1
|
Chen B, Fan P, Song X, Duan M. The role and possible mechanism of the ferroptosis-related SLC7A11/GSH/GPX4 pathway in myocardial ischemia-reperfusion injury. BMC Cardiovasc Disord 2024; 24:531. [PMID: 39354361 PMCID: PMC11445876 DOI: 10.1186/s12872-024-04220-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 09/23/2024] [Indexed: 10/03/2024] Open
Abstract
BACKGROUND Myocardial ischemia-reperfusion injury (MI/RI) is an unavoidable risk event for acute myocardial infarction, with ferroptosis showing close involvement. We investigated the mechanism of MI/RI inducing myocardial injury by inhibiting the ferroptosis-related SLC7A11/glutathione (GSH)/glutathione peroxidase 4 (GPX4) pathway and activating mitophagy. METHODS A rat MI/RI model was established, with myocardial infarction area and injury assessed by TTC and H&E staining. Rat cardiomyocytes H9C2 were cultured in vitro, followed by hypoxia/reoxygenation (H/R) modeling and the ferroptosis inhibitor lipoxstatin-1 (Lip-1) treatment, or 3-Methyladenine or rapamycin treatment and overexpression plasmid (oe-SLC7A11) transfection during modeling. Cell viability and death were evaluated by CCK-8 and LDH assays. Mitochondrial morphology was observed by transmission electron microscopy. Mitochondrial membrane potential was detected by fluorescence dye JC-1. Levels of inflammatory factors, reactive oxygen species (ROS), Fe2+, malondialdehyde, lipid peroxidation, GPX4 enzyme activity, glutathione reductase, GSH and glutathione disulfide, and SLC7A11, GPX4, LC3II/I and p62 proteins were determined by ELISA kit, related indicator detection kits and Western blot. RESULTS The ferroptosis-related SLC7A11/GSH/GPX4 pathway was repressed in MI/RI rat myocardial tissues, inducing myocardial injury. H/R affected GSH synthesis and inhibited GPX4 enzyme activity by down-regulating SLC7A11, thus promoting ferroptosis in cardiomyocytes, which was averted by Lip-1. SLC7A11 overexpression improved H/R-induced cardiomyocyte ferroptosis via the GSH/GPX4 pathway. H/R activated mitophagy in cardiomyocytes. Mitophagy inhibition reversed H/R-induced cellular ferroptosis. Mitophagy activation partially averted SLC7A11 overexpression-improved H/R-induced cardiomyocyte ferroptosis. H/R suppressed the ferroptosis-related SLC7A11/GSH/GPX4 pathway by inducing mitophagy, leading to cardiomyocyte injury. CONCLUSIONS Increased ROS under H/R conditions triggered cardiomyocyte injury by inducing mitophagy to suppress the ferroptosis-related SLC7A11/GSH/GPX4 signaling pathway activation.
Collapse
Affiliation(s)
- Bingxin Chen
- Department of Cardiac Function, The First Affiliated Hospital of Xinjiang Medical University, No. 137 Liyushan South Road, High-tech District, Urumqi, Xinjiang Uygur Autonomous Region, 830054, China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Ping Fan
- Department of Cardiac Function, The First Affiliated Hospital of Xinjiang Medical University, No. 137 Liyushan South Road, High-tech District, Urumqi, Xinjiang Uygur Autonomous Region, 830054, China
| | - Xue Song
- Department of Cardiac Function, The First Affiliated Hospital of Xinjiang Medical University, No. 137 Liyushan South Road, High-tech District, Urumqi, Xinjiang Uygur Autonomous Region, 830054, China
| | - Mingjun Duan
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Animal Experimental Center of Xinjiang Medical University, No. 137 Liyushan South Road, High-tech District, Urumqi, Xinjiang Uygur Autonomous Region, 830000, China.
| |
Collapse
|
2
|
Richter MM, Kemp IM, Heebøll S, Winther-Sørensen M, Kjeldsen SAS, Jensen NJ, Nybing JD, Linden FH, Høgh-Schmidt E, Boesen MP, Madsbad S, Schiødt FV, Nørgaard K, Schmidt S, Gluud LL, Haugaard SB, Holst JJ, Nielsen S, Rungby J, Wewer Albrechtsen NJ. Glucagon augments the secretion of FGF21 and GDF15 in MASLD by indirect mechanisms. Metabolism 2024; 156:155915. [PMID: 38631460 DOI: 10.1016/j.metabol.2024.155915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024]
Abstract
INTRODUCTION Glucagon receptor agonism is currently explored for the treatment of obesity and metabolic dysfunction-associated steatotic liver disease (MASLD). The metabolic effects of glucagon receptor agonism may in part be mediated by increases in circulating levels of Fibroblast Growth Factor 21 (FGF21) and Growth Differentiation Factor 15 (GDF15). The effect of glucagon agonism on FGF21 and GDF15 levels remains uncertain, especially in the context of elevated insulin levels commonly observed in metabolic diseases. METHODS We investigated the effect of a single bolus of glucagon and a continuous infusion of glucagon on plasma concentrations of FGF21 and GDF15 in conditions of endogenous low or high insulin levels. The studies included individuals with overweight with and without MASLD, healthy controls (CON) and individuals with type 1 diabetes (T1D). The direct effect of glucagon on FGF21 and GDF15 was evaluated using our in-house developed isolated perfused mouse liver model. RESULTS FGF21 and GDF15 correlated with plasma levels of insulin, but not glucagon, and their secretion was highly increased in MASLD compared with CON and T1D. Furthermore, FGF21 levels in individuals with overweight with or without MASLD did not increase after glucagon stimulation when insulin levels were kept constant. FGF21 and GDF15 levels were unaffected by direct stimulation with glucagon in the isolated perfused mouse liver. CONCLUSION The glucagon-induced secretion of FGF21 and GDF15 is augmented in MASLD and may depend on insulin. Thus, glucagon receptor agonism may augment its metabolic benefits in patients with MASLD through enhanced secretion of FGF21 and GDF15.
Collapse
Affiliation(s)
- Michael M Richter
- Department of Clinical Biochemistry, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen 2400, Denmark; Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Ida M Kemp
- Department of Clinical Biochemistry, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen 2400, Denmark; Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark; Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Sara Heebøll
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus 8200, Denmark; Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus 8200, Denmark
| | - Marie Winther-Sørensen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark; Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Sasha A S Kjeldsen
- Department of Clinical Biochemistry, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen 2400, Denmark; Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Nicole J Jensen
- Department of Endocrinology, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen 2400, Denmark
| | - Janus D Nybing
- Department of Radiology, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen 2400, Denmark
| | - Frederik H Linden
- Department of Radiology, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen 2400, Denmark
| | - Erik Høgh-Schmidt
- Department of Radiology, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen 2400, Denmark
| | - Mikael P Boesen
- Department of Radiology, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen 2400, Denmark
| | - Sten Madsbad
- Department of Endocrinology, Copenhagen University Hospital - Hvidovre, Hvidovre 2650, Denmark
| | - Frank Vinholt Schiødt
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Kirsten Nørgaard
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark; Steno Diabetes Center Copenhagen, Herlev 2730, Denmark
| | - Signe Schmidt
- Steno Diabetes Center Copenhagen, Herlev 2730, Denmark
| | - Lise Lotte Gluud
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark; Gastro Unit, Copenhagen University Hospital - Hvidovre, Hvidovre 2650, Denmark
| | - Steen B Haugaard
- Department of Endocrinology, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen 2400, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Søren Nielsen
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus 8200, Denmark; Department of Clinical Medicine, Aarhus University Hospital, Aarhus 8200, Denmark
| | - Jørgen Rungby
- Department of Endocrinology, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen 2400, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark; Steno Diabetes Center Copenhagen, Herlev 2730, Denmark
| | - Nicolai J Wewer Albrechtsen
- Department of Clinical Biochemistry, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen 2400, Denmark; Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark.
| |
Collapse
|
3
|
Stine JG, Hummer B, Smith N, Tressler H, Heinle JW, VanKirk K, Harris S, Moeller M, Luzier G, DiJoseph K, Hussaini Z, Jackson R, Rodgers B, Schreibman I, Stonesifer E, Tondt J, Sica C, Nighot P, Chinchilli VM, Loomba R, Sciamanna C, Schmitz KH, Kimball SR. AMPED study: Protocol for a randomized controlled trial of different doses of aerobic exercise training. Hepatol Commun 2024; 8:e0464. [PMID: 38896071 PMCID: PMC11186820 DOI: 10.1097/hc9.0000000000000464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 03/12/2024] [Indexed: 06/21/2024] Open
Abstract
Recently renamed, metabolic dysfunction-associated steatotic liver disease remains a leading cause of chronic liver disease worldwide. Regular physical activity is recommended as a treatment for all with this condition because it is highly efficacious, especially when exercise training is undertaken with a specific goal in mind. Despite decades of research demonstrating exercise's efficacy, key questions remain about the mechanism of benefit and most efficacious dose, as well as the independent impact on liver histology. To answer these questions, we present the design of a 16-week randomized controlled clinical trial of 45 adults aged 18-69 years with metabolic dysfunction-associated steatohepatitis. The primary aim of this study is to better understand the dose required and mechanisms to explain how exercise impacts multiple clinical end points in metabolic dysfunction-associated steatohepatitis. The primary outcome is MRI-measured liver fat. Secondary outcomes include other biomarkers of liver fibroinflammation, liver histology, and mechanistic pathways, as well as cardiometabolic risk and quality of life. This is the first study to compare different doses of exercise training to determine if there is a differential impact on imaging and serum biomarkers as well as liver histology.
Collapse
Affiliation(s)
- Jonathan G. Stine
- Department of Medicine, Division of Gastroenterology and Hepatology, Penn State Health—Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
- Division of Gastroenterology & Hepatology, Department of Mediicne, Fatty Liver Program, Penn State Health—Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
- Liver Center, Penn State Health—Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
- Department of Public Health Sciences, The Pennsylvania State University—College of Medicine, Hershey, Pennsylvania, USA
- Cancer Institute, Penn State Health—Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Breianna Hummer
- Department of Medicine, Division of Gastroenterology and Hepatology, Penn State Health—Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Nataliya Smith
- Department of Medicine, Division of Gastroenterology and Hepatology, Penn State Health—Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Heather Tressler
- Department of Medicine, Division of Gastroenterology and Hepatology, Penn State Health—Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - J. Westley Heinle
- Department of Medicine, Division of Gastroenterology and Hepatology, Penn State Health—Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Kyra VanKirk
- Department of Medicine, Division of Gastroenterology and Hepatology, Penn State Health—Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
- College of Medicine, The Pennsylvania State University, Hershey, Pennsylvania, USA
| | - Sara Harris
- College of Medicine, The Pennsylvania State University, Hershey, Pennsylvania, USA
| | - Matthew Moeller
- Department of Medicine, Penn State Health—Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Gavin Luzier
- Department of Medicine, Penn State Health—Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Kara DiJoseph
- Department of Medicine, Division of Gastroenterology and Hepatology, Penn State Health—Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Zeba Hussaini
- Department of Medicine, Division of Gastroenterology and Hepatology, Penn State Health—Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Ryan Jackson
- Department of Medicine, Division of Gastroenterology and Hepatology, Penn State Health—Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Brandon Rodgers
- Department of Medicine, Division of Gastroenterology and Hepatology, Penn State Health—Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Ian Schreibman
- Department of Medicine, Division of Gastroenterology and Hepatology, Penn State Health—Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
- Liver Center, Penn State Health—Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Elizabeth Stonesifer
- Department of Medicine, Division of Gastroenterology and Hepatology, Penn State Health—Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
- Division of Gastroenterology & Hepatology, Department of Mediicne, Fatty Liver Program, Penn State Health—Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
- Liver Center, Penn State Health—Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Justin Tondt
- Division of Gastroenterology & Hepatology, Department of Mediicne, Fatty Liver Program, Penn State Health—Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
- Department of Family Medicine, Penn State Health—Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Chris Sica
- College of Medicine, Center for NMR Research, The Pennsylvania State University, Hershey, Pennsylvania, USA
| | - Prashant Nighot
- Department of Medicine, Division of Gastroenterology and Hepatology, Penn State Health—Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Vernon M. Chinchilli
- Department of Public Health Sciences, The Pennsylvania State University—College of Medicine, Hershey, Pennsylvania, USA
| | - Rohit Loomba
- Division of Gastroenterology and Hepatology, Department of Medicine, University of California San Diego, San Diego, California, USA
- NAFLD Research Center, University of California San Diego, San Diego, California, USA
| | - Christopher Sciamanna
- Department of Public Health Sciences, The Pennsylvania State University—College of Medicine, Hershey, Pennsylvania, USA
- Department of Medicine, Penn State Health—Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Kathryn H. Schmitz
- Division of Hematology & Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Scot R. Kimball
- Department of Physiology, College of Medicine, The Pennsylvania State University, Hershey, Pennsylvania, USA
| |
Collapse
|
4
|
Ramne S, Duizer L, Nielsen MS, Jørgensen NR, Svenningsen JS, Grarup N, Sjödin A, Raben A, Gillum MP. Meal sugar-protein balance determines postprandial FGF21 response in humans. Am J Physiol Endocrinol Metab 2023; 325:E491-E499. [PMID: 37729024 PMCID: PMC10874651 DOI: 10.1152/ajpendo.00241.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/05/2023] [Accepted: 09/14/2023] [Indexed: 09/22/2023]
Abstract
Biological mechanisms to promote dietary balance remain unclear. Fibroblast growth factor 21 (FGF21) has been suggested to contribute to such potential regulation considering that FGF21 1) is genetically associated with carbohydrate/sugar and protein intake in opposite directions, 2) is secreted after sugar ingestion and protein restriction, and 3) pharmacologically reduces sugar and increases protein intake in rodents. To gain insight of the nature of this potential regulation, we aimed to study macronutrient interactions in the secretory regulation of FGF21 in healthy humans. We conducted a randomized, double-blinded, crossover meal study (NCT05061485), wherein healthy volunteers consumed a sucrose drink, a sucrose + protein drink, and a sucrose + fat drink (matched sucrose content), and compared postprandial FGF21 responses between the three macronutrient combinations. Protein suppressed the sucrose-induced FGF21 secretion [incremental area under the curve (iAUC) for sucrose 484 ± 127 vs. sucrose + protein -35 ± 49 pg/mL × h, P < 0.001]. The same could not be demonstrated for fat (iAUC 319 ± 102 pg/mL × h, P = 203 for sucrose + fat vs. sucrose). We found no indications that regulators of glycemic homeostasis could explain this effect. This indicates that FGF21 responds to disproportionate intake of sucrose relative to protein acutely within a meal, and that protein outweighs sucrose in FGF21 regulation. Together with previous findings, our results suggests that FGF21 might act to promote macronutrient balance and sufficient protein intake.NEW & NOTEWORTHY Here we test the interactions between sugar, protein, and fat in human FGF21 regulation and demonstrate that protein, but not fat, suppresses sugar-induced FGF21 secretion. This indicates that protein outweighs the effects of sugar in the secretory regulation of FGF21, and could suggest that the nutrient-specific appetite-regulatory actions of FGF21 might prioritize ensuring sufficient protein intake over limiting sugar intake.
Collapse
Affiliation(s)
- Stina Ramne
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lisanne Duizer
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Mette S Nielsen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Niklas Rye Jørgensen
- Department of Clinical Biochemistry, Copenhagen University Hospital, Glostrup, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Jens S Svenningsen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Niels Grarup
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anders Sjödin
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Anne Raben
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
- Department of Clinical and Translational Research, Copenhagen University Hospital-Diabetes Center Copenhagen, Herlev, Denmark
| | - Matthew P Gillum
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Bakaj I, Pocai A. Metabolism-based approaches for autosomal dominant polycystic kidney disease. Front Mol Biosci 2023; 10:1126055. [PMID: 36876046 PMCID: PMC9980902 DOI: 10.3389/fmolb.2023.1126055] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 02/06/2023] [Indexed: 02/18/2023] Open
Abstract
Autosomal Dominant Polycystic Kidney Disease (ADPKD) leads to end stage kidney disease (ESKD) through the development and expansion of multiple cysts throughout the kidney parenchyma. An increase in cyclic adenosine monophosphate (cAMP) plays an important role in generating and maintaining fluid-filled cysts because cAMP activates protein kinase A (PKA) and stimulates epithelial chloride secretion through the cystic fibrosis transmembrane conductance regulator (CFTR). A vasopressin V2 receptor antagonist, Tolvaptan, was recently approved for the treatment of ADPKD patients at high risk of progression. However additional treatments are urgently needed due to the poor tolerability, the unfavorable safety profile, and the high cost of Tolvaptan. In ADPKD kidneys, alterations of multiple metabolic pathways termed metabolic reprogramming has been consistently reported to support the growth of rapidly proliferating cystic cells. Published data suggest that upregulated mTOR and c-Myc repress oxidative metabolism while enhancing glycolytic flux and lactic acid production. mTOR and c-Myc are activated by PKA/MEK/ERK signaling so it is possible that cAMPK/PKA signaling will be upstream regulators of metabolic reprogramming. Novel therapeutics opportunities targeting metabolic reprogramming may avoid or minimize the side effects that are dose limiting in the clinic and improve on the efficacy observed in human ADPKD with Tolvaptan.
Collapse
Affiliation(s)
- Ivona Bakaj
- Cardiovascular and Metabolism, Janssen Research and Development, Spring House, PA, United States
| | - Alessandro Pocai
- Cardiovascular and Metabolism, Janssen Research and Development, Spring House, PA, United States
| |
Collapse
|
6
|
Tian S, Zhao H, Song H. Shared signaling pathways and targeted therapy by natural bioactive compounds for obesity and type 2 diabetes. Crit Rev Food Sci Nutr 2022; 64:5039-5056. [PMID: 36397728 DOI: 10.1080/10408398.2022.2148090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Epidemiological evidence showed that patients suffering from obesity and T2DM are significantly at higher risk for chronic low-grade inflammation, oxidative stress, nonalcoholic fatty liver (NAFLD) and intestinal flora imbalance. Increasing evidence of pathological characteristics illustrates that some common signaling pathways participate in the occurrence, progression, treatment, and prevention of obesity and T2DM. These signaling pathways contain the pivotal players in glucose and lipid metabolism, e.g., AMPK, PI3K/AKT, FGF21, Hedgehog, Notch, and WNT; the inflammation response, for instance, Nrf2, MAPK, NF- kB, and JAK/STAT. Bioactive compounds from plants have emerged as key food components related to healthy status and disease prevention. They can act as signaling molecules to initiate or mediate signaling transduction that regulates cell function and homeostasis to repair and re-functionalize the damaged tissues and organs. Therefore, it is crucial to continuously investigate bioactive compounds as sources of new pharmaceuticals for obesity and T2DM. This review provides comprehensive information of the commonly shared signaling pathways between obesity and T2DM, and we also summarize the therapeutic bioactive compounds that may serve as anti-obesity and/or anti-diabetes therapeutics by regulating these associated pathways, which contribute to improving glucose and lipid metabolism, attenuating inflammation.
Collapse
Affiliation(s)
- Shuhua Tian
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Haizhen Zhao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Haizhao Song
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| |
Collapse
|
7
|
Yan A, Zhao Y, Zhang L, Liang X, Zhang X, Liang F, Nian S, Li X, Sun Z, Li K, Zhao YF. β-Hydroxybutyrate upregulates FGF21 expression through inhibition of histone deacetylases in hepatocytes. Open Life Sci 2022; 17:856-864. [PMID: 36045720 PMCID: PMC9372706 DOI: 10.1515/biol-2022-0095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/02/2022] [Accepted: 05/09/2022] [Indexed: 11/15/2022] Open
Abstract
Fibroblast growth factor 21 (FGF21) is secreted by hepatocytes as a peptide hormone to regulate glucose and lipid metabolism. FGF21 promotes hepatic ketogenesis and increases ketone body utilization in starvation. Histones are the target molecules of nutrients in regulating hepatic metabolic homeostasis. However, the effect of ketone bodies on FGF21 expression and the involvement of histones in it is not clear yet. The present study observed the effects of β-hydroxybutyrate (β-OHB), the main physiological ketone body, on FGF21 expression in human hepatoma HepG2 cells in vitro and in mice in vivo, and the role of histone deacetylases (HDACs) in β-OHB-regulated FGF21 expression was investigated. The results showed that β-OHB significantly upregulated FGF21 gene expression and increased FGF21 protein levels while it inhibited HDACs’ activity in HepG2 cells. HDACs’ inhibition by entinostat upregulated FGF21 expression and eliminated β-OHB-stimulated FGF21 expression in HepG2 cells. Intraperitoneal injections of β-OHB in mice resulted in the elevation of serum β-OHB and the inhibition of hepatic HDACs’ activity. Meanwhile, hepatic FGF21 expression and serum FGF21 levels were significantly increased in β-OHB-treated mice compared with the control. It is suggested that β-OHB upregulates FGF21 expression through inhibition of HDACs’ activity in hepatocytes.
Collapse
Affiliation(s)
- Aili Yan
- Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, 710021, China
| | - Yanyan Zhao
- Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, 710021, China
| | - Lijun Zhang
- Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, 710021, China
| | - Xiangyan Liang
- Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, 710021, China
| | - Xiaochun Zhang
- Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, 710021, China
| | - Fenli Liang
- Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, 710021, China
| | - Shen Nian
- Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, 710021, China
| | - Xinhua Li
- Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, 710021, China
| | - Zhuo Sun
- Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, 710021, China
| | - Ke Li
- Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, 710021, China
| | - Yu-Feng Zhao
- Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, 710021, China
| |
Collapse
|
8
|
Jonsson WO, Mirek ET, Wek RC, Anthony TG. Activation and execution of the hepatic integrated stress response by dietary essential amino acid deprivation is amino acid specific. FASEB J 2022; 36:e22396. [PMID: 35690926 PMCID: PMC9204950 DOI: 10.1096/fj.202200204rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/16/2022] [Accepted: 05/24/2022] [Indexed: 12/30/2022]
Abstract
Dietary removal of an essential amino acid (EAA) triggers the integrated stress response (ISR) in liver. Herein, we explored the mechanisms that activate the ISR and execute changes in transcription and translation according to the missing EAA. Wild‐type mice and mice lacking general control nonderepressible 2 (Gcn2) were fed an amino acid complete diet or a diet devoid of either leucine or sulfur amino acids (methionine and cysteine). Serum and liver leucine concentrations were significantly reduced within the first 6 h of feeding a diet lacking leucine, corresponding with modest, GCN2‐dependent increases in Atf4 mRNA translation and induction of selected ISR target genes (Fgf21, Slc7a5, Slc7a11). In contrast, dietary removal of the sulfur amino acids lowered serum methionine, but not intracellular methionine, and yet hepatic mRNA abundance of Atf4, Fgf21, Slc7a5, Slc7a11 substantially increased regardless of GCN2 status. Liver tRNA charging levels did not correlate with intracellular EAA concentrations or GCN2 status and remained similar to mice fed a complete diet. Furthermore, loss of Gcn2 increased the occurrence of ribosome collisions in liver and derepressed mechanistic target of rapamycin complex 1 signal transduction, but these changes did not influence execution of the ISR. We conclude that ISR activation is directed by intracellular EAA concentrations, but ISR execution is not. Furthermore, a diet devoid of sulfur amino acids does not require GCN2 for the ISR to execute changes to the transcriptome.
Collapse
Affiliation(s)
- William O Jonsson
- Department of Nutritional Sciences, School of Environmental and Biological Sciences, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey, USA
| | - Emily T Mirek
- Department of Nutritional Sciences, School of Environmental and Biological Sciences, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey, USA
| | - Ronald C Wek
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Tracy G Anthony
- Department of Nutritional Sciences, School of Environmental and Biological Sciences, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey, USA
| |
Collapse
|
9
|
Melick CH, Lama-Sherpa TD, Curukovic A, Jewell JL. G-Protein Coupled Receptor Signaling and Mammalian Target of Rapamycin Complex 1 Regulation. Mol Pharmacol 2022; 101:181-190. [PMID: 34965982 PMCID: PMC9092479 DOI: 10.1124/molpharm.121.000302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 11/29/2021] [Indexed: 11/30/2022] Open
Abstract
The mammalian target of rapamycin (mTOR) senses upstream stimuli to regulate numerous cellular functions such as metabolism, growth, and autophagy. Increased activation of mTOR complex 1 (mTORC1) is typically observed in human disease and continues to be an important therapeutic target. Understanding the upstream regulators of mTORC1 will provide a crucial link in targeting hyperactivated mTORC1 in human disease. In this mini-review, we will discuss the regulation of mTORC1 by upstream stimuli, with a specific focus on G-protein coupled receptor signaling to mTORC1. SIGNIFICANCE STATEMENT: mTORC1 is a master regulator of many cellular processes and is often hyperactivated in human disease. Therefore, understanding the molecular underpinnings of G-protein coupled receptor signaling to mTORC1 will undoubtedly be beneficial for human disease.
Collapse
Affiliation(s)
- Chase H Melick
- Department of Molecular Biology, Harold C. Simmons Comprehensive Cancer, and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Tshering D Lama-Sherpa
- Department of Molecular Biology, Harold C. Simmons Comprehensive Cancer, and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Adna Curukovic
- Department of Molecular Biology, Harold C. Simmons Comprehensive Cancer, and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jenna L Jewell
- Department of Molecular Biology, Harold C. Simmons Comprehensive Cancer, and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
10
|
High Protein Diet Feeding Aggravates Hyperaminoacidemia in Mice Deficient in Proglucagon-Derived Peptides. Nutrients 2022; 14:nu14050975. [PMID: 35267952 PMCID: PMC8912298 DOI: 10.3390/nu14050975] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/15/2022] [Accepted: 02/22/2022] [Indexed: 02/04/2023] Open
Abstract
(1) Background: Protein stimulates the secretion of glucagon (GCG), which can affect glucose metabolism. This study aimed to analyze the metabolic effect of a high-protein diet (HPD) in the presence or absence of proglucagon-derived peptides, including GCG and GLP-1. (2) Methods: The response to HPD feeding for 7 days was analyzed in mice deficient in proglucagon-derived peptides (GCGKO). (3) Results: In both control and GCGKO mice, food intake and body weight decreased with HPD and intestinal expression of Pepck increased. HPD also decreased plasma FGF21 levels, regardless of the presence of proglucagon-derived peptides. In control mice, HPD increased the hepatic expression of enzymes involved in amino acid metabolism without the elevation of plasma amino acid levels, except branched-chain amino acids. On the other hand, HPD-induced changes in the hepatic gene expression were attenuated in GCGKO mice, resulting in marked hyperaminoacidemia with lower blood glucose levels; the plasma concentration of glutamine exceeded that of glucose in HPD-fed GCGKO mice. (4) Conclusions: Increased plasma amino acid levels are a common feature in animal models with blocked GCG activity, and our results underscore that GCG plays essential roles in the homeostasis of amino acid metabolism in response to altered protein intake.
Collapse
|
11
|
Glucagon transiently stimulates mTORC1 by activation of an EPAC/Rap1 signaling axis. Cell Signal 2021; 84:110010. [PMID: 33872697 PMCID: PMC8169602 DOI: 10.1016/j.cellsig.2021.110010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 11/22/2022]
Abstract
Activation of the protein kinase mechanistic target of rapamycin (mTOR) in both complexes 1 and 2 (mTORC1/2) in the liver is repressed during fasting and rapidly stimulated in response to a meal. The effect of feeding on hepatic mTORC1/2 is attributed to an increase in plasma levels of nutrients, such as amino acids, and insulin. By contrast, fasting is associated with elevated plasma levels of glucagon, which is conventionally viewed as having a counter-regulatory role to insulin. More recently an expanded role for glucagon action in post-prandial metabolism has been demonstrated. Herein we investigated the impact of insulin and glucagon on mTORC1/2 activation. In H4IIE and HepG2 cultures, insulin enhanced phosphorylation of the mTORC1 substrates S6K1 and 4E-BP1. Surprisingly, the effect of glucagon on mTORC1 was biphasic, wherein there was an acute increase in phosphorylation of S6K1 and 4E-BP1 over the first hour of exposure, followed by latent suppression. The transient stimulatory effect of glucagon on mTORC1 was not additive with insulin, suggesting convergent signaling. Glucagon enhanced cAMP levels and mTORC1 stimulation required activation of the glucagon receptor, PI3K/Akt, and exchange protein activated by cAMP (EPAC). EPAC acts as the guanine nucleotide exchange factor for the small GTPase Rap1. Rap1 expression enhanced S6K1 phosphorylation and glucagon addition to culture medium promoted Rap1-GTP loading. Signaling through mTORC1 acts to regulate protein synthesis and we found that glucagon promoted an EPAC-dependent increase in protein synthesis. Overall, the findings support that glucagon elicits acute activation of mTORC1/2 by an EPAC-dependent increase in Rap1-GTP.
Collapse
|
12
|
Welles JE, Toro AL, Sunilkumar S, Stevens SA, Purnell CJ, Kimball SR, Dennis MD. Retinol-binding protein 4 mRNA translation in hepatocytes is enhanced by activation of mTORC1. Am J Physiol Endocrinol Metab 2021; 320:E306-E315. [PMID: 33284085 PMCID: PMC8260359 DOI: 10.1152/ajpendo.00494.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Increased expression of the peptide hormone retinol-binding protein 4 (RBP4) has been implicated in the development of insulin resistance, type 2 diabetes, and visual dysfunction. Prior investigations of the mechanisms that influence RBP4 synthesis have focused solely on changes in mRNA abundance. Yet, the production of many secreted proteins is controlled at the level of mRNA translation, as it allows for a rapid and reversible change in expression. Herein, we evaluated Rbp4 mRNA translation using sucrose density gradient centrifugation. In the liver of fasted rodents, Rbp4 mRNA translation was low. In response to refeeding, Rbp4 mRNA translation was enhanced and RBP4 levels in serum were increased. In H4IIE cells, refreshing culture medium promoted Rbp4 mRNA translation and expression of the protein. Rbp4 mRNA abundance was not increased by either experimental manipulation. Enhanced Rbp4 mRNA translation was associated with activation of the kinase mechanistic target of rapamycin in complex 1 (mTORC1) and enhanced phosphorylation of the translational repressor eukaryotic initiation factor 4E-binding protein 1 (4E-BP1). In H4IIE cells, expression of a 4E-BP1 variant that is unable to be phosphorylated by mTORC1 or suppression of mTORC1 with rapamycin attenuated activity of a luciferase reporter encoding the Rbp4 mRNA 5'-untranslated region (UTR). Purine substitutions to disrupt a terminal oligopyrimidine (TOP)-like sequence in the Rbp4 5'-UTR prevented the suppressive effect of rapamycin on reporter activity. Rapamycin also prevented upregulation of Rbp4 mRNA translation in the liver and reduced serum levels of RBP4 in response to feeding. Overall, the findings support a model in which nutrient-induced activation of mTORC1 upregulates Rbp4 mRNA translation to promote RBP4 synthesis.NEW & NOTEWORTHY RBP4 plays a critical role in metabolic disease, yet relatively little is known about the mechanisms that regulate its production. Herein, we provide evidence for translational control of RBP4 synthesis. We demonstrate that activation of the nutrient-sensitive kinase mTORC1 promotes hepatic Rbp4 mRNA translation. The findings support the possibility that targeting Rbp4 mRNA translation represents an alternative to current therapeutic interventions that lower serum RBP4 concentration by promoting urinary excretion of the protein.
Collapse
Affiliation(s)
- Jaclyn E Welles
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania
| | - Allyson L Toro
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania
| | - Siddharth Sunilkumar
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania
| | - Shaunaci A Stevens
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania
| | - Carson J Purnell
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania
| | - Scot R Kimball
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania
| | - Michael D Dennis
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania
| |
Collapse
|