1
|
Hackwell E, Ladyman SR, Clarkson J, McQullian HJ, Boehm U, Herbison AE, Brown R, Grattan DR. Prolactin-mediates a lactation-induced suppression of arcuate kisspeptin neuronal activity necessary for lactational infertility in mice. eLife 2025; 13:RP94570. [PMID: 39819370 PMCID: PMC11741520 DOI: 10.7554/elife.94570] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025] Open
Abstract
The specific role that prolactin plays in lactational infertility, as distinct from other suckling or metabolic cues, remains unresolved. Here, deletion of the prolactin receptor (Prlr) from forebrain neurons or arcuate kisspeptin neurons resulted in failure to maintain normal lactation-induced suppression of estrous cycles. Kisspeptin immunoreactivity and pulsatile LH secretion were increased in these mice, even in the presence of ongoing suckling stimulation and lactation. GCaMP fibre photometry of arcuate kisspeptin neurons revealed that the normal episodic activity of these neurons is rapidly suppressed in pregnancy and this was maintained throughout early lactation. Deletion of Prlr from arcuate kisspeptin neurons resulted in early reactivation of episodic activity of kisspeptin neurons prior to a premature return of reproductive cycles in early lactation. These observations show dynamic variation in arcuate kisspeptin neuronal activity associated with the hormonal changes of pregnancy and lactation, and provide direct evidence that prolactin action on arcuate kisspeptin neurons is necessary for suppressing fertility during lactation in mice.
Collapse
Affiliation(s)
- Eleni Hackwell
- Centre for NeuroendocrinologyDunedinNew Zealand
- Department of AnatomyDunedinNew Zealand
| | - Sharon R Ladyman
- Centre for NeuroendocrinologyDunedinNew Zealand
- Department of AnatomyDunedinNew Zealand
- Maurice Wilkins Centre for Molecular BiodiscoveryAucklandNew Zealand
| | - Jenny Clarkson
- Centre for NeuroendocrinologyDunedinNew Zealand
- Department of Physiology, School of Biomedical Sciences, University of OtagoDunedinNew Zealand
| | - H James McQullian
- Centre for NeuroendocrinologyDunedinNew Zealand
- Department of AnatomyDunedinNew Zealand
| | - Ulrich Boehm
- Saarland University School of Medicine, Centre for Molecular Signalling (PZMS), Experimental PharmacologyHomburgGermany
| | - Allan Edward Herbison
- Department of Physiology, Development and Neuroscience, University of CambridgeCambridgeUnited Kingdom
| | - Rosemary Brown
- Centre for NeuroendocrinologyDunedinNew Zealand
- Department of Physiology, School of Biomedical Sciences, University of OtagoDunedinNew Zealand
| | - David R Grattan
- Centre for NeuroendocrinologyDunedinNew Zealand
- Department of AnatomyDunedinNew Zealand
- Maurice Wilkins Centre for Molecular BiodiscoveryAucklandNew Zealand
| |
Collapse
|
2
|
Uenoyama Y, Nonogaki M, Tsuchida H, Takizawa M, Matsuzaki S, Inoue N, Tsukamura H. Central δ/κ opioid receptor signaling pathways mediate chronic and/or acute suckling-induced LH suppression in rats during late lactation. J Reprod Dev 2024; 70:327-337. [PMID: 39155080 PMCID: PMC11461525 DOI: 10.1262/jrd.2024-045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/16/2024] [Indexed: 08/20/2024] Open
Abstract
In mammals, secretion of tonic (pulsatile) gonadotropin-releasing hormone (GnRH)/luteinizing hormone (LH) is often suppressed during lactation. Suppression of GnRH/LH pulses in lactating dams is assumed to be caused by suckling stimuli and a chronic negative energy balance due to milk production. The present study aimed to investigate whether the central enkephalin-δ opioid receptor (DOR) signaling mediated the suppression of LH secretion by acute suckling stimuli and/or chronic negative energy balance due to milk production in rats during late lactation when dams were under a heavy energy demand. On postpartum day 16, the number of Penk (enkephalin mRNA)-expressing cells in the arcuate nucleus was significantly higher in lactating rats than in non-lactating control rats. Pulsatile LH secretion was suppressed in rats with chronic suckling or acute 1-h suckling stimuli 6 h after pup removal on day 16 of lactation. Central DOR antagonism significantly increased the mean LH concentrations and the baseline of LH pulses in rats with chronic suckling but not with acute suckling stimuli on day 16 of lactation. Besides, central κ opioid receptor (KOR) antagonism increased the amplitude of LH pulses in rats with the acute suckling stimuli on day 16 of lactation. These results suggest that central DOR signaling mediates the suppression of LH secretion caused by a negative energy balance in rats receiving chronic suckling during late lactation. On the other hand, central KOR signaling likely mediates acute suckling stimuli-induced suppression of LH secretion in rats during late lactation.
Collapse
Affiliation(s)
- Yoshihisa Uenoyama
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Miku Nonogaki
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Hitomi Tsuchida
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Marina Takizawa
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Sena Matsuzaki
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Naoko Inoue
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Hiroko Tsukamura
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| |
Collapse
|
3
|
Tsuchida H, Takizawa M, Nonogaki M, Inoue N, Uenoyama Y, Tsukamura H. Enkephalin-δ opioid receptor signaling partly mediates suppression of LH release during early lactation in rats. J Reprod Dev 2023; 69:192-197. [PMID: 37331801 PMCID: PMC10435526 DOI: 10.1262/jrd.2023-006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/12/2023] [Indexed: 06/20/2023] Open
Abstract
Gonadal function is often suppressed during lactation in mammals including rodents, ruminants, and primates. This suppression is thought to be mostly due to the inhibition of the tonic (pulsatile) release of gonadotropin-releasing hormone (GnRH) and consequent gonadotropin. Accumulating evidence suggests that kisspeptin neurons in the arcuate nucleus (ARC) play a critical role in the regulation of pulsatile GnRH/gonadotropin release, and kisspeptin mRNA (Kiss1) and/or kisspeptin expression in the ARC are strongly suppressed by the suckling stimuli in lactating rats. This study aimed to examine whether the central enkephalin-δ-opioid receptor (DOR) signaling mediates the suckling-induced suppression of luteinizing hormone (LH) release in lactating rats. Central administration of a selective DOR antagonist increased the mean plasma LH levels and baseline of LH pulses in ovariectomized lactating mother rats compared to vehicle-injected control dams on day 8 of lactation without affecting the number of Kiss1-expressing cells and the intensity of Kiss1 mRNA signals in the ARC. Furthermore, the suckling stimuli significantly increased the number of enkephalin mRNA (Penk)-expressing cells and the intensity of Penk mRNA signals in the ARC compared to non-lactating control rats. Collectively, these results suggest that central DOR signaling, at least in part, mediates the suppression of LH release induced by suckling stimuli in lactating rats via indirect and/or direct inhibition of ARC kisspeptin neurons.
Collapse
Affiliation(s)
- Hitomi Tsuchida
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Marina Takizawa
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Miku Nonogaki
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Naoko Inoue
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Yoshihisa Uenoyama
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Hiroko Tsukamura
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| |
Collapse
|
4
|
Rodrigues MA, Wittwer D, Kitchen DM. Measuring stress responses in female Geoffroy's spider monkeys: Validation and the influence of reproductive state. Am J Primatol 2015; 77:925-935. [PMID: 25891651 PMCID: PMC4609222 DOI: 10.1002/ajp.22421] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 04/03/2015] [Indexed: 11/05/2022]
Abstract
Fecal glucocorticoid metabolites are increasingly used to investigate physiological stress. However, it is crucial for researchers to simultaneously investigate the effects of reproductive state because estradiol and placental hormones can affect circulating glucocorticoid concentrations. Reports on the relationships between glucocorticoids and reproductive state are inconsistent among females. Unlike several primate species that have heightened glucocorticoid activity during lactation, humans experience reduced glucocorticoid activity during lactation. Rather than a taxonomic difference, we hypothesize that this is a result of different environmental stressors, particularly the threat of infanticide. Here, we expand the number of wild primate species tested by validating a glucocorticoid assay for female Geoffroy's spider monkeys. We investigate the effects of reproductive state on their glucocorticoid concentrations. Utilizing a routine veterinary exam on a captive population, we determined that fecal glucocorticoid metabolites increase in response to a stressor (anesthesia), and this rise is detected approximately 24 hr later. Additionally, we found that extracted hormone patterns in a wild population reflected basic reproductive biology-estradiol concentrations were higher in cycling than lactating females, and in lactating females with older offspring who were presumably resuming their cycle. However, we found that estradiol and glucocorticoid concentrations were significantly correlated in lactating but not cycling females. Similarly, we found that reproductive state and estradiol concentration, but not stage of lactation, predicted glucocorticoid concentrations. Unlike patterns in several other primate species that face a relatively strong threat of infanticide, lactating spider monkeys experience reduced glucocorticoid activity, possibly due to attenuating effects of oxytocin and lower male-initiated aggression than directed at cycling females. More broadly, we conclude that future studies using fecal glucocorticoid metabolites to index stress should consider that reproductive state might confound glucocorticoid measurements. Am. J. Primatol. 77:925-935, 2015. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Dan Wittwer
- Wisconsin National Primate Center, Madison, Wisconsin
| | - Dawn M. Kitchen
- Department of Anthropology, The Ohio State University, Columbus, Ohio
- Department of Anthropology, The Ohio State University-Mansfield, Mansfield, Ohio
| |
Collapse
|
5
|
Wahab F, Atika B, Shahab M. Kisspeptin as a link between metabolism and reproduction: evidences from rodent and primate studies. Metabolism 2013; 62:898-910. [PMID: 23414722 DOI: 10.1016/j.metabol.2013.01.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 01/14/2013] [Accepted: 01/14/2013] [Indexed: 11/30/2022]
Abstract
Changes in metabolic status gate reproductive activity by still incompletely deciphered mechanisms. Many neuropeptides have been shown to be involved in restraining hypothalamic gonadotropin releasing hormone (GnRH) release under conditions of negative energy balance. Broadly, on the basis of their effect on feeding, these can be grouped as orexigenic and anorexigenic neuropeptides. Reciprocally correlated, in response to changes in systemic concentrations of metabolic hormones, the secretion of orexigenic neuropeptides increases while that of anorexigenic neuropeptides decreases during conditions of food restriction. Recently, kisspeptin signaling in hypothalamus has appeared as a pivotal regulator of the GnRH pulse generator. Kisspeptin apparently does not affect feeding, but in light of accumulating data, it has emerged as one of the major conduits in relaying body metabolic status information to GnRH neurons. The present review examines such data obtained from rodent and primate models, which suggest kisspeptin-Kiss1r signaling as a possible pathway providing a link between metabolism and reproduction.
Collapse
Affiliation(s)
- Fazal Wahab
- Laboratory of Reproductive Neuroendocrinology, Department of Animal Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, 45320 Islamabad, Pakistan
| | | | | |
Collapse
|
6
|
Gay VL, Hemond PJ, Schmidt D, O'Boyle MP, Hemond Z, Best J, O'Farrell L, Suter KJ. Hormone secretion in transgenic rats and electrophysiological activity in their gonadotropin releasing-hormone neurons. Am J Physiol Endocrinol Metab 2012; 303:E243-52. [PMID: 22621869 PMCID: PMC3431133 DOI: 10.1152/ajpendo.00157.2012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Expression of GFP in GnRH neurons has allowed for studies of individual GnRH neurons. We have demonstrated previously the preservation of physiological function in male GnRH-GFP mice. In the present study, we confirm using biocytin-filled GFP-positive neurons in the hypothalamic slice preparation that GFP-expressing somata, axons, and dendrites in hypothalamic slices from GnRH-GFP rats are GnRH1 peptide positive. Second, we used repetitive sampling to study hormone secretion from GnRH-GFP transgenic rats in the homozygous, heterozygous, and wild-type state and between transgenic and Wistar males after ~4 yr of backcrossing. Parameters of hormone secretion were not different between the three genetic groups or between transgenic males and Wistar controls. Finally, we performed long-term recording in as many GFP-identified GnRH neurons as possible in hypothalamic slices to determine their patterns of discharge. In some cases, we obtained GnRH neuronal recordings from individual males in which blood samples had been collected the previous day. Activity in individual GnRH neurons was expressed as total quiescence, a continuous pattern of firing of either low or relatively high frequencies or an intermittent pattern of firing. In males with both intensive blood sampling (at 6-min intervals) and recordings from their GnRH neurons, we analyzed the activity of GnRH neurons with intermittent activity above 2 Hz using cluster analysis on both data sets. The average number of pulses was 3.9 ± 0.6/h. The average number of episodes of firing was 4.0 ± 0.6/h. Therefore, the GnRH pulse generator may be maintained in the sagittal hypothalamic slice preparation.
Collapse
Affiliation(s)
- Vernon L Gay
- Department of Cellular and Molecular Physiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Saltzman W, Maestripieri D. The neuroendocrinology of primate maternal behavior. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35:1192-204. [PMID: 20888383 PMCID: PMC3072435 DOI: 10.1016/j.pnpbp.2010.09.017] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 09/23/2010] [Accepted: 09/24/2010] [Indexed: 10/19/2022]
Abstract
In nonhuman primates and humans, similar to other mammals, hormones are not strictly necessary for the expression of maternal behavior, but nevertheless influence variation in maternal responsiveness and parental behavior both within and between individuals. A growing number of correlational and experimental studies have indicated that high circulating estrogen concentrations during pregnancy increase maternal motivation and responsiveness to infant stimuli, while effects of prepartum or postpartum estrogens and progestogens on maternal behavior are less clear. Prolactin is thought to play a role in promoting paternal and alloparental care in primates, but little is known about the relationship between this hormone and maternal behavior. High circulating cortisol levels appear to enhance arousal and responsiveness to infant stimuli in young, relatively inexperienced female primates, but interfere with the expression of maternal behavior in older and more experienced mothers. Among neuropeptides and neurotransmitters, preliminary evidence indicates that oxytocin and endogenous opioids affect maternal attachment to infants, including maintenance of contact, grooming, and responses to separation. Brain serotonin affects anxiety and impulsivity, which in turn may affect maternal behaviors such as infant retrieval or rejection of infants' attempts to make contact with the mother. Although our understanding of the neuroendocrine correlates of primate maternal behavior has grown substantially in the last two decades, very little is known about the mechanisms underlying these effects, e.g., the extent to which these mechanisms may involve changes in perception, emotion, or cognition.
Collapse
Affiliation(s)
- Wendy Saltzman
- Department of Biology, University of California, Riverside, CA 92521, USA.
| | | |
Collapse
|
8
|
The neuroendocrine basis of lactation-induced suppression of GnRH: role of kisspeptin and leptin. Brain Res 2010; 1364:139-52. [PMID: 20727862 DOI: 10.1016/j.brainres.2010.08.038] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 08/11/2010] [Accepted: 08/12/2010] [Indexed: 11/22/2022]
Abstract
Lactation is an important physiological model of the integration of energy balance and reproduction, as it involves activation of potent appetitive neuropeptide systems coupled to a profound inhibition of pulsatile GnRH/LH secretion. There are multiple systems that contribute to the chronic hyperphagia of lactation: 1) suppression of the metabolic hormones, leptin and insulin, 2) activation of hypothalamic orexigenic neuropeptide systems NPY, AGRP, orexin (OX) and melanin concentrating hormone (MCH), 3) special induction of NPY expression in the dorsomedial hypothalamus, and 4) suppression of anorexigenic systems POMC and CART. These changes ensure adequate energy intake to meet the metabolic needs of milk production. There is significant overlap in all of the systems that regulate food intake with the regulation of GnRH, suggesting there could be several redundant factors acting to suppress GnRH/LH during lactation. In addition to an overall increase in inhibitory tone acting directly on GnRH cell bodies that is brought about by increases in orexigenic systems, there are also effects at the ARH to disrupt Kiss1/neurokinin B/dynorphin neuronal function through inhibition of Kiss1 and NKB. These changes could lead to an increase in inhibitory auto-regulation of the Kiss1 neurons and a possible disruption of pulsatile GnRH release. While the low levels of leptin and insulin contribute to the changes in ARH appetitive systems, they do not appear to contribute to the suppression of ARH Kiss1 or NKB. The inhibition of Kiss1 may be the key factor in the suppression of GnRH during lactation, although the mechanisms responsible for its inhibition are unknown.
Collapse
|
9
|
Xu J, Kirigiti MA, Cowley MA, Grove KL, Smith MS. Suppression of basal spontaneous gonadotropin-releasing hormone neuronal activity during lactation: role of inhibitory effects of neuropeptide Y. Endocrinology 2009; 150:333-40. [PMID: 18719019 PMCID: PMC2630892 DOI: 10.1210/en.2008-0962] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Increased neuropeptide Y (NPY) activity drives the chronic hyperphagia of lactation and may contribute to the suppression of GnRH activity. The majority of GnRH neurons are contacted by NPY fibers, and GnRH cells express NPY Y5 receptor (Y5R). Therefore, NPY provides a neurocircuitry for information about food intake/energy balance to be directly transmitted to GnRH neurons. To investigate the effects of lactation on GnRH neuronal activity, hypothalamic slices were prepared from green fluorescent protein-GnRH transgenic rats. Extracellular loose-patch recordings determined basal GnRH neuronal activity from slices of ovariectomized control and lactating rats. Compared with controls, hypothalamic slices from lactating rats had double the number of quiescent GnRH neurons (14.51 +/- 2.86 vs. 7.04 +/- 2.84%) and significantly lower firing rates of active GnRH neurons (0.25 +/- 0.02 vs. 0.37 +/- 0.03 Hz). To study the NPY-postsynaptic Y5R system, whole-cell current-clamp recordings were performed in hypothalamic slices from control rats to examine NPY/Y5R antagonist effects on GnRH neuronal resting membrane potential. Under tetrodotoxin treatment, NPY hyperpolarized GnRH neurons from -56.7 +/- 1.94 to -62.1 +/- 1.83 mV; NPY's effects were blocked by Y5R antagonist. To determine whether increased endogenous NPY tone contributes to GnRH neuronal suppression during lactation, hypothalamic slices were treated with Y5R antagonist. A significantly greater percentage of GnRH cells were activated in slices from lactating rats (52%) compared with controls (28%). These results suggest that: 1) basal GnRH neuronal activity is suppressed during lactation; 2) NPY can hyperpolarize GnRH neurons via postsynaptic Y5R; and 3) increased inhibitory NPY tone during lactation is a component of the mechanisms responsible for suppression of GnRH neuronal activity.
Collapse
Affiliation(s)
- Jing Xu
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, 505 Northwest 185th Avenue, Beaverton, Oregon 97006, USA
| | | | | | | | | |
Collapse
|
10
|
Abstract
Prolactinomas are the most frequent pituitary adenoma. Their diagnosis follows clear and increasingly simple rules. Their severity depends on their size. Microadenomas are benign and nonaggressive; inducing gonadotropin insufficiency, they present endocrine problems and have harmful consequences on fertility and on overall health status. Treatment is simple, with D2 agonists showing remarkable efficacy as first-line therapy. This treatment may be chronic, sometimes only sequential, but should allow the patient a completely normal life. Several difficulties persist: macroprolactinomas may behave as aggressive tumors with their own complications. Some adenomas, even small ones, are resistant to D2 agonists, and their treatment has not been codified. Finally, as for all chronic diseases, long-term success depends largely on the information provided to the patient and the patient's adherence to treatment.
Collapse
|
11
|
Villaseca P, Campino C, Oestreicher E, Mayerson D, Serón-Ferré M, Arteaga E. Bilateral oophorectomy in a pregnant woman: hormonal profile from late gestation to post-partum: Case report. Hum Reprod 2005; 20:397-401. [PMID: 15528265 DOI: 10.1093/humrep/deh597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND A 16 week pregnant woman presented with massive theca-lutein cysts requiring bilateral oophorectomy. Pregnancy progressed uneventfully and spontaneous lactation ensued after delivery. METHODS To study the role of the ovary on the hormonal profile at the end of gestation and in post-partum, we measured FSH, estradiol (E2), unconjugated estrone (E1), unconjugated estriol (E3), sex hormone-binding globulin, progesterone, dehydroepiandrosterone sulphate and prolactin at 37 weeks gestation and at 8 h, 4 days, 5 weeks, and 2 months post-partum. RESULTS These hormones were within the range expected for ovary-intact pregnant and puerperal women until 4 days post-partum. At 5 weeks post-partum, FSH increased to a peri-menopausal range (31.4 IU/l) while estrogens remained within the normal puerperal range (E2=239 pmol/l; E1=102 pmol/l), contrasting with their rapid changes in non-pregnant women after bilateral oophorectomy. At 2 months, while partially breastfeeding, FSH, E2 and E1 were closer to menopausal range (68 IU/l, 136 and 70.2 pmol/l respectively), and hormone replacement was started. CONCLUSIONS We conclude that the ovary is not required to maintain a normal hormonal profile in late pregnancy and early puerperium. However, the increase in FSH to peri-menopausal levels at 5 weeks post-partum, despite breastfeeding, suggests that the ovary is needed to maintain low FSH concentrations during lactation.
Collapse
Affiliation(s)
- Paulina Villaseca
- Department of Endocrinología, Facultad de Medicina, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | | | | | | | | | | |
Collapse
|
12
|
Smith MS, Grove KL. Integration of the regulation of reproductive function and energy balance: lactation as a model. Front Neuroendocrinol 2002; 23:225-56. [PMID: 12127305 DOI: 10.1016/s0091-3022(02)00002-x] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Lactation is a physiological model for studying how the hypothalamus integrates peripheral signals, such as sensory signals (suckling stimulus) and those denoting energy balance (leptin), to alter hypothalamic function regulating food intake/energy balance and reproduction. The characteristics of food intake/energy balance during lactation are extreme hyperphagia, coupled with negative energy balance. The arcuate nucleus Neuropeptide Y (ARH-NPY) system is activated by: (1) brainstem projections specifically activated by the suckling stimulus, and (2) the decrease in leptin in response to the metabolic drain of milk production. NPY neurons from the ARH make direct contact with GnRH neurons and with CRH neurons in the PVH. NPY neurons also make contact with orexin and MCH neurons in the LHA, which, in turn, make contacts with GnRH neurons. Thus, the ARH-NPY system provides a neuroanatomical framework by which to integrate changes in food intake/energy with the regulation of cyclic reproductive function.
Collapse
Affiliation(s)
- M Susan Smith
- Division of Neuroscience, Oregon Health and Science University, 505 NW 185th Avenue, Beaverton, OR 97006, USA.
| | | |
Collapse
|
13
|
Knobil E. The Wisdom of the Body Revisited. NEWS IN PHYSIOLOGICAL SCIENCES : AN INTERNATIONAL JOURNAL OF PHYSIOLOGY PRODUCED JOINTLY BY THE INTERNATIONAL UNION OF PHYSIOLOGICAL SCIENCES AND THE AMERICAN PHYSIOLOGICAL SOCIETY 1999; 14:1-11. [PMID: 11390810 DOI: 10.1152/physiologyonline.1999.14.1.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Ernst Knobil
- Medical Sciences at The University of Texas Houston Medical School, Houston, TX 77225, USA
| |
Collapse
|