1
|
Lambert DC, Kane J, Slaton A, Abramowitz MK. Associations of Metabolic Syndrome and Abdominal Obesity with Anion Gap Metabolic Acidosis among US Adults. KIDNEY360 2022; 3:1842-1851. [PMID: 36514392 PMCID: PMC9717647 DOI: 10.34067/kid.0002402022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/12/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Obesity is a recently identified risk factor for metabolic acidosis and anion gap elevations in the absence of CKD. Metabolic acidosis is a treatable condition with substantial adverse effects on human health. Additional investigations are needed to characterize at-risk populations and explore potential mechanisms. We hypothesized metabolic syndrome (MetS) and waist circumference (WC) would be closely associated with this pathology. METHODS Adult participants from NHANES 1999-2018 meeting study criteria were compiled as main (n=31,163) and fasting (n=12,860) cohorts. Regression models adjusted for dietary acid, eGFR, and other factors examined associations of WC and MetS features with anion gap metabolic acidosis and its components (serum bicarbonate ≤23 mEq/L and anion gap >95th percentile). RESULTS Greater WC and MetS features were associated with progressively lower bicarbonate, higher anion gap, and greater odds ratios (OR) of metabolic acidosis (MA) and anion gap metabolic acidosis (AGMA). Compared with the reference, participants with the highest WC had ORs for MA and AGMA of 2.26; 95% CI, 1.96 to 2.62 and 2.89; 95% CI, 1.97 to 4.21; those with three and four versus zero MetS features had ORs for AGMA of 2.52; 95% CI, 1.95 to 2.94 and 3.05; 95% CI, 2.16 to 3.82. Associations of body mass index with outcomes were attenuated or absent after adjustment for WC or MetS. Findings were preserved after excluding eGFR <90 ml/min per 1.73 m2 and albuminuria. A lower MA cutoff (<22 mEq/L) raised the estimate of association between MetS and MA (OR for three and four vs zero features: 3.56; 95% CI, 2.53 to 5.02 and 5.44; 95% CI, 3.66 to 8.08). CONCLUSIONS Metabolic diseases are characterized by metabolic acidosis and anion gap elevations. Metabolic dysfunction may predispose patients without CKD to systemic acidosis from endogenous sources. Comprehensive acid-base analyses may be informative in patients with metabolic diseases.
Collapse
Affiliation(s)
- Douglas C Lambert
- Department of General Internal Medicine, Northwell Health, Great Neck, New York
- Department of Medicine, Section of Obesity Medicine, Northwell Health, New York
| | - Jamie Kane
- Department of General Internal Medicine, Northwell Health, Great Neck, New York
- Department of Medicine, Section of Obesity Medicine, Northwell Health, New York
| | - Anthony Slaton
- Department of General Internal Medicine, Northwell Health, Great Neck, New York
| | - Matthew K Abramowitz
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York
- Department of Medicine, Institute for Aging Research, Albert Einstein College of Medicine, Bronx, New York
- Department of Medicine, Diabetes Research Center, Albert Einstein College of Medicine, Bronx, New York
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
2
|
Wang H, Wan X, Pilch PF, Ellisen LW, Fried SK, Liu L. An AMPK-dependent, non-canonical p53 pathway plays a key role in adipocyte metabolic reprogramming. eLife 2020; 9:63665. [PMID: 33320092 PMCID: PMC7758072 DOI: 10.7554/elife.63665] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/14/2020] [Indexed: 12/27/2022] Open
Abstract
It has been known adipocytes increase p53 expression and activity in obesity, however, only canonical p53 functions (i.e. senescence and apoptosis) are attributed to inflammation-associated metabolic phenotypes. Whether or not p53 is directly involved in mature adipocyte metabolic regulation remains unclear. Here we show p53 protein expression can be up-regulated in adipocytes by nutrient starvation without activating cell senescence, apoptosis, or a death-related p53 canonical pathway. Inducing the loss of p53 in mature adipocytes significantly reprograms energy metabolism and this effect is primarily mediated through a AMP-activated protein kinase (AMPK) pathway and a novel downstream transcriptional target, lysosomal acid lipase (LAL). The pathophysiological relevance is further demonstrated in a conditional and adipocyte-specific p53 knockout mouse model. Overall, these data support a non-canonical p53 function in the regulation of adipocyte energy homeostasis and indicate that the dysregulation of this pathway may be involved in developing metabolic dysfunction in obesity.
Collapse
Affiliation(s)
- Hong Wang
- Departments of Pharmacology & Experimental Therapeutics, Boston University, School of Medicine, Boston, United States
| | - Xueping Wan
- Departments of Pharmacology & Experimental Therapeutics, Boston University, School of Medicine, Boston, United States
| | - Paul F Pilch
- Biochemistry, Boston University, School of Medicine, Boston, United States
| | - Leif W Ellisen
- Massachusetts General Hospital Cancer Center, Boston, United States.,Harvard Medical School, Boston, United States
| | - Susan K Fried
- Diabetes Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Libin Liu
- Departments of Pharmacology & Experimental Therapeutics, Boston University, School of Medicine, Boston, United States
| |
Collapse
|
3
|
Krycer JR, Quek LE, Francis D, Fazakerley DJ, Elkington SD, Diaz-Vegas A, Cooke KC, Weiss FC, Duan X, Kurdyukov S, Zhou PX, Tambar UK, Hirayama A, Ikeda S, Kamei Y, Soga T, Cooney GJ, James DE. Lactate production is a prioritized feature of adipocyte metabolism. J Biol Chem 2020; 295:83-98. [PMID: 31690627 PMCID: PMC6952601 DOI: 10.1074/jbc.ra119.011178] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/31/2019] [Indexed: 12/14/2022] Open
Abstract
Adipose tissue is essential for whole-body glucose homeostasis, with a primary role in lipid storage. It has been previously observed that lactate production is also an important metabolic feature of adipocytes, but its relationship to adipose and whole-body glucose disposal remains unclear. Therefore, using a combination of metabolic labeling techniques, here we closely examined lactate production of cultured and primary mammalian adipocytes. Insulin treatment increased glucose uptake and conversion to lactate, with the latter responding more to insulin than did other metabolic fates of glucose. However, lactate production did not just serve as a mechanism to dispose of excess glucose, because we also observed that lactate production in adipocytes did not solely depend on glucose availability and even occurred independently of glucose metabolism. This suggests that lactate production is prioritized in adipocytes. Furthermore, knocking down lactate dehydrogenase specifically in the fat body of Drosophila flies lowered circulating lactate and improved whole-body glucose disposal. These results emphasize that lactate production is an additional metabolic role of adipose tissue beyond lipid storage and release.
Collapse
Affiliation(s)
- James R Krycer
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia; Charles Perkins Centre, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Lake-Ee Quek
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales 2006, Australia; School of Mathematics and Statistics, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Deanne Francis
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia; Charles Perkins Centre, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Daniel J Fazakerley
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia; Charles Perkins Centre, The University of Sydney, Sydney, New South Wales 2006, Australia; Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, United Kingdom
| | - Sarah D Elkington
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia; Charles Perkins Centre, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Alexis Diaz-Vegas
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia; Charles Perkins Centre, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Kristen C Cooke
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia; Charles Perkins Centre, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Fiona C Weiss
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia; Charles Perkins Centre, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Xiaowen Duan
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia; Charles Perkins Centre, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Sergey Kurdyukov
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia; Charles Perkins Centre, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Ping-Xin Zhou
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9038; School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Uttam K Tambar
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9038
| | - Akiyoshi Hirayama
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0052, Japan; AMED-CREST, Japan Agency for Medical Research and Development (AMED), 1-7-1 Otemachi, Chiyoda-Ku, Tokyo 100-0004, Japan
| | - Satsuki Ikeda
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0052, Japan
| | - Yushi Kamei
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0052, Japan
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0052, Japan; AMED-CREST, Japan Agency for Medical Research and Development (AMED), 1-7-1 Otemachi, Chiyoda-Ku, Tokyo 100-0004, Japan
| | - Gregory J Cooney
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales 2006, Australia; Sydney Medical School, The University of Sydney, Sydney, New South Wales 2006, Australia.
| | - David E James
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia; Charles Perkins Centre, The University of Sydney, Sydney, New South Wales 2006, Australia; Sydney Medical School, The University of Sydney, Sydney, New South Wales 2006, Australia.
| |
Collapse
|
4
|
Krycer JR, Elkington SD, Diaz-Vegas A, Cooke KC, Burchfield JG, Fisher-Wellman KH, Cooney GJ, Fazakerley DJ, James DE. Mitochondrial oxidants, but not respiration, are sensitive to glucose in adipocytes. J Biol Chem 2020; 295:99-110. [PMID: 31744882 PMCID: PMC6952605 DOI: 10.1074/jbc.ra119.011695] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Indexed: 11/06/2022] Open
Abstract
Insulin action in adipose tissue is crucial for whole-body glucose homeostasis, with insulin resistance being a major risk factor for metabolic diseases such as type 2 diabetes. Recent studies have proposed mitochondrial oxidants as a unifying driver of adipose insulin resistance, serving as a signal of nutrient excess. However, neither the substrates for nor sites of oxidant production are known. Because insulin stimulates glucose utilization, we hypothesized that glucose oxidation would fuel respiration, in turn generating mitochondrial oxidants. This would impair insulin action, limiting further glucose uptake in a negative feedback loop of "glucose-dependent" insulin resistance. Using primary rat adipocytes and cultured 3T3-L1 adipocytes, we observed that insulin increased respiration, but notably this occurred independently of glucose supply. In contrast, glucose was required for insulin to increase mitochondrial oxidants. Despite rising to similar levels as when treated with other agents that cause insulin resistance, glucose-dependent mitochondrial oxidants failed to cause insulin resistance. Subsequent studies revealed a temporal relationship whereby mitochondrial oxidants needed to increase before the insulin stimulus to induce insulin resistance. Together, these data reveal that (a) adipocyte respiration is principally fueled from nonglucose sources; (b) there is a disconnect between respiration and oxidative stress, whereby mitochondrial oxidant levels do not rise with increased respiration unless glucose is present; and (c) mitochondrial oxidative stress must precede the insulin stimulus to cause insulin resistance, explaining why short-term, insulin-dependent glucose utilization does not promote insulin resistance. These data provide additional clues to mechanistically link nutrient excess to adipose insulin resistance.
Collapse
Affiliation(s)
- James R Krycer
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia; Charles Perkins Centre, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Sarah D Elkington
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia; Charles Perkins Centre, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Alexis Diaz-Vegas
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia; Charles Perkins Centre, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Kristen C Cooke
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia; Charles Perkins Centre, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - James G Burchfield
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia; Charles Perkins Centre, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Kelsey H Fisher-Wellman
- East Carolina Diabetes and Obesity Institute, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27834
| | - Gregory J Cooney
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales 2006, Australia; Sydney Medical School, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Daniel J Fazakerley
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia; Charles Perkins Centre, The University of Sydney, Sydney, New South Wales 2006, Australia; Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, United Kingdom.
| | - David E James
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia; Charles Perkins Centre, The University of Sydney, Sydney, New South Wales 2006, Australia; Sydney Medical School, The University of Sydney, Sydney, New South Wales 2006, Australia.
| |
Collapse
|
5
|
Diverse repertoire of human adipocyte subtypes develops from transcriptionally distinct mesenchymal progenitor cells. Proc Natl Acad Sci U S A 2019; 116:17970-17979. [PMID: 31420514 PMCID: PMC6731669 DOI: 10.1073/pnas.1906512116] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Single-cell sequencing technologies have revealed an unexpectedly broad repertoire of cells required to mediate complex functions in multicellular organisms. Despite the multiple roles of adipose tissue in maintaining systemic metabolic homeostasis, adipocytes are thought to be largely homogenous with only 2 major subtypes recognized in humans so far. Here we report the existence and characteristics of 4 distinct human adipocyte subtypes, and of their respective mesenchymal progenitors. The phenotypes of these distinct adipocyte subtypes are differentially associated with key adipose tissue functions, including thermogenesis, lipid storage, and adipokine secretion. The transcriptomic signature of "brite/beige" thermogenic adipocytes reveals mechanisms for iron accumulation and protection from oxidative stress, necessary for mitochondrial biogenesis and respiration upon activation. Importantly, this signature is enriched in human supraclavicular adipose tissue, confirming that these cells comprise thermogenic depots in vivo, and explain previous findings of a rate-limiting role of iron in adipose tissue browning. The mesenchymal progenitors that give rise to beige/brite adipocytes express a unique set of cytokines and transcriptional regulators involved in immune cell modulation of adipose tissue browning. Unexpectedly, we also find adipocyte subtypes specialized for high-level expression of the adipokines adiponectin or leptin, associated with distinct transcription factors previously implicated in adipocyte differentiation. The finding of a broad adipocyte repertoire derived from a distinct set of mesenchymal progenitors, and of the transcriptional regulators that can control their development, provides a framework for understanding human adipose tissue function and role in metabolic disease.
Collapse
|
6
|
Krishna MS, Revathy VM, Jaleel A. Adipocytes utilize sucrose as an energy source—Effect of different carbohydrates on adipocyte differentiation. J Cell Physiol 2019; 235:891-899. [DOI: 10.1002/jcp.29003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 05/31/2019] [Indexed: 01/05/2023]
Affiliation(s)
- Mahesh S. Krishna
- Division of Cardiovascular Disease and Diabetes Biology Diabetes Biology Lab Rajiv Gandhi Centre for Biotechnology Kerala India
| | - V. M. Revathy
- Division of Cardiovascular Disease and Diabetes Biology Diabetes Biology Lab Rajiv Gandhi Centre for Biotechnology Kerala India
| | - Abdul Jaleel
- Division of Cardiovascular Disease and Diabetes Biology Diabetes Biology Lab Rajiv Gandhi Centre for Biotechnology Kerala India
| |
Collapse
|
7
|
Sabater D, Arriarán S, Romero MDM, Agnelli S, Remesar X, Fernández-López JA, Alemany M. Cultured 3T3L1 adipocytes dispose of excess medium glucose as lactate under abundant oxygen availability. Sci Rep 2014; 4:3663. [PMID: 24413028 PMCID: PMC5379156 DOI: 10.1038/srep03663] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 12/16/2013] [Indexed: 12/27/2022] Open
Abstract
White adipose tissue (WAT) produces lactate in significant amount from circulating glucose, especially in obesity;Under normoxia, 3T3L1 cells secrete large quantities of lactate to the medium, again at the expense of glucose and proportionally to its levels. Most of the glucose was converted to lactate with only part of it being used to synthesize fat. Cultured adipocytes were largely anaerobic, but this was not a Warburg-like process. It is speculated that the massive production of lactate, is a process of defense of the adipocyte, used to dispose of excess glucose. This way, the adipocyte exports glucose carbon (and reduces the problem of excess substrate availability) to the liver, but the process may be also a mechanism of short-term control of hyperglycemia. The in vivo data obtained from adipose tissue of male rats agree with this interpretation.
Collapse
Affiliation(s)
- David Sabater
- 1] Department of Nutrition and Food Science, Faculty of Biology, University of Barcelona, Barcelona 08028, Spain [2] Institute of Biomedicine, University of Barcelona, Barcelona 08028, Spain [3] CIBER Obesity and Nutrition, Institute of Health Carlos III, Spain
| | - Sofía Arriarán
- 1] Department of Nutrition and Food Science, Faculty of Biology, University of Barcelona, Barcelona 08028, Spain [2] Institute of Biomedicine, University of Barcelona, Barcelona 08028, Spain [3] CIBER Obesity and Nutrition, Institute of Health Carlos III, Spain
| | - María del Mar Romero
- 1] Department of Nutrition and Food Science, Faculty of Biology, University of Barcelona, Barcelona 08028, Spain [2] Institute of Biomedicine, University of Barcelona, Barcelona 08028, Spain [3] CIBER Obesity and Nutrition, Institute of Health Carlos III, Spain
| | - Silvia Agnelli
- 1] Department of Nutrition and Food Science, Faculty of Biology, University of Barcelona, Barcelona 08028, Spain [2] Institute of Biomedicine, University of Barcelona, Barcelona 08028, Spain [3] CIBER Obesity and Nutrition, Institute of Health Carlos III, Spain
| | - Xavier Remesar
- 1] Department of Nutrition and Food Science, Faculty of Biology, University of Barcelona, Barcelona 08028, Spain [2] Institute of Biomedicine, University of Barcelona, Barcelona 08028, Spain [3] CIBER Obesity and Nutrition, Institute of Health Carlos III, Spain
| | - José Antonio Fernández-López
- 1] Department of Nutrition and Food Science, Faculty of Biology, University of Barcelona, Barcelona 08028, Spain [2] Institute of Biomedicine, University of Barcelona, Barcelona 08028, Spain [3] CIBER Obesity and Nutrition, Institute of Health Carlos III, Spain
| | - Marià Alemany
- 1] Department of Nutrition and Food Science, Faculty of Biology, University of Barcelona, Barcelona 08028, Spain [2] Institute of Biomedicine, University of Barcelona, Barcelona 08028, Spain [3] CIBER Obesity and Nutrition, Institute of Health Carlos III, Spain
| |
Collapse
|
8
|
Chahal J, Chen CC, Rane MJ, Moore JP, Barati MT, Song Y, Villafuerte BC. Regulation of insulin-response element binding protein-1 in obesity and diabetes: potential role in impaired insulin-induced gene transcription. Endocrinology 2008; 149:4829-36. [PMID: 18566119 PMCID: PMC2582919 DOI: 10.1210/en.2007-1693] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Accepted: 06/11/2008] [Indexed: 11/19/2022]
Abstract
One of the major mechanisms by which insulin modulates glucose homeostasis is through regulation of gene expression. Therefore, reduced expression of transcription factors that are required for insulin-regulated gene expression may contribute to insulin resistance. We recently identified insulin response element-binding protein-1 (IRE-BP1) as a transcription factor that binds and transactivates multiple insulin-responsive genes, but the regulation of IRE-BP1 in vivo is largely unknown. In this study, we show that IRE-BP1 interacts with the insulin response sequence of the IGF-I, IGFBP-1, and IGFBP-3 genes using chromatin immunoprecipitation assay. Furthermore, activation by IRE-BP1 is sequence specific and mimics that of the insulin effect on gene transcription. Tissue expression of IRE-BP1 is 50- to 200-fold higher in classical insulin target compared with nontarget tissues in lean animals, with a significantly reduced level of expression in the skeletal muscle and adipose tissue in obese and diabetic animals. In the liver, IRE-BP1 is localized to the nucleus in lean rats but is sequestered to the cytoplasm in obese and diabetic animals. Cytoplasmic sequestration appears to be related to inhibition of insulin-mediated phosphatidylinositol-3 kinase signaling. Therefore, in diabetes and obesity, the mechanisms involved in reducing the transactivation of the insulin response sequence by IRE-BP1 include decreased gene transcription and nuclear exclusion to prevent DNA binding. Our study supports the notion that IRE-BP1 may be relevant to the action of insulin in vivo and may play a role in the development of insulin resistance and diabetes.
Collapse
Affiliation(s)
- Jaspreet Chahal
- Department of Medicine, Division of Endocrinology & Metabolism, University of Louisville School of Medicine, 580 South Preston Street, Delia Baxter Building, Room 119E, Louisville, Kentucky 40202, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Shi H, Strader AD, Woods SC, Seeley RJ. The effect of fat removal on glucose tolerance is depot specific in male and female mice. Am J Physiol Endocrinol Metab 2007; 293:E1012-20. [PMID: 17652151 DOI: 10.1152/ajpendo.00649.2006] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Energy is stored predominately as lipid in white adipose tissue (WAT) in distinct anatomical locations, with each site exerting different effects on key biological processes, including glucose homeostasis. To determine the relative contributions of subcutaneous and visceral WAT on glucose homeostasis, comparable amounts of adipose tissue from abdominal subcutaneous inguinal WAT (IWAT), intra-abdominal retroperitoneal WAT (RWAT), male gonadal epididymal WAT (EWAT), or female gonadal parametrial WAT (PWAT) were removed. Gonadal fat removal in both male and female chow-fed lean mice resulted in lowered glucose levels across glucose tolerance tests. Female lean C57BL/6J mice as well as male and female lean FVBN mice significantly improved glucose tolerance, indicated by decreased areas under glucose clearance curves. For the C57BL/6J mice maintained on a high-fat butter-based diet, glucose homeostasis was improved only in female mice with PWAT removal. Removal of IWAT or RWAT did not affect glucose tolerance in either dietary condition. We conclude that WAT contribution to glucose homeostasis is depot specific, with male gonadal EWAT contributing to glucose homeostasis in the lean state, whereas female gonadal PWAT contributes to glucose homeostasis in both lean and obese mice. These data illustrate both critical differences among various WAT depots and how they influence glucose homeostasis and highlight important differences between males and females in glucose regulation.
Collapse
Affiliation(s)
- Haifei Shi
- University of Cincinnati, Cincinnati, Ohio 45237, USA
| | | | | | | |
Collapse
|
10
|
Guerra RLF, Prado WL, Cheik NC, Viana FP, Botero JP, Vendramini RC, Carlos IZ, Rossi EA, Dâmaso AR. Effects of 2 or 5 consecutive exercise days on adipocyte area and lipid parameters in Wistar rats. Lipids Health Dis 2007; 6:16. [PMID: 17605802 PMCID: PMC1933532 DOI: 10.1186/1476-511x-6-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2007] [Accepted: 07/02/2007] [Indexed: 11/21/2022] Open
Abstract
Background Exercise has been prescribed in the treatment and control of dyslipidemias and cholesterolemia, however, lipid responses to different training frequencies in hypercholesterolemic men have been inconsistent. We sought to verify if different frequencies of continuous moderate exercise (2 or 5 days/week, swimming) can, after 8 weeks, promote adaptations in adipocyte area and lipid parameters, as well as body weight and relative weight of tissues in normo and hypercholesterolemic adult male rats. Methods Normal cholesterol chow diet or cholesterol-rich diet (1% cholesterol plus 0.25% cholic acid) were freely given during 8 weeks to the rats divided in 6 experimentals groups: sedentary normal cholesterol chow diet (C); sedentary cholesterol-rich diet (H); 5× per week continuous training normal cholesterol chow diet (TC5) and cholesterol-rich diet (TH5); 2× per week continuos traning normal cholesterol chow diet (TC2) and cholesterol-rich diet (TH2). Results No changes were observed in lipid profile in normal cholesterol chow diet, but both 2 a 5 days/week exercise improved this profile in cholesterol-rich diet. Body weight gain was lower in exercised rats. Decrease in retroperitoneal and epididymal relative weights as well as reductions in adipocyte areas under all diets types were observed only in 5 days/week, while 2 days/week showed improvements mainly in cholesterol-rich diet rats. Conclusion Our results confirm the importance of exercise protocols to control dyslipidemias and obesity in rats. The effects of 5 days/week exercise were more pronounced compared with those of 2 consecutive days/week training.
Collapse
Affiliation(s)
- Ricardo LF Guerra
- Federal University of São Paulo – Baixada Santista, Health Science Center, Santos, Brazil
| | - Wagner L Prado
- Federal University of São Paulo – Baixada Santista, Health Science Center, Santos, Brazil
| | - Nádia C Cheik
- CCBS/Federal University of São Carlos, Department of Physiology Sciences, São Paulo, Brazil
| | - Fabiana P Viana
- CCBS/Federal University of São Carlos, Department of Physiology Sciences, São Paulo, Brazil
| | - João Paulo Botero
- CCBS/Federal University of São Carlos, Department of Physiology Sciences, São Paulo, Brazil
| | - Regina C Vendramini
- FCF/Paulista State University of Araraquara, Department of Food and Nutrition, São Paulo, Brazil
| | - Iracilda Z Carlos
- FCF/Paulista State University of Araraquara, Department of Food and Nutrition, São Paulo, Brazil
| | - Elizeu A Rossi
- FCF/Paulista State University of Araraquara, Department of Food and Nutrition, São Paulo, Brazil
| | - Ana R Dâmaso
- Federal University of São Paulo – Baixada Santista, Health Science Center, Santos, Brazil
| |
Collapse
|
11
|
Qvisth V, Hagström-Toft E, Moberg E, Sjöberg S, Bolinder J. Lactate release from adipose tissue and skeletal muscle in vivo: defective insulin regulation in insulin-resistant obese women. Am J Physiol Endocrinol Metab 2007; 292:E709-14. [PMID: 17077346 DOI: 10.1152/ajpendo.00104.2006] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To study the local tissue lactate production in the normal state and its possible disturbances in insulin resistance, rates of lactate release from adipose tissue (AT) and skeletal muscle (SM) were compared postabsorptively and during a hyperinsulinemic euglycemic clamp in 11 healthy nonobese and 11 insulin-resistant obese women. A combination of microdialysis, to measure interstitial lactate, and the 133Xe clearance technique, to determine local blood flow, were used. In the controls, local blood flow increased by 40% in SM (P<0.05) and remained unchanged in AT, whereas the interstitial-plasma difference in lactate doubled in AT (P<0.005) and was unaffected in SM during hyperinsulinemia. In the obese, blood flow and interstitial-plasma difference in lactate remained unchanged in both tissues during hyperinsulinemia. The lactate release (micromol100 g-1min-1) was 1.17+/-0.22 in SM and 0.43+/-0.11 in AT among the controls (P<0.01) and 0.86+/-0.23 in SM and 0.83+/-0.25 in AT among the obese women in the postabsorptive state. During insulin infusion, lactate release in the controls increased to 1.92+/-0.26 in SM (P<0.005) and to 1.14+/-0.22 in AT (P<0.005) but remained unchanged in the obese women. It is concluded that AT and SM are both significant sources of lactate release postabsorptively, and AT is at least as responsive to insulin as SM. The ability to increase lactate release in response to insulin is impaired in AT and SM in insulin-resistant obese women, involving defective insulin regulation of both tissue lactate metabolism and local blood flow.
Collapse
Affiliation(s)
- Veronica Qvisth
- Department of Medicine, Karolinska University Hospital-Huddinge, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
12
|
Bairras C, Ferrand C, Atgié C. Effect of tyramine, a dietary amine, on glycerol and lactate release by isolated adipocytes from old rats. J Physiol Biochem 2004; 59:161-7. [PMID: 15000446 DOI: 10.1007/bf03179911] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Amine degradation by adipocyte amine oxidases leads to the production of metabolites that interact with lipid and glucose metabolisms and their hormonal regulations. To further investigate these interactions, we determined the effect of a dietary amine, tyramine (TYR), on glycerol and lactate releases, respectively taken as indices of lipolytic and glycolytic activities of isolated adipocytes. Old male Wistar rats were used to prepare adipocytes by collagenase dissociation of retroperitoneal fat pads. The two tested doses of tyramine (10 microM and 1 mM) had no effect on basal glycerol release. On the other hand, TYR, at the highest dose tested (1 mM), weakly but significantly increased basal lactate release, which was elevated in adipocytes from old rats. Norepinephrine (NE), highly stimulated adipocyte lipolysis with a submaximal effect at 1 microM which was slightly but significantly inhibited by TYR 1 mM. Insulin 1 nM (INS) also poorly inhibited the NE-stimulated lipolysis in adipocytes isolated from old rats. TYR was able to potentiate the poor antilipolytic efficiency of INS. Under similar conditions, a high dose of NE greatly reduced lactate production and TYR (1 mM) reversed this inhibition of lactate release. INS was also able to totally reverse the inhibitory effect of NE on lactate release, but there was no potentiation between insulin and tyramine effects. It can be concluded that high doses of TYR interact with norepinephrine and insulin, at least on the control of glycerol and lactate release, by counteracting catecholamine effects and by mimicking insulin actions.
Collapse
Affiliation(s)
- C Bairras
- Unité de Nutrition et Signalisation Cellulaire (site d'Agen), Université Bordeaux 1--DUSA, Avenue Michel Serres, 47000 Agen, France
| | | | | |
Collapse
|
13
|
Enevoldsen LH, Stallknecht B, Fluckey JD, Galbo H. Effect of exercise training on in vivo insulin-stimulated glucose uptake in intra-abdominal adipose tissue in rats. Am J Physiol Endocrinol Metab 2000; 278:E25-34. [PMID: 10644533 DOI: 10.1152/ajpendo.2000.278.1.e25] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Intra-abdominal obesity may be crucial in the pathogenesis of the insulin-resistance syndrome, and training may alleviate this condition. We compared insulin-mediated glucose uptake in vivo in three intra-abdominal adipose tissues (ATs; retroperitoneal, parametrial, and mesenteric) and in subcutaneous AT and also studied the effect of training. Rats were either swim trained (15 wk, n = 9) or sedentary (n = 16). While the rats were under anesthesia, a hyperinsulinemic ( approximately 900 pM), euglycemic clamp was carried out and local glucose uptake was measured by both the 2-deoxy-D-[(3)H]glucose and microdialysis techniques. Blood flow was measured by microspheres. Upon insulin stimulation, blood flow generally decreased in AT. Flow was higher in mesenteric tissue than in other ATs, whereas insulin-mediated glucose uptake did not differ between ATs. Training doubled the glucose infusion rate during hyperinsulinemia, in part, reflecting an effect in muscle. During hyperinsulinemia, interstitial glucose concentrations were lower, glucose uptake per 100 g of tissue was higher in AT in trained compared with sedentary rats, and training influenced glucose uptake identically in all ATs. In conclusion, differences between ATs in insulin sensitivity with respect to glucose uptake do not explain that insulin resistance is associated with intra-abdominal rather than subcutaneous obesity. Furthermore, training may be beneficial by enhancing insulin sensitivity in intra-abdominal fat depots.
Collapse
Affiliation(s)
- L H Enevoldsen
- Department of Medical Physiology, The Panum Institute, University of Copenhagen, Denmark
| | | | | | | |
Collapse
|
14
|
Jansson PA, Larsson A, Smith U, Lönnroth P. Lactate release from the subcutaneous tissue in lean and obese men. J Clin Invest 1994; 93:240-6. [PMID: 8282793 PMCID: PMC293758 DOI: 10.1172/jci116951] [Citation(s) in RCA: 115] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Lactate concentration in the subcutaneous interstitial fluid and adipose tissue blood flow (ATBF, ml/100 g.min) were simultaneously measured with the microdialysis technique combined with 133Xe clearance in the abdominal and femoral subcutaneous adipose tissue in nine lean and nine obese men. The studies were performed both in the postabsorptive state and 2 h after an oral glucose load and the results compared to the lactate levels in arterialized venous plasma. After an overnight's fast, arterial lactate was 738 +/- 49 and 894 +/- 69 microM (mean +/- SE) (P < 0.05) in the lean and obese subjects, respectively. The interstitial lactate levels were significantly higher than blood lactate in both subject groups without any regional differences. Abdominal and femoral ATBF was 3.2 +/- 0.6 vs. 2.8 +/- 0.4 and 1.7 +/- 0.3 vs. 2.4 +/- 0.4 ml/100 g.min (P < 0.05) in lean and obese subjects, respectively. Mean apparent lactate release from the abdominal vs. femoral adipose tissue in the fasting state was 10.5 +/- 3.1 vs. 8.6 +/- 2.3 and 6.0 +/- 2.3 vs. 8.5 +/- 2.3 mumol/kg.min (NS) in lean and obese subjects, respectively. Both plasma and interstitial lactate levels increased significantly after an oral glucose load in both subject groups. However, apparent lactate release increased significantly only in the lean group. It is concluded that subcutaneous adipose tissue is a significant source of whole-body lactate release in the postabsorptive state and that this is further enhanced in obese subjects due to their large adipose mass.
Collapse
Affiliation(s)
- P A Jansson
- Department of Internal Medicine, University of Göteborg, Sahlgren's Hospital, Sweden
| | | | | | | |
Collapse
|
15
|
Abstract
Microdialysis of the abdominal subcutaneous tissue was performed in seven healthy normal weight subjects after an overnight fast and also after oral ingestion of 100g glucose. The lactate concentration in the interstitial water was compared with that in the venous and arterialized plasma from the cubital veins. In the postabsorptive state the lactate concentration in the subcutaneous tissue (1128 +/- 72 mumol/l, mean +/- SEM) was significantly higher (p less than 0.01) than that in both arterialized (722 +/- 72 mumol/l) and venous plasma (798 +/- 41 mumol/l). The oral glucose load further increased the lactate level in the subcutaneous tissue throughout the observation period of 2h. The kinetics for the increase in the lactate concentration was not apparently different in blood or tissue. The highest lactate levels were 1798 +/- 173 mumol/l in the subcutaneous tissue and 1199 +/- 150 mumol/l and 1275 +/- 123 mumol/l in arterialized and venous plasma, respectively. It is concluded that abdominal adipose tissue produces lactate both in the fasting state and after an oral glucose load. The data emphasize the importance of the adipose tissue as a significant source of lactate production in the body.
Collapse
Affiliation(s)
- P A Jansson
- Department of Medicine II. University of Gothenburg, Sahlgren's Hospital, Sweden
| | | | | |
Collapse
|