1
|
Majerczak J, Drzymala‐Celichowska H, Grandys M, Kij A, Kus K, Celichowski J, Krysciak K, Molik WA, Szkutnik Z, Zoladz JA. Exercise Training Decreases Nitrite Concentration in the Heart and Locomotory Muscles of Rats Without Changing the Muscle Nitrate Content. J Am Heart Assoc 2024; 13:e031085. [PMID: 38214271 PMCID: PMC10926815 DOI: 10.1161/jaha.123.031085] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 11/20/2023] [Indexed: 01/13/2024]
Abstract
BACKGROUND Skeletal muscles are postulated to be a potent regulator of systemic nitric oxide homeostasis. In this study, we aimed to evaluate the impact of physical training on the heart and skeletal muscle nitric oxide bioavailability (judged on the basis of intramuscular nitrite and nitrate) in rats. METHODS AND RESULTS Rats were trained on a treadmill for 8 weeks, performing mainly endurance running sessions with some sprinting runs. Muscle nitrite (NO2-) and nitrate (NO3-) concentrations were measured using a high-performance liquid chromatography-based method, while amino acids, pyruvate, lactate, and reduced and oxidized glutathione were determined using a liquid chromatography coupled with tandem mass spectrometry technique. The content of muscle nitrite reductases (electron transport chain proteins, myoglobin, and xanthine oxidase) was assessed by western immunoblotting. We found that 8 weeks of endurance training decreased basal NO2- in the locomotory muscles and in the heart, without changes in the basal NO3-. In the slow-twitch oxidative soleus muscle, the decrease in NO2- was already present after the first week of training, and the content of nitrite reductases remained unchanged throughout the entire period of training, except for the electron transport chain protein content, which increased no sooner than after 8 weeks of training. CONCLUSIONS Muscle NO2- level, opposed to NO3-, decreases in the time course of training. This effect is rapid and already visible in the slow-oxidative soleus after the first week of training. The underlying mechanisms of training-induced muscle NO2- decrease may involve an increase in the oxidative stress, as well as metabolite changes related to an increased muscle anaerobic glycolytic activity contributing to (1) direct chemical reduction of NO2- or (2) activation of muscle nitrite reductases.
Collapse
Affiliation(s)
- Joanna Majerczak
- Chair of Exercise Physiology and Muscle Bioenergetics, Faculty of Health SciencesJagiellonian University Medical CollegeKrakowPoland
| | - Hanna Drzymala‐Celichowska
- Department of Neurobiology, Faculty of Health SciencesPoznan University of Physical EducationPoznanPoland
- Department of Physiology and Biochemistry, Faculty of Health SciencesPoznan University of Physical EducationPoznanPoland
| | - Marcin Grandys
- Chair of Exercise Physiology and Muscle Bioenergetics, Faculty of Health SciencesJagiellonian University Medical CollegeKrakowPoland
| | - Agnieszka Kij
- Jagiellonian Centre for Experimental Therapeutics (JCET)Jagiellonian UniversityKrakowPoland
| | - Kamil Kus
- Jagiellonian Centre for Experimental Therapeutics (JCET)Jagiellonian UniversityKrakowPoland
| | - Jan Celichowski
- Department of Neurobiology, Faculty of Health SciencesPoznan University of Physical EducationPoznanPoland
| | - Katarzyna Krysciak
- Department of Neurobiology, Faculty of Health SciencesPoznan University of Physical EducationPoznanPoland
| | - Weronika A. Molik
- Chair of Exercise Physiology and Muscle Bioenergetics, Faculty of Health SciencesJagiellonian University Medical CollegeKrakowPoland
- University of FloridaGainesvilleFLUSA
| | | | - Jerzy A. Zoladz
- Chair of Exercise Physiology and Muscle Bioenergetics, Faculty of Health SciencesJagiellonian University Medical CollegeKrakowPoland
| |
Collapse
|
2
|
Mahajon B, Ramamurthy A, Nath R, Gautam MK, Das N, Roy P. Safety and Anti-Fatigue Activity of Ayurvedic Formulation <i>Sramahara Mahaakaasaya</i> - A Pre-Clinical Study. Toxicol Int 2023. [DOI: 10.18311/ti/2022/v29i4/30296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
Abstract
An experimental evaluation of anti-fatigue activity of Shramahara Mahaakashaaya (SM) and its applicability in sports medicine has been systematically evaluated. Aqueous, ethanolic and petroleum ether extracts of SM granules (200mg/kg) were studies for light-dark model test for assessment anti-anxiety effect, rota-rod test for assessment of the effect on muscle tone and muscle balance, weight loaded forced swimming test for assessment of anti-fatigue activity. The acute toxicity study of SM granules has also been evaluated as per the OECD 423. SM granules showed significant anti-fatigue activity in different experimental models and found safe up to 2000mg/kg body weight dose. The results provide an important basis for considering Shramahara Mahaakashaaya (SM) as an alternative medicine having anti-fatigue effects which can be further included in the sports medicine.
Collapse
|
3
|
Brown DE, Sharma S, Jablonski JA, Weltman A. Neural network methods for diagnosing patient conditions from cardiopulmonary exercise testing data. BioData Min 2022; 15:16. [PMID: 35964102 PMCID: PMC9375280 DOI: 10.1186/s13040-022-00299-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 06/27/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Cardiopulmonary exercise testing (CPET) provides a reliable and reproducible approach to measuring fitness in patients and diagnosing their health problems. However, the data from CPET consist of multiple time series that require training to interpret. Part of this training teaches the use of flow charts or nested decision trees to interpret the CPET results. This paper investigates the use of two machine learning techniques using neural networks to predict patient health conditions with CPET data in contrast to flow charts. The data for this investigation comes from a small sample of patients with known health problems and who had CPET results. The small size of the sample data also allows us to investigate the use and performance of deep learning neural networks on health care problems with limited amounts of labeled training and testing data. METHODS This paper compares the current standard for interpreting and classifying CPET data, flowcharts, to neural network techniques, autoencoders and convolutional neural networks (CNN). The study also investigated the performance of principal component analysis (PCA) with logistic regression to provide an additional baseline of comparison to the neural network techniques. RESULTS The patients in the sample had two primary diagnoses: heart failure and metabolic syndrome. All model-based testing was done with 5-fold cross-validation and metrics of precision, recall, F1 score, and accuracy. As a baseline for comparison to our models, the highest performing flow chart method achieved an accuracy of 77%. Both PCA regression and CNN achieved an average accuracy of 90% and outperformed the flow chart methods on all metrics. The autoencoder with logistic regression performed the best on each of the metrics and had an average accuracy of 94%. CONCLUSIONS This study suggests that machine learning and neural network techniques, in particular, can provide higher levels of accuracy with CPET data than traditional flowchart methods. Further, the CNN performed well with a small data set showing that these techniques can be designed to perform well on small data problems that are often found in health care and the life sciences. Further testing with larger data sets is needed to continue evaluating the use of machine learning to interpret CPET data.
Collapse
Affiliation(s)
- Donald E. Brown
- School of Data Science, University of Virginia, Charlottesville, VA USA
- Department of Engineering Systems and Environment, University of Virginia, Charlottesville, VA USA
| | - Suchetha Sharma
- School of Data Science, University of Virginia, Charlottesville, VA USA
| | - James A. Jablonski
- Department of Engineering Systems and Environment, University of Virginia, Charlottesville, VA USA
| | - Arthur Weltman
- Department of Kinesiology, University of Virginia, Charlottesville, VA USA
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia, Charlottesville, VA USA
| |
Collapse
|
4
|
Effect of Waters Enriched in O 2 by Injection or Electrolysis on Performance and the Cardiopulmonary and Acid-Base Response to High Intensity Exercise. Nutrients 2021; 13:nu13124320. [PMID: 34959872 PMCID: PMC8704091 DOI: 10.3390/nu13124320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 11/16/2022] Open
Abstract
Several brands of water enriched with O2 (O2-waters) are commercially available and are advertised as wellness and fitness waters with claims of physiological and psychological benefits, including improvement in exercise performance. However, these claims are based, at best, on anecdotal evidence or on a limited number of unreliable studies. The purpose of this double-blind randomized study was to compare the effect of two O2-waters (~110 mg O2·L-1) and a placebo (10 mg O2·L-1, i.e., close to the value at sea level, 9-12 mg O2·L-1) on the cardiopulmonary responses and on performance during high-intensity exercise. One of the two O2-waters and the placebo were prepared by injection of O2. The other O2-water was enriched by an electrolytic process. Twenty male subjects were randomly allocated to drink one of the three waters in a crossover study (2 L·day-1 × 2 days and 15 mL·kg-1 90 min before exercise). During each exercise trial, the subjects exercised at 95.9 ± 4.7% of maximal workload to volitional fatigue. Exercise time to exhaustion and the cardiopulmonary responses, arterial lactate concentration and pH were measured. Oxidative damage to proteins, lipids and DNA in blood was assessed at rest before exercise. Time to exhaustion (one-way ANOVA) and the responses to exercise (two-way ANOVA [Time; Waters] with repeated measurements) were not significantly different among the three waters. There was only a trend (p = 0.060) for a reduction in the time constant of the rapid component of VO2 kinetics with the water enriched in O2 by electrolysis. No difference in oxidative damage in blood was observed between the three waters. These results suggest that O2-water does not speed up cardiopulmonary response to exercise, does not increase performance and does not trigger oxidative stress measured at rest.
Collapse
|
5
|
Triantafyllidi H, Birmpa D, Benas D, Trivilou P, Fambri A, Iliodromitis EK. Cardiopulmonary exercise testing: The ABC for the Clinical Cardiologist. Cardiology 2021; 147:62-71. [PMID: 34649252 DOI: 10.1159/000520024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/04/2021] [Indexed: 11/19/2022]
Affiliation(s)
- Helen Triantafyllidi
- 2nd Department of Cardiology, National and Kapodistrian University of Athens, Medical School, ATTIKON Hospital, Athens, Greece
| | - Dionyssia Birmpa
- 2nd Department of Cardiology, National and Kapodistrian University of Athens, Medical School, ATTIKON Hospital, Athens, Greece
| | - Dimitrios Benas
- 2nd Department of Cardiology, National and Kapodistrian University of Athens, Medical School, ATTIKON Hospital, Athens, Greece
| | - Paraskevi Trivilou
- 2nd Department of Cardiology, National and Kapodistrian University of Athens, Medical School, ATTIKON Hospital, Athens, Greece
| | - Anastasia Fambri
- 2nd Department of Cardiology, National and Kapodistrian University of Athens, Medical School, ATTIKON Hospital, Athens, Greece
| | - Efstathios K Iliodromitis
- 2nd Department of Cardiology, National and Kapodistrian University of Athens, Medical School, ATTIKON Hospital, Athens, Greece
| |
Collapse
|
6
|
Andonian BJ, Hardy N, Bendelac A, Polys N, Kraus WE. Making Cardiopulmonary Exercise Testing Interpretable for Clinicians. Curr Sports Med Rep 2021; 20:545-552. [PMID: 34622820 PMCID: PMC8514056 DOI: 10.1249/jsr.0000000000000895] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ABSTRACT Cardiopulmonary exercise testing (CPET) is a dynamic clinical tool for determining the cause for a person's exercise limitation. CPET provides clinicians with fundamental knowledge of the coupling of external to internal respiration (oxygen and carbon dioxide) during exercise. Subtle perturbations in CPET parameters can differentiate exercise responses among individual patients and disease states. However, perhaps because of the challenges in interpretation given the amount and complexity of data obtained, CPET is underused. In this article, we review fundamental concepts in CPET data interpretation and visualization. We also discuss future directions for how to best use CPET results to guide clinical care. Finally, we share a novel three-dimensional graphical platform for CPET data that simplifies conceptualization of organ system-specific (cardiac, pulmonary, and skeletal muscle) exercise limitations. Our goal is to make CPET testing more accessible to the general medical provider and make the test of greater use in the medical toolbox.
Collapse
Affiliation(s)
| | | | | | | | - William E. Kraus
- Duke Molecular Physiology Institute, Duke University, Durham, NC
| |
Collapse
|
7
|
Wakasugi T, Morishita S, Kaida K, Ikegame K, Uchiyama Y, Domen K. Muscle oxygen extraction and lung function are related to exercise tolerance after allogeneic hematopoietic stem cell transplantation. Support Care Cancer 2021; 29:6039-6048. [PMID: 33786668 DOI: 10.1007/s00520-021-06178-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 03/24/2021] [Indexed: 11/30/2022]
Abstract
PURPOSE This study aimed to investigate the relationship between exercise intolerance, muscle oxidative metabolism, and cardiopulmonary function following allogeneic hematopoietic stem cell transplantation (allo-HSCT) in a sterile isolation room setting. METHODS This was a prospective observational cohort study conducted in a single center. Fourteen patients with hematopoietic malignancies who had undergone allo-HSCT were included in this study from June 2015 to April 2020. Patients received donor HSCT after high dose-chemotherapy and total-body irradiation. Physical activity was limited during treatments. Outcome measures included body anthropometric measurements, exercise tolerance tests using the ramp protocol, pulmonary function tests, and near-infrared spectroscopy (NIRS) measurements. Data of pre- and posttransplant measurements were compared using the paired t test or nonparametric Wilcoxon U test. Associations were assessed using the Pearson or nonparametric Spearman correlations. RESULTS NIRS showed reduced muscle consumption and extraction of oxygen in the posttransplant period compared to the pretransplant period (ΔStO2 min pre: -18.6% vs. post: -13.0%, P = 0.04; ΔHHb max pre: 4.21μmol/l vs. post: 3.31μmol/l: P = 0.048). Exercise tolerance had reduced following allo-HSCT (Peak workload pre: 70.3 W vs. post: 58.0 W: P = 0.014). Furthermore, exercise intolerance was associated with pulmonary function, muscle oxygen consumption, and muscle oxygen extraction (all P <0.05). CONCLUSION This analysis revealed that exercise intolerance following allo-HSCT was associated with pulmonary dysfunction and muscle oxidative dysfunction. These findings could help identify the physical function associated with impaired tissue oxygen transport leading to exercise intolerance following allo-HSCT.
Collapse
Affiliation(s)
- Tatsushi Wakasugi
- Department of Rehabilitation, Hyogo College of Medicine College Hospital, 1-1 Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan.
| | - Shinichiro Morishita
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
- Department of Rehabilitation Medicine, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Katsuji Kaida
- Division of Hematology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Kazuhiro Ikegame
- Division of Hematology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Yuki Uchiyama
- Department of Rehabilitation Medicine, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Kazuhisa Domen
- Department of Rehabilitation Medicine, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| |
Collapse
|
8
|
Zouhal H, Ben Abderrahman A, Khodamoradi A, Saeidi A, Jayavel A, Hackney AC, Laher I, Algotar AM, Jabbour G. Effects of physical training on anthropometrics, physical and physiological capacities in individuals with obesity: A systematic review. Obes Rev 2020; 21:e13039. [PMID: 32383553 DOI: 10.1111/obr.13039] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/07/2020] [Accepted: 04/07/2020] [Indexed: 12/11/2022]
Abstract
Increasing the amount of physical activity is an important strategy for weight loss. This systematic review summarizes recent findings on the effects of physical training on anthropometric characteristics, physical performances and physiological capacities in individuals with overweight and obesity. A systematic literature search strategy was conducted from inception until June 2019 using four electronic databases that identified 2,708 records. After screening for titles, abstracts and full texts, 116 studies were included in our final analysis. Both aerobic (e.g., endurance training) and anaerobic training (e.g., high-intensity training, resistance training) improved body composition and physical fitness indicators in adults, adolescents and children with obesity (effect size: 0.08 < d < 2.67, trivial to very large). This systematic review suggests that both low- and high-intensity training significantly reduced body weight and fat mass while increasing fat-free mass in individuals with obesity (effect size: 0.04 <d <3.2, trivial to very large). A significant increase in VO2max also occurs in individuals with obesity in response to aerobic training or high-intensity interval training (effect size: 0.13 < d < 6.24, trivial to very large). Further studies are needed to define the optimal combination of training intensity and duration needed to produce the most efficacious results in individuals with obesity.
Collapse
Affiliation(s)
- Hassane Zouhal
- Department of Sport Sciences, University of Rennes, M2S (Laboratoire Mouvement, Sport, Santé), Rennes, France
| | | | - Arash Khodamoradi
- Young Researchers and Elite Club, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Ayoub Saeidi
- Department of Physical Education, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Ayyappan Jayavel
- SRM College of Physiotherapy, SRM Institute of Science and Technology, Kattankulathur Chengalpattu (DT), India
| | - Anthony C Hackney
- Department of Exercise & Sport Science; Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Ismail Laher
- Department of Anesthesiology, Pharmacology& Therapeutics, University of British Columbia, Vancouver, Canada
| | - Amit M Algotar
- Department of Family and Community Medicine, University of Arizona Tucson, Arizona, USA
| | - Georges Jabbour
- Department of Sport Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| |
Collapse
|
9
|
Jeong IC, Bychkov D, Searson PC. Wearable Devices for Precision Medicine and Health State Monitoring. IEEE Trans Biomed Eng 2020; 66:1242-1258. [PMID: 31021744 DOI: 10.1109/tbme.2018.2871638] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Wearable technologies will play an important role in advancing precision medicine by enabling measurement of clinically-relevant parameters describing an individual's health state. The lifestyle and fitness markets have provided the driving force for the development of a broad range of wearable technologies that can be adapted for use in healthcare. Here we review existing technologies currently used for measurement of the four primary vital signs: temperature, heart rate, respiration rate, and blood pressure, along with physical activity, sweat, and emotion. We review the relevant physiology that defines the measurement needs and evaluate the different methods of signal transduction and measurement modalities for the use of wearables in healthcare.
Collapse
|
10
|
Clinical significance of rectus femoris diameter in heart failure patients. Heart Vessels 2019; 35:672-680. [PMID: 31701229 DOI: 10.1007/s00380-019-01534-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 11/01/2019] [Indexed: 10/25/2022]
Abstract
Heart failure (HF) is often accompanied by skeletal muscle weakness and exercise intolerance, which are known as prognostic factors of HF. Comprehensive evaluation of physical function is important, but it is not commonly conducted because of the lack of equipment or appropriate expertise. Measurement of rectus femoris diameter (RFD) by ultrasound is convenient and noninvasive, but it has not been clarified that RFD could represent physical functions in HF patients. This study evaluated 185 consecutive HF patients and underwent assessment including RFD, grip power (GP), knee extension strength (KES), skeletal muscle index (SMI), nutrition status, cardiopulmonary exercise testing, and New York Heart Association (NYHA) functional class. RFD was related with NYHA class and significantly correlated with GP, KES, SMI, body mass index, pre-albumin level, geriatric nutritional risk index, and peak VO2 (r = 0.631, 0.676, 0.510, 0.568, 0.380, 0.539, 0.527, respectively; p < 0.001). Multivariate regression analysis revealed that estimated glomerular filtration rate (β = 0.551) and RFD (β = 0.326) were predictive factors of peak VO2. Gender, age, brain natriuretic peptide level, left ventricular ejection fraction, and hemoglobin level were the other explanatory parameters. The cut off value of RFD for sarcopenia diagnosis was estimated as 15 mm (sensitivity = 0.767 and specificity = 0.808). RFD is a simple and useful marker which reflects skeletal muscle strength/volume, exercise tolerance, nutrition status, and NYHA class. It is also associated with sarcopenia in HF patients.
Collapse
|
11
|
Gourine AV, Ackland GL. Cardiac Vagus and Exercise. Physiology (Bethesda) 2019; 34:71-80. [PMID: 30540229 PMCID: PMC6383634 DOI: 10.1152/physiol.00041.2018] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/26/2018] [Accepted: 10/29/2018] [Indexed: 01/09/2023] Open
Abstract
Lower resting heart rate and high autonomic vagal activity are strongly associated with superior exercise capacity, maintenance of which is essential for general well-being and healthy aging. Recent evidence obtained in experimental studies using the latest advances in molecular neuroscience, combined with human exercise physiology, physiological modeling, and genomic data suggest that the strength of cardiac vagal activity causally determines our ability to exercise.
Collapse
Affiliation(s)
- Alexander V Gourine
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology and Pharmacology, University College London , London , United Kingdom
| | - Gareth L Ackland
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London , London , United Kingdom
| |
Collapse
|
12
|
Tempest GD, Parfitt G. Prefrontal oxygenation and the acoustic startle eyeblink response during exercise: A test of the dual-mode model. Psychophysiology 2017; 54:1070-1080. [PMID: 28370024 DOI: 10.1111/psyp.12858] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 01/04/2017] [Accepted: 02/13/2017] [Indexed: 12/01/2022]
Abstract
The interplay between the prefrontal cortex and amygdala is proposed to explain the regulation of affective responses (pleasure/displeasure) during exercise as outlined in the dual-mode model. However, due to methodological limitations the dual-mode model has not been fully tested. In this study, prefrontal oxygenation (using near-infrared spectroscopy) and amygdala activity (reflected by eyeblink amplitude using acoustic startle methodology) were recorded during exercise standardized to metabolic processes: 80% of ventilatory threshold (below VT), at the VT, and at the respiratory compensation point (RCP). Self-reported tolerance of the intensity of exercise was assessed prior to, and affective responses recorded during exercise. The results revealed that, as the intensity of exercise became more challenging (from below VT to RCP), prefrontal oxygenation was larger and eyeblink amplitude and affective responses were reduced. Below VT and at VT, larger prefrontal oxygenation was associated with larger eyeblink amplitude. At the RCP, prefrontal oxygenation was greater in the left than right hemisphere, and eyeblink amplitude explained significant variance in affective responses (with prefrontal oxygenation) and self-reported tolerance. These findings highlight the role of the prefrontal cortex and potentially the amygdala in the regulation of affective (particularly negative) responses during exercise at physiologically challenging intensities (above VT). In addition, a psychophysiological basis of self-reported tolerance is indicated. This study provides some support of the dual-mode model and insight into the neural basis of affective responses during exercise.
Collapse
Affiliation(s)
- Gavin D Tempest
- Alliance for Research in Exercise, Nutrition and Activity (ARENA), Sansom Institute for Health Research, School of Health Sciences, University of South Australia, Adelaide, South Australia, Australia.,Université Côte d'Azur, Laboratoire Motricité Humaine Expertise Sport Santé (LAMHESS), Nice, France
| | - Gaynor Parfitt
- Alliance for Research in Exercise, Nutrition and Activity (ARENA), Sansom Institute for Health Research, School of Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
13
|
van der Zwaard S, Jaspers RT, Blokland IJ, Achterberg C, Visser JM, den Uil AR, Hofmijster MJ, Levels K, Noordhof DA, de Haan A, de Koning JJ, van der Laarse WJ, de Ruiter CJ. Oxygenation Threshold Derived from Near-Infrared Spectroscopy: Reliability and Its Relationship with the First Ventilatory Threshold. PLoS One 2016; 11:e0162914. [PMID: 27631607 PMCID: PMC5025121 DOI: 10.1371/journal.pone.0162914] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 08/30/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Near-infrared spectroscopy (NIRS) measurements of oxygenation reflect O2 delivery and utilization in exercising muscle and may improve detection of a critical exercise threshold. PURPOSE First, to detect an oxygenation breakpoint (Δ[O2HbMb-HHbMb]-BP) and compare this breakpoint to ventilatory thresholds during a maximal incremental test across sexes and training status. Second, to assess reproducibility of NIRS signals and exercise thresholds and investigate confounding effects of adipose tissue thickness on NIRS measurements. METHODS Forty subjects (10 trained male cyclists, 10 trained female cyclists, 11 endurance trained males and 9 recreationally trained males) performed maximal incremental cycling exercise to determine Δ[O2HbMb-HHbMb]-BP and ventilatory thresholds (VT1 and VT2). Muscle haemoglobin and myoglobin O2 oxygenation ([HHbMb], [O2HbMb], SmO2) was determined in m. vastus lateralis. Δ[O2HbMb-HHbMb]-BP was determined by double linear regression. Trained cyclists performed the maximal incremental test twice to assess reproducibility. Adipose tissue thickness (ATT) was determined by skinfold measurements. RESULTS Δ[O2HbMb-HHbMb]-BP was not different from VT1, but only moderately related (r = 0.58-0.63, p<0.001). VT1 was different across sexes and training status, whereas Δ[O2HbMb-HHbMb]-BP differed only across sexes. Reproducibility was high for SmO2 (ICC = 0.69-0.97), Δ[O2HbMb-HHbMb]-BP (ICC = 0.80-0.88) and ventilatory thresholds (ICC = 0.96-0.99). SmO2 at peak exercise and at occlusion were strongly related to adipose tissue thickness (r2 = 0.81, p<0.001; r2 = 0.79, p<0.001). Moreover, ATT was related to asymmetric changes in Δ[HHbMb] and Δ[O2HbMb] during incremental exercise (r = -0.64, p<0.001) and during occlusion (r = -0.50, p<0.05). CONCLUSION Although the oxygenation threshold is reproducible and potentially a suitable exercise threshold, VT1 discriminates better across sexes and training status during maximal stepwise incremental exercise. Continuous-wave NIRS measurements are reproducible, but strongly affected by adipose tissue thickness.
Collapse
Affiliation(s)
- Stephan van der Zwaard
- Department of Human Movement Sciences, Vrije Universiteit Amsterdam, MOVE Research Institute Amsterdam, the Netherlands
- * E-mail:
| | - Richard T. Jaspers
- Department of Human Movement Sciences, Vrije Universiteit Amsterdam, MOVE Research Institute Amsterdam, the Netherlands
| | - Ilse J. Blokland
- Department of Human Movement Sciences, Vrije Universiteit Amsterdam, MOVE Research Institute Amsterdam, the Netherlands
| | - Chantal Achterberg
- Department of Human Movement Sciences, Vrije Universiteit Amsterdam, MOVE Research Institute Amsterdam, the Netherlands
| | - Jurrian M. Visser
- Department of Human Movement Sciences, Vrije Universiteit Amsterdam, MOVE Research Institute Amsterdam, the Netherlands
| | - Anne R. den Uil
- Department of Human Movement Sciences, Vrije Universiteit Amsterdam, MOVE Research Institute Amsterdam, the Netherlands
| | - Mathijs J. Hofmijster
- Department of Human Movement Sciences, Vrije Universiteit Amsterdam, MOVE Research Institute Amsterdam, the Netherlands
- Faculty of Sports and Nutrition, Amsterdam University of Applied Sciences, Amsterdam, the Netherlands
| | - Koen Levels
- Department of Human Movement Sciences, Vrije Universiteit Amsterdam, MOVE Research Institute Amsterdam, the Netherlands
| | - Dionne A. Noordhof
- Department of Human Movement Sciences, Vrije Universiteit Amsterdam, MOVE Research Institute Amsterdam, the Netherlands
| | - Arnold de Haan
- Department of Human Movement Sciences, Vrije Universiteit Amsterdam, MOVE Research Institute Amsterdam, the Netherlands
| | - Jos J. de Koning
- Department of Human Movement Sciences, Vrije Universiteit Amsterdam, MOVE Research Institute Amsterdam, the Netherlands
| | | | - Cornelis J. de Ruiter
- Department of Human Movement Sciences, Vrije Universiteit Amsterdam, MOVE Research Institute Amsterdam, the Netherlands
| |
Collapse
|
14
|
Vona M, Mazzuero G, Lupi A, Vettorato C, Bosso P, Cohen-Solal A. Effects of altitude on effort tolerance in non-acclimatized patients with ischemic left ventricular dysfunction. ACTA ACUST UNITED AC 2016; 13:617-24. [PMID: 16874154 DOI: 10.1097/01.hjr.0000220583.27140.9b] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Few studies exist on the effects, in terms of work capacity and safety, of exposure to moderately high altitudes in patients with stable ischemic left ventricular dysfunction. Moreover no data are currently available on the cardiorespiratory response to walks in the mountains. AIM The objective of this study is to evaluate the effects of altitude on effort tolerance during walks in the mountains and to determine whether exposure to altitude may be harmful to patients with ischemic left ventricular dysfunction. METHODS Forty-five patients with stable chronic ischemic left ventricular dysfunction (ejection fraction=35+/-4%, and peak VO2>/=18/ml/kg per min in a preliminary effort test) were compared to 24 normal subjects. All subjects underwent a series of 6-min walking tests at three different altitudes: 500, 2000 and 2970 m above sea level. Cardiorespiratory response was assessed by a validated portable instrument. The resting arterial PO2 was measured at the three altitudes. RESULTS No complications were observed during any tests in either the patients or the healthy controls. Overall, healthy subjects had higher values of 6-min walking test VO2 and walked longer distances in the test than did the patients with left ventricular dysfunction. The mean distances walked in the 6-min walking test were similar at 500 and at 2000 m in both the healthy controls and the patients; at 2970 m, however, the distances decreased in both groups, and more so in the patients (-11+/-3%) than in the controls (-5+/-2%) (P<0.01). VO2 during the 6-min walking test remained stable when the test was carried out at 500 and 2000 m (20.4+/-3.6 versus 19.9+/-4.1 ml/kg per min in patients, and 30.2+/-3.4 versus 29.8+/-4.2 ml/kg per min in the controls; P, NS), but decreased at 2970 m by 13.9+/-3% in patients (P<0.01) and by 6.6+/-2.1% in controls (P<0.01) (patients versus controls, P<0.01). Finally, a similar, significant decrease in arterial PO2 was observed in both groups only at 2970 m (-29%, P<0.01). CONCLUSION Patients with stable ischemic left ventricular dysfunction had good tolerance while walking at high altitudes, but showed a moderate decrease in work capacity at 2970 m, which was greater than in normal subjects.
Collapse
Affiliation(s)
- Margherita Vona
- Cardiac Rehabilitation Center, Cardiology, Beauregard Hospital, Aosta bS. Maugeri Foundation, IRCCS, Veruno, Italy.
| | | | | | | | | | | |
Collapse
|
15
|
White DW, Raven PB. Autonomic neural control of heart rate during dynamic exercise: revisited. J Physiol 2014; 592:2491-500. [PMID: 24756637 DOI: 10.1113/jphysiol.2014.271858] [Citation(s) in RCA: 189] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
UNLABELLED The accepted model of autonomic control of heart rate (HR) during dynamic exercise indicates that the initial increase is entirely attributable to the withdrawal of parasympathetic nervous system (PSNS) activity and that subsequent increases in HR are entirely attributable to increases in cardiac sympathetic activity. In the present review, we sought to re-evaluate the model of autonomic neural control of HR in humans during progressive increases in dynamic exercise workload. We analysed data from both new and previously published studies involving baroreflex stimulation and pharmacological blockade of the autonomic nervous system. Results indicate that the PSNS remains functionally active throughout exercise and that increases in HR from rest to maximal exercise result from an increasing workload-related transition from a 4 : 1 vagal-sympathetic balance to a 4 : 1 sympatho-vagal balance. Furthermore, the beat-to-beat autonomic reflex control of HR was found to be dependent on the ability of the PSNS to modulate the HR as it was progressively restrained by increasing workload-related sympathetic nerve activity. IN CONCLUSION (i) increases in exercise workload-related HR are not caused by a total withdrawal of the PSNS followed by an increase in sympathetic tone; (ii) reciprocal antagonism is key to the transition from vagal to sympathetic dominance, and (iii) resetting of the arterial baroreflex causes immediate exercise-onset reflexive increases in HR, which are parasympathetically mediated, followed by slower increases in sympathetic tone as workloads are increased.
Collapse
Affiliation(s)
- Daniel W White
- Department of Integrative Physiology and Cardiovascular Research Institute, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Peter B Raven
- Department of Integrative Physiology and Cardiovascular Research Institute, University of North Texas Health Science Center, Fort Worth, TX, USA
| |
Collapse
|
16
|
Nobrega ACL, O'Leary D, Silva BM, Marongiu E, Piepoli MF, Crisafulli A. Neural regulation of cardiovascular response to exercise: role of central command and peripheral afferents. BIOMED RESEARCH INTERNATIONAL 2014; 2014:478965. [PMID: 24818143 PMCID: PMC4000959 DOI: 10.1155/2014/478965] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 02/04/2014] [Indexed: 12/12/2022]
Abstract
During dynamic exercise, mechanisms controlling the cardiovascular apparatus operate to provide adequate oxygen to fulfill metabolic demand of exercising muscles and to guarantee metabolic end-products washout. Moreover, arterial blood pressure is regulated to maintain adequate perfusion of the vital organs without excessive pressure variations. The autonomic nervous system adjustments are characterized by a parasympathetic withdrawal and a sympathetic activation. In this review, we briefly summarize neural reflexes operating during dynamic exercise. The main focus of the present review will be on the central command, the arterial baroreflex and chemoreflex, and the exercise pressure reflex. The regulation and integration of these reflexes operating during dynamic exercise and their possible role in the pathophysiology of some cardiovascular diseases are also discussed.
Collapse
Affiliation(s)
- Antonio C. L. Nobrega
- Department of Physiology and Pharmacology, Fluminense Federal University, Niterói, RJ, Brazil
| | - Donal O'Leary
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Bruno Moreira Silva
- Section of Exercise Physiology, Department of Physiology, Federal University of São Paulo, SP, Brazil
| | - Elisabetta Marongiu
- Sports Physiology laboratory Lab., Department of Medical Sciences, University of Cagliari, Italy
| | - Massimo F. Piepoli
- Heart Failure Unit, Cardiac Department, Guglielmo da Saliceto Polichirurgico Hospital, Piacenza, Italy
| | - Antonio Crisafulli
- Sports Physiology laboratory Lab., Department of Medical Sciences, University of Cagliari, Italy
| |
Collapse
|
17
|
Heinicke K, Taivassalo T, Wyrick P, Wood H, Babb TG, Haller RG. Exertional dyspnea in mitochondrial myopathy: clinical features and physiological mechanisms. Am J Physiol Regul Integr Comp Physiol 2011; 301:R873-84. [PMID: 21813873 DOI: 10.1152/ajpregu.00001.2011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Exertional dyspnea limits exercise in some mitochondrial myopathy (MM) patients, but the clinical features of this syndrome are poorly defined, and its underlying mechanism is unknown. We evaluated ventilation and arterial blood gases during cycle exercise and recovery in five MM patients with exertional dyspnea and genetically defined mitochondrial defects, and in four control subjects (C). Patient ventilation was normal at rest. During exercise, MM patients had low Vo(2peak) (28 ± 9% of predicted) and exaggerated systemic O(2) delivery relative to O(2) utilization (i.e., a hyperkinetic circulation). High perceived breathing effort in patients was associated with exaggerated ventilation relative to metabolic rate with high VE/VO(2peak), (MM = 104 ± 18; C = 42 ± 8, P ≤ 0.001), and Ve/VCO(2peak)(,) (MM = 54 ± 9; C = 34 ± 7, P ≤ 0.01); a steeper slope of increase in ΔVE/ΔVCO(2) (MM = 50.0 ± 6.9; C = 32.2 ± 6.6, P ≤ 0.01); and elevated peak respiratory exchange ratio (RER), (MM = 1.95 ± 0.31, C = 1.25 ± 0.03, P ≤ 0.01). Arterial lactate was higher in MM patients, and evidence for ventilatory compensation to metabolic acidosis included lower Pa(CO(2)) and standard bicarbonate. However, during 5 min of recovery, despite a further fall in arterial pH and lactate elevation, ventilation in MM rapidly normalized. These data indicate that exertional dyspnea in MM is attributable to mitochondrial defects that severely impair muscle oxidative phosphorylation and result in a hyperkinetic circulation in exercise. Exaggerated exercise ventilation is indicated by markedly elevated VE/VO(2), VE/VCO(2), and RER. While lactic acidosis likely contributes to exercise hyperventilation, the fact that ventilation normalizes during recovery from exercise despite increasing metabolic acidosis strongly indicates that additional, exercise-specific mechanisms are responsible for this distinctive pattern of exercise ventilation.
Collapse
Affiliation(s)
- Katja Heinicke
- Neuromuscular Center, Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, 7232 Greenville Ave., #435, Dallas, TX 75231-5129, USA.
| | | | | | | | | | | |
Collapse
|
18
|
Ng LJ, Sih BL, Stuhmiller JH. An integrated exercise response and muscle fatigue model for performance decrement estimates of workloads in oxygen-limiting environments. Eur J Appl Physiol 2011; 112:1229-49. [DOI: 10.1007/s00421-011-2062-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Accepted: 06/25/2011] [Indexed: 11/24/2022]
|
19
|
Affiliation(s)
- Haiying Zhou
- Department of Biomedical Engineering, Case Western Reverse University, Cleveland, Ohio, USA
| | | | | | | |
Collapse
|
20
|
Abstract
The aetiology of muscle fatigue has yet not been clearly established. Administration of two nucleotides, cytosine monophosphate (CMP) and uridine monophosphate (UMP), has been prescribed for the treatment of neuromuscular affections in humans. Patients treated with CMP/UMP recover from altered neurological functions and experience pain relief, thus the interest to investigate the possible effect of the drug on exhausting exercise. With such aim, we have determined, in exercised rats treated with CMP/UMP, exercise endurance, levels of lactate, glucose and glycogen, and the activity of several metabolic enzymes such as, creatine kinase (CK), lactate dehydrogenase (LDH), and aspartate aminotransferase (AST). Our results show that rats treated with CMP/UMP are able to endure longer periods of exercise (treadmill-run). Before exercise, muscle glucose level is significantly higher in treated rats, suggesting that the administration of CMP/UMP favours the entry of glucose in the muscle. Liver glycogen levels remains unaltered during exercise, suggesting that CMP/UMP may be implicated in maintaining the level of hepatic glycogen constant during exercise. Lactate dehydrogenase and aspartate aminotransferase activity is significantly lower in the liver of treated rats. These results suggest that administration of CMP/UMP enable rats to endure exercise by altering some metabolic parameters.
Collapse
|
21
|
Folke M. Estimation of the lactate threshold using an electro acoustic sensor system analysing the respiratory air. Med Biol Eng Comput 2008; 46:939-42. [PMID: 18651190 DOI: 10.1007/s11517-008-0373-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Accepted: 06/26/2008] [Indexed: 11/30/2022]
Abstract
The lactate threshold is used by athletes to optimise the intensity during exercise. It is of interest to measure the threshold on the very day and during the present sport activity. Steady state ergometer tests have been performed on 40 individuals to compare the threshold found by an electro acoustic sensor system to the lactate threshold established by blood analyses evaluated with the Dmax method. The correlation coefficient between the threshold found by the sensor system and the one established by blood analyses regarding workload (Watt), heart rate (beats/min), and lactate level (mmol lactate/l blood) at the thresholds were 0.87 (p < 0.001), 0.74 (p < 0.001), and 0.65 (p < 0.001), respectively. The findings in this study indicates that the thresholds of individuals measured by the sensor system show good correlations to the threshold established with the Dmax method from lactate levels in blood samples.
Collapse
Affiliation(s)
- M Folke
- School of Innovation, Design and Engineering, Mälardalen University, Vasteras, Sweden.
| |
Collapse
|
22
|
Whipp BJ. Physiological mechanisms dissociating pulmonary CO2 and O2 exchange dynamics during exercise in humans. Exp Physiol 2006; 92:347-55. [PMID: 17185348 DOI: 10.1113/expphysiol.2006.034363] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
During moderate exercise (below the lactate threshold, (thetaL)), muscle CO(2) production ( Q(CO2)) kinetics are monoexponential, with a time constant (tau) similar to that of O(2) consumption. Following a delay incorporating the muscle-lung vascular transit time, Q(CO2) is expressed at the lungs (V(CO2)) with an appreciably longer tau, reflecting the influence of intervening high-capacitance CO(2) stores. Above (thetaL), kinetics become complex, resulting from the conflation of the differing rates of HCO(3)(-) breakdown and degrees of compensatory hyperventilation with that of the underlying aerobic component. During incremental exercise, the increased rate of relative to pulmonary O(2) uptake (V(CO2)) can be used to quantify (thetaL) validly if aerobic and hyperventilatory sources can be ruled out, i.e. (thetaL) is then attributable to the decrease in muscle and blood [HCO(3)(-)]. In many cases, however, very rapid incrementation of work rate and/or prior depletion of CO(2) stores (by volitional or anticipatory hyperventilation) can yield a 'false positive' non-invasive estimation of (thetaL) ('pseudo-threshold') resulting from a slowing of the rate of wash-in of transient CO(2) stores.
Collapse
Affiliation(s)
- Brian J Whipp
- Institute of Membrane and Systems Biology, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
23
|
Péronnet F, Aguilaniu B. Lactic acid buffering, nonmetabolic CO2 and exercise hyperventilation: a critical reappraisal. Respir Physiol Neurobiol 2006; 150:4-18. [PMID: 15890562 DOI: 10.1016/j.resp.2005.04.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2005] [Revised: 03/29/2005] [Accepted: 04/02/2005] [Indexed: 12/12/2022]
Abstract
It has been suggested that hyperventilation and the disproportionate increase in VCO2 versus VO2 above the ventilatory threshold (V(TH)) in ramp exercise are due to the production of nonmetabolic CO2 in muscle because of lactic acid buffering by plasma bicarbonate entering the cell in exchange with lactate [Wasserman, K., 1982. Dyspnea on exertion. Is it the heart or the lungs? JAMA 248, 2039-2043]. According to this model, plasma standard bicarbonate concentration decreases in a approximately 1:1 ratio with the increase in plasma lactate concentration, 1 mmol of CO2 is generated above that produced by aerobic metabolism for each mmol of lactic acid buffered, and nonmetabolic CO2 produced in the muscle is partly responsible for hyperventilation because of the resulting increase in the CO2 flow to the lungs. The present report shows that this model is not consistent with experimental data: (1) bicarbonate is not the main buffer in the muscle; (2) the decrease in standard bicarbonate concentration is not the mirror image of the increase in lactate concentration; (3) buffering by bicarbonate does not increase CO2 production in muscle (no nonmetabolic CO2 is produced in tissues); (4) the CO2 flow to the lungs, which should not be confused with VCO2 at the mouth, does not increase at a faster rate above than below V(TH). The disproportionate increase in VCO2 at the mouth above V(TH) is due to hyperventilation (not the reverse) and to the low plasma pH which both reduce the pool of bicarbonate readily available in the body.
Collapse
Affiliation(s)
- François Péronnet
- Département de kinésiologie, Université de Montréal, CP 6128 Centre Ville, Montréal, Que., Canada H3C 3J7.
| | | |
Collapse
|
24
|
Richard R, Lonsdorfer-Wolf E, Dufour S, Doutreleau S, Oswald-Mammosser M, Billat VL, Lonsdorfer J. Cardiac output and oxygen release during very high-intensity exercise performed until exhaustion. Eur J Appl Physiol 2004; 93:9-18. [PMID: 15278352 DOI: 10.1007/s00421-004-1149-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2004] [Indexed: 11/25/2022]
Abstract
Our objectives were firstly, to study the patterns of the cardiac output (Q(.)) and the arteriovenous oxygen difference [(a-nu(-))O(2)] responses to oxygen uptake (V(.)O(2)) during constant workload exercise (CWE) performed above the respiratory compensation point (RCP), and secondly, to establish the relationships between their kinetics and the time to exhaustion. Nine subjects performed two tests: a maximal incremental exercise test (IET) to determine the maximal V(.)O(2) (V(.)O(2)peak), and a CWE test to exhaustion, performed at p Delta50 (intermediate power between RCP and V(.)O(2)peak). During CWE, V(.)O(2) was measured breath-by-breath, Q(.) was measured beat-by-beat with an impedance device, and blood lactate (LA) was sampled each minute. To calculate ( a-nu(-)O(2), the values of V(.)O(2) and Q(.) were synchronised over 10 s intervals. A fitting method was used to describe the V(.)O(2), Q(.) and ( a-nu(-))O(2) kinetics. The ( a-nu(-)O(2) difference followed a rapid monoexponential function, whereas both V(.)O(2) and Q(.) were best fitted by a single exponential plus linear increase: the time constant (tau) V(.)O(2) [57 (20 s)] was similar to tau ( a-nu(-)O(2), whereas tau for Q(.) was significantly higher [89 (34) s, P <0.05] (values expressed as the mean and standard error). LA started to increase after 2 min CWE then increased rapidly, reaching a similar maximal value as that seen during the IET. During CWE, the rapid component of V(.)O(2) uptake was determined by a rapid and maximal ( a-nu(-)O(2) extraction coupled with a two-fold longer Q(.) increase. It is likely that lactic acidosis markedly increased oxygen availability, which when associated with the slow linear increase of Q(.), may account for the V(.)O(2) slow component. Time to exhaustion was larger in individuals with shorter time delay for ( a-nu(-)O(2) and a greater tau for Q(.).
Collapse
Affiliation(s)
- Ruddy Richard
- Unité de Physiologie et des Explorations Fonctionnelles de l'Exercice, Service de Physiologie Clinique, Hôpitaux Universitaires de Strasbourg, Hôpital Civil, BP 426, 67091 Strasbourg Cedex, France.
| | | | | | | | | | | | | |
Collapse
|
25
|
Guazzi M, Reina G, Tumminello G, Guazzi MD. Improvement of alveolar-capillary membrane diffusing capacity with exercise training in chronic heart failure. J Appl Physiol (1985) 2004; 97:1866-73. [PMID: 15220300 DOI: 10.1152/japplphysiol.00365.2004] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chronic heart failure (CHF) may impair lung gas diffusion, an effect that contributes to exercise limitation. We investigated whether diffusion improvement is a mechanism whereby physical training increases aerobic efficiency in CHF. Patients with CHF (n = 16) were trained (40 min of stationary cycling, 4 times/wk) for 8 wk; similar sedentary patients (n = 15) were used as controls. Training increased lung diffusion (DlCO, +25%), alveolar-capillary conductance (DM, +15%), pulmonary capillary blood volume (VC, +10%), peak exercise O2 uptake (peak VO2, +13%), and VO2 at anaerobic threshold (AT, +20%) and decreased the slope of exercise ventilation to CO2 output (VE/VCO2, -14%). It also improved the flow-mediated brachial artery dilation (BAD, from 4.8 +/- 0.4 to 8.2 +/- 0.4%). These changes were significant compared with baseline and controls. Hemodynamics were obtained in the last 10 patients in each group. Training did not affect hemodynamics at rest and enhanced the increase of cardiac output (+226 vs. +187%) and stroke volume (+59 vs. +49%) and the decrease of pulmonary arteriolar resistance (-28 vs. -13%) at peak exercise. Hemodynamics were unchanged in controls after 8 wk. Increases in DlCO and DM correlated with increases in peak VO2 (r = 0.58, P = 0.019 and r = 0.51, P = 0.04, respectively) and in BAD (r = 0.57, P < 0.021 and r = 0.50, P = 0.04, respectively). After detraining (8 wk), DlCO, DM, VC, peak VO2, VO2 at AT, VE/VCO2 slope, cardiac output, stroke volume, pulmonary arteriolar resistance at peak exercise, and BAD reverted to levels similar to baseline and to levels similar to controls. Results document, for the first time, that training improves DlCO in CHF, and this effect may contribute to enhancement of exercise performance.
Collapse
Affiliation(s)
- Marco Guazzi
- Cardiopulmonary Laboratory, Cardiology Division, University of Milan, San Paolo Hospital, Via A. di Rudinì, 8, 20142 Milan, Italy.
| | | | | | | |
Collapse
|
26
|
Jeneson JAL, Bruggeman FJ. Robust homeostatic control of quadriceps pH during natural locomotor activity in man. FASEB J 2004; 18:1010-2. [PMID: 15059964 DOI: 10.1096/fj.03-0762fje] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
It is generally thought that intracellular pH (pHi) of skeletal muscle falls at least 0.5 units during intense activity, but evidence on natural (i.e., voluntary, two-legged (2L)) locomotor activity in man has exclusively come from invasive studies of upper leg muscle. Here, noninvasive (31)P nuclear magnetic resonance spectroscopy ((31)P NMRS) was used to study human quadriceps muscle energetics and pHi during incremental bicycling exercise to exhaustion in six normally active subjects. Cellular energy charge (CEC; [PCr]/([PCr]+[Pi])) linearly (r 0.90) dropped 83 +/- 3% during ramp exercise to exhaustion from 0.92 +/- 0.01 at rest to 0.16 +/- 0.03 at maximal sustained work rate (WR) (166+/-17 W; range: 108-223 W). Surprisingly, pHi likewise dropped linearly (r 0.82) no more than 0.2 units over the entire range of WR between rest and maximal (pHi 7.08+/-0.01 and 6.84+/-0.02, respectively). But after termination of exercise pHi dropped rapidly to textbook acidic values of 6.6 explaining classic biopsy results. Comparative coresponse analysis of pHi and CEC changes during 2L- vs. 1L-cycling showed that homeostatic control of quadriceps pHi during bicycling is robust and unique to natural locomotor exercise. These results highlight the robustness of the integrative set of physicochemical and physiological control mechanisms in acid-base balance during natural locomotor activity in man.
Collapse
Affiliation(s)
- J A L Jeneson
- Department of Physiology, Division of Pathobiology, School of Veterinary Medicine, Androclus gebouw, Yalelaan 1, 3508 TD, Utrecht, The Netherlands.
| | | |
Collapse
|
27
|
Fukuba Y, Hayashi N, Koga S, Yoshida T. VO(2) kinetics in heavy exercise is not altered by prior exercise with a different muscle group. J Appl Physiol (1985) 2002; 92:2467-74. [PMID: 12015361 DOI: 10.1152/japplphysiol.00207.2001] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We examined whether lactic acidemia-induced hyperemia at the onset of high-intensity leg exercise contributed to the speeding of pulmonary O(2) uptake (VO(2)) after prior heavy exercise of the same muscle group or a different muscle group (i.e., arm). Six healthy male subjects performed two protocols that consisted of two consecutive 6-min exercise bouts separated by a 6-min baseline at 0 W: 1) both bouts of heavy (work rate: 50% of lactate threshold to maximal VO(2)) leg cycling (L1-ex to L2-ex) and 2) heavy arm cranking followed by identical heavy leg cycling bout (A1-ex to A2-ex). Blood lactate concentrations before L1-ex, L2-ex, and A2-ex averaged 1.7 +/- 0.3, 5.6 +/- 0.9, and 6.7 +/- 1.4 meq/l, respectively. An "effective" time constant (tau) of VO(2) with the use of the monoexponential model in L2-ex (tau: 36.8 +/- 4.3 s) was significantly faster than that in L1-ex (tau: 52.3 +/- 8.2 s). Warm-up arm cranking did not facilitate the VO(2) kinetics for the following A2-ex [tau: 51.7 +/- 9.7 s]. The double-exponential model revealed no significant change of primary tau (phase II) VO(2) kinetics. Instead, the speeding seen in the effective tau during L2-ex was mainly due to a reduction of the VO(2) slow component. Near-infrared spectroscopy indicated that the degree of hyperemia in working leg muscles was significantly higher at the onset of L2-ex than A2-ex. In conclusion, facilitation of VO(2) kinetics during heavy exercise preceded by an intense warm-up exercise was caused principally by a reduction in the slow component, and it appears unlikely that this could be ascribed exclusively to systemic lactic acidosis.
Collapse
Affiliation(s)
- Yoshiyuki Fukuba
- Department of Exercise Science and Physiology, School of Health Sciences, Hiroshima Women's University, Hiroshima 734-8558, Japan.
| | | | | | | |
Collapse
|
28
|
Callahan LA, Woods KF, Mensah GA, Ramsey LT, Barbeau P, Gutin B. Cardiopulmonary responses to exercise in women with sickle cell anemia. Am J Respir Crit Care Med 2002; 165:1309-16. [PMID: 11991885 DOI: 10.1164/rccm.2002036] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Multiple factors contribute to exercise intolerance in patients with sickle cell anemia, but little information exists regarding the safety of maximal cardiopulmonary exercise testing (CPET) or the mechanisms of exercise limitation in these patients. The purpose of the present study was to examine these issues. Seventeen adult women with sickle cell anemia underwent symptom-limited maximal CPET using cycle ergometry and ramp protocols; blood gases and lactate concentrations were measured every 2 minutes. All patients completed CPET without complications. No patient demonstrated a mechanical ventilatory limitation to exercise or had evidence of myocardial ischemia. However, we observed three pathophysiologic patterns of response to exercise in these patients. Eleven patients had low peak VO2, low anaerobic threshold (AT), gas exchange abnormalities, and high ventilatory reserve; this pattern is consistent with exercise limitation due to pulmonary vascular disease in this patient subgroup. Three patients had low peak VO2, low AT, no gas exchange abnormalities, and a high heart rate reserve, a pattern consistent with peripheral vascular disease and/or a myopathy. The remaining three patients had low peak VO2, low AT, no gas exchange abnormalities, and a low heart rate reserve; this pattern of exercise limitation is best explained by anemia.
Collapse
Affiliation(s)
- Leigh A Callahan
- Pulmonary and Critical Care Unit, Department of Medicine, University of Rochester Medical Center, Rochester, New York 14642-8692, USA.
| | | | | | | | | | | |
Collapse
|
29
|
Maxwell AJ, Ho HV, Le CQ, Lin PS, Bernstein D, Cooke JP. L-arginine enhances aerobic exercise capacity in association with augmented nitric oxide production. J Appl Physiol (1985) 2001; 90:933-8. [PMID: 11181603 DOI: 10.1152/jappl.2001.90.3.933] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We tested whether supplementation with L-arginine can augment aerobic capacity, particularly in conditions where endothelium-derived nitric oxide (EDNO) activity is reduced. Eight-week-old wild-type (E(+)) and apolipoprotein E-deficient mice (E(-)) were divided into six groups; two groups (LE(+) and LE(-)) were given L-arginine (6% in drinking water), two were given D-arginine (DE(+) and DE(-)), and two control groups (NE(+) and NE(-)) received no arginine supplementation. At 12-16 wk of age, the mice were treadmill tested, and urine was collected after exercise for determination of EDNO production. NE(-) mice demonstrated a reduced aerobic capacity compared with NE(+) controls [maximal oxygen uptake (VO(2 max)) of NE(-) = 110 +/- 2 (SE) vs. NE(+) = 122 +/- 3 ml O(2). min(-1). kg(-1), P < 0.001]. This decline in aerobic capacity was associated with a diminished postexercise urinary nitrate excretion. Mice given L-arginine demonstrated an increase in postexercise urinary nitrate excretion and aerobic capacity in both groups (VO(2 max) of LE(-) = 120 +/- 1 ml O(2). min(-1). kg(-1), P < 0.05 vs. NE(-); VO(2 max) of LE(+) = 133 +/- 4 ml O(2). min(-1). kg(-1), P < 0.01 vs. NE(+)). Mice administered D-arginine demonstrated an intermediate increase in aerobic capacity in both groups. We conclude that administration of L-arginine restores exercise-induced EDNO synthesis and normalizes aerobic capacity in hypercholesterolemic mice. In normal mice, L-arginine enhances exercise-induced EDNO synthesis and aerobic capacity.
Collapse
Affiliation(s)
- A J Maxwell
- Section of Vascular Medicine, Division of Cardiovascular Medicine, Stanford University, Stanford, California 94305, USA.
| | | | | | | | | | | |
Collapse
|
30
|
McDonough P, Moffatt RJ. Smoking-induced elevations in blood carboxyhaemoglobin levels. Effect on maximal oxygen uptake. Sports Med 1999; 27:275-83. [PMID: 10368876 DOI: 10.2165/00007256-199927050-00001] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Many people engage in physical activity to reduce their cardiovascular risk associated with smoking. These people should be made aware of the metabolic and cardiorespiratory changes induced by chronic and acute smoking and, in particular, the exercise ramifications of increased levels of blood carbon monoxide (CO). Smoking-induced elevations in the CO content of the blood can reduce exercise tolerance and maximal aerobic capacity. Smoking also increases the reliance upon glycolytic metabolism during exercise. Together, these factors contribute to earlier fatigue in smokers compared with nonsmokers who exercise. Similar effects upon exercise tolerance are noted in those who inhale environmental tobacco smoke.
Collapse
Affiliation(s)
- P McDonough
- Exercise Physiology Laboratory, Nutrition, Food, and Exercise Sciences, Florida State University, Tallahassee, USA
| | | |
Collapse
|
31
|
|