.3%). I-FABP and L/R ratio did not exhibit differential responses between conditions. However, L/R ratio AUC was greater in males after RE than male CON ( P = 0.002) and both conditions for females ( P < 0.05). Furthermore, I-FABP AUC in the male RE condition was greater than both female conditions ( P < 0.05). CONCLUSIONS Resistance-trained individuals experience GI distress after RE, with males incurring the greatest increases in markers of GI damage and permeability.
Collapse
Affiliation(s)
| | - Jeremy R Townsend
- Exercise and Nutrition Science Graduate Program, Lipscomb University, Nashville, TN
| | - Natalie J Grady
- Exercise and Nutrition Science Graduate Program, Lipscomb University, Nashville, TN
| | - Kent D Johnson
- Exercise and Nutrition Science Graduate Program, Lipscomb University, Nashville, TN
| | - Laurel A Littlefield
- Exercise and Nutrition Science Graduate Program, Lipscomb University, Nashville, TN
| | - Matthew J Vergne
- Department of Pharmaceutical Sciences, Lipscomb University, Nashville, TN
| | | |
Collapse
|
9
|
Lee JKW, Tan B, Ogden HB, Chapman S, Sawka MN. Exertional heat stroke: nutritional considerations. Exp Physiol 2022; 107:1122-1135. [PMID: 35521757 PMCID: PMC9790308 DOI: 10.1113/ep090149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/02/2022] [Indexed: 12/30/2022]
Abstract
NEW FINDINGS What is the topic of this review? The potential role of nutrition in exertional heat stroke. What advances does it highlight? Certain nutritional and dietary strategies used by athletes and workers may exert a protective effect the pathophysiological processes of exertional heat stroke, whereas others may be detrimental. While current evidence suggests that some of these practices may be leveraged as a potential countermeasure to exertional heat stroke, further research on injury-related outcomes in humans is required. ABSTRACT Exertional heat stroke (EHS) is a life-threatening illness and an enduring problem among athletes, military servicemen and -women, and occupational labourers who regularly perform strenuous activity, often under hot and humid conditions or when wearing personal protective equipment. Risk factors for EHS and mitigation strategies have generally focused on the environment, health status, clothing, heat acclimatization and aerobic conditioning, but the potential role of nutrition is largely underexplored. Various nutritional and dietary strategies have shown beneficial effects on exercise performance and health and are widely used by athletes and other physically active populations. There is also evidence that some of these practices may dampen the pathophysiological features of EHS, suggesting possible protection or abatement of injury severity. Promising candidates include carbohydrate ingestion, appropriate fluid intake and glutamine supplementation. Conversely, some nutritional factors and low energy availability may facilitate the development of EHS, and individuals should be cognizant of these. Therefore, the aims of this review are to present an overview of EHS along with its mechanisms and pathophysiology, discuss how selected nutritional considerations may influence EHS risk focusing on their impact on the key pathophysiological processes of EHS, and provide recommendations for future research. With climate change expected to increase EHS risk and incidence in the coming years, further investigation on how diet and nutrition may be optimized to protect against EHS would be highly beneficial.
Collapse
Affiliation(s)
- Jason K. W. Lee
- Human Potential Translational Research Program, Yong Loo Lin School of MedicineNational University of SingaporeSingapore,Heat Resilience and Performance Centre, Yong Loo Lin School of MedicineNational University of SingaporeSingapore,Department of Physiology, Yong Loo Lin School of MedicineNational University of SingaporeSingapore,N.1 Institute for HealthNational University of SingaporeSingapore,Global Asia InstituteNational University of SingaporeSingapore,Institute for Digital MedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore,Singapore Institute for Clinical SciencesAgency for Science, Technology and Research (A*STAR)Singapore,Campus for Research Excellence and Technological Enterprise (CREATE)SingaporeSingapore
| | - Beverly Tan
- Human Potential Translational Research Program, Yong Loo Lin School of MedicineNational University of SingaporeSingapore,Campus for Research Excellence and Technological Enterprise (CREATE)SingaporeSingapore
| | - Henry B. Ogden
- Army Recruit Health and Performance ResearchHeadquarters of Army Recruiting and Initial Training Command, UpavonPewseyUK,Department of Sport, Health and WellbeingPlymouth Marjon UniversityPlymouthUK
| | - Shaun Chapman
- Army Recruit Health and Performance ResearchHeadquarters of Army Recruiting and Initial Training Command, UpavonPewseyUK,Cambridge Centre for Sport and Exercise SciencesSchool of Psychology and Sport ScienceAnglia Ruskin UniversityCambridgeUK
| | - Michael N. Sawka
- School of Biological SciencesGeorgia Institute of TechnologyAtlantaGAUSA
| |
Collapse
|
10
|
Li Y, Wang S, Quan K, Ma D, Zhang H, Zhang W, Chen Z, Kwok LY, Zhang Y, Sun Z. Co-administering yeast polypeptide and the probiotic, Lacticaseibacillus casei Zhang, significantly improves exercise performance. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
11
|
Łagowska K, Bajerska J, Kamiński S, Del Bo’ C. Effects of Probiotics Supplementation on Gastrointestinal Symptoms in Athletes: A Systematic Review of Randomized Controlled Trials. Nutrients 2022; 14:nu14132645. [PMID: 35807826 PMCID: PMC9268154 DOI: 10.3390/nu14132645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/20/2022] [Accepted: 06/24/2022] [Indexed: 11/16/2022] Open
Abstract
This study examines the effectiveness of probiotic supplementation on gastrointestinal (GI) symptoms, the gut barrier function, and inflammatory markers in athletes based on data from randomised controlled trials. Searches were conducted in PubMed, the Cochrane Library, and the Web of Science up to October 2021. The protocol for this review was registered with PROSPERO (CRD42021284938). Two reviewers independently screened the titles, abstracts, and full texts to identify articles on the influence of probiotics or symbiotics on GI symptoms, gut barrier function, and cytokines, and the quality of the studies was assessed using RoB2. Ten articles involving 822 athletes were included in this review. A single strain Lactobacillus bacteria was used in three studies, seven studies used a Lactobacillus and Bifidobacterium multi-strain cocktail, and one study used this cocktail with a prebiotic. Only slight evidence was found for a positive effect of probiotics on GI symptoms in athletes during training, exercise, and competition, so it was not possible to identify the best product for managing GI symptoms in athletes. Due to the small number of studies, it was also difficult to find a direct association between the reduced exercise-induced perturbations in cytokines, gut barrier function, and GI symptoms after probiotic supplementation.
Collapse
Affiliation(s)
- Karolina Łagowska
- Department of Human Nutrition and Dietetics, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznan, Poland; (J.B.); (S.K.)
- Correspondence: ; Tel.: +48-61-8487332
| | - Joanna Bajerska
- Department of Human Nutrition and Dietetics, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznan, Poland; (J.B.); (S.K.)
| | - Szymon Kamiński
- Department of Human Nutrition and Dietetics, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznan, Poland; (J.B.); (S.K.)
| | - Cristian Del Bo’
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, 20133 Milan, Italy;
| |
Collapse
|
12
|
Hearris MA, Pugh JN, Langan-Evans C, Mann SJ, Burke L, Stellingwerff T, Gonzalez JT, Morton JP. 13C-glucose-fructose labeling reveals comparable exogenous CHO oxidation during exercise when consuming 120 g/h in fluid, gel, jelly chew, or coingestion. J Appl Physiol (1985) 2022; 132:1394-1406. [PMID: 35446596 DOI: 10.1152/japplphysiol.00091.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We examined the effects of carbohydrate (CHO) delivery form on exogenous CHO oxidation, gastrointestinal discomfort, and exercise capacity. In a randomized repeated-measures design [after 24 h of high CHO intake (8 g·kg-1) and preexercise meal (2 g·kg-1)], nine trained males ingested 120 g CHO·h-1 from fluid (DRINK), semisolid gel (GEL), solid jelly chew (CHEW), or a coingestion approach (MIX). Participants cycled for 180 min at 95% lactate threshold, followed by an exercise capacity test (150% lactate threshold). Peak rates of exogenous CHO oxidation (DRINK 1.56 ± 0.16, GEL 1.58 ± 0.13, CHEW 1.59 ± 0.08, MIX 1.66 ± 0.02 g·min-1) and oxidation efficiency (DRINK 72 ± 8%, GEL 72 ± 5%, CHEW 75 ± 5%, MIX, 75 ± 6%) were not different between trials (all P > 0.05). Despite ingesting 120 g·h-1, participants reported minimal symptoms of gastrointestinal distress across all trials. Exercise capacity was also not significantly different (all P > 0.05) between conditions (DRINK 446 ± 350, GEL 529 ± 396, CHEW 596 ± 416, MIX 469 ± 395 s). Data represent the first time that rates of exogenous CHO oxidation (via stable isotope methodology) have been simultaneously assessed with feeding strategies (i.e., preexercise CHO feeding and the different forms and combinations of CHO during exercise) commonly adopted by elite endurance athletes. We conclude that 120 g·h-1 CHO (in a 1:0.8 ratio of maltodextrin or glucose to fructose) is a practically tolerable strategy to promote high CHO availability and oxidation during exercise.NEW & NOTEWORTHY We demonstrate comparable rates of exogenous CHO oxidation from fluid, semisolid, solid, or a combination of sources. Considering the sustained high rates of total and exogenous CHO oxidation and relative lack of gastrointestinal symptoms, consuming 120 g CHO·h-1 appears to be a well-tolerated strategy to promote high CHO availability during exercise. Additionally, this is the first time that rates of exogenous CHO oxidation have been assessed with feeding strategies (e.g., coingestion of multiple CHO forms) typically reported by endurance athletes.
Collapse
Affiliation(s)
- Mark A Hearris
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Jamie N Pugh
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Carl Langan-Evans
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | | | - Louise Burke
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, Australia
| | - Trent Stellingwerff
- Exercise Science, Physical and Health Education, University of Victoria, Victoria, British Columbia, Canada.,Pacific Institute for Sport Excellence, Canadian Sport Institute-Pacific, Victoria, British Columbia, Canada
| | - Javier T Gonzalez
- Centre for Nutrition, Exercise and Metabolism, University of Bath, Bath, United Kingdom.,Department for Health, University of Bath, Bath, United Kingdom
| | - James P Morton
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| |
Collapse
|
13
|
Chantler S, Griffiths A, Matu J, Davison G, Holliday A, Jones B. A systematic review: Role of dietary supplements on markers of exercise-associated gut damage and permeability. PLoS One 2022; 17:e0266379. [PMID: 35417467 PMCID: PMC9007357 DOI: 10.1371/journal.pone.0266379] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 03/19/2022] [Indexed: 12/12/2022] Open
Abstract
Nutrition strategies and supplements may have a role to play in diminishing exercise associated gastrointestinal cell damage and permeability. The aim of this systematic review was to determine the influence of dietary supplements on markers of exercise-induced gut endothelial cell damage and/or permeability. Five databases were searched through to February 2021. Studies were selected that evaluated indirect markers of gut endothelial cell damage and permeability in response to exercise with and without a specified supplement, including with and without water. Acute and chronic supplementation protocols were included. Twenty-seven studies were included. The studies investigated a wide range of supplements including bovine colostrum, glutamine, probiotics, supplemental carbohydrate and protein, nitrate or nitrate precursors and water across a variety of endurance exercise protocols. The majority of studies using bovine colostrum and glutamine demonstrated a reduction in selected markers of gut cell damage and permeability compared to placebo conditions. Carbohydrate intake before and during exercise and maintaining euhydration may partially mitigate gut damage and permeability but coincide with other performance nutrition strategies. Single strain probiotic strains showed some positive findings, but the results are likely strain, dosage and duration specific. Bovine colostrum, glutamine, carbohydrate supplementation and maintaining euhydration may reduce exercise-associated endothelial damage and improve gut permeability. In spite of a large heterogeneity across the selected studies, appropriate inclusion of different nutrition strategies could mitigate the initial phases of gastrointestinal cell disturbances in athletes associated with exercise. However, research is needed to clarify if this will contribute to improved athlete gastrointestinal and performance outcomes.
Collapse
Affiliation(s)
- Sarah Chantler
- Carnegie Applied Rugby Research (CARR) Centre, Carnegie School of Sport, Leeds Beckett University, Leeds, United Kingdom
- Yorkshire Carnegie Rugby Union Club, Leeds, United Kingdom
| | - Alex Griffiths
- School of Clinical and Applied Sciences, Leeds Beckett University, Leeds, United Kingdom
| | - Jamie Matu
- School of Clinical and Applied Sciences, Leeds Beckett University, Leeds, United Kingdom
| | - Glen Davison
- Endurance Research Group, School of Sport and Exercise Sciences, University of Kent, Canterbury, United Kingdom
| | - Adrian Holliday
- Carnegie Applied Rugby Research (CARR) Centre, Carnegie School of Sport, Leeds Beckett University, Leeds, United Kingdom
- Human Nutrition Research Centre, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Ben Jones
- Carnegie Applied Rugby Research (CARR) Centre, Carnegie School of Sport, Leeds Beckett University, Leeds, United Kingdom
- School of Science and Technology, University of New England, Armidale, NSW, Australia
- Division of Exercise Science and Sports Medicine, Department of Human Biology, Faculty of Health Sciences, the University of Cape Town and the Sports Science Institute of South Africa, Cape Town, South Africa
- Leeds Rhinos Rugby League Club, Leeds, United Kingdom
- England Performance Unit, Rugby Football League, Leeds, United Kingdom
| |
Collapse
|
14
|
Mohr AE, Pugh J, O'Sullivan O, Black K, Townsend JR, Pyne DB, Wardenaar FC, West NP, Whisner CM, McFarland LV. Best Practices for Probiotic Research in Athletic and Physically Active Populations: Guidance for Future Randomized Controlled Trials. Front Nutr 2022; 9:809983. [PMID: 35350412 PMCID: PMC8957944 DOI: 10.3389/fnut.2022.809983] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/26/2022] [Indexed: 12/12/2022] Open
Abstract
Probiotic supplementation, traditionally used for the prevention or treatment of a variety of disease indications, is now recognized in a variety of population groups including athletes and those physically active for improving general health and performance. However, experimental and clinical trials with probiotics commonly suffer from design flaws and different outcome measures, making comparison and synthesis of conclusions difficult. Here we review current randomized controlled trials (RCTs) using probiotics for performance improvement, prevention of common illnesses, or general health, in a specific target population (athletes and those physically active). Future RCTs should address the key elements of (1) properly defining and characterizing a probiotic intervention, (2) study design factors, (3) study population characteristics, and (4) outcome measures, that will allow valid conclusions to be drawn. Careful evaluation and implementation of these elements should yield improved trials, which will better facilitate the generation of evidence-based probiotic supplementation recommendations for athletes and physically active individuals.
Collapse
Affiliation(s)
- Alex E. Mohr
- College of Health Solutions, Arizona State University, Phoenix, AZ, United States
- *Correspondence: Alex E. Mohr
| | - Jamie Pugh
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Orla O'Sullivan
- Teagasc Food Research Centre, Moorepark, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Katherine Black
- Department of Human Nutrition, University of Otago, Dunedin, New Zealand
| | - Jeremy R. Townsend
- Exercise and Nutrition Science Graduate Program, Lipscomb University, Nashville, TN, United States
| | - David B. Pyne
- Research Institute for Sport and Exercise, University of Canberra, Canberra, ACT, Australia
| | - Floris C. Wardenaar
- College of Health Solutions, Arizona State University, Phoenix, AZ, United States
| | - Nicholas P. West
- School of Medical Science and Menzies Health Institute of QLD, Griffith Health, Griffith University, Southport, QLD, Australia
| | - Corrie M. Whisner
- College of Health Solutions, Arizona State University, Phoenix, AZ, United States
| | - Lynne V. McFarland
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, United States
| |
Collapse
|
15
|
Santibañez-Gutierrez A, Fernández-Landa J, Calleja-González J, Delextrat A, Mielgo-Ayuso J. Effects of Probiotic Supplementation on Exercise with Predominance of Aerobic Metabolism in Trained Population: A Systematic Review, Meta-Analysis and Meta-Regression. Nutrients 2022; 14:nu14030622. [PMID: 35276980 PMCID: PMC8840281 DOI: 10.3390/nu14030622] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/21/2022] [Accepted: 01/28/2022] [Indexed: 02/04/2023] Open
Abstract
The scientific literature about probiotic intake and its effect on sports performance is growing. Therefore, the main aim of this systematic review, meta-analysis and meta-regression was to review all information about the effects of probiotic supplementation on performance tests with predominance of aerobic metabolism in trained populations (athletes and/or Division I players and/or trained population: ≥8 h/week and/or ≥5 workouts/week). A structured search was performed in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA®) statement and PICOS guidelines in PubMed/MEDLINE, Web of Science (WOS), and Scopus international databases from inception to 1 November 2021. Studies involving probiotic supplementation in trained population and execution of performance test with aerobic metabolism predominance (test lasted more than 5 min) were considered for inclusion. Fifteen articles were included in the final systematic review (in total, 388 participants were included). After 3 studies were removed due to a lack of data for the meta-analysis and meta-regression, 12 studies with 232 participants were involved. With the objective of assessing the risk of bias of included studies, Cochrane Collaboration Guidelines and the Physiotherapy Evidence Database (PEDro) scale were performed. For all included studies the following data was extracted: authors, year of publication, study design, the size of the sample, probiotic administration (dose and time), and characteristics of participants. The random effects model and pooled standardized mean differences (SMDs) were used according to Hedges’ g for the meta-analysis. In order to determine if dose and duration covariates could predict probiotic effects, a meta-regression was also conducted. Results showed a small positive and significant effect on the performance test with aerobic metabolic predominance (SMD = 0.29; CI = 0.08−0.50; p < 0.05). Moreover, the subgroup analysis displayed significant greater benefits when the dose was ≥30 × 109 colony forming units (CFU) (SMD, 0.47; CI, 0.05 to 0.89; p < 0.05), when supplementation duration was ≤4 weeks (SMD, 0.44; CI, 0.05 to 0.84; p < 0.05), when single strain probiotics were used (SMD, 0.33; CI, 0.06 to 0.60; p < 0.05), when participants were males (SMD, 0.30; CI, 0.04 to 0.56; p < 0.05), and when the test was performed to exhaustion (SMD, 0.45; CI, 0.05 to 0.48; p < 0.05). However, with references to the findings of the meta-regression, selected covariates did not predict probiotic effects in highly trained population. In summary, the current systematic review and meta-analysis supported the potential effects of probiotics supplementation to improve performance in a test in which aerobic metabolism is predominant in trained population. However, more research is needed to fully understand the mechanisms of action of this supplement.
Collapse
Affiliation(s)
- Asier Santibañez-Gutierrez
- Physical Education and Sports Department, Faculty of Education and Sport, University of the Basque Country (UPV/EHU), 01007 Vitoria, Spain; (A.S.-G.); (J.F.-L.); (J.C.-G.)
| | - Julen Fernández-Landa
- Physical Education and Sports Department, Faculty of Education and Sport, University of the Basque Country (UPV/EHU), 01007 Vitoria, Spain; (A.S.-G.); (J.F.-L.); (J.C.-G.)
| | - Julio Calleja-González
- Physical Education and Sports Department, Faculty of Education and Sport, University of the Basque Country (UPV/EHU), 01007 Vitoria, Spain; (A.S.-G.); (J.F.-L.); (J.C.-G.)
| | - Anne Delextrat
- Department of Sport and Health Sciences, Oxford Brookes University, Oxford OX3 0BP, UK;
| | - Juan Mielgo-Ayuso
- Department of Health Sciences, Faculty of Health Sciences, University of Burgos, 09001 Burgos, Spain
- Correspondence:
| |
Collapse
|
16
|
New Horizons in Carbohydrate Research and Application for Endurance Athletes. Sports Med 2022; 52:5-23. [PMID: 36173597 PMCID: PMC9734239 DOI: 10.1007/s40279-022-01757-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2022] [Indexed: 12/15/2022]
Abstract
The importance of carbohydrate as a fuel source for exercise and athletic performance is well established. Equally well developed are dietary carbohydrate intake guidelines for endurance athletes seeking to optimize their performance. This narrative review provides a contemporary perspective on research into the role of, and application of, carbohydrate in the diet of endurance athletes. The review discusses how recommendations could become increasingly refined and what future research would further our understanding of how to optimize dietary carbohydrate intake to positively impact endurance performance. High carbohydrate availability for prolonged intense exercise and competition performance remains a priority. Recent advances have been made on the recommended type and quantity of carbohydrates to be ingested before, during and after intense exercise bouts. Whilst reducing carbohydrate availability around selected exercise bouts to augment metabolic adaptations to training is now widely recommended, a contemporary view of the so-called train-low approach based on the totality of the current evidence suggests limited utility for enhancing performance benefits from training. Nonetheless, such studies have focused importance on periodizing carbohydrate intake based on, among other factors, the goal and demand of training or competition. This calls for a much more personalized approach to carbohydrate recommendations that could be further supported through future research and technological innovation (e.g., continuous glucose monitoring). Despite more than a century of investigations into carbohydrate nutrition, exercise metabolism and endurance performance, there are numerous new important discoveries, both from an applied and mechanistic perspective, on the horizon.
Collapse
|
17
|
Mehra Y, Viswanathan P. High-quality whole-genome sequence analysis of Lactobacillus paragasseri UBLG-36 reveals oxalate-degrading potential of the strain. PLoS One 2021. [DOI: https://doi.org/10.1371/journal.pone.0260116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lactobacillus paragasseri was identified as a novel sister taxon of L. gasseri in 2018. Since the reclassification of L. paragasseri, there has been hardly any report describing the probiotic properties of this species. In this study, an L. paragasseri strain UBLG-36 was sequenced and analyzed to determine the molecular basis that may confer the bacteria with probiotic potential. UBLG-36 was previously documented as an L. gasseri strain. Average nucleotide identity and phylogenomic analysis allowed accurate taxonomic identification of UBLG-36 as an L. paragasseri strain. Analysis of the draft genome (~1.94 Mb) showed that UBLG-36 contains 5 contigs with an average G+C content of 34.85%. Genes essential for the biosynthesis of bacteriocins, adhesion to host epithelium, stress resistance, host immunomodulation, defense, and carbohydrate metabolism were identified in the genome. Interestingly, L. paragasseri UBLG-36 also harbored genes that code for enzymes involved in oxalate catabolism, such as formyl coenzyme A transferase (frc) and oxalyl coenzyme A decarboxylase (oxc). In vitro oxalate degradation assay showed that UBLG-36 is highly effective in degrading oxalate (averaging more than 45% degradation), a feature that has not been reported before. As a recently identified bacterium, there are limited genomic reports on L. paragasseri, and our draft genome sequence analysis is the first to describe and emphasize the probiotic potential and oxalate degrading ability of this species. With results supporting the probiotic functionalities and oxalate catabolism of UBLG-36, we propose that this strain is likely to have immense biotechnological applications upon appropriate characterization.
Collapse
|
18
|
Li Y, Li J, Xu F, Liu G, Pang B, Liao N, Li H, Shi J. Gut microbiota as a potential target for developing anti-fatigue foods. Crit Rev Food Sci Nutr 2021:1-16. [PMID: 34592876 DOI: 10.1080/10408398.2021.1983768] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Fatigue has many negative effects on human health. As such, it is desirable to develop anti-fatigue foods and understand the mechanisms of their action. Based on a comprehensive review of the literature, this article discusses the important roles of gut microbiota in fatigue and anti-fatigue. Studies have shown that an increase in pathogenic bacteria and a decrease in beneficial bacteria co-exist when fatigue is present in both rodents and humans, whereas changes in gut microbiota were reported after intervention with anti-fatigue foods. The roles of gut microbiota in the activities of anti-fatigue foods can also be explained in the causes and the effects of fatigue. Among the causes of fatigue, the accumulation of lactic acid, decrease of energy, and reduction of central nervous system function were related to gut microbiota metabolism. Among the harmful effects of fatigue, oxidative stress, inflammation, and intestinal barrier dysfunction were related to gut microbiota dysbiosis. Furthermore, gut microbiota, together with anti-fatigue foods, can inhibit pathogen growth, convert foods into highly anti-oxidative or anti-inflammatory products, produce short-chain fatty acids, maintain intestinal barrier integrity, inhibit intestinal inflammation, and stimulate the production of neurotransmitters that regulate the central nervous system. Therefore, it is believed that gut microbiota play important roles in the activities of anti-fatigue foods and may provide new insights on the development of anti-fatigue foods.
Collapse
Affiliation(s)
- Yinghui Li
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, People's Republic of China
| | - Junjun Li
- College of Enology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Fengqin Xu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, People's Republic of China
| | - Guanwen Liu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, People's Republic of China
| | - Bing Pang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, People's Republic of China
| | - Ning Liao
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, People's Republic of China
| | - Huixin Li
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, People's Republic of China
| | - Junling Shi
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, People's Republic of China
| |
Collapse
|
19
|
Pugh JN, Phelan MM, Caamaño-Gutiérrez E, Sparks SA, Morton JP, Close GL, Owens DJ. Four Weeks of Probiotic Supplementation Alters the Metabolic Perturbations Induced by Marathon Running: Insight from Metabolomics. Metabolites 2021; 11:metabo11080535. [PMID: 34436476 PMCID: PMC8400326 DOI: 10.3390/metabo11080535] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 12/24/2022] Open
Abstract
Few data are available that describe how probiotics influence systemic metabolism during endurance exercise. Metabolomic profiling of endurance athletes will elucidate mechanisms by which probiotics may confer benefits to the athlete. In this study, twenty-four runners (20 male, 4 female) were block randomised into two groups using a double-blind matched-pairs design according to their most recent Marathon performance. Runners were assigned to 28-days of supplementation with a multi-strain probiotic (PRO) or a placebo (PLB). Following 28-days of supplementation, runners performed a competitive track Marathon race. Venous blood samples and muscle biopsies (vastus lateralis) were collected on the morning of the race and immediately post-race. Samples were subsequently analysed by untargeted 1H-NMR metabolomics. Principal component analysis (PCA) identified a greater difference in the post-Marathon serum metabolome in the PLB group vs. PRO. Univariate tests identified 17 non-overlapped metabolites in PLB, whereas only seven were identified in PRO. By building a PLS-DA model of two components, we revealed combinations of metabolites able to discriminate between PLB and PRO post-Marathon. PCA of muscle biopsies demonstrated no discernible difference post-Marathon between treatment groups. In conclusion, 28-days of probiotic supplementation alters the metabolic perturbations induced by a Marathon. Such findings may be related to maintaining the integrity of the gut during endurance exercise.
Collapse
Affiliation(s)
- Jamie N. Pugh
- Research Institute for Sport and Exercise Science, Liverpool John Moores University, Liverpool L3 3AF, UK; (J.N.P.); (J.P.M.); (G.L.C.)
| | - Marie M. Phelan
- NMR Metabolomics Shared Research Facility, Technology Directorate, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK;
| | - Eva Caamaño-Gutiérrez
- Computational Biology Facility, Technology Directorate, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK;
| | - S. Andy Sparks
- Sport Nutrition and Performance Research Group, Department of Sport and Physical Activity, Edge Hill University, Ormskirk L39 4QP, UK;
| | - James P. Morton
- Research Institute for Sport and Exercise Science, Liverpool John Moores University, Liverpool L3 3AF, UK; (J.N.P.); (J.P.M.); (G.L.C.)
| | - Graeme L. Close
- Research Institute for Sport and Exercise Science, Liverpool John Moores University, Liverpool L3 3AF, UK; (J.N.P.); (J.P.M.); (G.L.C.)
| | - Daniel J. Owens
- Research Institute for Sport and Exercise Science, Liverpool John Moores University, Liverpool L3 3AF, UK; (J.N.P.); (J.P.M.); (G.L.C.)
- Correspondence:
| |
Collapse
|
20
|
King MA, Rollo I, Baker LB. Nutritional considerations to counteract gastrointestinal permeability during exertional heat stress. J Appl Physiol (1985) 2021; 130:1754-1765. [PMID: 33955260 DOI: 10.1152/japplphysiol.00072.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Intestinal barrier integrity and function are compromised during exertional heat stress (EHS) potentially leading to consequences that range from minor gastrointestinal (GI) disturbances to fatal outcomes in exertional heat stroke or septic shock. This mini-review provides a concise discussion of nutritional interventions that may protect against intestinal permeability during EHS and suggests physiological mechanisms responsible for this protection. Although diverse nutritional interventions have been suggested to be protective against EHS-induced GI permeability, the ingestion of certain amino acids, carbohydrates, and fluid per se is potentially effective strategy, whereas evidence for various polyphenols and pre/probiotics is developing. Plausible physiological mechanisms of protection include increased blood flow, epithelial cell proliferation, upregulation of intracellular heat shock proteins, modulation of inflammatory signaling, alteration of the GI microbiota, and increased expression of tight junction (TJ) proteins. Further clinical research is needed to propose specific nutritional candidates and recommendations for their application to prevent intestinal barrier disruption and elucidate mechanisms during EHS.
Collapse
Affiliation(s)
- Michelle A King
- Gatorade Sports Science Institute, PepsiCo R&D Life Sciences, Barrington, Illinois
| | - Ian Rollo
- Gatorade Sports Science Institute, PepsiCo R&D Life Sciences, Leicestershire, United Kingdom
| | - Lindsay B Baker
- Gatorade Sports Science Institute, PepsiCo R&D Life Sciences, Barrington, Illinois
| |
Collapse
|
21
|
Malone JJ, Hulton AT, MacLaren DPM. Exogenous carbohydrate and regulation of muscle carbohydrate utilisation during exercise. Eur J Appl Physiol 2021; 121:1255-1269. [PMID: 33544230 PMCID: PMC8064975 DOI: 10.1007/s00421-021-04609-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 01/17/2021] [Indexed: 12/18/2022]
Abstract
PURPOSE Carbohydrates (CHO) are one of the fundamental energy sources during prolonged steady state and intermittent exercise. The consumption of exogenous CHO during exercise is common place, with the aim to enhance sporting performance. Despite the popularity around exogenous CHO use, the process by which CHO is regulated from intake to its use in the working muscle is still not fully appreciated. Recent studies utilizing the hyperglycaemic glucose clamp technique have shed light on some of the potential barriers to CHO utilisation during exercise. The present review addresses the role of exogenous CHO utilisation during exercise, with a focus on potential mechanisms involved, from glucose uptake to glucose delivery and oxidation at the different stages of regulation. METHODS Narrative review. RESULTS A number of potential barriers were identified, including gastric emptying, intestinal absorption, blood flow (splanchnic and muscle), muscle uptake and oxidation. The relocation of glucose transporters plays a key role in the regulation of CHO, particularly in epithelial cells and subsequent transport into the blood. Limitations are also apparent when CHO is infused, particularly with regards to blood flow and uptake within the muscle. CONCLUSION We highlight a number of potential barriers involved with the regulation of both ingested and infused CHO during exercise. Future work on the influence of longitudinal training within the regulation processes (such as the gut) is warranted to further understand the optimal type, dose and method of CHO delivery to enhance sporting performance.
Collapse
Affiliation(s)
- James J Malone
- School of Health Sciences, Liverpool Hope University, Taggart Avenue, Liverpool, L16 9JD, UK.
| | - Andrew T Hulton
- Department of Nutritional Sciences, University of Surrey, Guildford, UK
| | - Don P M MacLaren
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| |
Collapse
|
22
|
Mehra Y, Viswanathan P. High-quality whole-genome sequence analysis of Lactobacillus paragasseri UBLG-36 reveals oxalate-degrading potential of the strain. PLoS One 2021; 16:e0260116. [PMID: 34797858 PMCID: PMC8604369 DOI: 10.1371/journal.pone.0260116] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 11/02/2021] [Indexed: 02/05/2023] Open
Abstract
Lactobacillus paragasseri was identified as a novel sister taxon of L. gasseri in 2018. Since the reclassification of L. paragasseri, there has been hardly any report describing the probiotic properties of this species. In this study, an L. paragasseri strain UBLG-36 was sequenced and analyzed to determine the molecular basis that may confer the bacteria with probiotic potential. UBLG-36 was previously documented as an L. gasseri strain. Average nucleotide identity and phylogenomic analysis allowed accurate taxonomic identification of UBLG-36 as an L. paragasseri strain. Analysis of the draft genome (~1.94 Mb) showed that UBLG-36 contains 5 contigs with an average G+C content of 34.85%. Genes essential for the biosynthesis of bacteriocins, adhesion to host epithelium, stress resistance, host immunomodulation, defense, and carbohydrate metabolism were identified in the genome. Interestingly, L. paragasseri UBLG-36 also harbored genes that code for enzymes involved in oxalate catabolism, such as formyl coenzyme A transferase (frc) and oxalyl coenzyme A decarboxylase (oxc). In vitro oxalate degradation assay showed that UBLG-36 is highly effective in degrading oxalate (averaging more than 45% degradation), a feature that has not been reported before. As a recently identified bacterium, there are limited genomic reports on L. paragasseri, and our draft genome sequence analysis is the first to describe and emphasize the probiotic potential and oxalate degrading ability of this species. With results supporting the probiotic functionalities and oxalate catabolism of UBLG-36, we propose that this strain is likely to have immense biotechnological applications upon appropriate characterization.
Collapse
Affiliation(s)
- Yogita Mehra
- Renal Research Lab, Centre for Bio-Medical Research, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Pragasam Viswanathan
- Renal Research Lab, Centre for Bio-Medical Research, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
- * E-mail:
| |
Collapse
|
23
|
Plasma Amino Acid Response to Whey Protein Ingestion Following 28 Days of Probiotic ( Bacillus subtilis DE111) Supplementation in Active Men and Women. J Funct Morphol Kinesiol 2020; 6:jfmk6010001. [PMID: 33462163 PMCID: PMC7838959 DOI: 10.3390/jfmk6010001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 02/01/2023] Open
Abstract
UNLABELLED We sought to determine if 28 days of probiotic supplementation influenced the plasma amino acid (AA) response to acute whey protein feeding. METHODS Twenty-two recreationally active men (n = 11; 24.3 ± 3.2 yrs; 89.3 ± 7.2 kg) and women (n = 11; 23.0 ± 2.8 yrs; 70.2 ± 15.2 kg) participated in this double-blind, placebo-controlled, randomized study. Before (PRE) and after 28 days of supplementation (POST), participants reported to the lab following a 10-hr fast and provided a resting blood draw (0 min), then subsequently consumed 25 g of whey protein. Blood samples were collected at 15-min intervals for 2 h post-consumption (15-120 min) and later analyzed for plasma leucine, branched-chain AA (BCAA), essential AA (EAA), and total AA (TAA). Participants received a probiotic (PROB) consisting of 1 x10-9 colony forming units (CFU) Bacillus subtilis DE111 (n = 11) or a maltodextrin placebo (PL) (n = 11) for 28 days. Plasma AA response and area under the curve (AUC) values were analyzed via repeated measures analysis of variance. RESULTS Our analysis indicated no significant (p < 0.05) differential responses for plasma leucine, BCAA, EAA, or TAA between PROB and PL from PRE to POST. AUC analysis revealed no group × time interaction for plasma leucine (p = 0.524), BCAA (p = 0.345), EAA (p = 0.512), and TAA (p = 0.712). CONCLUSION These data indicate that 28 days of Bacillus subtilis DE111 does not affect plasma AA appearance following acute whey protein ingestion.
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW This is a review of the most up-to-date research on the effectiveness of probiotic supplementation for outcomes related to athletes and physical activity. The focus is on clinical research incorporating exercise and/or physically active participants on the nutritional effectiveness of single and multistrain preparations. RECENT FINDINGS Findings of the included clinical studies support the notion that certain probiotics could play important roles in maintaining normal physiology and energy production during exercise which may lead to performance-improvement and antifatigue effects, improve exercise-induced gastrointestinal symptoms and permeability, stimulate/modulate of the immune system, and improve the ability to digest, absorb, and metabolize macro and micronutrients important to exercise performance and recovery/health status of those physically active. SUMMARY The current body of literature highlights the specificity of probiotic strain/dose and potential mechanisms of action for application in sport. These novel findings open new areas research, potential use for human health, and reinforce the potential role for probiotic's in exercise performance. While encouraging, more well designed studies of probiotic supplementation in various sport applications are warranted.
Collapse
Affiliation(s)
- Ralf Jäger
- Increnovo LLC, Milwaukee, Wisconsin, USA
| | - Alex E. Mohr
- College of Health Solutions, Arizona State University, Phoenix, Arizona, USA
| | - Jamie N. Pugh
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Tom Reilly Building, Byrom St Campus, Liverpool, UK
| |
Collapse
|
25
|
Baur DA, Saunders MJ. Carbohydrate supplementation: a critical review of recent innovations. Eur J Appl Physiol 2020; 121:23-66. [PMID: 33106933 DOI: 10.1007/s00421-020-04534-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/12/2020] [Indexed: 12/29/2022]
Abstract
PURPOSE To critically examine the research on novel supplements and strategies designed to enhance carbohydrate delivery and/or availability. METHODS Narrative review. RESULTS Available data would suggest that there are varying levels of effectiveness based on the supplement/supplementation strategy in question and mechanism of action. Novel carbohydrate supplements including multiple transportable carbohydrate (MTC), modified carbohydrate (MC), and hydrogels (HGEL) have been generally effective at modifying gastric emptying and/or intestinal absorption. Moreover, these effects often correlate with altered fuel utilization patterns and/or glycogen storage. Nevertheless, performance effects differ widely based on supplement and study design. MTC consistently enhances performance, but the magnitude of the effect is yet to be fully elucidated. MC and HGEL seem unlikely to be beneficial when compared to supplementation strategies that align with current sport nutrition recommendations. Combining carbohydrate with other ergogenic substances may, in some cases, result in additive or synergistic effects on metabolism and/or performance; however, data are often lacking and results vary based on the quantity, timing, and inter-individual responses to different treatments. Altering dietary carbohydrate intake likely influences absorption, oxidation, and and/or storage of acutely ingested carbohydrate, but how this affects the ergogenicity of carbohydrate is still mostly unknown. CONCLUSIONS In conclusion, novel carbohydrate supplements and strategies alter carbohydrate delivery through various mechanisms. However, more research is needed to determine if/when interventions are ergogenic based on different contexts, populations, and applications.
Collapse
Affiliation(s)
- Daniel A Baur
- Department of Physical Education, Virginia Military Institute, 208 Cormack Hall, Lexington, VA, 24450, USA.
| | - Michael J Saunders
- Department of Kinesiology, James Madison University, Harrisonburg, VA, 22801, USA
| |
Collapse
|