1
|
Chehelgerdi M, Chehelgerdi M. The use of RNA-based treatments in the field of cancer immunotherapy. Mol Cancer 2023; 22:106. [PMID: 37420174 PMCID: PMC10401791 DOI: 10.1186/s12943-023-01807-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 06/13/2023] [Indexed: 07/09/2023] Open
Abstract
Over the past several decades, mRNA vaccines have evolved from a theoretical concept to a clinical reality. These vaccines offer several advantages over traditional vaccine techniques, including their high potency, rapid development, low-cost manufacturing, and safe administration. However, until recently, concerns over the instability and inefficient distribution of mRNA in vivo have limited their utility. Fortunately, recent technological advancements have mostly resolved these concerns, resulting in the development of numerous mRNA vaccination platforms for infectious diseases and various types of cancer. These platforms have shown promising outcomes in both animal models and humans. This study highlights the potential of mRNA vaccines as a promising alternative approach to conventional vaccine techniques and cancer treatment. This review article aims to provide a thorough and detailed examination of mRNA vaccines, including their mechanisms of action and potential applications in cancer immunotherapy. Additionally, the article will analyze the current state of mRNA vaccine technology and highlight future directions for the development and implementation of this promising vaccine platform as a mainstream therapeutic option. The review will also discuss potential challenges and limitations of mRNA vaccines, such as their stability and in vivo distribution, and suggest ways to overcome these issues. By providing a comprehensive overview and critical analysis of mRNA vaccines, this review aims to contribute to the advancement of this innovative approach to cancer treatment.
Collapse
Affiliation(s)
- Mohammad Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran.
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Matin Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| |
Collapse
|
2
|
Fang P, She Y, Yu M, Min W, Shang W, Zhang Z. Adipose-Muscle crosstalk in age-related metabolic disorders: The emerging roles of adipo-myokines. Ageing Res Rev 2023; 84:101829. [PMID: 36563906 DOI: 10.1016/j.arr.2022.101829] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/21/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Obesity and type 2 diabetes account for a considerable proportion of the global burden of age-related metabolic diseases. In age-related metabolic diseases, tissue crosstalk and metabolic regulation have been primarily linked to endocrine processes. Skeletal muscle and adipose tissue are endocrine organs that release myokines and adipokines into the bloodstream, respectively. These cytokines regulate metabolic responses in a variety of tissues, including skeletal muscle and adipose tissue. However, the intricate mechanisms underlying adipose-muscle crosstalk in age-related metabolic diseases are not fully understood. Recent exciting evidence suggests that myokines act to control adipose tissue functions, including lipolysis, browning, and inflammation, whereas adipokines mediate the beneficial actions of adipose tissue in the muscle, such as glucose uptake and metabolism. In this review, we assess the mechanisms of adipose-muscle crosstalk in age-related disorders and propose that the adipokines adiponectin and spexin, as well as the myokines irisin and interleukin-6 (IL-6), are crucial for maintaining the body's metabolic balance in age-related metabolic disorders. In addition, these changes of adipose-muscle crosstalk in response to exercise or dietary flavonoid consumption are part of the mechanisms of both functions in the remission of age-related metabolic disorders. A better understanding of the intricate relationships between adipose tissue and skeletal muscle could lead to more potent therapeutic approaches to prolong life and prevent age-related metabolic diseases.
Collapse
Affiliation(s)
- Penghua Fang
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Yuqing She
- Department of Endocrinology, Pukou Branch of Jiangsu People's Hospital, Nanjing 211899, China
| | - Mei Yu
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wen Min
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Wenbin Shang
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Zhenwen Zhang
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou 225001, China.
| |
Collapse
|
3
|
Congenital adiponectin deficiency mitigates high-fat-diet-induced obesity in gonadally intact male and female, but not in ovariectomized mice. Sci Rep 2022; 12:16668. [PMID: 36198723 PMCID: PMC9534911 DOI: 10.1038/s41598-022-21228-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/23/2022] [Indexed: 11/24/2022] Open
Abstract
Epidemiological literature indicates that women are less susceptible to type II diabetes (T2D) than males. The general consensus is that estrogen is protective, whereas its deficiency in post-menopause is associated with adiposity and impaired insulin sensitivity. However, epidemiological data suggests that males are more prone to developing T2D, and at a lower BMI, compared to females during post-menopausal years; suggesting that another factor, other than estrogen, protects females. We proposed to determine if adiponectin (APN) serves as this protective factor. An initial experiment was performed in which gonadally intact male and female mice were fed either a purified low-fat diet (LFD) or high-fat diet (HFD) (40% kcals from fat) for 16 weeks. An additional group of HFD ovariectomy (OVX) mice were included to assess estrogen deficiency’s impact on obesity. Body composition, adipose tissue inflammation, ectopic lipid accumulation as well as glucose metabolism and insulin resistance were assessed. In corroboration with previous data, estrogen deficiency (OVX) exacerbated HFD-induced obesity in female mice. However, despite a higher body fat percentage and a similar degree of hepatic and skeletal muscle lipid accumulation, female OVX HFD-fed mice exhibited enhanced insulin sensitivity relative to HFD-fed males. Therefore, a subsequent HFD experiment was performed utilizing male and female (both gonadally intact and OVX) APN deficient mice (APN−/−) and wildtype littermates to determine if APN is the factor which protects OVX females from the similar degree of metabolic dysfunction as males in the setting of obesity. Indirect calorimetry was used to determine observed phenotype differences. APN deficiency limited adiposity and mitigated HFD-induced insulin resistance and adipose tissue inflammation in gonadally intact male and female, but not in OVX mice. Using indirect calorimetry, we uncovered that slight, but non-statistically significant differences in food intake and energy expenditure leading to a net difference in energy balance likely explain the reduced body weight exhibited by male APN-deficient mice. In conclusion, congenital APN deficiency is protective against obesity development in gonadally intact mice, however, in the setting of estrogen deficiency (OVX) this is not true. These findings suggest that gonadal status dictates the protective effects of congenital APN deficiency in the setting of HFD-induced obesity.
Collapse
|
4
|
Lu S, Zhao P, Deng Y, Liu Y. Mechanistic Insights and Therapeutic Delivery through Micro/Nanobubble-Assisted Ultrasound. Pharmaceutics 2022; 14:pharmaceutics14030480. [PMID: 35335857 PMCID: PMC8954263 DOI: 10.3390/pharmaceutics14030480] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/12/2022] [Accepted: 02/19/2022] [Indexed: 02/05/2023] Open
Abstract
Ultrasound with low frequency (20–100 kHz) assisted drug delivery has been widely investigated as a non-invasive method to enhance the permeability and retention effect of drugs. The functional micro/nanobubble loaded with drugs could provide an unprecedented opportunity for targeted delivery. Then, ultrasound with higher intensity would locally burst bubbles and release agents, thus avoiding side effects associated with systemic administration. Furthermore, ultrasound-mediated destruction of micro/nanobubbles can effectively increase the permeability of vascular membranes and cell membranes, thereby not only increasing the distribution concentration of drugs in the interstitial space of target tissues but also promoting the penetration of drugs through cell membranes into the cytoplasm. These advancements have transformed ultrasound from a purely diagnostic utility into a promising theragnostic tool. In this review, we first discuss the structure and generation of micro/nanobubbles. Second, ultrasound parameters and mechanisms of therapeutic delivery are discussed. Third, potential biomedical applications of micro/nanobubble-assisted ultrasound are summarized. Finally, we discuss the challenges and future directions of ultrasound combined with micro/nanobubbles.
Collapse
|
5
|
Sung HK, Mitchell PL, Gross S, Marette A, Sweeney G. ALY688 elicits adiponectin-mimetic signaling and improves insulin action in skeletal muscle cells. Am J Physiol Cell Physiol 2021; 322:C151-C163. [PMID: 34910600 DOI: 10.1152/ajpcell.00603.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Adiponectin is well established to mediate many beneficial metabolic effects, and this has stimulated great interest in development and validation of adiponectin receptor agonists as pharmaceutical tools. This study investigated the effects of ALY688, a peptide-based adiponectin receptor agonist, in rat L6 skeletal muscle cells. ALY688 significantly increased phosphorylation of several adiponectin downstream effectors, including AMPK, ACC and p38MAPK, assessed by immunoblotting and immunofluorescence microscopy. Temporal analysis using cells expressing an Akt biosensor demonstrated that ALY688 enhanced insulin sensitivity. This effect was associated with increased insulin-stimulated Akt and IRS-1 phosphorylation. The functional metabolic significance of these signaling effects was examined by measuring glucose uptake in myoblasts stably overexpressing the glucose transporter GLUT4. ALY688 treatment both increased glucose uptake itself and enhanced insulin-stimulated glucose uptake. In the model of high glucose/high insulin (HGHI)-induced insulin resistant cells, both temporal studies using the Akt biosensor as well as immunoblotting assessing Akt and IRS-1 phosphorylation indicated that ALY688 significantly reduced insulin resistance. Importantly, we observed that ALY688 administration to high-fat high sucrose fed mice also improve glucose handling, validating its efficacy in vivo. In summary, these data indicate that ALY688 activates adiponectin signaling pathways in skeletal muscle, leading to improved insulin sensitivity and beneficial metabolic effects.
Collapse
Affiliation(s)
| | - Patricia L Mitchell
- Quebec Heart and Lung Institute (IUCPQ), and Institute of Nutrition and Functional Foods (INAF), Laval University, Quebec, Canada
| | - Sean Gross
- Department of Biomedical Engineering, OHSU Center for Spatial Systems Biomedicine, Knight Cancer Institute, Oregon Health and Sciences University, Portland, OR, United States
| | - Andre Marette
- Quebec Heart and Lung Institute (IUCPQ), and Institute of Nutrition and Functional Foods (INAF), Laval University, Quebec, Canada
| | - Gary Sweeney
- Department of Biology, York University, Toronto, ON, Canada
| |
Collapse
|
6
|
Zou W, Wang Y, Song Q, Li Q, Ren J, Liu X, Cui W. Ultrasound-targeted microbubble destruction mediated miR-492 inhibitor suppresses the tumorigenesis in non-small cell lung cancer. Ann Med 2021; 53:2246-2255. [PMID: 34818961 PMCID: PMC8805898 DOI: 10.1080/07853890.2021.2005254] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Ultrasound-targeted microbubble destruction (UTMD) is a novel adjuvant tumor therapeutic method by enhancing exogenous gene transfection to target tissues. This study aims to investigate the role of microRNA-492 (miR-492) in non-small cell lung cancer (NSCLC) and further analyze the effects of UTMD-mediated miR-492 inhibitor on tumorigenesis. METHODS The expression of miR-492 was detected by qRT-PCR. Co-transfection of microbubbles and miR-492 inhibitor with Lipofectamine 3000 was performed to achieve UTMD-mediated miR-492 inhibition in NSCLC cells. CCK-8 and Transwell assay were used to determine NSCLC cell proliferation, and the migration and invasion. RESULT High expression of miR-492 was associated with poor prognosis in NSCLC patients. miR-492 inhibitor suppressed tumor cell proliferation, migration and invasion, and UTMD not only increased the transfection efficiency of miR-492 inhibitor, but also enhance the inhibitory effects on cell biological behaviors. CONCLUSION The results showed that the expression level of miR-492 was up-regulated in NSCLC tissue samples and cells. Silencing of miR-492 inhibited NSCLC cell proliferation, migration and invasion, and UTMD-mediated miR-492 inhibitor could promote more significant inhibition, which indicated that UTMD-mediated miR-492 inhibitor might provide a novel strategy for the treatment of NSCLC.KEY MESSAGESmiR-492 inhibitor inhibited cell proliferation, migration and invasion.UTMD-mediated miR-492 inhibitor can promote more significant inhibition.UTMD-mediated miR-492 inhibitor provide a new strategy for NSCLC.
Collapse
Affiliation(s)
- Wendi Zou
- Ultrasound Department, Shengli Oilfield Central Hospital, Dongying, China
| | - Yan Wang
- Ultrasound Department, Shengli Oilfield Central Hospital, Dongying, China
| | - Qingqing Song
- Ultrasound Department, Shengli Oilfield Central Hospital, Dongying, China
| | - Qianqian Li
- Ultrasound Department, Shengli Oilfield Central Hospital, Dongying, China
| | - Jie Ren
- Ultrasound Department, Shengli Oilfield Central Hospital, Dongying, China
| | - Xiaoyu Liu
- Ultrasound Department, Shengli Oilfield Central Hospital, Dongying, China
| | - Wei Cui
- Ultrasound Department, Shengli Oilfield Central Hospital, Dongying, China
| |
Collapse
|
7
|
Martinez-Huenchullan SF, Tam CS, Ban LA, Ehrenfeld-Slater P, Mclennan SV, Twigg SM. Skeletal muscle adiponectin induction in obesity and exercise. Metabolism 2020; 102:154008. [PMID: 31706980 DOI: 10.1016/j.metabol.2019.154008] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/21/2019] [Accepted: 10/28/2019] [Indexed: 12/19/2022]
Abstract
Recent scientific efforts have focused on the detrimental effects that obesity has on the metabolic function of skeletal muscles and whether exercise can improve this dysfunction. In this regard, adiponectin, with important metabolic functions (e.g. insulin-sensitizer and anti-inflammatory), has been recently described as a myokine that acts in an autocrine/paracrine manner. Earlier studies reported that muscle adiponectin could be induced by pro-inflammatory mediators (e.g. lipopolysaccharide), cytokines, and high-fat diets, providing a protective mechanism of this tissue against metabolic insults. However, when metabolic insults such as high-fat diets are sustained this protective response becomes dysregulated, making the skeletal muscle susceptible to metabolic impairments. Recent studies have suggested that exercise could prevent or even reverse this process. Considering that most scientific knowledge on adiponectin dysregulation in obesity is from the study of adipose tissue, the present review summarizes and discusses the literature available to date regarding the effects of obesity on skeletal muscle adiponectin induction, along with the potential effects of different exercise prescriptions on this response in an obesity context.
Collapse
Affiliation(s)
- Sergio F Martinez-Huenchullan
- Greg Brown Diabetes & Endocrinology Laboratory, Charles Perkins Centre, Faculty of Medicine and Health, University of Sydney, Sydney, Australia; School of Physical Therapy, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile.
| | - Charmaine S Tam
- Northern Clinical School and Centre for Translational Data Science, University of Sydney, Sydney, Australia
| | - Linda A Ban
- Greg Brown Diabetes & Endocrinology Laboratory, Charles Perkins Centre, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Pamela Ehrenfeld-Slater
- Laboratory of Cellular Pathology. Institute of Anatomy, Histology & Pathology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile; Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Chile
| | - Susan V Mclennan
- Greg Brown Diabetes & Endocrinology Laboratory, Charles Perkins Centre, Faculty of Medicine and Health, University of Sydney, Sydney, Australia; New South Wales Health Pathology, NSW, Australia; Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, Australia
| | - Stephen M Twigg
- Greg Brown Diabetes & Endocrinology Laboratory, Charles Perkins Centre, Faculty of Medicine and Health, University of Sydney, Sydney, Australia; Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, Australia
| |
Collapse
|
8
|
DiNicolantonio JJ, McCarty M. Autophagy-induced degradation of Notch1, achieved through intermittent fasting, may promote beta cell neogenesis: implications for reversal of type 2 diabetes. Open Heart 2019; 6:e001028. [PMID: 31218007 PMCID: PMC6546199 DOI: 10.1136/openhrt-2019-001028] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/06/2019] [Indexed: 02/06/2023] Open
|
9
|
Botta A, Liu Y, Wannaiampikul S, Tungtrongchitr R, Dadson K, Park TS, Sweeney G. An adiponectin-S1P axis protects against lipid induced insulin resistance and cardiomyocyte cell death via reduction of oxidative stress. Nutr Metab (Lond) 2019; 16:14. [PMID: 30828353 PMCID: PMC6385438 DOI: 10.1186/s12986-019-0342-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 02/18/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Adiponectin exerts several beneficial cardiovascular effects, however their specific molecular mechanisms require additional understanding. This study investigated the mechanisms of adiponectin action in the heart during high fat diet (HFD) feeding or in palmitate (PA) treated H9c2 cardiomyoblasts. METHODS 6-week-old male adiponectin knock out (Ad-KO) mice were fed chow or 60% HFD for 6 weeks then received saline or recombinant adiponectin (3μg/g body weight) for an additional 2 weeks. After acute insulin stimulation (4 U/kg), tissue and serum samples were collected for analysis. H9c2 cardiomyocytes were treated ±0.1 mM PA, the adiponectin receptor agonist AdipoRon, or the antioxidant MnTBAP then assays to analyze reactive oxygen species (ROS) production and cell death were conducted. To specifically determine the mechanistic role of S1P, gain and loss of function studies were conducted with adding S1P to cells or the inhibitors THI and SKI-II, respectively. RESULTS HFD feeding induced cardiac insulin resistance in Ad-KO mice, which was reversed following replenishment of normal circulating adiponectin levels. In addition, myocardial total triglyceride was elevated by HFD and lipidomic analysis showed increased levels of ceramides and sphingosine-1-phosphate (S1P), with only the latter being corrected by adiponectin administration. Similarly, treatment of H9C2 cardiomyoblasts with PA led to a significant increase of intracellular S1P but not in conditioned media whereas AdipoRon significantly increased S1P production and secretion from cells. AdipoRon or the antioxidant MnTBAP significantly reduced PA-induced cell death. Gain and loss of function studies suggested S1P secretion and autocrine receptor activation mediated the effect of AdipoRon to attenuate PA-induced ROS production and cell death. CONCLUSION Our data establish adiponectin signaling-mediated increase in S1P secretion as a mechanism via which HFD or PA induced cardiomyocyte lipotoxicity, leading to insulin resistance and cell death, is attenuated.
Collapse
Affiliation(s)
- Amy Botta
- Department of Biology, York University, Toronto, ON M3J 1P3 Canada
| | - Ying Liu
- Department of Biology, York University, Toronto, ON M3J 1P3 Canada
| | - Sivaporn Wannaiampikul
- Department of Biology, York University, Toronto, ON M3J 1P3 Canada
- Department of Biochemistry, Faculty of Medicine, Srinakharinwirot University, Bangkok, Thailand
- Department of Tropical Nutrition and Food Science, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Rungsunn Tungtrongchitr
- Department of Tropical Nutrition and Food Science, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Keith Dadson
- Department of Biology, York University, Toronto, ON M3J 1P3 Canada
| | - Tae-Sik Park
- Department of Life Science, Gachon University, Sungnam, South Korea
| | - Gary Sweeney
- Department of Biology, York University, Toronto, ON M3J 1P3 Canada
| |
Collapse
|
10
|
Ectopic BAT mUCP-1 overexpression in SKM by delivering a BMP7/PRDM16/PGC-1a gene cocktail or single PRMD16 using non-viral UTMD gene therapy. Gene Ther 2018; 25:497-509. [PMID: 30072816 DOI: 10.1038/s41434-018-0036-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/19/2018] [Accepted: 06/28/2018] [Indexed: 02/06/2023]
Abstract
Here we present our progress in inducing an ectopic brown adipose tissue (BAT) phenotype in skeletal muscle (SKM) as a potential gene therapy for obesity and its comorbidities. We used ultrasound-targeted microbubble destruction (UTMD), a novel targeted, non-viral approach to gene therapy, to deliver genes in the BAT differentiation pathway into rodent SKM to engineer a thermogenic BAT phenotype with ectopic mUCP-1 overexpression. In parallel, we performed a second protocol using wild-type Ucp-1-null knockout mice to test whether the effects of the gene therapy are UCP-1 dependent. Our main findings were a robust cellular presence of mUCP-1 immunostaining (IHC), significantly higher expression levels of mUCP-1 measured by qRT-PCR, and highest temperature elevation measured by infrared thermography in the treated thigh, achieved in rats after delivering the UTMD-PRDM16/PGC-1a/BMP7/hyPB gene cocktail. Interestingly, the weight loss obtained in the treated rats with the triple gene delivery, never recovered the levels observed in the controls in spite of food intake recovery. Our results establish the feasibility of minimally invasive UTMD gene-based therapy administration in SKM, to induce overexpression of ectopic mUCP-1 after delivery of the thermogenic BAT gene program, and describe systemic effects of this intervention on food intake, weight loss, and thermogenesis.
Collapse
|
11
|
Li Z, Rasmussen ML, Li J, Olguín CH, Knudsen JR, Søgaard O, Madsen AB, Jensen TE. Low- and high-protein diets do not alter ex vivo insulin action in skeletal muscle. Physiol Rep 2018; 6:e13798. [PMID: 29998629 PMCID: PMC6041700 DOI: 10.14814/phy2.13798] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 06/19/2018] [Indexed: 11/24/2022] Open
Abstract
A low-protein high carbohydrate (LPHC) diet and a high-protein low carbohydrate (HPLC) diet have been reported to positively and negatively regulate whole-body glucose tolerance and insulin sensitivity, respectively. Skeletal muscle is quantitatively the most important tissue clearing glucose in the postprandial state, but it is unclear if LPHC and HPLC diets directly influence insulin action in skeletal muscle. To test this, mice were placed on control chow diet, LPHC and HPLC diets for 13.5 weeks at which time the submaximal insulin-stimulated glucose transport and insulin signaling were evaluated in ex vivo incubated oxidative soleus and glycolytic EDL muscle. At the whole-body level, the diets had the anticipated effects, with LPHC diet improving glucose tolerance and insulin-sensitivity whereas HPLC diet had the opposite effect. However, neither insulin-stimulated Akt/TBC1D4 signaling and glucose transport ex vivo, nor cell signaling in vivo were altered by the diets. These data imply that skeletal muscle insulin sensitivity does not contribute to the whole-body effects of LPHC and HPLC diets on glucose metabolism.
Collapse
Affiliation(s)
- Zhencheng Li
- Section of Molecular PhysiologyDepartment of Nutrition, Exercise and SportsUniversity of CopenhagenCopenhagenDenmark
| | - Mette Line Rasmussen
- Section of Molecular PhysiologyDepartment of Nutrition, Exercise and SportsUniversity of CopenhagenCopenhagenDenmark
| | - Jingwen Li
- Section of Molecular PhysiologyDepartment of Nutrition, Exercise and SportsUniversity of CopenhagenCopenhagenDenmark
| | - Carlos Henríquez Olguín
- Section of Molecular PhysiologyDepartment of Nutrition, Exercise and SportsUniversity of CopenhagenCopenhagenDenmark
| | - Jonas Roland Knudsen
- Section of Molecular PhysiologyDepartment of Nutrition, Exercise and SportsUniversity of CopenhagenCopenhagenDenmark
| | - Ole Søgaard
- Section of Molecular PhysiologyDepartment of Nutrition, Exercise and SportsUniversity of CopenhagenCopenhagenDenmark
| | - Agnete B. Madsen
- Section of Molecular PhysiologyDepartment of Nutrition, Exercise and SportsUniversity of CopenhagenCopenhagenDenmark
| | - Thomas E. Jensen
- Section of Molecular PhysiologyDepartment of Nutrition, Exercise and SportsUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
12
|
Bastarrachea RA, Chen J, Kent JW, Nava-Gonzalez EJ, Rodriguez-Ayala E, Daadi MM, Jorge B, Laviada-Molina H, Comuzzie AG, Chen S, Grayburn PA. Engineering brown fat into skeletal muscle using ultrasound-targeted microbubble destruction gene delivery in obese Zucker rats: Proof of concept design. IUBMB Life 2017; 69:745-755. [PMID: 28762248 DOI: 10.1002/iub.1658] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 07/09/2017] [Indexed: 11/08/2022]
Abstract
Ultrasound-targeted microbubble destruction (UTMD) is a novel means of tissue-specific gene delivery. This approach systemically infuses transgenes precoupled to gas-filled lipid microbubbles that are burst within the microvasculature of target tissues via an ultrasound signal resulting in release of DNA and transfection of neighboring cells within the tissue. Previous work has shown that adenovirus containing cDNA of UCP-1, injected into the epididymal fat pads in mice, induced localized fat depletion, improving glucose tolerance, and decreasing food intake in obese diabetic mice. Our group recently demonstrated that gene therapy by UTMD achieved beta cell regeneration in streptozotocin (STZ)-treated mice and baboons. We hypothesized that gene therapy with BMP7/PRDM16/PPARGC1A in skeletal muscle (SKM) of obese Zucker diabetic fatty (fa/fa) rats using UTMD technology would produce a brown adipose tissue (BAT) phenotype with UCP-1 overexpression. This study was designed as a proof of concept (POC) project. Obese Zucker rats were administered plasmid cDNA contructs encoding a gene cocktail with BMP7/PRDM16/PPARGC1A incorporated within microbubbles and intravenously delivered into their left thigh. Controls received UTMD with plasmids driving a DsRed reporter gene. An ultrasound transducer was directed to the thigh to disrupt the microbubbles within the microcirculation. Blood samples were drawn at baseline, and after treatment to measure glucose, insulin, and free fatty acids levels. SKM was harvested for immunohistochemistry (IHC). Our IHC results showed a reliable pattern of effective UTMD-based gene delivery in enhancing SKM overexpression of the UCP-1 gene. This clearly indicates that our plasmid DNA construct encoding the gene combination of PRDM16, PPARGC1A, and BMP7 reprogrammed adult SKM tissue into brown adipose cells in vivo. Our pilot established POC showing that the administration of the gene cocktail to SKM in this rat model of genetic obesity using UTMD gene therapy, engineered a BAT phenotype with UCP-1 over-expression. © 2017 IUBMB Life, 69(9):745-755, 2017.
Collapse
Affiliation(s)
- Raul A Bastarrachea
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX, USA.,Southwest National Primate Research Center, San Antonio, TX, USA
| | - Jiaxi Chen
- University of Texas Southwestern Medical School, Dallas, TX, USA
| | - Jack W Kent
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX, USA.,Southwest National Primate Research Center, San Antonio, TX, USA
| | - Edna J Nava-Gonzalez
- University of Nuevo Leon School of Nutrition and Public Health, Monterrey, Mexico
| | | | - Marcel M Daadi
- Southwest National Primate Research Center, San Antonio, TX, USA
| | - Barbara Jorge
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX, USA.,Southwest National Primate Research Center, San Antonio, TX, USA
| | - Hugo Laviada-Molina
- Escuela de Ciencias de la Salud Universidad Marista de Mérida, Yucatán, Yucatán
| | - Anthony G Comuzzie
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX, USA.,Southwest National Primate Research Center, San Antonio, TX, USA
| | | | - Paul A Grayburn
- Baylor Research Institute, Dallas, TX, USA.,Baylor University Medical Center, Dallas, TX, USA
| |
Collapse
|
13
|
Abstract
Ultrasound targeted microbubble destruction (UTMD) is a novel technique that is used to deliver a gene or other bioactive substance to organs of living animals in a noninvasive manner. Plasmid DNA binding with cationic liposome into nanoparticles are assembled into the shell of microbubbles, which are circulated by intravenous injection. Intermittent bursts of ultrasound with low frequency and high mechanical index destroys the microbubbles and releases the nanoparticles into targeted organ to transfect local organ cells. Cell-specific promoters can be used to further enhance cell specificity. Here we describe UTMD applied to cardiac gene delivery.
Collapse
Affiliation(s)
- Shuyuan Chen
- Division of Cardiology, Department of Internal Medicine, Baylor Heart and Vascular Institute, Baylor University Medical Center, 621 N. Hall St, Suite H030, Dallas, TX, 75226, USA
| | - Paul A Grayburn
- Division of Cardiology, Department of Internal Medicine, Baylor Heart and Vascular Institute, Baylor University Medical Center, 621 N. Hall St, Suite H030, Dallas, TX, 75226, USA.
| |
Collapse
|
14
|
Metabolomic profiling in liver of adiponectin-knockout mice uncovers lysophospholipid metabolism as an important target of adiponectin action. Biochem J 2015; 469:71-82. [PMID: 25915851 DOI: 10.1042/bj20141455] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 04/27/2015] [Indexed: 12/21/2022]
Abstract
Adiponectin mediates anti-diabetic effects via increasing hepatic insulin sensitivity and direct metabolic effects. In the present study, we conducted a comprehensive and unbiased metabolomic profiling of liver tissue from AdKO (adiponectin-knockout) mice, with and without adiponectin supplementation, fed on an HFD (high-fat diet) to derive insight into the mechanisms and consequences of insulin resistance. Hepatic lipid accumulation and insulin resistance induced by the HFD were reduced by adiponectin. The HFD significantly altered levels of 147 metabolites, and bioinformatic analysis indicated that one of the most striking changes was the profile of increased lysophospholipids. These changes were largely corrected by adiponectin, at least in part via direct regulation of PLA2 (phospholipase A2) as palmitate-induced PLA2 activation was attenuated by adiponectin in primary hepatocytes. Notable decreases in several glycerolipids after the HFD were reversed by adiponectin, which also corrected elevations in several diacyglycerol and ceramide species. Our data also indicate that stimulation of ω-oxidation of fatty acids by the HFD is enhanced by adiponectin. In conclusion, this metabolomic profiling approach in AdKO mice identified important targets of adiponectin action, including PLA2, to regulate lysophospholipid metabolism and ω-oxidation of fatty acids.
Collapse
|
15
|
Sanches PG, Mühlmeister M, Seip R, Kaijzel E, Löwik C, Böhmer M, Tiemann K, Grüll H. Ultrasound-mediated gene delivery of naked plasmid DNA in skeletal muscles: A case for bolus injections. J Control Release 2014; 195:130-7. [DOI: 10.1016/j.jconrel.2014.06.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 06/06/2014] [Accepted: 06/20/2014] [Indexed: 12/17/2022]
|
16
|
Ritchie IRW, Wright DC, Dyck DJ. Adiponectin is not required for exercise training-induced improvements in glucose and insulin tolerance in mice. Physiol Rep 2014; 2:2/9/e12146. [PMID: 25214523 PMCID: PMC4270243 DOI: 10.14814/phy2.12146] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Adiponectin (Ad) is a potent insulin‐sensitizing adipokine that has been found to activate pathways involved in the adaptation to exercise. Therefore, we examined whether Ad is required for the increased insulin response observed following exercise training in Ad knockout mice (AdKO). Eight weeks of exercise training significantly increased glucose and insulin tolerance in both wild type (WT) and AdKO mice. There were no differences in glucose tolerance between genotypes but insulin tolerance was improved to a greater extent in AdKO compared to WT mice following exercise training (+26%, P < 0.05). There were no genotype differences in the insulin‐stimulated phosphorylation of AKT or AS160 in red or white gastrocnemius muscle (RG, WG). Exercise training increased total AKT and AS160 protein content in RG and total AS160 protein content in WG. There were no genotype differences in total AKT or AS160. However, exercise training induced a more robust increase in total AS160 in RG from AdKO (+44 ± 8%, P < 0.05) compared to WT mice (+28 ± 7%, P = 0.06). There were no differences in total GLUT4 or FAT/CD36 in RG or WG in WT or AdKO, with or without exercise training. Similarly, there were no differences in RER, VO2, or activity between any groups. Our results indicate the presence of Ad is not required for exercise‐induced increases in insulin response. Furthermore, it appears that exercise may improve insulin sensitivity to a greater extent in the absence of Ad, suggesting the presence of an unknown compensatory mechanism. Collectively, our results demonstrate that the absence of Ad does not impair the capacity of endurance exercise training to increase glucose and insulin tolerance in AdKO mice. In addition, there were no impairments in insulin signaling or in the protein content of AKT or AS160. Taken together with previous findings, our data indicate that AdKO mice may have sufficient compensations to override the absence of Ad.
Collapse
Affiliation(s)
- Ian R W Ritchie
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - David C Wright
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - David J Dyck
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
17
|
Chiang YTA, Ip W, Shao W, Song ZE, Chernoff J, Jin T. Activation of cAMP signaling attenuates impaired hepatic glucose disposal in aged male p21-activated protein kinase-1 knockout mice. Endocrinology 2014; 155:2122-32. [PMID: 24684301 DOI: 10.1210/en.2013-1743] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
p21-activated protein kinase-1 (Pak1) plays a role in insulin secretion and glucagon-like peptide-1 (GLP-1) production. Pak1(-/-) mice were found to carry a defect in ip pyruvate tolerance test (IPPTT), leading us to speculate whether Pak1 represses hepatic gluconeogenesis. We show here that the defect in IPPTT became more severe in aged Pak1(-/-) mice. In primary hepatocytes, 2,2'-dihydroxy-1,1'-dinaphthyldisulfide, a potent inhibitor of group I Paks, reduced basal glucose production (GP), attenuated forskolin- or glucagon-stimulated GP, and attenuated the stimulation of forskolin on the expression of Pck1 and G6pc. In addition, the capacity of primary hepatocytes isolated from Pak1(-/-) mice in GP at the basal level is significantly lower than that of the control littermates. These in vitro observations imply that the direct effect of Paks in hepatocytes is the stimulation of gluconeogenesis and that the impairment in IPPTT in Pak1(-/-) mice is due to the lack of Pak1 elsewhere. Consecutive ip injection of forskolin for 2 weeks increased gut proglucagon expression, associated with improved IPPTT in aged Pak1(-/-) mice and wild-type controls. In addition, administration of the DPP-IV (dipeptidyl peptidase-4) inhibitor sitagliptin for 1 week reversed the defect in IPPTT in aged Pak1(-/-) mice, associated with increased plasma GLP-1 levels. Our observations indicate a potential role of Pak1 in the gut/pancreas/liver axis in controlling glucose disposal and affirmed the therapeutic application of GLP-1 and DPP-IV inhibitors in attenuating hepatic gluconeogenesis.
Collapse
Affiliation(s)
- Yu-Ting Alex Chiang
- Division of Advanced Diagnostics (Y.-t.A.C., W.I., W.S., Z.E.S., T.J.), Toronto General Research Institute, University Health Network, Toronto, Canada M5G 1L7; Department of Physiology (Y.-t.A.C., T.J.), University of Toronto, Toronto, Canada M5S 1A8; and Institute of Medical Science (W.I., T.J.), University of Toronto, Canada; and Fox Chase Cancer Center (J.C.), Philadelphia, Pennsylvania 19111
| | | | | | | | | | | |
Collapse
|
18
|
Abstract
The beneficial metabolic effects of adiponectin which confer insulin-sensitizing and anti-diabetic effects are well established. Skeletal muscle is an important target tissue for adiponectin where it regulates glucose and fatty acid metabolism directly and via insulin sensitizing effects. Cell surface receptors and the intracellular signaling events via which adiponectin orchestrates metabolism are now becoming well characterized. The initially accepted dogma of adiponectin action was that the physiological effects were mediated via endocrine effects of adipose-derived adiponectin. However, in recent years it has been established that skeletal muscle can also produce and secrete adiponectin that can elicit important functional effects. There is evidence that skeletal muscle adiponectin resistance may develop in obesity and play a role in the pathogenesis of diabetes. In summary, adiponectin acting in an autocrine and endocrine manner has important metabolic and insulin sensitizing effects on skeletal muscle which contribute to the overall anti-diabetic outcome of adiponectin action.
Collapse
Affiliation(s)
- Ying Liu
- Department of Physiology, University of Toronto, Toronto, Canada
| | - Gary Sweeney
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada.
| |
Collapse
|
19
|
Park M, Wu D, Park T, Choi CS, Li RK, Cheng KKY, Xu A, Sweeney G. APPL1 transgenic mice are protected from high-fat diet-induced cardiac dysfunction. Am J Physiol Endocrinol Metab 2013; 305:E795-804. [PMID: 23921137 DOI: 10.1152/ajpendo.00257.2013] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
APPL1 (adaptor protein containing PH domain, PTB domain, and leucine zipper motif 1) has been established as an important mediator of insulin and adiponectin signaling. Here, we investigated the influence of transgenic (Tg) APPL1 overexpression in mice on high-fat diet (HFD)-induced cardiomyopathy in mice. Wild-type (WT) mice fed an HFD for 16 wk showed cardiac dysfunction, determined by echocardiography, with decreased ejection fraction, decreased fractional shortening, and increased end diastolic volume. HFD-fed APPL1 Tg mice were significantly protected from this dysfunction. Speckle tracking echocardiography to accurately assess cardiac tissue deformation strain and wall motion also indicated dysfunction in WT mice and a similar improvement in Tg vs. WT mice on HFD. APPL1 Tg mice had less HFD-induced increase in circulating nonesteridied fatty acid levels and myocardial lipid accumulation. Lipidomic analysis using LC-MS-MS showed HFD significantly increased myocardial contents of distinct ceramide, sphingomyelin, and diacylglycerol (DAG) species, of which increases in C16:0 and C18:0 ceramides plus C16:0 and C18:1 DAGs were attenuated in Tg mice. A glucose tolerance test indicated less peripheral insulin resistance in response to HFD in Tg mice, which was also apparent by measuring cardiac Akt phosphorylation and cardiomyocyte glucose uptake. In summary, APPL1 Tg mice exhibit improved peripheral metabolism, reduced cardiac lipotoxicity, and improved insulin sensitivity. These cellular effects contribute to protection from HFD-induced cardiomyopathy.
Collapse
Affiliation(s)
- Min Park
- Department of Biology, York University, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|