1
|
Stojilkovic SS, Kretschmannova K, Tomić M, Stratakis CA. Dependence of the excitability of pituitary cells on cyclic nucleotides. J Neuroendocrinol 2012; 24:1183-200. [PMID: 22564128 PMCID: PMC3421050 DOI: 10.1111/j.1365-2826.2012.02335.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cyclic 3',5'-adenosine monophosphate and cyclic 3',5'-guanosine monophosphate are intracellular (second) messengers that are produced from the nucleotide triphosphates by a family of enzymes consisting of adenylyl and guanylyl cyclases. These enzymes are involved in a broad array of signal transduction pathways mediated by the cyclic nucleotide monophosphates and their kinases, which control multiple aspects of cell function through the phosphorylation of protein substrates. We review the findings and working hypotheses on the role of the cyclic nucleotides and their kinases in the control of electrical activity of the endocrine pituitary cells and the plasma membrane channels involved in this process.
Collapse
Affiliation(s)
- S S Stojilkovic
- Sections on Cellular Signalling and Endocrinology and Genetics, The Eunice Kennedy Shiver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | | | | | | |
Collapse
|
2
|
Molecular mechanisms of pituitary endocrine cell calcium handling. Cell Calcium 2011; 51:212-21. [PMID: 22138111 DOI: 10.1016/j.ceca.2011.11.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 10/30/2011] [Accepted: 11/07/2011] [Indexed: 11/23/2022]
Abstract
Endocrine pituitary cells express numerous voltage-gated Na(+), Ca(2+), K(+), and Cl(-) channels and several ligand-gated channels, and they fire action potentials spontaneously. Depending on the cell type, this electrical activity can generate localized or global Ca(2+) signals, the latter reaching the threshold for stimulus-secretion coupling. These cells also express numerous G-protein-coupled receptors, which can stimulate or silence electrical activity and Ca(2+) influx through voltage-gated Ca(2+) channels and hormone release. Receptors positively coupled to the adenylyl cyclase signaling pathway stimulate electrical activity with cAMP, which activates hyperpolarization-activated cyclic nucleotide-regulated channels directly, or by cAMP-dependent kinase-mediated phosphorylation of K(+), Na(+), Ca(2+), and/or non-selective cation-conducting channels. Receptors that are negatively coupled to adenylyl cyclase signaling pathways inhibit spontaneous electrical activity and accompanied Ca(2+) transients predominantly through the activation of inwardly rectifying K(+) channels and the inhibition of voltage-gated Ca(2+) channels. The Ca(2+)-mobilizing receptors activate inositol trisphosphate-gated Ca(2+) channels in the endoplasmic reticulum, leading to Ca(2+) release in an oscillatory or non-oscillatory manner, depending on the cell type. This Ca(2+) release causes a cell type-specific modulation of electrical activity and intracellular Ca(2+) handling.
Collapse
|
3
|
Kretschmannova K, Kucka M, Gonzalez-Iglesias AE, Stojilkovic SS. The expression and role of hyperpolarization-activated and cyclic nucleotide-gated channels in endocrine anterior pituitary cells. Mol Endocrinol 2011; 26:153-64. [PMID: 22135067 DOI: 10.1210/me.2011-1207] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Pituitary cells fire action potentials independently of external stimuli, and such spontaneous electrical activity is modulated by a large variety of hypothalamic and intrapituitary agonists. Here, we focused on the potential role of hyperpolarization-activated and cyclic nucleotide-gated (HCN) channels in electrical activity of cultured rat anterior pituitary cells. Quantitative RT-PCR analysis showed higher level of expression of mRNA transcripts for HCN2 and HCN3 subunits and lower expression of HCN1 and HCN4 subunits in these cells. Western immunoblot analysis of lysates from normal and GH(3) immortalized pituitary cells showed bands with appropriate molecular weights for HCN2, HCN3, and HCN4. Electrophysiological experiments showed the presence of a slowly developing hyperpolarization-activated inward current, which was blocked by Cs(+) and ZD7288, in gonadotrophs, thyrotrophs, somatotrophs, and a fraction of lactotrophs, as well as in other unidentified pituitary cell types. Stimulation of adenylyl cyclase and addition of 8-Br-cAMP enhanced this current and depolarized the cell membrane, whereas 8-Br-cGMP did not alter the current and hyperpolarized the cell membrane. Both inhibition of basal adenylyl cyclase activity and stimulation of phospholipase C signaling pathway inhibited this current. Inhibition of HCN channels affected the frequency of firing but did not abolish spontaneous electrical activity. These experiments indicate that cAMP and cGMP have opposite effects on the excitability of endocrine pituitary cells, that basal cAMP production in cultured cells is sufficient to integrate the majority of HCN channels in electrical activity, and that depletion of phosphatidylinositol 4,5-bisphosphate caused by activation of phospholipase C silences them.
Collapse
Affiliation(s)
- Karla Kretschmannova
- Section on Cellular Signaling, Program in Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-4510, USA
| | | | | | | |
Collapse
|
4
|
Tomić M, Kucka M, Kretschmannova K, Li S, Nesterova M, Stratakis CA, Stojilkovic SS. Role of nonselective cation channels in spontaneous and protein kinase A-stimulated calcium signaling in pituitary cells. Am J Physiol Endocrinol Metab 2011; 301:E370-9. [PMID: 21586701 PMCID: PMC3154538 DOI: 10.1152/ajpendo.00130.2011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Several receptors linked to the adenylyl cyclase signaling pathway stimulate electrical activity and calcium influx in endocrine pituitary cells, and a role for an unidentified sodium-conducting channel in this process has been proposed. Here we show that forskolin dose-dependently increases cAMP production and facilitates calcium influx in about 30% of rat and mouse pituitary cells at its maximal concentration. The stimulatory effect of forskolin on calcium influx was lost in cells with inhibited PKA (cAMP-dependent protein kinase) and in cells that were haploinsufficient for the main PKA regulatory subunit but was preserved in cells that were also haploinsufficient for the main PKA catalytic subunit. Spontaneous and forskolin-stimulated calcium influx was present in cells with inhibited voltage-gated sodium and hyperpolarization-activated cation channels but not in cells bathed in medium, in which sodium was replaced with organic cations. Consistent with the role of sodium-conducting nonselective cation channels in PKA-stimulated Ca(2+) influx, cAMP induced a slowly developing current with a reversal potential of about 0 mV. Two TRP (transient receptor potential) channel blockers, SKF96365 and 2-APB, as well as flufenamic acid, an inhibitor of nonselective cation channels, also inhibited spontaneous and forskolin-stimulated electrical activity and calcium influx. Quantitative RT-PCR analysis indicated the expression of mRNA transcripts for TRPC1 >> TRPC6 > TRPC4 > TRPC5 > TRPC3 in rat pituitary cells. These experiments suggest that in pituitary cells constitutively active cation channels are stimulated further by PKA and contribute to calcium signaling indirectly by controlling the pacemaking depolarization in a sodium-dependent manner and directly by conducting calcium.
Collapse
Affiliation(s)
- Melanija Tomić
- National Institute of Child Health and Human Development/NIH, 49 Convent Dr., Bethesda, MD 20892-4510, USA
| | | | | | | | | | | | | |
Collapse
|
5
|
Frohman LA, Kineman RD. Growth Hormone‐Releasing Hormone: Discovery, Regulation, and Actions. Compr Physiol 2011. [DOI: 10.1002/cphy.cp070508] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
6
|
Steyn FJ, Boehme F, Vargas E, Wang K, Parkington HC, Rao JR, Chen C. Adiponectin regulate growth hormone secretion via adiponectin receptor mediated Ca(2+) signalling in rat somatotrophs in vitro. J Neuroendocrinol 2009; 21:698-704. [PMID: 19500219 DOI: 10.1111/j.1365-2826.2009.01887.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Obesity is associated with reduced levels of growth hormone (GH) and the disruption of pulsatile GH secretion. This results in relative GH deficiency. It is likely that a regulatory relationship between GH secretion and adipose tissue exists as the secretion of GH recovers to normal levels after a reduction in body weight. This report characterise the expression and interaction of adiponectin receptors 1 and 2 (AdipoR1 and AdipoR2) and adiponectin, respectively, in regulating the activity of GH secreting cells. Polymerase chain reaction analysis of the GH3 cell line, rat anterior pituitary gland and isolated somatotroph cells from transgenic GFP expressing mice confirmed the expression of both AdipoR1 and AdipoR2 in GH secretory cells. Because GH cells expressed both receptors, it is likely that the measured increase in GH secretion, observed in primary cultured rat pituitary cells after 30 min of incubation with full-length murine adiponectin, was mediated by a direct receptor regulated process. Adiponectin induced an increase in intracellular Ca(2+) through both the influx of extracellular Ca(2+) and the release of intracellular Ca(2+) stores resulting in the secretion of GH. Furthermore, results confirm that this increase in GH secretion depended mainly on an increase in Ca(2+) influx through L-type Ca(2+) channels. It is concluded that adiponectin directly regulates GH secretion from somatotrophs by binding to either adiponectin receptor, and that this is mediated via a similar process observed after the stimulation of GH secretion by GH-releasing hormone.
Collapse
Affiliation(s)
- F J Steyn
- School of Biomedical Science, University of Queensland, St Lucia, Brisbane, QLD, Australia
| | | | | | | | | | | | | |
Collapse
|
7
|
Tsaneva-Atanasova K, Sherman A, van Goor F, Stojilkovic SS. Mechanism of Spontaneous and Receptor-Controlled Electrical Activity in Pituitary Somatotrophs: Experiments and Theory. J Neurophysiol 2007; 98:131-44. [PMID: 17493919 DOI: 10.1152/jn.00872.2006] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cultured pituitary somatotrophs release growth hormone in response to spontaneous Ca2+ entry through voltage-gated calcium channels (VGCCs) that is governed by plateau-bursting electrical activity and is regulated by several neurohormones, including GH-releasing hormone (GHRH) and somatostatin. Here we combine experiments and theory to clarify the mechanisms underlying spontaneous and receptor-controlled electrical activity. Experiments support a role of a Na+-conducting and tetrodotoxin-insensitive channel in controlling spontaneous and GHRH-stimulated pacemaking, the latter in a cAMP-dependent manner; an opposing role of spontaneously active inwardly rectifying K+ ( Kir) channels and G-protein-regulated Kir channels in somatostatin-mediated inhibition of pacemaking; as well as a role of VGCCs in spiking and large conductance (BK-type) Ca2+-activated K+ channels in plateau bursting. The mathematical model is compatible with a wide variety of experimental data involving pharmacology and extracellular ion substitution and supports the importance of constitutively active tetrodotoxin-insensitive Na+ and Kir channels in maintaining spontaneous pacemaking in pituitary somatotrophs. The model also suggests that these channels are involved in the up- and downregulation of electrical activity by GHRH and somatostatin. In the model, the plateau bursting is controlled by two functional populations of BK channels, characterized by distance from the VGCCs. The rapid activation of the proximal BK channels is critical for the establishment of the plateau, whereas slow recruitment of the distal BK channels terminates the plateau.
Collapse
|
8
|
Kim E, Sohn S, Lee M, Park C, Jung J, Park S. Effect of gsp oncogene on somatostatin receptor subtype 1 and 2 mRNA levels in GHRH-responsive GH3 cells. Pituitary 2005; 8:155-62. [PMID: 16379030 DOI: 10.1007/s11102-005-5245-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Growth hormone releasing hormone (GHRH) signals via G protein-coupled receptors (GHRH-R) to enhance intracellular Galphas/adenylyl cyclase/cAMP signaling, which in turn has positive effects on GH synthesis and release, as well as proliferation of the GH-producing cells of the anterior pituitary gland. Some GH-producing pituitary tumors express a constitutively active mutant form of Galphas (gsp oncogene). It has been reported that these tumors are more responsive to octreotide therapy. In this study we used a rat GH-producing cell line (GH3) stably transfected with the human GHRH-R cDNA (GH3-GHRHR cells) as a model to study the effects of gsp oncogene on somatostatin (SRIH) receptor subtype 1 and 2 (sst1 and sst2) mRNA levels. Transient transfection of gsp oncogene in GH3-GHRHR cells for 48 h increased intracellular cAMP levels and GH release. Phosphodiesterase (PDE) 4, sst1 and sst2 mRNA levels were increased by G protein mutation as assessed by real-time RT-PCR. Increased PDE mRNA levels in gsp-transfected cells may be a compensatory mechanism to the constitutive activation of cAMP-dependent pathway by G protein mutation and is consistent with reports of higher PDE expression in human pituitary tumor that express gsp. Our data suggest that higher expression of sst1 and sst2 mRNA induced by the gsp oncogene may be a mechanism by which gsp-positive tumors show a greater response to SRIH. GH3 cells permanently transfected with GHRH-R can be used for in vitro studies of actions of GHRH.
Collapse
MESH Headings
- 3',5'-Cyclic-AMP Phosphodiesterases/metabolism
- Animals
- Bucladesine/pharmacology
- Cell Line, Tumor
- Cells, Cultured
- Cholera Toxin/pharmacology
- Colforsin/pharmacology
- Cyclic Nucleotide Phosphodiesterases, Type 4
- GTP-Binding Protein alpha Subunits, Gs/genetics
- Growth Hormone-Releasing Hormone/pharmacology
- Octreotide/pharmacology
- Oncogenes/physiology
- Pituitary Gland, Anterior
- RNA, Messenger/metabolism
- Rats
- Receptors, Neuropeptide/biosynthesis
- Receptors, Pituitary Hormone-Regulating Hormone/biosynthesis
- Receptors, Somatostatin/genetics
- Transfection
Collapse
Affiliation(s)
- Eunhee Kim
- Department of Pharmacology and Institute for Basic Medical Science, Kyunghee University School of Medicine, Seoul, 130-701, Korea
| | | | | | | | | | | |
Collapse
|
9
|
Chen C, Xu R. The in vitro regulation of growth hormone secretion by orexins. Endocrine 2003; 22:57-66. [PMID: 14610299 DOI: 10.1385/endo:22:1:57] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2003] [Accepted: 08/04/2003] [Indexed: 11/11/2022]
Abstract
Orexins, orexigenic neuropeptides, have recently been discovered in lateral hypothalamus and play an important role in the regulation of pituitary hormone secretion. Two subtypes of orexin receptors (orexin-1 and orexin-2) have been demonstrated in pituitaries. In this experiment, the effects of orexins on voltage-gated Ca2+ currents and the GH release in primary cultured ovine somatotropes were examined. Voltage-gated Ca2+ currents were isolated in ovine somatotropes as L, T, and N currents using whole-cell patch-clamp techniques and specific Ca2+ channel blocker and toxin. Application of orexin-A or orexin-B (100 nM) significantly, dose-dependently, and reversibly increased only nifedipine-sensitive L-type Ca2+ current. Inhibitors of PKC (calphostin C, PKC inhibitory peptide) but not inhibitors of PKA (H89, PKA inhibitory peptide) cancelled the increase in the L current by orexins. Co-administration of orexin-A and GHRH (10 nM) showed an additive effect on the L current. Specific intracellular Ca2+-store-depleting reagent, thapsigargin (1 microM), did not affect the orexin-induced increase in the L current. Orexin-B alone slightly increased GH release and co-administration of orexin-A and GHRH synergistically stimulated GH secretion in vitro. It is therefore suggested that orexins may play an important role in regulating GHRH-stimulated GH secretion through an increase in the L-type Ca2+ current and the PKC-mediated signaling pathways in ovine somatotropes.
Collapse
Affiliation(s)
- Chen Chen
- Prince Henry's Institute of Medical Research, and Department of Physiology, PO Box 5152, Monash University, Clayton, Victoria 3168, Australia.
| | | |
Collapse
|
10
|
Chen C, Xu R, Clarke IJ, Ruan M, Loneragan K, Roh SG. Diverse intracellular signalling systems used by growth hormone-releasing hormone in regulating voltage-gated Ca2+ or K channels in pituitary somatotropes. Immunol Cell Biol 2000; 78:356-68. [PMID: 10947860 DOI: 10.1046/j.1440-1711.2000.00917.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Influx of Ca2+ via Ca2+ channels is the major step triggering exocytosis of pituitary somatotropes to release growth hormone (GH). Voltage-gated Ca2+ and K+ channels, the primary determinants of the influx of Ca2+, are regulated by GH-releasing hormone (GHRH) through G-protein-coupled intracellular signalling systems. Using whole-cell patch-clamp techniques, the changes of the Ca2+ and K+ currents in primary cultured ovine and human somatotropes were recorded. Growth hormone-releasing hormone (10 nmol/L) increased both L- and T-type voltage-gated Ca2+ currents. Inhibition of the cAMP/protein kinase A (PKA) pathway by either Rp-cAMP or H89 blocked this increase in both L- and T-type Ca2+ currents. Growth hormone-releasing hormone also decreased voltage-gated transient (IA) and delayed rectified (IK) K+ currents. Protein kinase C (PKC) inhibitors, such as calphostin C, chelerythrine or downregulation of PKC, blocked the effect of GHRH on K+ currents, whereas an acute activation of PKC by phorbol 12, 13-dibutyrate (1 micromol/L) mimicked the effect of GHRH. Intracellular dialysis of a specific PKC inhibitor (PKC19-36) also prevented the reduction in K+ currents by GHRH. It is therefore concluded that GHRH increases voltage-gated Ca2+ currents via cAMP/PKA, but decreases voltage-gated K+ currents via the PKC signalling system. The GHRH-induced alteration of Ca2+ and K+ currents augments the influx of Ca2+, leading to an increase in [Ca2+]i and the GH secretion.
Collapse
Affiliation(s)
- C Chen
- Prince Henry's Institute of Medical Research, Clayton, Victoria, Australia.
| | | | | | | | | | | |
Collapse
|
11
|
Xu R, Roh SG, Loneragan K, Pullar M, Chen C. Human GHRH reduces voltage-gated K+ currents via a non-cAMP-dependent but PKC-mediated pathway in human GH adenoma cells. J Physiol 1999; 520 Pt 3:697-707. [PMID: 10545137 PMCID: PMC2269620 DOI: 10.1111/j.1469-7793.1999.00697.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
1. Whole-cell voltage-gated K+ currents and the K+ current response to growth hormone-releasing hormone (GHRH) were characterised in primary cultures of human acromegalic somatotropes. 2. Both delayed rectifier (IK) and transient (IA) K+ currents were recorded from human somatotropes held at -80 mV and bathed in a solution containing Cd2+ (1 mM), TTX (1 microM) and a low concentration of Ca2+ (0.5 mM). Only IK was recorded, however, when a holding potential of -40 mV was used. 3. GHRH (10 nM) immediately and significantly reduced the amplitude of both IA and IK. While the reduction in the amplitude of IA was fully reversed following the removal of GHRH, the amplitude of IK had only partially recovered 10 min after GHRH removal. In addition, GHRH shifted the voltage-dependent inactivation curve of IA by 13.5 mV in the negative direction. 4. In a low Ca2+ and Cd2+-containing solution, the Ca2+-activated K+ channel blockers apamin (100 nM and 1 microM) and charybdotoxin (1 microM) did not alter K+ currents or the effect of GHRH on the recorded K+ currents. 5. The whole-cell K+ currents and their responses to GHRH were unaffected by the application of 8-bromo-cAMP (100 microM), Rp-cAMP (100 microM) or the protein kinase A (PKA) inhibitor H89 (1 microM). In addition, intracellular dialysis of the PKA inhibitory peptide PKI (10 microM) had no effect on the K+ current response to GHRH. 6. While the application of protein kinase C (PKC) inhibitors calphostin C (100 nM) or chelerythrine (1 microM) did not affect the amplitude of the K+ currents, the K+ current response to GHRH was significantly attenuated. Downregulation of PKC with phorbol 12,13-dibutyrate (PDBu, 0.5 microM for 16 h) also abolished the K+ current response to GHRH. In addition, intracellular dialysis of somatotropes with the PKC inhibitory peptide PKC19-36 (1 microM) prevented the GHRH-induced decrease in the amplitude of the voltage-gated K+ currents. Local application of PDBu (1 microM) significantly reduced the amplitude of the voltage-gated K+ currents in a similar manner to that induced by GHRH, but without clear recovery upon removal. 7. This study demonstrates that GHRH decreases voltage-gated K+ currents via a PKC-mediated pathway in human adenoma somatotropes, rather than by the cAMP-PKA pathway that is usually implicated in the actions of GHRH.
Collapse
Affiliation(s)
- R Xu
- Prince Henry's Institute of Medical Research and Department of Neurosurgery, Monash Medical Centre, Clayton, Vic 3168, Australia
| | | | | | | | | |
Collapse
|
12
|
Stojilkovic SS. Calcium Signaling Systems. Compr Physiol 1998. [DOI: 10.1002/cphy.cp070109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
13
|
Chen C, Farnworth P, Petersenn S, Musgrave I, Canny BJ, Clarke IJ. Growth hormone-releasing peptide-2 (GHRP-2) does not act via the human growth hormone-releasing factor receptor in GC cells. Endocrine 1998; 9:71-7. [PMID: 9798733 DOI: 10.1385/endo:9:1:71] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/1998] [Revised: 05/06/1998] [Accepted: 05/06/1998] [Indexed: 11/11/2022]
Abstract
Effect of growth hormone-releasing peptide-2 (GHRP-2) on ovine somatotrophs is abolished by a growth hormone-releasing factor (GRF) receptor antagonist, which raises the possibility that GHRP-2 may act on GRF receptors. In the present study, we used rat pituitary GC cells with or without stable transfection of cDNA coding for the human GRF receptor (GC/R+ or GC/R-) to determine whether or not GHRP-2 acts via the GRF receptor. Northern blot analysis indicated that GRF receptor mRNA was undetectable in GC/R-cells, whereas a high level of expression occurred in GC/R+ cells that were transfected by GRF receptor cDNA. In GC/R- cells, incubation with up to 10(-7)M of either hGRF or GHRP-2 did not alter the intracellular cAMP, [Ca2+]i, or GH secretion. In GC/R+ cells, hGRF (10(-11)-10(-7)M) increased cAMP levels in a concentration-dependent manner up to 20-fold. This increase in cAMP levels was blocked by a GRF receptor antagonist, [Ac-Tyr1, D-Arg2]-GRF 1-29, but not by a Ca2+ channel blocker, NiCl2 (0.5 mM). GH secretion and [Ca2+]i were, however, not increased by hGRF. Incubation of the transfected cells with 10(-1)-10(-8)MGH RP-2 did not modify intracellular cAMP levels. This result suggests that GHRP-2 does not act through the GRF receptor.
Collapse
Affiliation(s)
- C Chen
- Prince Henry's Institute of Medical Research, Clayton, Victoria, Australia.
| | | | | | | | | | | |
Collapse
|
14
|
Kwiecien R, Tseeb V, Kurchikov A, Kordon C, Hammond C. Growth hormone-releasing hormone triggers pacemaker activity and persistent Ca2+ oscillations in rat somatotrophs. J Physiol 1997; 499 ( Pt 3):613-23. [PMID: 9130158 PMCID: PMC1159280 DOI: 10.1113/jphysiol.1997.sp021954] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
1. The effects of brief applications of growth hormone-releasing hormone (GHRH) to male rat somatotrophs in culture were analysed with the perforated patch clamp technique to record changes in potential or with fura-2 imaging techniques to measure variations of cytosolic Ca2+ concentration ([Ca2+]i). 2. Silent somatotrophs (n = 61) had a mean resting potential of -37 +/- 1 mV and a mean basal [Ca2+]i of 30 +/- 4 nM. Brief GHRH applications (30 nM, 40 s) triggered rhythmic action potentials (23.6 +/- 0.9 mV, 613 +/- 82 ms, 0.21 +/- 0.02 Hz) and [Ca2+]i increase (to 352 +/- 30 nM) followed by rhythmic [Ca2+]i transients (to 138 +/- 6 nM) that persisted up to 90 min after the last GHRH application. Both action potentials and [Ca2+]i transients were totally and reversibly blocked by removing external Ca2+ or Na+ or by adding inorganic Ca2+ channel blockers or nifedipine (3 microM). 3. Somatostatin (1-300 nM), carbamylcholine (0.1-1 microM) and muscarine (0.1-1 microM) each had a dose-dependent inhibitory effect, from a decrease of Ca2+ spike duration and frequency to a complete block of the GHRH-evoked action potentials. 4. The present results show that somatotrophs in culture have intrinsic membrane properties that allow them to sustain a pacemaker activity and subsequent long-lasting sequences of [Ca2+]i oscillations triggered by short pulses of GHRH and inhibited by somatostatin and muscarinic agonists.
Collapse
Affiliation(s)
- R Kwiecien
- Unité de Dynamique des Systèmes Neuroendocriniens, U159 INSERM, Paris, France
| | | | | | | | | |
Collapse
|
15
|
Chen C, Clarke IJ. G(o)-2 protein mediates the reduction in Ca2+ currents by somatostatin in cultured ovine somatotrophs. J Physiol 1996; 491 ( Pt 1):21-9. [PMID: 9011613 PMCID: PMC1158756 DOI: 10.1113/jphysiol.1996.sp021193] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
1. Somatotroph-enriched cells (up to 85%) were obtained from ovine pituitary glands by means of collagenase dissociation and Percoll-gradient centrifugation. Further identification was based on the reduction in Ca2+ currents by 10 nM somatostatin (SRIF). 2. The whole-cell configuration of the patch-clamp technique was employed to study the membrane Ca2+ currents with K+ ions replaced by Cs+ and the addition of K+ and Na+ channel blockers in bath and pipette solutions. 3. A significant reduction in Ca2+ currents was obtained in response to local application of SRIF (10 nM) but vehicle application had no effect. 4. Intracellular dialysis of antibodies to alpha(o), alpha(i)-1-2, or alpha(i)-3 subunits of G proteins into the cells via patch-clamp pipettes was confirmed by immunofluorescent staining of the antibodies. Antibody dialysis did not modify resting voltage-gated Ca2+ currents across the cell membrane. 5. Dialysis of anti-alpha(o) antibodies significantly attenuated the reduction in Ca2+ currents that was obtained upon application of 10 or 100 nM SRIF. Dialysis of neither anti-alpha(i)-1-2 nor anti-alpha(i)-3 antibodies diminished the effect of SRIF on Ca2+ currents. 6. Intracellular dialysis of antisense oligonucleotides directed against the alpha(o) subunit mRNA (alpha(o) ASm, for alpha(o) common) or against the alpha(i)-3 subunit mRNA (alpha(i)-3 AS) blocked expression of alpha(o) or alpha(i)-3 subunits in the cells, respectively, as assessed by fluorescent staining with anti-alpha(o) or anti-alpha(i)-3 antibodies 48 h after dialysis. 7. Dialysis of alpha(o) ASm, but not alpha(i)-3 AS, significantly diminished the inhibitory effect of SRIF on Ca2+ currents. This effect of alpha(o) ASm dialysis occurred within 12 h after dialysis and reached a maximum at 48 h; partial recovery was seen at 72 h. 8. Antisense oligonucleotides specific for alpha(o)-1 (alpha(o)-1 AS) or alpha(o)-2 (alpha(o)-2 AS) were dialysed into somatotrophs and only alpha(o)-2 AS significantly attenuated the inhibition of Ca2+ currents by SRIF. 9. We conclude that the G(o)-2 protein mediates the effect of SRIF on Ca2+ currents in ovine somatotrophs in primary culture.
Collapse
Affiliation(s)
- C Chen
- Prince Henry's Institute of Medical Research, Clayton, Victoria, Australia
| | | |
Collapse
|