1
|
Ahmad S, Ramadori G, Moriconi F. Modulation of Chemokine- and Adhesion-Molecule Gene Expression and Recruitment of Neutrophil Granulocytes in Rat and Mouse Liver after a Single Gadolinium Chloride or Zymosan Treatment. Int J Mol Sci 2018; 19:ijms19123891. [PMID: 30563093 PMCID: PMC6321201 DOI: 10.3390/ijms19123891] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 11/26/2018] [Accepted: 12/03/2018] [Indexed: 12/29/2022] Open
Abstract
Kupffer cells are professional phagocytes of the liver clearing bacteria from portal blood. Their clearance capacity, however, can be overwhelmed, transforming them into critical mediators of hepatic-injury. We investigated the consequences of selective Kupffer cell-overload by intraperitoneally administering pyrogen-free gadolinium chloride (GdCl₃) or Zymosan into rats and into endotoxin-resistant mice (C3H/HeJ). The number of myeloperoxidase-positive (MPO⁺) cells increased at 3 h mainly around the portal vessel after both GdCl₃ and Zymosan treatment. Simultaneously, GdCl₃ administration reduced detectability of ED-1⁺ (but not ED-2) cells near the portal vessel. Serum chemokine (C-X-C motif) ligand 1 (CXCL-1), CXCL-2 and chemokine (C-C motif) ligand 2 (CCL-2) showed a peak at 3 h after both treatment regimens although at a higher extent after Zymosan administration. Accordingly, CXCL-1, CXCL-5 and CCL-2 gene expression in the liver was up-regulated after GdCl₃ treatment at 3 h. After Zymosan administration a significant up-regulation of CXCL-1, CXCL-2, CXCL-10, CCL-2, CCL-3 and CCL-20 gene expression in liver at 3 h was observed. After Zymosan administration intracellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1) gene expression was up-regulated in rat liver tissue. In C3H/HeJ mice both treatment regimens up-regulated CCL-2 and ICAM-1 gene expression after 3 h and down-regulated platelet endothelial cell adhesion molecule 1 (PECAM-1) gene expression. In conclusion, phagocytosis overload of Kupffer cells causes induction of several CXC, CC-chemokines, upregulation of "positive" adhesion molecule gene expression, down-regulation of the "negative" adhesion molecule PECAM-1 and a recruitment of neutrophil granulocytes in the portal area of the liver of treated rats and mice mainly in close contact to the liver macrophages.
Collapse
Affiliation(s)
- Shakil Ahmad
- Department of Gastroenterology and Endocrinology, University Hospital, Georg-August University Goettingen, 37075 Goettingen, Germany.
- Department of Cardiology and Pneumology, University Hospital, Georg-August University Goettingen, 37075 Goettingen, Germany.
| | - Giuliano Ramadori
- Department of Gastroenterology and Endocrinology, University Hospital, Georg-August University Goettingen, 37075 Goettingen, Germany.
| | - Federico Moriconi
- Department of Gastroenterology and Endocrinology, University Hospital, Georg-August University Goettingen, 37075 Goettingen, Germany.
- GastroCentro, Via Trevano 38, 6900 Lugano, Switzerland.
| |
Collapse
|
2
|
Sahan-Firat S, Temiz-Resitoglu M, Guden DS, Kucukkavruk SP, Tunctan B, Sari AN, Kocak Z, Malik KU. Protection by mTOR Inhibition on Zymosan-Induced Systemic Inflammatory Response and Oxidative/Nitrosative Stress: Contribution of mTOR/MEK1/ERK1/2/IKKβ/IκB-α/NF-κB Signalling Pathway. Inflammation 2018; 41:276-298. [PMID: 29110153 DOI: 10.1007/s10753-017-0686-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mammalian target of rapamycin (mTOR), a serine/threonine kinase regulate variety of cellular functions including cell growth, differentiation, cell survival, metabolism, and stress response, is now appreciated to be a central regulator of immune responses. Because mTOR inhibitors enhanced the anti-inflammatory activities of regulatory T cells and decreased the production of proinflammatory cytokines by macrophages, mTOR has been a pharmacological target for inflammatory diseases. In this study, we examined the role of mTOR in the production of proinflammatory and vasodilator mediators in zymosan-induced non-septic shock model in rats. To elucidate the mechanism by which mTOR contributes to non-septic shock, we have examined the activity of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase system caused by mTOR/mitogen-activated protein kinase kinase (MEK1)/extracellular signal-regulated kinase (ERK1/2)/inhibitor κB kinase (IKKβ)/inhibitor of κB (IκB-α)/nuclear factor-κB (NF-κB) signalling pathway activation. After 1 h of zymosan (500 mg/kg, i.p.) administration to rats, mean arterial blood pressure (MAP) was decreased and heart rate (HR) was increased. These changes were associated with increased expression and/or activities of ribosomal protein S6, MEK1, ERK1/2, IKKβ, IκB-α and NF-κB p65, and NADPH oxidase system activity in cardiovascular and renal tissues. Rapamycin (1 mg/kg, i.p.), a selective mTOR inhibitor, reversed these zymosan-induced changes in these tissues. These observations suggest that activation of mTOR/MEK1/ERK1/2/IKKβ/IκB-α/NF-κB signalling pathway with proinflammatory and vasodilator mediator formation and NADPH oxidase system activity contributes to systemic inflammation in zymosan-induced non-septic shock. Thus, mTOR may be an optimal target for the treatment of the diseases characterized by the severe systemic inflammatory response.
Collapse
Affiliation(s)
- Seyhan Sahan-Firat
- Department of Pharmacology, Faculty of Pharmacy, Mersin University, Yenisehir Campus, 33169, Mersin, Turkey.
| | - Meryem Temiz-Resitoglu
- Department of Pharmacology, Faculty of Pharmacy, Mersin University, Yenisehir Campus, 33169, Mersin, Turkey
| | - Demet Sinem Guden
- Department of Pharmacology, Faculty of Pharmacy, Mersin University, Yenisehir Campus, 33169, Mersin, Turkey
| | - Sefika Pinar Kucukkavruk
- Department of Pharmacology, Faculty of Pharmacy, Mersin University, Yenisehir Campus, 33169, Mersin, Turkey
| | - Bahar Tunctan
- Department of Pharmacology, Faculty of Pharmacy, Mersin University, Yenisehir Campus, 33169, Mersin, Turkey
| | - Ayse Nihal Sari
- Department of Pharmacology, Faculty of Pharmacy, Mersin University, Yenisehir Campus, 33169, Mersin, Turkey
| | - Zumrut Kocak
- Department of Pharmacology, Faculty of Pharmacy, Mersin University, Yenisehir Campus, 33169, Mersin, Turkey
| | - Kafait U Malik
- Department of Pharmacology, College of Medicine, University of Tennessee, Center for Health Sciences, Memphis, TN, USA
| |
Collapse
|
3
|
Sah SP, Singh B, Choudhary S, Kumar A. Animal models of insulin resistance: A review. Pharmacol Rep 2016; 68:1165-1177. [PMID: 27639595 DOI: 10.1016/j.pharep.2016.07.010] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 07/26/2016] [Accepted: 07/28/2016] [Indexed: 12/22/2022]
Abstract
Insulin resistance can be seen as a molecular and genetic mystery, with a role in the pathophysiology of type 2 diabetes mellitus. It is a basis for a number of chronic diseases like hypertension, dyslipidemia, glucose intolerance, coronary heart disease, cerebral vascular disease along with T2DM, thus the key is to cure and prevent insulin resistance. Critical perspicacity into the etiology of insulin resistance have been gained by the use of animal models where insulin action has been modulated by various transgenic and non-transgenic models which is not possible in human studies. The following review comprises the pathophysiology involved in insulin resistance, various factors causing insulin resistance, their screening and various genetic and non-genetic animal models highlighting the pathological and metabolic characteristics of each.
Collapse
Affiliation(s)
- Sangeeta Pilkhwal Sah
- Pharmacology Division, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India.
| | - Barinder Singh
- Pharmacology Division, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Supriti Choudhary
- Pharmacology Division, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Anil Kumar
- Pharmacology Division, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| |
Collapse
|
4
|
Nakamura M, Oda S, Sadahiro T, Watanabe E, Abe R, Nakada TA, Morita Y, Hirasawa H. Correlation between high blood IL-6 level, hyperglycemia, and glucose control in septic patients. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2012; 16:R58. [PMID: 22494810 PMCID: PMC3681387 DOI: 10.1186/cc11301] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 01/10/2012] [Accepted: 04/11/2012] [Indexed: 01/08/2023]
Abstract
Introduction The aim of the present study was to investigate the relationship between the blood IL-6 level, the blood glucose level, and glucose control in septic patients. Methods This retrospective observational study in a general ICU of a university hospital included a total of 153 patients with sepsis, severe sepsis, or septic shock who were admitted to the ICU between 2005 and 2010, stayed in the ICU for 7 days or longer, and did not receive steroid therapy prior to or after ICU admission. The severity of stress hyperglycemia, status of glucose control, and correlation between those two factors in these patients were investigated using the blood IL-6 level as an index of hypercytokinemia. Results A significant positive correlation between blood IL-6 level and blood glucose level on ICU admission was observed in the overall study population (n = 153; r = 0.24, P = 0.01), and was stronger in the nondiabetic subgroup (n = 112; r = 0.42, P < 0.01). The rate of successful glucose control (blood glucose level < 150 mg/dl maintained for 6 days or longer) decreased with increase in blood IL-6 level on ICU admission (P < 0.01). The blood IL-6 level after ICU admission remained significantly higher and the 60-day survival rate was significantly lower in the failed glucose control group than in the successful glucose control group (P < 0.01 and P < 0.01, respectively). Conclusions High blood IL-6 level was correlated with hyperglycemia and with difficulties in glucose control in septic patients. These results suggest the possibility that hypercytokinemia might be involved in the development of hyperglycemia in sepsis, and thereby might affect the success of glucose control.
Collapse
Affiliation(s)
- Masataka Nakamura
- Department of Emergency and Critical Care Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana Chuo, Chiba-city 2608677, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Losser MR, Damoisel C, Payen D. Bench-to-bedside review: Glucose and stress conditions in the intensive care unit. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2010; 14:231. [PMID: 20727232 PMCID: PMC2945096 DOI: 10.1186/cc9100] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The physiological response to blood glucose elevation is the pancreatic release of insulin, which blocks hepatic glucose production and release, and stimulates glucose uptake and storage in insulin-dependent tissues. When this first regulatory level is overwhelmed (that is, by exogenous glucose supplementation), persistent hyperglycaemia occurs with intricate consequences related to the glucose acting as a metabolic substrate and as an intracellular mediator. It is thus very important to unravel the glucose metabolic pathways that come into play during stress as well as the consequences of these on cellular functions. During acute injuries, activation of serial hormonal and humoral responses inducing hyperglycaemia is called the 'stress response'. Central activation of the nervous system and of the neuroendocrine axes is involved, releasing hormones that in most cases act to worsen the hyperglycaemia. These hormones in turn induce profound modifications of the inflammatory response, such as cytokine and mediator profiles. The hallmarks of stress-induced hyperglycaemia include 'insulin resistance' associated with an increase in hepatic glucose output and insufficient release of insulin with regard to glycaemia. Although both acute and chronic hyperglycaemia may induce deleterious effects on cells and organs, the initial acute endogenous hyperglycaemia appears to be adaptive. This acute hyperglycaemia participates in the maintenance of an adequate inflammatory response and consequently should not be treated aggressively. Hyperglycaemia induced by an exogenous glucose supply may, in turn, amplify the inflammatory response such that it becomes a disproportionate response. Since chronic exposure to glucose metabolites, as encountered in diabetes, induces adverse effects, the proper roles of these metabolites during acute conditions need further elucidation.
Collapse
Affiliation(s)
- Marie-Reine Losser
- Laboratoire de Recherche Paris 7 EA 3509, Service d'Anesthésie-Réanimation, Hôpital Lariboisière, Assistance Publique - Hôpitaux de Paris, Université Diderot Paris-7, 75475 Paris Cedex 10, France.
| | | | | |
Collapse
|
6
|
Role of PPAR-delta in the development of zymosan-induced multiple organ failure: an experiment mice study. JOURNAL OF INFLAMMATION-LONDON 2010; 7:12. [PMID: 20167109 PMCID: PMC2844385 DOI: 10.1186/1476-9255-7-12] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Accepted: 02/18/2010] [Indexed: 12/11/2022]
Abstract
Background Peroxisome proliferator-activated receptor (PPAR)-beta/delta is a nuclear receptor transcription factor that regulates gene expression in many important biological processes. It is expressed ubiquitously, especially white adipose tissue, heart, muscle, intestine, placenta and macrophages but many of its functions are unknown. Saturated and polyunsaturated fatty acids activate PPAR-beta/delta, but physiological ligands have not yet been identified. In the present study, we investigated the anti-inflammatory effects of PPAR-beta/delta activation, through the use of GW0742 (0,3 mg/kg 10% Dimethyl sulfoxide (DMSO) i.p), a synthetic high affinity ligand, on the development of zymosan-induced multiple organ failure (MOF). Methods Multiple organ failure (MOF) was induced in mice by administration of zymosan (given at 500 mg/kg, i.p. as a suspension in saline). The control groups were treated with vehicle (0.25 ml/mouse saline), while the pharmacological treatment was the administration of GW0742 (0,3 mg/kg 10% DMSO i.p. 1 h and 6 h after zymosan administration). MOF and systemic inflammation in mice was assessed 18 hours after administration of zymosan. Results Treatment with GW0742 caused a significant reduction of the peritoneal exudate formation and of the neutrophil infiltration caused by zymosan resulting in a reduction in myeloperoxidase activity. The PPAR-beta/delta agonist, GW0742, at the dose of 0,3 mg/kg in 10% DMSO, also attenuated the multiple organ dysfunction syndrome caused by zymosan. In pancreas, lung and gut, immunohistochemical analysis of some end points of the inflammatory response, such as inducible nitric oxide synthase (iNOS), nitrotyrosine, poly (ADP-ribose) (PAR), TNF- and IL-1as well as FasL, Bax, Bcl-2 and apoptosis, revealed positive staining in sections of tissue obtained from zymosan-injected mice. On the contrary, these parameters were markedly reduced in samples obtained from mice treated with GW0742 Conclusions In this study, we have shown that GW0742 attenuates the degree of zymosan-induced non-septic shock in mice.
Collapse
|
7
|
Abstract
Hyperglycemia is commonplace in the critically ill patient and is associated with worse outcomes. It occurs after severe stress (e.g., infection or injury) and results from a combination of increased secretion of catabolic hormones, increased hepatic gluconeogenesis, and resistance to the peripheral and hepatic actions of insulin. The use of carbohydrate-based feeds, glucose containing solutions, and drugs such as epinephrine may exacerbate the hyperglycemia. Mechanisms by which hyperglycemia cause harm are uncertain. Deranged osmolality and blood flow, intracellular acidosis, and enhanced superoxide production have all been implicated. The net result is derangement of endothelial, immune and coagulation function and an association with neuropathy and myopathy. These changes can be prevented, at least in part, by the use of insulin to maintain normoglycemia.
Collapse
Affiliation(s)
- David Brealey
- Bloomsbury Institute of Intensive Care Medicine, University College London, London, United Kingdom
| | | |
Collapse
|
8
|
Abstract
The term cachexia originates from the Greek root kakos hexis, which translates into "bad condition," recognized for centuries as a progressive deterioration of body habitus. Cachexia is commonly associated with a number of disease states, including acute inflammatory processes associated with critical illness and chronic inflammatory diseases, such as cancer, congestive heart failure, chronic obstructive pulmonary disease, and human immunodeficiency virus infection. Cachexia is responsible for the deaths of 10%-22% of all patients with cancer and approximately 15% of the trauma deaths that occur from sepsis-induced organ dysfunction and malnutrition days to weeks after the initial traumatic event. The abnormalities associated with cachexia include anorexia, weight loss, a preferential loss of somatic muscle and fat mass, altered hepatic glucose and lipid metabolism, and anemia. Anorexia alone cannot fully explain the development of cachexia; metabolic alterations in carbohydrate, lipid, and protein metabolism contribute to the severe tissue losses. Despite significant advances in our understanding of specific disease processes, the mechanisms leading to cachexia remain unclear and multifactorial. Although complex, increasing evidence from both animal models and clinical studies suggests that an inflammatory response, mediated in part by a dysregulated production of proinflammatory cytokines, plays a role in the genesis of cachexia, associated with both critical illness and chronic inflammatory diseases. These cytokines are further thought to induce an acute phase protein response (APR) and produce the alterations in lipid and carbohydrate metabolism identified as crucial markers of acute inflammation in states of malignancy and critical illness. Although much is still unknown about the etiology of cachexia, there is growing appreciation that cachexia represents the endproduct of an inappropriate interplay between multiple cytokines, neuropeptides, classic stress hormones, and intermediary substrate metabolism.
Collapse
Affiliation(s)
- Matthew J Delano
- Department of Surgery, University of Florida College of Medicine, Room 6116, Shands Hospital, 1600 SW Archer Road, Gainesville, Florida 32610, USA
| | | |
Collapse
|
9
|
Marik PE, Raghavan M. Stress-hyperglycemia, insulin and immunomodulation in sepsis. Intensive Care Med 2004; 30:748-56. [PMID: 14991101 DOI: 10.1007/s00134-004-2167-y] [Citation(s) in RCA: 255] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2003] [Accepted: 12/29/2003] [Indexed: 12/27/2022]
Abstract
Stress-hyperglycemia and insulin resistance are exceedingly common in critically ill patients, particularly those with sepsis. Multiple pathogenetic mechanisms are responsible for this metabolic syndrome; however, increased release of pro-inflammatory mediators and counter-regulatory hormones may play a pivotal role. Recent data suggests that hyperglycemia may potentiate the pro-inflammatory response while insulin has the opposite effect. Furthermore, emerging evidence suggests that tight glycemic control will improve the outcome of critically ill patients. This paper reviews the pathophysiology of stress hyperglycemia in the critically ill septic patient and outlines a treatment strategy for the management of this disorder.
Collapse
Affiliation(s)
- Paul E Marik
- Department of Critical Care Medicine, University of Pittsburgh Medical Center, 640A Scaife Hall, 3550 Terrace Street, Pittsburgh, PA 15261, USA.
| | | |
Collapse
|