1
|
Kilroe SP, Fulford J, Holwerda AM, Jackman SR, Lee BP, Gijsen AP, van Loon LJC, Wall BT. Short-term muscle disuse induces a rapid and sustained decline in daily myofibrillar protein synthesis rates. Am J Physiol Endocrinol Metab 2020; 318:E117-E130. [PMID: 31743039 DOI: 10.1152/ajpendo.00360.2019] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Short-term muscle disuse has been reported to lower both postabsorptive and postprandial myofibrillar protein synthesis rates. This study assessed the impact of disuse on daily myofibrillar protein synthesis rates following short-term (2 and 7 days) muscle disuse under free living conditions. Thirteen healthy young men (age: 20 ± 1 yr; BMI: 23 ± 1 kg/m-2) underwent 7 days of unilateral leg immobilization via a knee brace, with the nonimmobilized leg acting as a control. Four days before immobilization participants ingested 400 mL of 70% deuterated water, with 50-mL doses consumed daily thereafter. Upper leg bilateral MRI scans and muscle biopsies were collected before and after 2 and 7 days of immobilization to determine quadriceps volume and daily myofibrillar protein synthesis rates. Immobilization reduced quadriceps volume in the immobilized leg by 1.7 ± 0.3 and 6.7 ± 0.6% after 2 and 7 days, respectively, with no changes in the control leg. Over the 1-wk immobilization period, myofibrillar protein synthesis rates were 36 ± 4% lower in the immobilized (0.81 ± 0.04%/day) compared with the control (1.26 ± 0.04%/day) leg (P < 0.001). Myofibrillar protein synthesis rates in the control leg did not change over time (P = 0.775), but in the immobilized leg they were numerically lower during the 0- to 2-day period (16 ± 6%, 1.11 ± 0.09%/day, P = 0.153) and were significantly lower during the 2- to 7-day period (44 ± 5%, 0.70 ± 0.06%/day, P < 0.001) when compared with the control leg. We conclude that 1 wk of muscle disuse induces a rapid and sustained decline in daily myofibrillar protein synthesis rates in healthy young men.
Collapse
Affiliation(s)
- Sean P Kilroe
- Department of Sport and Health Sciences, College of Life and Environmental Science, University of Exeter, Exeter, United Kingdom
| | - Jonathan Fulford
- Peninsula National Institute for Health Research Clinical Research Facility, College of Medicine and Health, University of Exeter, Exeter, United Kingdom
| | - Andrew M Holwerda
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Sarah R Jackman
- Department of Sport and Health Sciences, College of Life and Environmental Science, University of Exeter, Exeter, United Kingdom
| | - Benjamin P Lee
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, Devon, United Kingdom
| | - Annemie P Gijsen
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Luc J C van Loon
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Benjamin T Wall
- Department of Sport and Health Sciences, College of Life and Environmental Science, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
2
|
Abstract
Muscle protein breakdown (MPB) is an important metabolic component of muscle remodeling, adaptation to training, and increasing muscle mass. Degradation of muscle proteins occurs via the integration of three main systems—autophagy and the calpain and ubiquitin-proteasome systems. These systems do not operate independently, and the regulation is complex. Complete degradation of a protein requires some combination of the systems. Determination of MPB in humans is technically challenging, leading to a relative dearth of information. Available information on the dynamic response of MPB primarily comes from stable isotopic methods with expression and activity measures providing complementary information. It seems clear that resistance exercise increases MPB, but not as much as the increase in muscle protein synthesis. Both hyperaminoacidemia and hyperinsulinemia inhibit the post-exercise response of MPB. Available data do not allow a comprehensive examination of the mechanisms behind these responses. Practical nutrition recommendations for interventions to suppress MPB following exercise are often made. However, it is likely that some degree of increased MPB following exercise is an important component for optimal remodeling. At this time, it is not possible to determine the impact of nutrition on any individual muscle protein. Thus, until we can develop and employ better methods to elucidate the role of MPB following exercise and the response to nutrition, recommendations to optimize post exercise nutrition should focus on the response of muscle protein synthesis. The aim of this review is to provide a comprehensive examination of the state of knowledge, including methodological considerations, of the response of MPB to exercise and nutrition in humans.
Collapse
|
3
|
Tran L, Langlais PR, Hoffman N, Roust L, Katsanos CS. Mitochondrial ATP synthase β-subunit production rate and ATP synthase specific activity are reduced in skeletal muscle of humans with obesity. Exp Physiol 2018; 104:126-135. [PMID: 30362197 DOI: 10.1113/ep087278] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 10/23/2018] [Indexed: 01/02/2023]
Abstract
NEW FINDINGS What is the central question of this study? Humans with obesity have lower ATP synthesis in muscle along with lower content of the β-subunit of the ATP synthase (β-F1-ATPase), the catalytic component of the ATP synthase. Does lower synthesis rate of β-F1-ATPase in muscle contribute to these responses in humans with obesity? What is the main finding and its importance? Humans with obesity have a lower synthesis rate of β-F1 -ATPase and ATP synthase specific activity in muscle. These findings indicate that reduced production of subunits forming the ATP synthase in muscle may contribute to impaired generation of ATP in obesity. ABSTRACT The content of the β-subunit of the ATP synthase (β-F1 -ATPase), which forms the catalytic site of the enzyme ATP synthase, is reduced in muscle of obese humans, along with a reduced capacity for ATP synthesis. We studied 18 young (37 ± 8 years) subjects of which nine were lean (BMI = 23 ± 2 kg m-2 ) and nine were obese (BMI = 34 ± 3 kg m-2 ) to determine the fractional synthesis rate (FSR) and gene expression of β-F1 -ATPase, as well as the specific activity of the ATP synthase. FSR of β-F1 -ATPase was determined using a combination of isotope tracer infusion and muscle biopsies. Gene expression of β-F1 -ATPase and specific activity of the ATP synthase were determined in the muscle biopsies. When compared to lean, obese subjects had lower muscle β-F1 -ATPase FSR (0.10 ± 0.05 vs. 0.06 ± 0.03% h-1 ; P < 0.05) and protein expression (P < 0.05), but not mRNA expression (P > 0.05). Across subjects, abundance of β-F1 -ATPase correlated with the FSR of β-F1 -ATPase (P < 0.05). The specific activity of muscle ATP synthase was lower in obese compared to lean subjects (0.035 ± 0.004 vs. 0.042 ± 0.007 arbitrary units; P < 0.05), but this difference was not significant after the activity of the ATP synthase was adjusted to the β-F1 -ATPase content (P > 0.05). Obesity impairs the synthesis of β-F1 -ATPase in muscle at the translational level, reducing the content of β-F1 -ATPase in parallel with reduced capacity for ATP generation via the ATP synthase complex.
Collapse
Affiliation(s)
- Lee Tran
- Center for Metabolic and Vascular Biology, Arizona State University, Tempe, AZ, 85297, USA
| | - Paul R Langlais
- College of Medicine, Mayo Clinic in Arizona, Scottsdale, AZ, 85259, USA
| | - Nyssa Hoffman
- Center for Metabolic and Vascular Biology, Arizona State University, Tempe, AZ, 85297, USA
| | - Lori Roust
- College of Medicine, Mayo Clinic in Arizona, Scottsdale, AZ, 85259, USA
| | - Christos S Katsanos
- Center for Metabolic and Vascular Biology, Arizona State University, Tempe, AZ, 85297, USA.,College of Medicine, Mayo Clinic in Arizona, Scottsdale, AZ, 85259, USA
| |
Collapse
|
4
|
Wilkinson DJ. Historical and contemporary stable isotope tracer approaches to studying mammalian protein metabolism. MASS SPECTROMETRY REVIEWS 2018; 37:57-80. [PMID: 27182900 PMCID: PMC5763415 DOI: 10.1002/mas.21507] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 04/22/2016] [Indexed: 06/05/2023]
Abstract
Over a century ago, Frederick Soddy provided the first evidence for the existence of isotopes; elements that occupy the same position in the periodic table are essentially chemically identical but differ in mass due to a different number of neutrons within the atomic nucleus. Allied to the discovery of isotopes was the development of some of the first forms of mass spectrometers, driven forward by the Nobel laureates JJ Thomson and FW Aston, enabling the accurate separation, identification, and quantification of the relative abundance of these isotopes. As a result, within a few years, the number of known isotopes both stable and radioactive had greatly increased and there are now over 300 stable or radioisotopes presently known. Unknown at the time, however, was the potential utility of these isotopes within biological disciplines, it was soon discovered that these stable isotopes, particularly those of carbon (13 C), nitrogen (15 N), oxygen (18 O), and hydrogen (2 H) could be chemically introduced into organic compounds, such as fatty acids, amino acids, and sugars, and used to "trace" the metabolic fate of these compounds within biological systems. From this important breakthrough, the age of the isotope tracer was born. Over the following 80 yrs, stable isotopes would become a vital tool in not only the biological sciences, but also areas as diverse as forensics, geology, and art. This progress has been almost exclusively driven through the development of new and innovative mass spectrometry equipment from IRMS to GC-MS to LC-MS, which has allowed for the accurate quantitation of isotopic abundance within samples of complex matrices. This historical review details the development of stable isotope tracers as metabolic tools, with particular reference to their use in monitoring protein metabolism, highlighting the unique array of tools that are now available for the investigation of protein metabolism in vivo at a whole body down to a single protein level. Importantly, it will detail how this development has been closely aligned to the technological development within the area of mass spectrometry. Without the dedicated development provided by these mass spectrometrists over the past century, the use of stable isotope tracers within the field of protein metabolism would not be as widely applied as it is today, this relationship will no doubt continue to flourish in the future and stable isotope tracers will maintain their importance as a tool within the biological sciences for many years to come. © 2016 The Authors. Mass Spectrometry Reviews Published by Wiley Periodicals, Inc. Mass Spec Rev.
Collapse
Affiliation(s)
- Daniel James Wilkinson
- MRC‐ARUK Centre for Musculoskeletal Ageing Research, Clinical, Metabolic and Molecular PhysiologyUniversity of Nottingham, Royal Derby Hospital CentreDerbyUnited Kingdom
| |
Collapse
|
5
|
Baker L, Lanz B, Andreola F, Ampuero J, Wijeyesekera A, Holmes E, Deutz N. New technologies - new insights into the pathogenesis of hepatic encephalopathy. Metab Brain Dis 2016; 31:1259-1267. [PMID: 27696270 DOI: 10.1007/s11011-016-9906-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 09/04/2016] [Indexed: 12/16/2022]
Abstract
Hepatic encephalopathy (HE) is a neuropsychiatric syndrome which frequently accompanies acute or chronic liver disease. It is characterized by a variety of symptoms of different severity such as cognitive deficits and impaired motor functions. Currently, HE is seen as a consequence of a low grade cerebral oedema associated with the formation of cerebral oxidative stress and deranged cerebral oscillatory networks. However, the pathogenesis of HE is still incompletely understood as liver dysfunction triggers exceptionally complex metabolic derangements in the body which need to be investigated by appropriate technologies. This review summarizes technological approaches presented at the ISHEN conference 2014 in London which may help to gain new insights into the pathogenesis of HE. Dynamic in vivo 13C nuclear magnetic resonance spectroscopy was performed to analyse effects of chronic liver failure in rats on brain energy metabolism. By using a genomics approach, microRNA expression changes were identified in plasma of animals with acute liver failure which may be involved in interorgan interactions and which may serve as organ-specific biomarkers for tissue damage during acute liver failure. Genomics were also applied to analyse glutaminase gene polymorphisms in patients with liver cirrhosis indicating that haplotype-dependent glutaminase activity is an important pathogenic factor in HE. Metabonomics represents a promising approach to better understand HE, by capturing the systems level metabolic changes associated with disease in individuals, and enabling monitoring of metabolic phenotypes in real time, over a time course and in response to treatment, to better inform clinical decision making. Targeted fluxomics allow the determination of metabolic reaction rates thereby discriminating metabolite level changes in HE in terms of production, consumption and clearance.
Collapse
Affiliation(s)
- Luisa Baker
- Department of Clinical Science and Services, Royal Veterinary College, Hatfield, Hertfordshire, UK
| | - Bernard Lanz
- Laboratory for Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.
| | - Fausto Andreola
- Liver Failure Group, UCL Institute for Liver and Digestive Health, UCL Medical School, Royal Free Hospital, London, UK
| | - Javier Ampuero
- Inter-Centre Unit of Digestive Diseases, Virgen Macarena - Virgen del Rocío University Hospitals, Sevilla, Spain
- Instituto de Biomedicina de Sevilla, Sevilla, Spain
| | - Anisha Wijeyesekera
- Division of Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
| | - Elaine Holmes
- Division of Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
| | - Nicolaas Deutz
- Department of Health & Kinesiology, Texas A&M University, College Station, TX, USA
| |
Collapse
|
6
|
Fluckey JD, Lambert BS, Greene NP, Shimkus KL, Cardin JM, Riechman SE, Crouse SF. Reply to letter to the editor: to D2O or not to D2O? What are the reasons we D2O it at all? Am J Physiol Endocrinol Metab 2015; 308:E928-31. [PMID: 25980015 DOI: 10.1152/ajpendo.00136.2015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|