1
|
Dobbins TW, Fuerniss LK, Hernandez MS, Johnson BJ, Petry AL, Broadway PR, Burdick Sanchez NC, Legako JF. A pre- and postnatal immune challenge influences muscle growth and metabolism in weaned pigs. J Anim Sci 2024; 102:skae350. [PMID: 39529455 PMCID: PMC11630836 DOI: 10.1093/jas/skae350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024] Open
Abstract
The in utero environment is key to both fetal and postnatal growth and development. The objective of this study was to determine if administration of an acute low-dose lipopolysaccharide (LPS) to gestating sows during mid to late gestation and postweaning would alter the offsprings metabolomic profile of the longissimus dorsi (LD) and muscle ultrastructure. Pregnant Camborough sows were randomly assigned to receive LPS (LPS; n = 7) at a dose of 2.5 µg/kg or saline (CON; n = 7) on 78 ± 1.8 d of gestation. At weaning (21 ± 1.3 d of age), barrows (CON n = 17; LPS n = 17) from each treatment were selected to receive a secondary LPS. Barrows were administered the secondary LPS challenge at a dose of 10 µg/kg 7 d post weaning. Twenty-four hours after the postnatal LPS dose, barrows (31 ± 1.3 d of age) were euthanized, and each LD was removed. The left LD was utilized for morphometric measurements. Two samples from the medial section of the right LD were preserved for immunohistochemical measurements and metabolomic analyses. Mass spectral data were deconvoluted, aligned, and annotated using MS-DIAL. Univariate and multivariate analyses were conducted using MetaboAnalyst. Pathway analysis was conducted and compared to the Homo sapiens pathway library. Morphometric and immunohistochemical measurements were analyzed using the MIXED procedure of SAS version 9.4. Significance for all analyses was declared at P ≤ 0.05 and tendencies were considered at P ≤ 0.10. Average diameter of myosin heavy chain (MHC) type I and IIB/X fibers was increased (P ≤ 0.048) in LPS offspring compared with CON. Average cross-sectional area was increased (P = 0.030) in MHC IIB/X fibers and tended to be increased (P = 0.080) in MHC I fibers of LPS offspring. There were no differences (P = 0.186) between treatment groups for total nuclei or nuclei positive for MYF5, PAX7, or MYF5 and PAX7 nuclei. Metabolomic analyses identified 14 differentially expressed (P < 0.05) metabolites in the LD between treatment groups. There were 10 metabolites within the LD that tended (P ≤ 0.096) to differ between treatment groups. Thus, this study shows that in utero immune stimulation using LPS in gestating sows and a subsequent LPS challenge postnatally alters the metabolomic profile and muscle ultrastructure of the LD in weaned pigs.
Collapse
Affiliation(s)
- Thomas W Dobbins
- Department of Animal and Food Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Luke K Fuerniss
- Department of Animal and Food Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Manuel S Hernandez
- Department of Animal and Food Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Bradley J Johnson
- Department of Animal and Food Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Amy L Petry
- Division of Animal Science, University of Missouri, Columbia, MO 65211, USA
| | - Paul R Broadway
- Livestock Issues Research Unit, ARS-USDA, Lubbock, TX 79403, USA
| | | | - Jerrad F Legako
- Department of Animal and Food Sciences, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
2
|
Dimethyl Sulfoxide Induces Hemolysis and Pulmonary Hypertension. PRILOZI (MAKEDONSKA AKADEMIJA NA NAUKITE I UMETNOSTITE. ODDELENIE ZA MEDICINSKI NAUKI) 2022; 43:5-20. [PMID: 36473034 DOI: 10.2478/prilozi-2022-0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Vascular and lung injury are well established complications associated with hemolytic disorders, and hemolysis associated pulmonary hypertension (PH) has emerged as the most serious complication of sickle cell disease. The causal relationship between intravascular hemolysis and the development of PH is still under investigation. Previously we have shown that repetitive administration of hemolyzed autologous blood causes PH in rats. Dimethyl sulfoxide (DMSO), a widely used solvent and anti-inflammatory agent, induces hemolysis in vivo. We hypothesized that repetitive administration of DMSO would induce PH in rats. We also examined hemolysis-induced release of adenosine deaminase (ADA) and arginase from red blood cells, which may amplify hemolysis-mediated vascular injury. Acute administration of DMSO (1.5ml/30 min into the right atrium) induced intravascular hemolysis and pulmonary vasoconstriction. DMSO-induced increase in right ventricular peak systolic pressure (RVPSP) was associated with increased release of ADA. Notably, the acute increase in RVPSP was attenuated by administration of an adenosine A2A receptor agonist or by pretreatment of animals with ADA inhibitor erythro-9-(2-hydroxy-3-nonyl) adenine (EHNA). Repetitive administration of DMSO for 10 days produced anemia, hemoglobinuria, hemoglobinemia, splenomegaly, and development of PH. Histopathological analysis revealed pulmonary vascular remodeling. The presented data describe a new model of hemolysis induced PH, suggesting that hemolysis is mechanistically related to pulmonary hypertension, and pointing to a potential pathogenic role that adenosine deaminase and accelerated adenosine metabolism may play in hemolysis associated pulmonary hypertension.
Collapse
|
3
|
Xiao-Chai-Hu Decoction Ameliorates Poly (I:C)-Induced Viral Pneumonia through Inhibiting Inflammatory Response and Modulating Serum Metabolism. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1240242. [PMID: 35865338 PMCID: PMC9296287 DOI: 10.1155/2022/1240242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/27/2022] [Accepted: 06/15/2022] [Indexed: 11/30/2022]
Abstract
Viral pneumonia is widespread, progresses rapidly, and has a high mortality rate. Developing safe and effective therapies to treat viral pneumonia can minimize risks to public health and alleviate pressures on the associated health systems. Xiao-Chai-Hu (XCH) decoction can be used in the treatment of viral pneumonia. However, the mechanisms of XCH on viral pneumonia remain unclear. In this study, poly (I:C) was used to establish a mouse model of viral pneumonia, and the therapeutic effects of XCH on viral pneumonia were assessed. Furthermore, we evaluated the effects of XCH on inflammatory response. Lastly, untargeted metabolomics were used to study the metabolic regulatory mechanisms of XCH on viral pneumonia model mice. Our results showed that XCH treatment decreased the wet/dry ratio in lung tissue, total protein concentration, and total cell count in bronchoalveolar lavage fluid (BALF). H&E staining indicated that XCH treatment alleviated the pathological changes in lung. Moreover, XCH treatment decreased the levels of proinflammatory cytokines (IL-1β, IL-6, and TNF-α) and lowered the ratio of CD86+/CD206+ macrophages and CD11b+LY6G+ neutrophils in BALF. XCH treatment also decreased the myeloperoxidase (MPO) and reduced the phosphorylations of PI3K, AKT, and NF-κB p65 in lung. Serum untargeted metabolomics analysis showed that XCH treatment could affect 18 metabolites in serum such as creatine, hydroxyproline, cortisone, hydrocortisone, corticosterone, hypotaurine, and taurine. These metabolites were associated with arginine and proline metabolism, steroid hormone biosynthesis, and taurine and hypotaurine metabolism processes. In conclusion, our study demonstrated that treatment with XCH can ameliorate viral pneumonia and reduce inflammatory response in viral pneumonia. The mechanism of action of XCH in the treatment of viral pneumonia may be associated with inhibiting the activation of PI3K/AKT/NF-κB signaling pathway in lung and regulating arginine and proline metabolism, steroid hormone biosynthesis, and taurine and hypotaurine metabolism in serum.
Collapse
|
4
|
Buraczynska M, Zakrocka I. Arginase Gene Polymorphism Increases Risk of Diabetic Retinopathy in Type 2 Diabetes Mellitus Patients. J Clin Med 2021; 10:jcm10225407. [PMID: 34830689 PMCID: PMC8620112 DOI: 10.3390/jcm10225407] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 12/22/2022] Open
Abstract
Studies have demonstrated that polymorphic variants of arginase 1 gene (ARG1) are involved in human diseases, such as coronary heart disease, hypertension, and diabetes. Our study aimed to investigate the association between ARG1 rs2781666 single nucleotide polymorphism (SNP) and diabetic retinopathy (DR) in type 2 diabetes (T2DM) patients. Polymorphism was genotyped in 740 T2DM patients and 400 healthy individuals. A significant difference in the genotype distribution was observed between the patients and the controls. The T allele and TT genotype were associated with an increased risk of T2DM (OR 1.4, 95% CI 1.14–1.72, p = 0.001 and OR 2.16, 95% CI 1.23–3.80, p = 0.007, respectively). When the T2DM subjects were stratified into DR+ and DR− subgroups, the T allele and TT genotype frequencies were significantly higher in the DR+ group compared to the DR− group, demonstrating OR 1.68 (1.33–2.12), p < 0.0001 and OR 2.39 (1.36–4.18), p = 0.002, respectively. Logistic regression analysis was applied to determine the interaction between the ARG1 genotypes and other risk factors. Only ARG1 rs2781666 SNP was a significant risk predictor of DR (p = 0.003). In conclusion, this is the first report discussing the effect of ARG1 polymorphism on the microvascular complications that are associated with diabetes. Our findings demonstrate that ARG1 rs2781666 SNP is significantly associated with an increased susceptibility to DR in T2DM patients.
Collapse
|
5
|
Mammedova JT, Sokolov AV, Freidlin IS, Starikova EA. The Mechanisms of L-Arginine Metabolism Disorder in Endothelial Cells. BIOCHEMISTRY (MOSCOW) 2021; 86:146-155. [PMID: 33832413 DOI: 10.1134/s0006297921020036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
L-arginine is a key metabolite for nitric oxide production by endothelial cells, as well as signaling molecule of the mTOR signaling pathway. mTOR supports endothelial cells homeostasis and regulates activity of L-arginine-metabolizing enzymes, endothelial nitric oxide synthase, and arginase II. Disruption of the L-arginine metabolism in endothelial cells leads to the development of endothelial dysfunction. Conflicting results of the use of L-arginine supplement to improve endothelial function reveals a controversial role of the amino acid in the endothelial cell biology. The review is aimed at analysis of the current data on the role of L-arginine metabolism in the development of endothelial dysfunction.
Collapse
Affiliation(s)
| | - Alexey V Sokolov
- Institute of Experimental Medicine, 197376 Saint-Petersburg, Russia
| | - Irina S Freidlin
- Institute of Experimental Medicine, 197376 Saint-Petersburg, Russia
| | | |
Collapse
|
6
|
Martí I Líndez AA, Reith W. Arginine-dependent immune responses. Cell Mol Life Sci 2021; 78:5303-5324. [PMID: 34037806 PMCID: PMC8257534 DOI: 10.1007/s00018-021-03828-4] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 03/23/2021] [Accepted: 03/29/2021] [Indexed: 02/07/2023]
Abstract
A growing body of evidence indicates that, over the course of evolution of the immune system, arginine has been selected as a node for the regulation of immune responses. An appropriate supply of arginine has long been associated with the improvement of immune responses. In addition to being a building block for protein synthesis, arginine serves as a substrate for distinct metabolic pathways that profoundly affect immune cell biology; especially macrophage, dendritic cell and T cell immunobiology. Arginine availability, synthesis, and catabolism are highly interrelated aspects of immune responses and their fine-tuning can dictate divergent pro-inflammatory or anti-inflammatory immune outcomes. Here, we review the organismal pathways of arginine metabolism in humans and rodents, as essential modulators of the availability of this semi-essential amino acid for immune cells. We subsequently review well-established and novel findings on the functional impact of arginine biosynthetic and catabolic pathways on the main immune cell lineages. Finally, as arginine has emerged as a molecule impacting on a plethora of immune functions, we integrate key notions on how the disruption or perversion of arginine metabolism is implicated in pathologies ranging from infectious diseases to autoimmunity and cancer.
Collapse
Affiliation(s)
| | - Walter Reith
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
7
|
Arginase Activity in Eisenia andrei Coelomocytes: Function in the Earthworm Innate Response. Int J Mol Sci 2021; 22:ijms22073687. [PMID: 33916228 PMCID: PMC8037997 DOI: 10.3390/ijms22073687] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/24/2021] [Accepted: 03/27/2021] [Indexed: 11/17/2022] Open
Abstract
Arginase is the manganese metalloenzyme catalyzing the conversion of l-arginine to l-ornithine and urea. In vertebrates, arginase is involved in the immune response, tissue regeneration, and wound healing and is an important marker of alternative anti-inflammatory polarization of macrophages. In invertebrates, data concerning the role of arginase in these processes are very limited. Therefore, in the present study, we focused on the changes in arginase activity in the coelomocytes of Eisenia andrei. We studied the effects of lipopolysaccharide (LPS), hydrogen peroxide (H2O2), heavy metals ions (e.g., Mn2+), parasite infection, wound healing, and short-term fasting (5 days) on arginase activity. For the first time in earthworms, we described arginase activity in the coelomocytes and found that it can be up-regulated upon in vitro stimulation with LPS and H2O2 and in the presence of Mn2+ ions. Moreover, arginase activity was also up-regulated in animals in vivo infected with nematodes or experiencing segment amputation, but not in fasting earthworms. Furthermore, we confirmed that the activity of coelomocyte arginase can be suppressed by l-norvaline. Our studies strongly suggest that similarly to the vertebrates, also in the earthworms, coelomocyte arginase is an important element of the immune response and wound healing processes.
Collapse
|
8
|
Toll-Like Receptor 2-Tpl2-Dependent ERK Signaling Drives Inverse Interleukin 12 Regulation in Dendritic Cells and Macrophages. Infect Immun 2020; 89:IAI.00323-20. [PMID: 33077627 DOI: 10.1128/iai.00323-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 10/14/2020] [Indexed: 01/22/2023] Open
Abstract
This study investigated responses to Toll-like receptor 2 (TLR2)-driven extracellular signal-related kinase (ERK) signaling in dendritic cells (DCs) versus macrophages. TLR2 signaling was induced with Pam3Cys-Ser-Lys4, and the role of ERK signaling was interrogated pharmacologically with MEK1/2 inhibitor U0126 or genetically with bone marrow-derived macrophages or DCs from Tpl2-/- mice. We assessed cytokine production via enzyme-linked immunosorbent assay (ELISA) or V-Plex, and mRNA levels were assessed via reverse transcriptase quantitative PCR (qRT-PCR). In macrophages, blockade of ERK signaling by pharmacologic or genetic approaches inhibited interleukin 10 (IL-10) expression and increased expression of the p40 subunit shared by IL-12 and IL-23 (IL-12/23p40). In DCs, blockade of ERK signaling similarly inhibited IL-10 expression but decreased IL-12/23p40 expression, which is opposite to the effect of ERK signaling blockade on IL-12/23p40 in macrophages. This difference in IL-12/23p40 regulation correlated with the differential expression of transcription factors cFos and IRF1, which are known to regulate IL-12 family members, including IL-12 and IL-23. Thus, the impact of ERK signaling in response to TLR2 stimulation differs between macrophages and DCs, potentially regulating their distinctive functions in the immune system. ERK-mediated suppression of IL-12/23p40 in macrophages may prevent excessive inflammation and associated tissue damage following TLR2-stimulation, while ERK-mediated induction of IL-12/23p40 in DCs may promote priming of T helper 1 (Th1) responses. A greater understanding of the role that ERK signaling plays in different immune cell types may inform the development of host-directed therapy and optimal adjuvanticity for a number of infectious pathogens.
Collapse
|
9
|
Wetzel MD, Stanley K, Wang WW, Maity S, Madesh M, Reeves WB, Awad AS. Selective inhibition of arginase-2 in endothelial cells but not proximal tubules reduces renal fibrosis. JCI Insight 2020; 5:142187. [PMID: 32956070 PMCID: PMC7566719 DOI: 10.1172/jci.insight.142187] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/02/2020] [Indexed: 01/10/2023] Open
Abstract
Fibrosis is the final common pathway in the pathophysiology of most forms of chronic kidney disease (CKD). As treatment of renal fibrosis still remains largely supportive, a refined understanding of the cellular and molecular mechanisms of kidney fibrosis and the development of novel compounds are urgently needed. Whether arginases play a role in the development of fibrosis in CKD is unclear. We hypothesized that endothelial arginase-2 (Arg2) promotes the development of kidney fibrosis induced by unilateral ureteral obstruction (UUO). Arg2 expression and arginase activity significantly increased following renal fibrosis. Pharmacologic blockade or genetic deficiency of Arg2 conferred kidney protection following renal fibrosis, as reflected by a reduction in kidney interstitial fibrosis and fibrotic markers. Selective deletion of Arg2 in endothelial cells (Tie2Cre/Arg2fl/fl) reduced the level of fibrosis after UUO. In contrast, selective deletion of Arg2 specifically in proximal tubular cells (Ggt1Cre/Arg2fl/fl) failed to reduce renal fibrosis after UUO. Furthermore, arginase inhibition restored kidney nitric oxide (NO) levels, oxidative stress, and mitochondrial function following UUO. These findings indicate that endothelial Arg2 plays a major role in renal fibrosis via its action on NO and mitochondrial function. Blocking Arg2 activity or expression could be a novel therapeutic approach for prevention of CKD.
Collapse
|
10
|
Choi K, Koo BH, Yoon BJ, Jung M, Yun HY, Jeon BH, Won MH, Kim YM, Mun JY, Lim HK, Ryoo S. Overexpressed p32 localized in the endoplasmic reticulum and mitochondria negatively regulates calcium‑dependent endothelial nitric oxide synthase activit. Mol Med Rep 2020; 22:2395-2403. [PMID: 32705193 PMCID: PMC7411372 DOI: 10.3892/mmr.2020.11307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/14/2020] [Indexed: 11/23/2022] Open
Abstract
The p32 protein plays a crucial role in the regulation of cytosolic Ca2+ concentrations ([Ca2+]c) that contributes to the Ca2+-dependent signaling cascade. Using an adenovirus and plasmid p32-overexpression system, the aim of the study was to evaluate the role of p32 in the regulation of [Ca2+] and its potential associated with Ca2+-dependent endothelial nitric oxide synthase (eNOS) activation in endothelial cells. Using electron and confocal microscopic analysis, p32 overexpression was observed to be localized to mitochondria and the endoplasmic reticulum and played an important role in Ca2+ translocation, resulting in increased [Ca2+] in these organelles and reducing cytosolic [Ca2+] ([Ca2+]c). This decreased [Ca2+]c following p32 overexpression attenuated the Ca2+-dependent signaling cascade of calcium/calmodulin dependent protein kinase II (CaMKII)/AKT/eNOS phosphorylation. Moreover, in aortic endothelia of wild-type mice intravenously administered adenovirus encoding the p32 gene, increased p32 levels reduced NO production and accelerated reactive oxygen species (ROS) generation. In a vascular tension assay, p32 overexpression decreased acetylcholine (Ach)-induced vasorelaxation and augmented phenylephrine (PE)-dependent vasoconstriction. Notably, decreased levels of arginase II (ArgII) protein using siArgII were associated with downregulation of overexpressed p32 protein, which contributed to CaMKII-dependent eNOS phosphorylation at Ser1177. These results indicated that increased protein levels of p32 caused endothelial dysfunction through attenuation of the Ca2+-dependent signaling cascade and that ArgII protein participated in the stability of p32. Therefore, p32 may be a novel target for the treatment of vascular diseases associated with endothelial disorders.
Collapse
Affiliation(s)
- Kwanhoon Choi
- Department of Anesthesiology and Pain Medicine, Yonsei University Wonju College of Medicine, Wonju, Gangwon 26426, Republic of Korea
| | - Bon-Hyeock Koo
- Department of Biological Sciences, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Byeong Jun Yoon
- Department of Biological Sciences, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Minkyo Jung
- Department of Neural Circuits Research, Korea Brain Research Institute, Dong, Daegu 41068, Republic of Korea
| | - Hye Young Yun
- Department of Anesthesiology and Pain Medicine, Yonsei University Wonju College of Medicine, Wonju, Gangwon 26426, Republic of Korea
| | - Byung Hwa Jeon
- Department of Physiology, School of Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Moo-Ho Won
- Department of Neurobiology, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Young-Myeong Kim
- Department of Molecular and Cellular Biochemistry, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Ji Young Mun
- Department of Neural Circuits Research, Korea Brain Research Institute, Dong, Daegu 41068, Republic of Korea
| | - Hyun Kyo Lim
- Department of Anesthesiology and Pain Medicine, Yonsei University Wonju College of Medicine, Wonju, Gangwon 26426, Republic of Korea
| | - Sungwoo Ryoo
- Department of Biological Sciences, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| |
Collapse
|
11
|
Chen Z, Yu L, Cai X, Ye F, Jin P. Toll-like receptor 4/nuclear factor-kappa B pathway is involved in activating microphages by polysaccharides isolated from Fagopyrum esculentum. Bioengineered 2020; 10:538-547. [PMID: 31661653 PMCID: PMC6844372 DOI: 10.1080/21655979.2019.1682214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Buckwheat polysaccharide fractions (BPFs) isolated from seeds of Fagopyrum esculentum have shown extensive immunomodulatory activities including activation of immune system. In this study, the immuno-modulation effects of BPFs on microphages were investigated. The obtained results show that BPFs can activate microphages as indicated by significant increases in the activity of inducible nitric oxide synthase (12.6 ± 1.30 U/mg prot), nuclear factor-kappa B (NF-κB) protein levels, and secretion of nitric oxide (NO) (21.5 ± 1.20 μmol/ml) and tumor necrosis factor-alpha (TNF-α) (71.2 ± 18.20 pg/ml). Moreover, blocking toll-like receptor 4 (TLR4)/NF-κB pathway using a specific antibody to TLR4 or inhibitor of NF-κB led to the significant inhibitory immuno-modulation effect on microphages as indicated by the decrease in the secretion level of NO and TNF-α. It is demonstrated that BPFs can activate microphages and TLR4/NF-κB pathway is involved in the induction of NO and TNF-α in macrophages by BPFs.
Collapse
Affiliation(s)
- Zhen Chen
- Department of Gastroenterology, Third Affiliated Hospital of Wenzhou Medical University, Rui'an People's Hospital, Rui'an, China
| | - Leilei Yu
- Department of Gastroenterology, Third Affiliated Hospital of Wenzhou Medical University, Rui'an People's Hospital, Rui'an, China
| | - Xiaoniao Cai
- Department of Gastroenterology, Third Affiliated Hospital of Wenzhou Medical University, Rui'an People's Hospital, Rui'an, China
| | - Fangpeng Ye
- Department of Gastroenterology, Third Affiliated Hospital of Wenzhou Medical University, Rui'an People's Hospital, Rui'an, China
| | - Peisheng Jin
- Department of Gastroenterology, Third Affiliated Hospital of Wenzhou Medical University, Rui'an People's Hospital, Rui'an, China
| |
Collapse
|
12
|
Koo BH, Won MH, Kim YM, Ryoo S. p32-Dependent p38 MAPK Activation by Arginase II Downregulation Contributes to Endothelial Nitric Oxide Synthase Activation in HUVECs. Cells 2020; 9:cells9020392. [PMID: 32046324 PMCID: PMC7072651 DOI: 10.3390/cells9020392] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/26/2020] [Accepted: 02/05/2020] [Indexed: 12/30/2022] Open
Abstract
Arginase II reciprocally regulates endothelial nitric oxide synthase (eNOS) through a p32-dependent Ca2+ control. We investigated the signaling pathway of arginase II-dependent eNOS phosphorylation. Western blot analysis was applied for examining protein activation and [Ca2+]c was analyzed by microscopic and FACS analyses. Nitric oxide (NO) and reactive oxygen species (ROS) productions were measured using specific fluorescent dyes under microscopy. NO signaling pathway was tested by measuring vascular tension. Following arginase II downregulation by chemical inhibition or gene knockout (KO, ArgII−/−), increased eNOS phosphorylation at Ser1177 and decreased phosphorylation at Thr495 was depend on p38 MAPK activation, which induced by CaMKII activation through p32-dependent increase in [Ca2+]c. The protein amount of p32 negatively regulated p38 MAPK activation. p38 MAPK contributed to Akt-induced eNOS phosphorylation at Ser1177 that resulted in accelerated NO production and reduced reactive oxygen species production in aortic endothelia. In vascular tension assay, p38 MAPK inhibitor decreased acetylcholine-induced vasorelaxation responses and increased phenylephrine-dependent vasoconstrictive responses. In ApoE−/− mice fed a high cholesterol diet, arginase II inhibition restored p32/CaMKII/p38 MAPK/Akt/eNOS signaling cascade that was attenuated by p38 MAPK inhibition. Here, we demonstrated a novel signaling pathway contributing to understanding of the relationship between arginase II, endothelial dysfunction, and atherogenesis.
Collapse
Affiliation(s)
- Bon-Hyeock Koo
- Department of Biological Sciences, Kangwon National University, Chuncheon, Gangwon 24341, Korea;
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Korea;
| | - Young-Myeong Kim
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Korea;
| | - Sungwoo Ryoo
- Department of Biological Sciences, Kangwon National University, Chuncheon, Gangwon 24341, Korea;
- Correspondence: ; Tel.: +82-33-250-8534; Fax: +82-33-251-3990
| |
Collapse
|
13
|
Therajaran P, Hamilton JA, O'Brien TJ, Jones NC, Ali I. Microglial polarization in posttraumatic epilepsy: Potential mechanism and treatment opportunity. Epilepsia 2020; 61:203-215. [PMID: 31943156 DOI: 10.1111/epi.16424] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 12/17/2022]
Abstract
Owing to the complexity of the pathophysiological mechanisms driving epileptogenesis following traumatic brain injury (TBI), effective preventive treatment approaches are not yet available for posttraumatic epilepsy (PTE). Neuroinflammation appears to play a critical role in the pathogenesis of the acquired epilepsies, including PTE, but despite a large preclinical literature demonstrating the ability of anti-inflammatory treatments to suppress epileptogenesis and chronic seizures, no anti-inflammatory treatment approaches have been clinically proven to date. TBI triggers robust inflammatory cascades, suggesting that they may be relevant for the pathogenesis of PTE. A major cell type involved in such cascades is the microglial cells-brain-resident immune cells that become activated after brain injury. When activated, these cells can oscillate between different phenotypes, and such polarization states are associated with the release of various pro- and anti-inflammatory mediators that may influence brain repair processes, and also differentially contribute to the development of PTE. As the molecular mechanisms and key signaling molecules associated with microglial polarization in brain are discovered, strategies are now emerging that can modulate this polarization, promoting this as a potential therapeutic strategy for PTE. In this review, we discuss the relevant literature regarding the polarization of brain-resident immune cells following TBI and attempt to put into perspective a role in epilepsy pathogenesis. Finally, we explore potential strategies that could polarize microglia/macrophages toward a neuroprotective phenotype to mitigate PTE development.
Collapse
Affiliation(s)
- Peravina Therajaran
- Department of Medicine (Royal Melbourne Hospital), Melbourne Brain Centre, University of Melbourne, Parkville, Victoria, Australia
| | - John A Hamilton
- Department of Medicine (Royal Melbourne Hospital), Melbourne Brain Centre, University of Melbourne, Parkville, Victoria, Australia
| | - Terence J O'Brien
- Department of Medicine (Royal Melbourne Hospital), Melbourne Brain Centre, University of Melbourne, Parkville, Victoria, Australia.,Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department of Neurology, Alfred Hospital, Melbourne, Victoria, Australia
| | - Nigel C Jones
- Department of Medicine (Royal Melbourne Hospital), Melbourne Brain Centre, University of Melbourne, Parkville, Victoria, Australia.,Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department of Neurology, Alfred Hospital, Melbourne, Victoria, Australia
| | - Idrish Ali
- Department of Medicine (Royal Melbourne Hospital), Melbourne Brain Centre, University of Melbourne, Parkville, Victoria, Australia.,Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department of Neurology, Alfred Hospital, Melbourne, Victoria, Australia
| |
Collapse
|
14
|
Lambden S. Bench to bedside review: therapeutic modulation of nitric oxide in sepsis-an update. Intensive Care Med Exp 2019; 7:64. [PMID: 31792745 PMCID: PMC6888802 DOI: 10.1186/s40635-019-0274-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 10/11/2019] [Indexed: 12/17/2022] Open
Abstract
Nitric oxide is a signalling molecule with an extensive range of functions in both health and disease. Discovered in the 1980s through work that earned the Nobel prize, nitric oxide is an essential factor in regulating cardiovascular, immune, neurological and haematological function in normal homeostasis and in response to infection. Early work implicated exaggerated nitric oxide synthesis as a potentially important driver of septic shock; however, attempts to modulate production through global inhibition of nitric oxide synthase were associated with increased mortality. Subsequent work has shown that regulation of nitric oxide production is determined by numerous factors including substrate and co-factor availability and expression of endogenous regulators. In sepsis, nitric oxide synthesis is dysregulated with exaggerated production leading to cardiovascular dysfunction, bioenergetic failure and cellular toxicity whilst at the same time impaired microvascular function may be driven in part by reduced nitric oxide synthesis by the endothelium. This bench to bedside review summarises our current understanding of the ways in which nitric oxide production is regulated on a tissue and cellular level before discussing progress in translating these observations into novel therapeutic strategies for patients with sepsis.
Collapse
Affiliation(s)
- Simon Lambden
- Department of Medicine, Addenbrooke's Hospital, Cambridge University, 5th Floor, Cambridge, CB20QQ, UK.
| |
Collapse
|
15
|
Koo BH, Hwang HM, Yi BG, Lim HK, Jeon BH, Hoe KL, Kwon YG, Won MH, Kim YM, Berkowitz DE, Ryoo S. Arginase II Contributes to the Ca 2+/CaMKII/eNOS Axis by Regulating Ca 2+ Concentration Between the Cytosol and Mitochondria in a p32-Dependent Manner. J Am Heart Assoc 2019; 7:e009579. [PMID: 30371203 PMCID: PMC6222941 DOI: 10.1161/jaha.118.009579] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Arginase II activity contributes to reciprocal regulation of endothelial nitric oxide synthase (eNOS). We tested the hypotheses that arginase II activity participates in the regulation of Ca2+/Ca2+/calmodulin‐dependent kinase II/eNOS activation, and this process is dependent on mitochondrial p32. Methods and Results Downregulation of arginase II increased the concentration of cytosolic Ca2+ ([Ca2+]c) and decreased mitochondrial Ca2+ ([Ca2+]m) in microscopic and fluorescence‐activated cell sorting analyses, resulting in augmented eNOS Ser1177 phosphorylation and decreased eNOS Thr495 phosphorylation through Ca2+/Ca2+/calmodulin‐dependent kinase II. These changes were observed in human umbilical vein endothelial cells treated with small interfering RNA against p32 (sip32). Using matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry, fluorescence immunoassay, and ion chromatography, inhibition of arginase II reduced the amount of spermine, a binding molecule, and the release of Ca2+ from p32. In addition, arginase II gene knockdown using small interfering RNA and knockout arginase II‐null mice resulted in reduced p32 protein level. In the aortas of wild‐type mice, small interfering RNA against p32 induced eNOS Ser1177 phosphorylation and enhanced NO‐dependent vasorelaxation. Arginase activity, p32 protein expression, spermine amount, and [Ca2+]m were increased in the aortas from apolipoprotein E (ApoE−/−) mice fed a high‐cholesterol diet, and intravenous administration of small interfering RNA against p32 restored Ca2+/Ca2+/calmodulin‐dependent kinase II‐dependent eNOS Ser1177 phosphorylation and improved endothelial dysfunction. The effects of arginase II downregulation were not associated with elevated NO production when tested in aortic endothelia from eNOS knockout mice. Conclusions These data demonstrate a novel function of arginase II in regulation of Ca2+‐dependent eNOS phosphorylation. This novel mechanism drives arginase activation, mitochondrial dysfunction, endothelial dysfunction, and atherogenesis.
Collapse
Affiliation(s)
- Bon-Hyeock Koo
- 1 Department of Biology School of medicine Kangwon National University Chuncheon Korea
| | - Hye-Mi Hwang
- 1 Department of Biology School of medicine Kangwon National University Chuncheon Korea
| | - Bong-Gu Yi
- 1 Department of Biology School of medicine Kangwon National University Chuncheon Korea
| | - Hyun Kyo Lim
- 4 Department of Anesthesiology and Pain Medicine Yonsei University Wonju College of Medicine Wonju Korea
| | - Byeong Hwa Jeon
- 5 Infectious Signaling Network Research Center Department of Physiology School of Medicine Chungnam National University Daejeon Korea
| | - Kwang Lae Hoe
- 6 Department of New Drug Discovery and Development Chungnam National University Daejeon Korea
| | | | - Moo-Ho Won
- 2 Department of Neurobiology School of medicine Kangwon National University Chuncheon Korea
| | - Young Myeong Kim
- 3 College of Natural Sciences and Departments of Molecular and Cellular Biochemistry School of medicine Kangwon National University Chuncheon Korea
| | - Dan E Berkowitz
- 8 Department of Anesthesiology and Critical Care Medicine Johns Hopkins University Baltimore MD
| | - Sungwoo Ryoo
- 1 Department of Biology School of medicine Kangwon National University Chuncheon Korea
| |
Collapse
|
16
|
Arginase II activity regulates cytosolic Ca 2+ level in a p32-dependent manner that contributes to Ca 2+-dependent vasoconstriction in native low-density lipoprotein-stimulated vascular smooth muscle cells. Exp Mol Med 2019; 51:1-12. [PMID: 31155612 PMCID: PMC6545325 DOI: 10.1038/s12276-019-0262-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 02/19/2019] [Accepted: 02/26/2019] [Indexed: 12/04/2022] Open
Abstract
Although arginase II (ArgII) is abundant in mitochondria, Ca2+-accumulating organelles, the relationship between ArgII activity and Ca2+ translocation into mitochondria and the regulation of cytosolic Ca2+ signaling are completely unknown. We investigated the effects of ArgII activity on mitochondrial Ca2+ uptake through mitochondrial p32 protein (p32m) and on CaMKII-dependent vascular smooth muscle cell (VSMC) contraction. Native low-density lipoprotein stimulation induced an increase in [Ca2+]m as measured by CoCl2-quenched calcein-AM fluorescence, which was prevented by Arg inhibition in hAoSMCs and reduced in mAoSMCs from ArgII−/− mice. Conversely, [Ca2+]c analyzed with Fluo-4 AM was increased by Arg inhibition and ArgII gene knockout. The increased [Ca2+]c resulted in CaMKII and MLC 20 phosphorylation, which was associated with enhanced vasoconstriction activity to phenylephrine (PE) in the vascular tension assay. Cy5-tagged siRNA against mitochondrial p32 mRNA (sip32m) abolished mitochondrial Ca2+ uptake and induced activation of CaMKII. Spermine, a polyamine, induced mitochondrial Ca2+ uptake and dephosphorylation of CaMKII and was completely inhibited by sip32m incubation. In mAoSMCs from ApoE-null mice fed a high-cholesterol diet (ApoE−/− +HCD), Arg activity was increased, and spermine concentration was higher than that of wild-type mice. Furthermore, [Ca2+]m and p32m levels were elevated, and CaMKII phosphorylation was reduced in mAoSMCs from ApoE−/− +HCD. In vascular tension experiments, an attenuated response to vasoconstrictors in de-endothelialized aorta from ApoE−/− +HCD was recovered by incubation of sip32m. ArgII activity-dependent production of spermine augments Ca2+ transition from the cytosol to the mitochondria in a p32m-dependent manner and regulates CaMKII-dependent constriction in VSMCs. Researchers have illuminated how a protein, arginase II (ArgII), is involved in development of vascular diseases such as atherosclerosis, or narrowing of the arteries by plaque deposits. Blood vessel diameter is regulated by layers of muscle; the balance between constriction and relaxation is critical for blood flow and vascular health. Increased ArgII is known to be a factor in arterial disease; however, the details of regulation, and how they relate to plaque deposition, remain poorly understood. Sungwoo Ryoo at Kangwon National University, Chuncheon, South Korea and co-workers investigated how ArgII levels affect arterial constriction and relaxation in mice. Decreasing ArgII restored the muscle cells’ contraction response by preventing excessive calcium accumulation in the cellular powerhouse, mitochondria. These results may aid in developing treatments for one of the leading causes of death worldwide.
Collapse
|
17
|
Krystofova J, Pathipati P, Russ J, Sheldon A, Ferriero D. The Arginase Pathway in Neonatal Brain Hypoxia-Ischemia. Dev Neurosci 2019; 40:437-450. [PMID: 30995639 PMCID: PMC6784534 DOI: 10.1159/000496467] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 12/20/2018] [Indexed: 12/11/2022] Open
Abstract
Brain damage after hypoxia-ischemia (HI) occurs in an age-dependent manner. Neuroprotective strategies assumed to be effective in adults might have deleterious effects in the immature brain. In order to create effective therapies, the complex pathophysiology of HI in the developing brain requires exploring new mechanisms. Critical determinants of neuronal survival after HI are the extent of vascular dysfunction, inflammation, and oxidative stress, followed later by tissue repair. The key enzyme of these processes in the human body is arginase (ARG) that acts via the bioavailability of nitric oxide, and the synthesis of polyamines and proline. ARG is expressed throughout the brain in different cells. However, little is known about the effect of ARG in pathophysiological states of the brain, especially hypoxia-ischemia. Here, we summarize the role of ARG during neurodevelopment as well as in various brain pathologies.
Collapse
Affiliation(s)
- Jana Krystofova
- Department of Pediatrics, University of California San Francisco, San Francisco, California, USA,
| | - Praneeti Pathipati
- Department of Pediatrics, University of California San Francisco, San Francisco, California, USA
| | - Jeffrey Russ
- Department of Pediatrics, University of California San Francisco, San Francisco, California, USA
| | - Ann Sheldon
- Department of Pediatrics, University of California San Francisco, San Francisco, California, USA
| | - Donna Ferriero
- Department of Pediatrics, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
18
|
Cao DJ, Schiattarella GG, Villalobos E, Jiang N, May HI, Li T, Chen ZJ, Gillette TG, Hill JA. Cytosolic DNA Sensing Promotes Macrophage Transformation and Governs Myocardial Ischemic Injury. Circulation 2018; 137:2613-2634. [PMID: 29437120 DOI: 10.1161/circulationaha.117.031046] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 01/12/2018] [Indexed: 01/05/2023]
Abstract
BACKGROUND Myocardium irreversibly injured by ischemic stress must be efficiently repaired to maintain tissue integrity and contractile performance. Macrophages play critical roles in this process. These cells transform across a spectrum of phenotypes to accomplish diverse functions ranging from mediating the initial inflammatory responses that clear damaged tissue to subsequent reparative functions that help rebuild replacement tissue. Although macrophage transformation is crucial to myocardial repair, events governing this transformation are poorly understood. METHODS Here, we set out to determine whether innate immune responses triggered by cytoplasmic DNA play a role. RESULTS We report that ischemic myocardial injury, along with the resulting release of nucleic acids, activates the recently described cyclic GMP-AMP synthase-stimulator of interferon genes pathway. Animals lacking cyclic GMP-AMP synthase display significantly improved early survival after myocardial infarction and diminished pathological remodeling, including ventricular rupture, enhanced angiogenesis, and preserved ventricular contractile function. Furthermore, cyclic GMP-AMP synthase loss of function abolishes the induction of key inflammatory programs such as inducible nitric oxide synthase and promotes the transformation of macrophages to a reparative phenotype, which results in enhanced repair and improved hemodynamic performance. CONCLUSIONS These results reveal, for the first time, that the cytosolic DNA receptor cyclic GMP-AMP synthase functions during cardiac ischemia as a pattern recognition receptor in the sterile immune response. Furthermore, we report that this pathway governs macrophage transformation, thereby regulating postinjury cardiac repair. Because modulators of this pathway are currently in clinical use, our findings raise the prospect of new treatment options to combat ischemic heart disease and its progression to heart failure.
Collapse
Affiliation(s)
- Dian J Cao
- Departments of Internal Medicine (Cardiology) (D.C., G.G.S., E.V., N.J., H.I.M., T.G.G., J.A.H.) .,VA North Texas Health System (D.C.)
| | - Gabriele G Schiattarella
- Departments of Internal Medicine (Cardiology) (D.C., G.G.S., E.V., N.J., H.I.M., T.G.G., J.A.H.)
| | - Elisa Villalobos
- Departments of Internal Medicine (Cardiology) (D.C., G.G.S., E.V., N.J., H.I.M., T.G.G., J.A.H.)
| | - Nan Jiang
- Departments of Internal Medicine (Cardiology) (D.C., G.G.S., E.V., N.J., H.I.M., T.G.G., J.A.H.)
| | - Herman I May
- Departments of Internal Medicine (Cardiology) (D.C., G.G.S., E.V., N.J., H.I.M., T.G.G., J.A.H.)
| | - Tuo Li
- Molecular Biology (T.L., Z.J.C., J.A.H.)
| | - Zhijian J Chen
- Molecular Biology (T.L., Z.J.C., J.A.H.).,Howard Hughes Medical Institute (Z.J.C.), University of Texas Southwestern Medical Center, Dallas
| | - Thomas G Gillette
- Departments of Internal Medicine (Cardiology) (D.C., G.G.S., E.V., N.J., H.I.M., T.G.G., J.A.H.)
| | - Joseph A Hill
- Departments of Internal Medicine (Cardiology) (D.C., G.G.S., E.V., N.J., H.I.M., T.G.G., J.A.H.) .,Molecular Biology (T.L., Z.J.C., J.A.H.)
| |
Collapse
|
19
|
Liposome-induced immunosuppression and tumor growth is mediated by macrophages and mitigated by liposome-encapsulated alendronate. J Control Release 2017; 271:139-148. [PMID: 29277680 DOI: 10.1016/j.jconrel.2017.12.023] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 12/20/2017] [Accepted: 12/21/2017] [Indexed: 12/13/2022]
Abstract
Liposomal nanoparticles are the most commonly used drug nano-delivery platforms. However, recent reports show that certain pegylated liposomal nanoparticles (PLNs) and polymeric nanoparticles have the potential to enhance tumor growth and inhibit antitumor immunity in murine cancer models. We sought herein to identify the mechanisms and determine whether PLN-associated immunosuppression and tumor growth can be reversed using alendronate, an immune modulatory drug. By conducting in vivo and ex vivo experiments with the immunocompetent TC-1 murine tumor model, we found that macrophages were the primary cells that internalized PLN in the tumor microenvironment and that PLN-induced tumor growth was dependent on macrophages. Treatment with PLN increased immunosuppression as evidenced by increased expression of arginase-1 in CD11b+Gr1+ cells, diminished M1 functionality in macrophages, and globally suppressed T-cell cytokine production. Encapsulating alendronate in PLN reversed these effects on myeloid cells and shifted the profile of multi-cytokine producing T-cells towards an IFNγ+ perforin+ response, suggesting increased cytotoxic functionality. Importantly, we also found that PLN-encapsulated alendronate (PLN-alen), but not free alendronate, abrogated PLN-induced tumor growth and increased progression-free survival. In summary, we have identified a novel mechanism of PLN-induced tumor growth through macrophage polarization and immunosuppression that can be targeted and inactivated to improve the anticancer efficacy of PLN-delivered drugs. Importantly, we also determined that PLN-alen not only reversed protumoral effects of the PLN carrier, but also had moderate antitumor activity. Our findings strongly support the inclusion of immune-responsive tumor models and in-depth immune functional studies in the preclinical drug development paradigm for cancer nanomedicines, and the further development of chemo-immunotherapy strategies to co-deliver alendronate and chemotherapy for the treatment of cancer.
Collapse
|
20
|
Xu W, Comhair SAA, Janocha AJ, Lara A, Mavrakis LA, Bennett CD, Kalhan SC, Erzurum SC. Arginine metabolic endotypes related to asthma severity. PLoS One 2017; 12:e0183066. [PMID: 28797075 PMCID: PMC5552347 DOI: 10.1371/journal.pone.0183066] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 07/28/2017] [Indexed: 12/13/2022] Open
Abstract
Aims Arginine metabolism via inducible nitric oxide synthase (iNOS) and arginase 2 (ARG2) is higher in asthmatics than in healthy individuals. We hypothesized that a sub-phenotype of asthma might be defined by the magnitude of arginine metabolism categorized on the basis of high and low fraction of exhaled nitric oxide (FENO). Methods To test this hypothesis, asthmatics (n = 52) were compared to healthy controls (n = 51) for levels of FENO, serum arginase activity, and airway epithelial expression of iNOS and ARG2 proteins, in relation to clinical parameters of asthma inflammation and airway reactivity. In parallel, bronchial epithelial cells were evaluated for metabolic effects of iNOS and ARG2 expression in vitro. Results Asthmatics with high FENO (≥ 35 ppb; 44% of asthmatics) had higher expression of iNOS (P = 0.04) and ARG2 (P = 0.05) in the airway, indicating FENO is a marker of the high arginine metabolic endotype. High FENO asthmatics had the lowest FEV1% (P < 0.001), FEV1/FVC (P = 0.0002) and PC20 (P < 0.001) as compared to low FENO asthmatics or healthy controls. Low FENO asthmatics had near normal iNOS and ARG2 expression (both P > 0.05), and significantly higher PC20 (P < 0.001) as compared to high FENO asthmatics. In vitro studies to evaluate metabolic effects showed that iNOS overexpression and iNOS+ARG2 co-expression in a human bronchial epithelial cell line led to greater reliance on glycolysis with higher rate of pyruvate going to lactate. Conclusions The high FENO phenotype represents a large portion of the asthma population, and is typified by greater arginine metabolism and more severe and reactive asthma.
Collapse
Affiliation(s)
- Weiling Xu
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- * E-mail:
| | - Suzy A. A. Comhair
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Allison J. Janocha
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Abigail Lara
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Lori A. Mavrakis
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Carole D. Bennett
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Satish C. Kalhan
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Serpil C. Erzurum
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Respiratory Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| |
Collapse
|
21
|
Raup-Konsavage WM, Gao T, Cooper TK, Morris SM, Reeves WB, Awad AS. Arginase-2 mediates renal ischemia-reperfusion injury. Am J Physiol Renal Physiol 2017; 313:F522-F534. [PMID: 28515179 PMCID: PMC5582893 DOI: 10.1152/ajprenal.00620.2016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 04/27/2017] [Accepted: 05/10/2017] [Indexed: 01/01/2023] Open
Abstract
Novel therapeutic interventions for preventing or attenuating kidney injury following ischemia-reperfusion injury (IRI) remain a focus of significant interest. Currently, there are no definitive therapeutic or preventive approaches available for ischemic acute kidney injury (AKI). Our objective is to determine 1) whether renal arginase activity or expression is increased in renal IRI, and 2) whether arginase plays a role in development of renal IRI. The impact of arginase activity and expression on renal damage was evaluated in male C57BL/6J (wild type) and arginase-2 (ARG2)-deficient (Arg2-/- ) mice subjected to bilateral renal ischemia for 28 min, followed by reperfusion for 24 h. ARG2 expression and arginase activity significantly increased following renal IRI, paralleling the increase in kidney injury. Pharmacological blockade or genetic deficiency of Arg2 conferred kidney protection in renal IRI. Arg2-/- mice had significantly attenuated kidney injury and lower plasma creatinine and blood urea nitrogen levels after renal IRI. Blocking arginases using S-(2-boronoethyl)-l-cysteine (BEC) 18 h before ischemia mimicked arginase deficiency by reducing kidney injury, histopathological changes and kidney injury marker-1 expression, renal apoptosis, kidney inflammatory cell recruitment and inflammatory cytokines, and kidney oxidative stress; increasing kidney nitric oxide (NO) production and endothelial NO synthase (eNOS) phosphorylation, kidney peroxisome proliferator-activated receptor-γ coactivator-1α expression, and mitochondrial ATP; and preserving kidney mitochondrial ultrastructure compared with vehicle-treated IRI mice. Importantly, BEC-treated eNOS-knockout mice failed to reduce blood urea nitrogen and creatinine following renal IRI. These findings indicate that ARG2 plays a major role in renal IRI, via an eNOS-dependent mechanism, and that blocking ARG2 activity or expression could be a novel therapeutic approach for prevention of AKI.
Collapse
Affiliation(s)
- Wesley M Raup-Konsavage
- Division of Nephrology, Department of Medicine, College of Medicine, The Pennsylvania State University, Hershey, Pennsylvania
| | - Ting Gao
- Division of Nephrology, Department of Medicine, College of Medicine, The Pennsylvania State University, Hershey, Pennsylvania
| | - Timothy K Cooper
- Department of Comparative Medicine, College of Medicine, The Pennsylvania State University, Hershey, Pennsylvania
| | - Sidney M Morris
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - W Brian Reeves
- Department of Medicine, University of Texas Health Science Center San Antonio, San Antonio, Texas; and
| | - Alaa S Awad
- Division of Nephrology, Department of Medicine, College of Medicine, The Pennsylvania State University, Hershey, Pennsylvania; .,Department of C&M Physiology, College of Medicine, The Pennsylvania State University, Hershey, Pennsylvania
| |
Collapse
|
22
|
Morris CR, Hamilton-Reeves J, Martindale RG, Sarav M, Ochoa Gautier JB. Acquired Amino Acid Deficiencies: A Focus on Arginine and Glutamine. Nutr Clin Pract 2017; 32:30S-47S. [PMID: 28388380 DOI: 10.1177/0884533617691250] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Nonessential amino acids are synthesized de novo and therefore not diet dependent. In contrast, essential amino acids must be obtained through nutrition since they cannot be synthesized internally. Several nonessential amino acids may become essential under conditions of stress and catabolic states when the capacity of endogenous amino acid synthesis is exceeded. Arginine and glutamine are 2 such conditionally essential amino acids and are the focus of this review. Low arginine bioavailability plays a pivotal role in the pathogenesis of a growing number of varied diseases, including sickle cell disease, thalassemia, malaria, acute asthma, cystic fibrosis, pulmonary hypertension, cardiovascular disease, certain cancers, and trauma, among others. Catabolism of arginine by arginase enzymes is the most common cause of an acquired arginine deficiency syndrome, frequently contributing to endothelial dysfunction and/or T-cell dysfunction, depending on the clinical scenario and disease state. Glutamine, an arginine precursor, is one of the most abundant amino acids in the body and, like arginine, becomes deficient in several conditions of stress, including critical illness, trauma, infection, cancer, and gastrointestinal disorders. At-risk populations are discussed together with therapeutic options that target these specific acquired amino acid deficiencies.
Collapse
Affiliation(s)
- Claudia R Morris
- 1 Department of Pediatrics, Division of Pediatric Emergency Medicine, Emory-Children's Center for Cystic Fibrosis and Airways Disease Research, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Jill Hamilton-Reeves
- 2 Department of Dietetics and Nutrition, University of Kansas, Kansas City, Kansas, USA
| | - Robert G Martindale
- 3 Department of Surgery, Oregon Health and Science University, Portland, Oregon, USA
| | - Menaka Sarav
- 4 Department of Medicine, Division of Nephrology, Northshore University Health System, University of Chicago, Chicago, Illinois, USA
| | | |
Collapse
|
23
|
Bansal V, Rodriguez P, Wu G, Eichler DC, Zabaleta J, Taheri F, Ochoa JB. Citrulline Can Preserve Proliferation and Prevent the Loss of CD3 ζ Chain Under Conditions of Low Arginine. JPEN J Parenter Enteral Nutr 2017; 28:423-30. [PMID: 15568289 DOI: 10.1177/0148607104028006423] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Arginine depletion by the enzyme Arginase I, decreases expression of the TCR zeta chain preventing T-cell activation and causing T-cell dysfunction. We hypothesized that citrulline could substitute for arginine under conditions of increased arginase expression. Thus, the goal was to establish a possible mechanism of how citrulline could overcome arginine depletion caused by arginase. METHODS Jurkat cells were cultured, with or without arginase, in media containing different amino-acid constituents: complete RPMI containing arginine (C-RPMI) (arginine), Arginine-Free-RPMI (Arg-Free RPMI) and Citrulline-containing RPMI (Cit RPMI). Incorporation of citrulline was measured via uptake of 3H-citrulline, whereas proliferation was measured via 3H-thymidine incorporation. zeta Chain was analyzed by 2-color flow cytometry. Argininosuccinate synthase (AS) and argininosuccinate lyase expression was detected using Northern blots, RT-PCR, and Western blots. RESULTS Jurkat cells exhibited a significant decrease in proliferation and 5 chain expression when cultured in the presence of arginase or in the absence of arginine. With citrulline, zeta chain expression and proliferation were maintained in the absence of arginine or in the presence of the enzyme arginase. Jurkat cells, cultured in the absence of arginine, were associated with a 5-fold increase in citrulline uptake. The absence of arginine was also associated with increased expression of AS. CONCLUSIONS T cells exhibit the molecular capability of increasing citrulline membrane transport and up-regulating AS expression, thus exhibiting the necessary mechanisms for converting citrulline into arginine and escaping the ill effects of arginine depletion. Therefore, citrulline has the potential to be a substitute for supplemental arginine in diseases associated with arginase-mediated T cell dysfunction.
Collapse
Affiliation(s)
- Vishal Bansal
- Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Kim YS, Jeong HY, Kim AR, Kim WH, Cho H, Um J, Seo Y, Kang WS, Jin SW, Kim MC, Kim YC, Jung DW, Williams DR, Ahn Y. Natural product derivative BIO promotes recovery after myocardial infarction via unique modulation of the cardiac microenvironment. Sci Rep 2016; 6:30726. [PMID: 27510556 PMCID: PMC4980696 DOI: 10.1038/srep30726] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 07/07/2016] [Indexed: 02/06/2023] Open
Abstract
The cardiac microenvironment includes cardiomyocytes, fibroblasts and macrophages, which regulate remodeling after myocardial infarction (MI). Targeting this microenvironment is a novel therapeutic approach for MI. We found that the natural compound derivative, BIO ((2′Z,3′E)-6-Bromoindirubin-3′-oxime) modulated the cardiac microenvironment to exert a therapeutic effect on MI. Using a series of co-culture studies, BIO induced proliferation in cardiomyocytes and inhibited proliferation in cardiac fibroblasts. BIO produced multiple anti-fibrotic effects in cardiac fibroblasts. In macrophages, BIO inhibited the expression of pro-inflammatory factors. Significantly, BIO modulated the molecular crosstalk between cardiac fibroblasts and differentiating macrophages to induce polarization to the anti-inflammatory M2 phenotype. In the optically transparent zebrafish-based heart failure model, BIO induced cardiomyocyte proliferation and completely recovered survival rate. BIO is a known glycogen synthase kinase-3β inhibitor, but these effects could not be recapitulated using the classical inhibitor, lithium chloride; indicating novel therapeutic effects of BIO. We identified the mechanism of BIO as differential modulation of p27 protein expression and potent induction of anti-inflammatory interleukin-10. In a rat MI model, BIO reduced fibrosis and improved cardiac performance. Histological analysis revealed modulation of the cardiac microenvironment by BIO, with increased presence of anti-inflammatory M2 macrophages. Our results demonstrate that BIO produces unique effects in the cardiac microenvironment to promote recovery post-MI.
Collapse
Affiliation(s)
- Yong Sook Kim
- Biomedical Research Institute, Chonnam National University Hospital, Gwangju, 61469, Republic of Korea
| | - Hye-Yun Jeong
- Research Laboratory of Cardiovascular Regeneration, Chonnam National University Hospital, Gwangju, 61469, Republic of Korea
| | - Ah Ra Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, 1 Oryong-Dong, Buk-Gu, Gwangju 61005, Republic of Korea
| | - Woong-Hee Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, 1 Oryong-Dong, Buk-Gu, Gwangju 61005, Republic of Korea
| | - Haaglim Cho
- School of Life Sciences, Gwangju Institute of Science and Technology, 1 Oryong-Dong, Buk-Gu, Gwangju 61005, Republic of Korea
| | - JungIn Um
- School of Life Sciences, Gwangju Institute of Science and Technology, 1 Oryong-Dong, Buk-Gu, Gwangju 61005, Republic of Korea
| | - Youngha Seo
- School of Life Sciences, Gwangju Institute of Science and Technology, 1 Oryong-Dong, Buk-Gu, Gwangju 61005, Republic of Korea
| | - Wan Seok Kang
- Research Laboratory of Cardiovascular Regeneration, Chonnam National University Hospital, Gwangju, 61469, Republic of Korea
| | - Suk-Won Jin
- School of Life Sciences, Gwangju Institute of Science and Technology, 1 Oryong-Dong, Buk-Gu, Gwangju 61005, Republic of Korea
| | - Min Chul Kim
- Department of Cardiology, Chonnam National University Hospital, Gwangju 61469, Republic of Korea
| | - Yong-Chul Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, 1 Oryong-Dong, Buk-Gu, Gwangju 61005, Republic of Korea
| | - Da-Woon Jung
- School of Life Sciences, Gwangju Institute of Science and Technology, 1 Oryong-Dong, Buk-Gu, Gwangju 61005, Republic of Korea
| | - Darren R Williams
- School of Life Sciences, Gwangju Institute of Science and Technology, 1 Oryong-Dong, Buk-Gu, Gwangju 61005, Republic of Korea
| | - Youngkeun Ahn
- Research Laboratory of Cardiovascular Regeneration, Chonnam National University Hospital, Gwangju, 61469, Republic of Korea.,Department of Cardiology, Chonnam National University Hospital, Gwangju 61469, Republic of Korea
| |
Collapse
|
25
|
Gabrusiewicz K, Hossain MB, Cortes-Santiago N, Fan X, Kaminska B, Marini FC, Fueyo J, Gomez-Manzano C. Macrophage Ablation Reduces M2-Like Populations and Jeopardizes Tumor Growth in a MAFIA-Based Glioma Model. Neoplasia 2016; 17:374-84. [PMID: 25925380 PMCID: PMC4415120 DOI: 10.1016/j.neo.2015.03.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 03/10/2015] [Accepted: 03/18/2015] [Indexed: 12/23/2022] Open
Abstract
Monocytes/macrophages are an influential component of the glioma microenvironment. However, understanding their diversity and plasticity constitute one of the most challenging areas of research due to the paucity of models to study these cells' inherent complexity. Herein, we analyzed the role of monocytes/macrophages in glioma growth by using a transgenic model that allows for conditional ablation of this cell population. We modeled glioma using intracranial GL261-bearing CSF-1R–GFP+ macrophage Fas-induced apoptosis (MAFIA) transgenic mice. Conditional macrophage ablation was achieved by exposure to the dimerizer AP20187. Double immunofluorescence was used to characterize M1- and M2-like monocytes/macrophages during tumor growth and after conditional ablation. During glioma growth, the monocyte/macrophage population consisted predominantly of M2 macrophages. Conditional temporal depletion of macrophages reduced the number of GFP+ cells, targeting mainly the repopulation of M2-polarized cells, and altered the appearance of M1-like monocytes/macrophages, which suggested a shift in the M1/M2 macrophage balance. Of interest, compared with control-treated mice, macrophage-depleted mice had a lower tumor mitotic index, microvascular density, and reduced tumor growth. These results demonstrated the possibility of studying in vivo the role and phenotype of macrophages in gliomas and suggested that transitory depletion of CSF-1R+ population influences the reconstitutive phenotypic pool of these cells, ultimately suppressing tumor growth. The MAFIA model provides a much needed advance in defining the role of macrophages in gliomas.
Collapse
Affiliation(s)
- Konrad Gabrusiewicz
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mohammad B Hossain
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nahir Cortes-Santiago
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xuejun Fan
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bozena Kaminska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Frank C Marini
- Comprehensive Cancer Center, Wake Forest University, Winston-Salem, NC, USA
| | - Juan Fueyo
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Candelaria Gomez-Manzano
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
26
|
Walsh EM, Keane MM, Wink DA, Callagy G, Glynn SA. Review of Triple Negative Breast Cancer and the Impact of Inducible Nitric Oxide Synthase on Tumor Biology and Patient Outcomes. Crit Rev Oncog 2016; 21:333-351. [PMID: 29431082 DOI: 10.1615/critrevoncog.2017021307] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Triple negative breast cancers (TNBCs), which are defined as estrogen-receptor, progesterone-receptor, and HER2-receptor negative, account for 10-20% of breast cancers, and they are associated with early metastasis, chemotherapeutic resistance, and poor survival rates. One aspect of TNBC that complicates its prognosis and the development of new molecular therapeutic targets is its clinical and molecular heterogeneity. Herein we compare TNBC and basal cytokeratin-positive breast cancers. We examine the different TNBC molecular subtypes, based on gene expression profiling, which include basal-like, mesenchymal, and luminal androgen receptors, in the context of their biology and impact on TNBC prognosis. We explore the potential role of inducible nitric oxide synthase (iNOS) in TNBC tumor biology and treatment responses. iNOS has been shown to induce p53 mutation accumulation, basal-like gene signature enrichment, and transactivation of the epidermal growth factor receptor (EGFR) via S-nitrosylation, all of which are key components of TNBC biology. Moreover, iNOS predicts poor outcome in TNBC, and iNOS inhibitors show efficacy against TNBC when used in combination with chemotherapy. We discuss molecular targeted approaches, including EGFR, PARP, and VEGF inhibitors and immunotherapeutics, that are under consideration for the treatment of TNBC and what role, if any, iNOS may play in their success.
Collapse
Affiliation(s)
- Elaine M Walsh
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway, Galway, Ireland; Medical Oncology, Galway University Hospitals, Galway, Ireland
| | - Maccon M Keane
- Medical Oncology, Galway University Hospitals, Galway, Ireland
| | - David A Wink
- Cancer and Inflammation Program, National Cancer Institute-Frederick, Frederick, Maryland, USA
| | - Grace Callagy
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway, Galway, Ireland
| | - Sharon A Glynn
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
27
|
Rayahin JE, Buhrman JS, Zhang Y, Koh TJ, Gemeinhart RA. High and low molecular weight hyaluronic acid differentially influence macrophage activation. ACS Biomater Sci Eng 2015; 1:481-493. [PMID: 26280020 PMCID: PMC4533115 DOI: 10.1021/acsbiomaterials.5b00181] [Citation(s) in RCA: 389] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Macrophages exhibit phenotypic diversity permitting wide-ranging roles in maintaining physiologic homeostasis. Hyaluronic acid, a major glycosaminoglycan of the extracellular matrix, has been shown to have differential signaling based on its molecular weight. With this in mind, the main objective of this study was to elucidate the role of hyaluronic acid molecular weight on macrophage activation and reprogramming. Changes in macrophage activation were assessed by activation state selective marker measurement, specifically quantitative real time polymerase chain reaction, and cytokine enzyme-linked immunoassays, after macrophage treatment with differing molecular weights of hyaluronic acid under four conditions: the resting state, concurrent with classical activation, and following inflammation involving either classically or alternatively activated macrophages. Regardless of initial polarization state, low molecular weight hyaluronic acid induced a classically activated-like state, confirmed by up-regulation of pro-inflammatory genes, including nos2, tnf, il12b, and cd80, and enhanced secretion of nitric oxide and TNF-α. High molecular weight hyaluronic acid promoted an alternatively activated-like state, confirmed by up regulation of pro-resolving gene transcription, including arg1, il10, and mrc1, and enhanced arginase activity. Overall, our observations suggest that macrophages undergo phenotypic changes dependent on molecular weight of hyaluronan that correspond to either (1) pro-inflammatory response for low molecular weight HA or (2) pro-resolving response for high molecular weight HA. These observations bring significant further understanding of the influence of extracellular matrix polymers, hyaluronic acid in particular, on regulating the inflammatory response of macrophages. This knowledge can be used to guide the design of HA-containing biomaterials to better utilize the natural response to HAs.
Collapse
Affiliation(s)
- Jamie E. Rayahin
- Department of Biopharmaceutical Sciences, University of Illinois, Chicago, IL 60612-7231, USA
| | - Jason S. Buhrman
- Department of Biopharmaceutical Sciences, University of Illinois, Chicago, IL 60612-7231, USA
| | - Yu Zhang
- Department of Biopharmaceutical Sciences, University of Illinois, Chicago, IL 60612-7231, USA
| | - Timothy J. Koh
- Department of Kinesiology and Nutrition, Center for Wound Healing and Tissue Regeneration, University of Illinois, Chicago, IL 60612-7246, USA
| | - Richard A. Gemeinhart
- Department of Biopharmaceutical Sciences, University of Illinois, Chicago, IL 60612-7231, USA
- Department of Bioengineering, University of Illinois, Chicago, IL 60607-7052, USA
- Department of Ophthalmology and Visual Sciences, University of Illinois, Chicago, IL 60612-4319, USA
| |
Collapse
|
28
|
Interferon-gamma and nitric oxide synthase 2 mediate the aggregation of resident adherent peritoneal exudate cells: implications for the host response to pathogens. PLoS One 2015; 10:e0128301. [PMID: 26029930 PMCID: PMC4452304 DOI: 10.1371/journal.pone.0128301] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Accepted: 04/27/2015] [Indexed: 12/28/2022] Open
Abstract
Interferon-gamma (Ifnγ), a key macrophage activating cytokine, plays pleiotropic roles in host immunity. In this study, the ability of Ifnγ to induce the aggregation of resident mouse adherent peritoneal exudate cells (APECs), consisting primarily of macrophages, was investigated. Cell-cell interactions involve adhesion molecules and, upon addition of Ifnγ, CD11b re-localizes preferentially to the sites of interaction on APECs. A functional role of CD11b in enhancing aggregation is demonstrated using Reopro, a blocking reagent, and siRNA to Cd11b. Studies with NG-methyl-L-arginine (LNMA), an inhibitor of Nitric oxide synthase (Nos), NO donors, e.g., S-nitroso-N-acetyl-DL-penicillamine (SNAP) or Diethylenetriamine/nitric oxide adduct (DETA/NO), and Nos2-/- mice identified Nitric oxide (NO) induced by Ifnγ as a key regulator of aggregation of APECs. Further studies with Nos2-/- APECs revealed that some Ifnγ responses are independent of NO: induction of MHC class II and CD80. On the other hand, Nos2 derived NO is important for other functions: motility, phagocytosis, morphology and aggregation. Studies with cytoskeleton depolymerizing agents revealed that Ifnγ and NO mediate the cortical stabilization of Actin and Tubulin which contribute to aggregation of APECs. The biological relevance of aggregation of APECs was delineated using infection experiments with Salmonella Typhimurium (S. Typhimurium). APECs from orally infected, but not uninfected, mice produce high amounts of NO and aggregate upon ex vivo culture in a Nos2-dependent manner. Importantly, aggregated APECs induced by Ifnγ contain fewer intracellular S. Typhimurium compared to their single counterparts post infection. Further experiments with LNMA or Reopro revealed that both NO and CD11b are important for aggregation; in addition, NO is bactericidal. Overall, this study elucidates novel roles for Ifnγ and Nos2 in regulating Actin, Tubulin, CD11b, motility and morphology during the aggregation response of APECs. The implications of aggregation or “group behavior” of APECs are discussed in the context of host resistance to infectious organisms.
Collapse
|
29
|
Chen B, Strauch K, Jin Y, Cui H, Nelin LD, Chicoine LG. Asymmetric dimethylarginine does not inhibit arginase activity and is pro-proliferative in pulmonary endothelial cells. Clin Exp Pharmacol Physiol 2015; 41:469-74. [PMID: 24799070 DOI: 10.1111/1440-1681.12252] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 04/18/2014] [Accepted: 04/24/2014] [Indexed: 11/27/2022]
Abstract
Asymmetric dimethylarginine (ADMA) is an endogenously produced nitric oxide synthase (NOS) inhibitor. L-Arginine can be metabolised by NOS and arginase, and arginase is the first step in polyamine production necessary for cellular proliferation. We tested the hypothesis that ADMA would inhibit NOS but not arginase activity and that this pattern of inhibition would result in greater L-arginine bioavailability to arginase, thereby increasing viable cell number. Bovine arginase was used in in vitro activity assays with various concentrations of substrate (L-arginine, ADMA, N(G) -monomethyl-L-arginine (L-NMMA) and N(G) -nitro-L-arginine methyl ester (L-NAME)). Only L-arginine resulted in measurable urea production (Km = 6.9 ± 0.8 mmol/L; Vmax = 6.6 ± 0.3 μmol/mg protein per min). We then incubated bovine arginase with increasing concentrations of ADMA, L-NMMA and L-NAME in the presence of 1 mmol/L l-arginine and found no effect of any of the tested compounds on arginase activity. Using bovine pulmonary arterial endothelial cells (bPAEC) we determined the effects of ADMA on nitric oxide (NO) and urea production and found significantly lower NO production and greater urea production (P < 0.003) with ADMA, without changes in arginase protein levels. In addition, ADMA treatment resulted in an approximately 30% greater number of viable cells after 48 h than in control bPAEC. These results demonstrate that ADMA is neither a substrate nor an inhibitor of arginase activity and that in bPAEC ADMA inhibits NO production and enhances urea production, leading to more viable cells. These results may have pathophysiological implications in disorders associated with higher ADMA levels, such as pulmonary hypertension.
Collapse
Affiliation(s)
- Bernadette Chen
- Pulmonary Hypertension Group, Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | | | | | | | | | | |
Collapse
|
30
|
Wijnands KAP, Castermans TMR, Hommen MPJ, Meesters DM, Poeze M. Arginine and citrulline and the immune response in sepsis. Nutrients 2015; 7:1426-63. [PMID: 25699985 PMCID: PMC4377861 DOI: 10.3390/nu7031426] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Revised: 01/15/2015] [Accepted: 01/26/2015] [Indexed: 01/01/2023] Open
Abstract
Arginine, a semi-essential amino acid is an important initiator of the immune response. Arginine serves as a precursor in several metabolic pathways in different organs. In the immune response, arginine metabolism and availability is determined by the nitric oxide synthases and the arginase enzymes, which convert arginine into nitric oxide (NO) and ornithine, respectively. Limitations in arginine availability during inflammatory conditions regulate macrophages and T-lymfocyte activation. Furthermore, over the past years more evidence has been gathered which showed that arginine and citrulline deficiencies may underlie the detrimental outcome of inflammatory conditions, such as sepsis and endotoxemia. Not only does the immune response contribute to the arginine deficiency, also the impaired arginine de novo synthesis in the kidney has a key role in the eventual observed arginine deficiency. The complex interplay between the immune response and the arginine-NO metabolism is further underscored by recent data of our group. In this review we give an overview of physiological arginine and citrulline metabolism and we address the experimental and clinical studies in which the arginine-citrulline NO pathway plays an essential role in the immune response, as initiator and therapeutic target.
Collapse
Affiliation(s)
- Karolina A P Wijnands
- Department of Surgery, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Center, Maastricht 6200 MD, The Netherlands.
| | - Tessy M R Castermans
- Department of Surgery, Maastricht University Medical Center, Maastricht 6200MD, The Netherlands.
| | - Merel P J Hommen
- Department of Surgery, Maastricht University Medical Center, Maastricht 6200MD, The Netherlands.
| | - Dennis M Meesters
- Department of Surgery, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Center, Maastricht 6200 MD, The Netherlands.
| | - Martijn Poeze
- Department of Surgery, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Center, Maastricht 6200 MD, The Netherlands.
| |
Collapse
|
31
|
Arginine-based polyester amide/polysaccharide hydrogels and their biological response. Acta Biomater 2014; 10:2482-94. [PMID: 24530559 DOI: 10.1016/j.actbio.2014.02.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 01/30/2014] [Accepted: 02/03/2014] [Indexed: 11/24/2022]
Abstract
An advanced family of biodegradable cationic hybrid hydrogels was designed and fabricated from two precursors via a UV photocrosslinking in an aqueous medium: unsaturated arginine (Arg)-based functional poly(ester amide) (Arg-UPEA) and glycidyl methacrylate chitosan (GMA-chitosan). These Arg-UPEA/GMA-chitosan hybrid hydrogels were characterized in terms of their chemical structure, equilibrium swelling ratio (Qeq), compressive modulus, interior morphology and biodegradation properties. Lysozyme effectively accelerated the biodegradation of the hybrid hydrogels. The mixture of both precursors in an aqueous solution showed near non-cytotoxicity toward porcine aortic valve smooth muscle cells at total concentrations up to 6mgml(-1). The live/dead assay data showed that 3T3 fibroblasts were able to attach and grow on the hybrid hydrogel and pure GMA-chitosan hydrogel well. Arg-UPEA/GMA-chitosan hybrid hydrogels activated both TNF-α and NO production by RAW 264.7 macrophages, and the arginase activity was also elevated. The integration of the biodegradable Arg-UPEA into the GMA-chitosan can provide advantages in terms of elevated and balanced NO production and arginase activity that free Arg supplement could not achieve. The hybrid hydrogels may have potential application as a wound healing accelerator.
Collapse
|
32
|
Lou Y, Zhang G, Geng M, Zhang W, Cui J, Liu S. TIPE2 negatively regulates inflammation by switching arginine metabolism from nitric oxide synthase to arginase. PLoS One 2014; 9:e96508. [PMID: 24806446 PMCID: PMC4013027 DOI: 10.1371/journal.pone.0096508] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 04/09/2014] [Indexed: 12/28/2022] Open
Abstract
TIPE2, the tumor necrosis factor (TNF)-alpha-induced protein 8-like 2 (TNFAIP8L2), plays an essential role in maintaining immune homeostasis. It is highly expressed in macrophages and negatively regulates inflammation through inhibiting Toll-like receptor signaling. In this paper, we utilized RAW264.7 cells stably transfected with a TIPE2 expression plasmid, as well as TIPE2-deficient macrophages to study the roles of TIPE2 in LPS-induced nitric oxide (NO) and urea production. The results showed that TIPE2-deficiency significantly upregulated the levels of iNOS expression and NO production in LPS-stimulated macrophages, but decreased mRNA levels of arginase I and urea production. However, TIPE2 overexpression in macrophages was capable of downregulating protein levels of LPS-induced iNOS and NO, but generated greater levels of arginase I and urea production. Furthermore, TIPE2−/− mice had higher iNOS protein levels in lung and liver and higher plasma NO concentrations, but lower levels of liver arginase I compared to LPS-treated WT controls. Interestingly, significant increases in IκB degradation and phosphorylation of JNK, p38, and IκB were observed in TIPE2-deficient macrophages following LPS challenge. These results strongly suggest that TIPE2 plays an important role in shifting L-arginase metabolism from production of NO to urea, during host inflammatory response.
Collapse
Affiliation(s)
- Yunwei Lou
- Department of Immunology, Shandong University School of Medicine, Ji'nan, P.R. China
| | - Guizhong Zhang
- Department of Immunology, Shandong University School of Medicine, Ji'nan, P.R. China
| | - Minghong Geng
- Department of Immunology, Shandong University School of Medicine, Ji'nan, P.R. China
| | - Wenqian Zhang
- Department of Immunology, Shandong University School of Medicine, Ji'nan, P.R. China
| | - Jian Cui
- Department of Immunology, Shandong University School of Medicine, Ji'nan, P.R. China
| | - Suxia Liu
- Department of Immunology, Shandong University School of Medicine, Ji'nan, P.R. China
- * E-mail:
| |
Collapse
|
33
|
Steppan J, Nyhan D, Berkowitz DE. Development of novel arginase inhibitors for therapy of endothelial dysfunction. Front Immunol 2013; 4:278. [PMID: 24062745 PMCID: PMC3774993 DOI: 10.3389/fimmu.2013.00278] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Accepted: 08/29/2013] [Indexed: 01/18/2023] Open
Abstract
Endothelial dysfunction and resulting vascular pathology have been identified as an early hallmark of multiple diseases, including diabetes mellitus. One of the major contributors to endothelial dysfunction is a decrease in nitric oxide (NO) bioavailability, impaired NO signaling, and an increase in the amount of reactive oxygen species (ROS). In the endothelium NO is produced by endothelial nitric oxide synthase (eNOS), for which l-arginine is a substrate. Arginase, an enzyme critical in the urea cycle also metabolizes l-arginine, thereby directly competing with eNOS for their common substrate and constraining its bioavailability for eNOS, thereby compromising NO production. Arginase expression and activity is upregulated in many cardiovascular diseases including ischemia reperfusion injury, hypertension, atherosclerosis, and diabetes mellitus. More importantly, since the 1990s, specific arginase inhibitors such as N-hydroxy-guanidinium or N-hydroxy-nor-l-arginine, and boronic acid derivatives, such as, 2(S)-amino-6-boronohexanoic acid, and S-(2-boronoethyl)-l-cysteine, that can bridge the binuclear manganese cluster of arginase have been developed. These highly potent and specific inhibitors can now be used to probe arginase function and thereby modulate the redox milieu of the cell by changing the balance between NO and ROS. Inspired by this success, drug discovery programs have recently led to the identification of α–α-disubstituted amino acid based arginase inhibitors [such as (R)-2-amino-6-borono-2-(2-(piperidin-1-yl)ethyl)hexanoic acid], that are currently under early investigation as therapeutics. Finally, some investigators concentrate on identification of plant derived compounds with arginase inhibitory capability, such as piceatannol-3′-O-β-d-glucopyranoside (PG). All of these synthesized or naturally derived small molecules may represent novel therapeutics for vascular disease particularly that associated with diabetes.
Collapse
Affiliation(s)
- Jochen Steppan
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins Medical Institutions , Baltimore, MD , USA
| | | | | |
Collapse
|
34
|
Sheldon KE, Shandilya H, Kepka-Lenhart D, Poljakovic M, Ghosh A, Morris SM. Shaping the murine macrophage phenotype: IL-4 and cyclic AMP synergistically activate the arginase I promoter. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2013; 191:2290-8. [PMID: 23913966 PMCID: PMC3829606 DOI: 10.4049/jimmunol.1202102] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Arginase I is a marker of murine M2 macrophages and is highly expressed in many inflammatory diseases. The basis for high arginase I expression in macrophages in vivo is incompletely understood but likely reflects integrated responses to combinations of stimuli. Our objective was to elucidate mechanisms involved in modulating arginase I induction by IL-4, the prototypical activator of M2 macrophages. IL-4 and 8-bromo-cAMP individually induce arginase I, but together they rapidly and synergistically induce arginase I mRNA, protein, and promoter activity in murine macrophage cells. Arginase I induction by IL-4 requires binding of the transcription factors STAT6 and C/EBPβ to the IL-4 response element of the arginase I gene. Chromatin immunoprecipitation showed that the synergistic response involves binding of both transcription factors to the IL-4 response element at levels significantly greater than in response to IL-4 alone. The results suggest that C/EBPβ is a limiting factor for the level of STAT6 bound to the IL-4 response element. The enhanced binding in the synergistic response was not due to increased expression of either STAT6 or C/EBPβ but was correlated primarily with increased nuclear abundance of C/EBPβ. Our findings also suggest that induction of arginase I expression is stochastic; that is, differences in induction reflect differences in probability of transcriptional activation and not simply differences in rate of transcription. Results of the present study also may be useful for understanding mechanisms underlying regulated expression of other genes in macrophages and other myeloid-derived cells in health and disease.
Collapse
Affiliation(s)
- Kathryn E. Sheldon
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219
| | - Harish Shandilya
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219
| | - Diane Kepka-Lenhart
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219
| | - Mirjana Poljakovic
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219
| | - Arundhati Ghosh
- Cancer Virology Program, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213
| | - Sidney M. Morris
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219
| |
Collapse
|
35
|
Peng B, Zhu D, Ander BP, Zhang X, Xue F, Sharp FR, Yang X. An integrative framework for Bayesian variable selection with informative priors for identifying genes and pathways. PLoS One 2013; 8:e67672. [PMID: 23844055 PMCID: PMC3700986 DOI: 10.1371/journal.pone.0067672] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 05/21/2013] [Indexed: 12/27/2022] Open
Abstract
The discovery of genetic or genomic markers plays a central role in the development of personalized medicine. A notable challenge exists when dealing with the high dimensionality of the data sets, as thousands of genes or millions of genetic variants are collected on a relatively small number of subjects. Traditional gene-wise selection methods using univariate analyses face difficulty to incorporate correlational, structural, or functional structures amongst the molecular measures. For microarray gene expression data, we first summarize solutions in dealing with 'large p, small n' problems, and then propose an integrative Bayesian variable selection (iBVS) framework for simultaneously identifying causal or marker genes and regulatory pathways. A novel partial least squares (PLS) g-prior for iBVS is developed to allow the incorporation of prior knowledge on gene-gene interactions or functional relationships. From the point view of systems biology, iBVS enables user to directly target the joint effects of multiple genes and pathways in a hierarchical modeling diagram to predict disease status or phenotype. The estimated posterior selection probabilities offer probabilitic and biological interpretations. Both simulated data and a set of microarray data in predicting stroke status are used in validating the performance of iBVS in a Probit model with binary outcomes. iBVS offers a general framework for effective discovery of various molecular biomarkers by combining data-based statistics and knowledge-based priors. Guidelines on making posterior inferences, determining Bayesian significance levels, and improving computational efficiencies are also discussed.
Collapse
Affiliation(s)
- Bin Peng
- Department of Health Statistics, Chongqing Medical University, Chongqing, China
- Division of Biostatistics, Bayessoft, Inc., Davis, California, United States of America
| | - Dianwen Zhu
- Hunter College–School of Public Health, City University of New York, New York, United States of America
| | - Bradley P. Ander
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, Sacramento, California, United States of America
| | - Xiaoshuai Zhang
- School of Public Health, Shandong University, Jinan, Shandong, China
| | - Fuzhong Xue
- School of Public Health, Shandong University, Jinan, Shandong, China
| | - Frank R. Sharp
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, Sacramento, California, United States of America
| | - Xiaowei Yang
- Division of Biostatistics, Bayessoft, Inc., Davis, California, United States of America
- Hunter College–School of Public Health, City University of New York, New York, United States of America
| |
Collapse
|
36
|
Elms S, Chen F, Wang Y, Qian J, Askari B, Yu Y, Pandey D, Iddings J, Caldwell RB, Fulton DJR. Insights into the arginine paradox: evidence against the importance of subcellular location of arginase and eNOS. Am J Physiol Heart Circ Physiol 2013; 305:H651-66. [PMID: 23792682 DOI: 10.1152/ajpheart.00755.2012] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Reduced production of nitric oxide (NO) is one of the first indications of endothelial dysfunction and precedes overt cardiovascular disease. Increased expression of Arginase has been proposed as a mechanism to account for diminished NO production. Arginases consume l-arginine, the substrate for endothelial nitric oxide synthase (eNOS), and l-arginine depletion is thought to competitively reduce eNOS-derived NO. However, this simple relationship is complicated by the paradox that l-arginine concentrations in endothelial cells remain sufficiently high to support NO synthesis. One mechanism proposed to explain this is compartmentalization of intracellular l-arginine into distinct, poorly interchangeable pools. In the current study, we investigated this concept by targeting eNOS and Arginase to different intracellular locations within COS-7 cells and also BAEC. We found that supplemental l-arginine and l-citrulline dose-dependently increased NO production in a manner independent of the intracellular location of eNOS. Cytosolic arginase I and mitochondrial arginase II reduced eNOS activity equally regardless of where in the cell eNOS was expressed. Similarly, targeting arginase I to disparate regions of the cell did not differentially modify eNOS activity. Arginase-dependent suppression of eNOS activity was reversed by pharmacological inhibitors and absent in a catalytically inactive mutant. Arginase did not directly interact with eNOS, and the metabolic products of arginase or downstream enzymes did not contribute to eNOS inhibition. Cells expressing arginase had significantly lower levels of intracellular l-arginine and higher levels of ornithine. These results suggest that arginases inhibit eNOS activity by depletion of substrate and that the compartmentalization of l-arginine does not play a major role.
Collapse
Affiliation(s)
- Shawn Elms
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
You H, Gao T, Cooper TK, Morris SM, Awad AS. Arginase inhibition mediates renal tissue protection in diabetic nephropathy by a nitric oxide synthase 3-dependent mechanism. Kidney Int 2013; 84:1189-97. [PMID: 23760286 PMCID: PMC3783645 DOI: 10.1038/ki.2013.215] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 04/01/2013] [Accepted: 04/04/2013] [Indexed: 01/15/2023]
Abstract
Recently we showed that pharmacological blockade or genetic deficiency of arginase-2 confers kidney protection in diabetic mouse models. Here we tested whether the protective effect of arginase inhibition is nitric oxide synthase-3 (eNOS)-dependent in diabetic nephropathy. Experiments were conducted in eNOS knockout and their wild type littermate mice using multiple low doses of vehicle or streptozotocin and treated with continuous subcutaneous infusion of vehicle or the arginase inhibitor S-(2-Boronoethyl)-L-cysteine by an osmotic pump. Inhibition of arginases for 6 weeks in diabetic wild type mice significantly attenuated albuminuria, the increase in plasma creatinine and blood urea nitrogen, histopathological changes, kidney fibronectin and TNF-α expression, kidney macrophage recruitment, and oxidative stress compared to vehicle-treated diabetic wild type mice. Arginase inhibition in diabetic eNOS knockout mice failed to affect any of these parameters but reduced kidney macrophage recruitment and kidney TNF-α expression compared to vehicle-treated diabetic eNOS knockout mice. Furthermore, diabetic wild type and eNOS knockout mice exhibited increased kidney arginase-2 protein, arginase activity and ornithine levels. Thus, arginase inhibition mediates renal tissue protection in diabetic nephropathy by an eNOS-dependent mechanism and has an eNOS-independent effect on kidney macrophage recruitment.
Collapse
Affiliation(s)
- Hanning You
- Division of Nephrology, Department of Medicine, Penn State University College of Medicine, Hershey, Pennsylvania, USA
| | | | | | | | | |
Collapse
|
38
|
Shin WS, Berkowitz DE, Ryoo SW. Increased arginase II activity contributes to endothelial dysfunction through endothelial nitric oxide synthase uncoupling in aged mice. Exp Mol Med 2013; 44:594-602. [PMID: 22854495 PMCID: PMC3490081 DOI: 10.3858/emm.2012.44.10.068] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The incidence of cardiovascular disease is predicted to increase as the population ages. There is accumulating evidence that arginase upregulation is associated with impaired endothelial function. Here, we demonstrate that arginase II (ArgII) is upregulated in aortic vessels of aged mice and contributes to decreased nitric oxide (NO) generation and increased reactive oxygen species (ROS) production via endothelial nitric oxide synthase (eNOS) uncoupling. Inhibiting ArgII with small interfering RNA technique restored eNOS coupling to that observed in young mice and increased NO generation and decreased ROS production. Furthermore, enhanced vasoconstrictor responses to U46619 and attenuated vasorelaxation responses to acetylcholine in aged vasculature were markedly improved following siRNA treatment against ArgII. These results might be associated with increased L-arginine bioavailability. Collectively, these results suggest that ArgII may be a valuable target in age-dependent vascular diseases.
Collapse
Affiliation(s)
- Woo Sung Shin
- Department of Biology College of Natural Sciences Kangwon National University Chuncheon 200-701, Korea
| | | | | |
Collapse
|
39
|
Lee EJ, Lee YR, Joo HK, Cho EJ, Choi S, Sohn KC, Lee SD, Park JB, Jeon BH. Arginase II inhibited lipopolysaccharide-induced cell death by regulation of iNOS and Bcl-2 family proteins in macrophages. Mol Cells 2013; 35:396-401. [PMID: 23639968 PMCID: PMC3887864 DOI: 10.1007/s10059-013-2332-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 03/19/2013] [Accepted: 03/20/2013] [Indexed: 01/21/2023] Open
Abstract
Arginase II catalyzes the conversion of arginine to urea and ornithine in many extrahepatic tissues. We investigated the protective role of arginase II on lipopolysaccharide-mediated apoptosis in the macrophage cells. Adenoviral gene transfer of full length of arginase II was performed in the murine macrophage cell line RAW264.7. The role of arginase II was investigated with cell viability, cytoplasmic histone-associated DNA fragmentation assay, arginase activity, nitric oxide production, and Western blot analysis. Arginase II is localized in mitochondria of macrophage cells, and the expression of arginase II was increased by lipopolysaccharide (LPS). LPS significantly increased cell death which was inhibited by AMT, a specific inducible nitric oxide synthase (iNOS) inhibitor. In contrast, LPS-induced cell death and nitric oxide production were increased by 2-boronoethyl-L-cysteine, a specific inhibitor of arginase. Adenoviral overexpression of arginase II significantly inhibited LPS-induced cell death and cytoplasmic histone-associated DNA fragmentation. LPS-induced iNOS expression and poly ADP-ribose polymerase cleavage were significantly suppressed by arginase II overexpression. Furthermore, arginase II overexpression resulted in a decrease in the Bax protein level and the reverse induction of Bcl-2 protein. Our data demonstrated that inhibition of NO production by arginase II may be due to arginine depletion as well as iNOS suppression though its reaction products. Moreover, arginase II plays a protective role of LPS-induced apoptosis in RAW264.7 cells.
Collapse
Affiliation(s)
- Eun Ji Lee
- Infectious Signaling Network Research Center, Department of Physiology, School of Medicine, Chungnam National University, Daejeon 301-747,
Korea
| | - Yu Ran Lee
- Infectious Signaling Network Research Center, Department of Physiology, School of Medicine, Chungnam National University, Daejeon 301-747,
Korea
| | - Hee Kyoung Joo
- Infectious Signaling Network Research Center, Department of Physiology, School of Medicine, Chungnam National University, Daejeon 301-747,
Korea
| | - Eun Jung Cho
- Infectious Signaling Network Research Center, Department of Physiology, School of Medicine, Chungnam National University, Daejeon 301-747,
Korea
| | - Sunga Choi
- Infectious Signaling Network Research Center, Department of Physiology, School of Medicine, Chungnam National University, Daejeon 301-747,
Korea
| | - Kyung-Cheol Sohn
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon 301-747,
Korea
| | - Sang Do Lee
- Infectious Signaling Network Research Center, Department of Physiology, School of Medicine, Chungnam National University, Daejeon 301-747,
Korea
| | - Jin Bong Park
- Infectious Signaling Network Research Center, Department of Physiology, School of Medicine, Chungnam National University, Daejeon 301-747,
Korea
| | - Byeong Hwa Jeon
- Infectious Signaling Network Research Center, Department of Physiology, School of Medicine, Chungnam National University, Daejeon 301-747,
Korea
| |
Collapse
|
40
|
Hofkens W, Schelbergen R, Storm G, van den Berg WB, van Lent PL. Liposomal targeting of prednisolone phosphate to synovial lining macrophages during experimental arthritis inhibits M1 activation but does not favor M2 differentiation. PLoS One 2013; 8:e54016. [PMID: 23468840 PMCID: PMC3585322 DOI: 10.1371/journal.pone.0054016] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 12/05/2012] [Indexed: 12/31/2022] Open
Abstract
Background To determine the effects of liposomal targeting of prednisolone phosphate (Lip-PLP) to synovial lining macrophages on M1 and M2 polarization in vitro and during experimental arthritis. Material and Methods Experimental arthritis (antigen and immune complex induced) was elicited in mice and prednisolone containing liposomes were given systemically. Synovium was investigated using microarray analysis, RT-PCR and histology. Bone–marrow macrophages were stimulated towards M1 using LPS and IFNγ before treatment by PLP-liposomes. M1 and M2 markers were determined using RT-PCR. Results Microarray analysis of biopsies of inflamed synovium during antigen induced arthritis (AIA) showed an increased M1 signature characterized by upregulation of IL-1β, IL-6 and FcγRI starting from day 1 and lasting up until day 7 after arthritis induction. The M2 signature remained low throughout the 7 day course of arthritis. Treatment of AIA with intravenously delivered Lip-PLP strongly suppressed joint swelling and synovial infiltration whereas colloidal gold containing liposomes exclusively targeted the macrophages within the inflamed synovial intima layer. In vitro studies showed that Lip-PLP phagocytosed by M1 macrophages resulted in a suppression of the M1 phenotype and induction of M2 markers (IL-10, TGF-β, IL-1RII, CD163, CD206 and Ym1). In vivo, Lip-PLP treatment strongly suppressed M1 markers (TNF-α, IL-1β, IL-6, IL-12p40, iNOS, FcγRI, Ciita and CD86) after local M1 activation of lining macrophages with LPS and IFN-γ and during experimental AIA and immune complex arthritis (ICA). In contrast, M2 markers were not significantly upregulated in antigen-induced arthritis and down regulated in immune complex arthritis. Conclusion This study clearly shows that systemic treatment with PLP-liposomes selectively targets synovial lining macrophages and inhibits M1 activation. In contrast to in vitro findings, PLP-liposomes do not cause a shift of synovial lining macrophages towards M2.
Collapse
Affiliation(s)
- Wouter Hofkens
- Rheumatology Research and Advanced Therapeutics, Department of Rheumatology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Rik Schelbergen
- Rheumatology Research and Advanced Therapeutics, Department of Rheumatology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Gert Storm
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Wim B. van den Berg
- Rheumatology Research and Advanced Therapeutics, Department of Rheumatology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Peter L. van Lent
- Rheumatology Research and Advanced Therapeutics, Department of Rheumatology, Radboud University Medical Centre, Nijmegen, The Netherlands
- * E-mail:
| |
Collapse
|
41
|
Suh JH, Kim RY, Lee DS. A new metabolomic assay to examine inflammation and redox pathways following LPS challenge. J Inflamm (Lond) 2012; 9:37. [PMID: 23036094 PMCID: PMC3507808 DOI: 10.1186/1476-9255-9-37] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 09/23/2012] [Indexed: 12/21/2022] Open
Abstract
UNLABELLED BACKGROUND Shifts in intracellular arginine (Arg) and sulfur amino acid (SAA) redox metabolism modulate macrophage activation, polarization and phenotype. Despite their importance in inflammation and redox regulatory pathways, comprehensive analysis of these metabolic networks was not previously possible with existing analytical methods. METHODS The Arg/thiol redox LC-MS/MS metabolomics assay permits simultaneous assessment of amino acids and derivative products generated from Arg and SAA metabolism. Using this assay, LPS-induced changes in macrophage amino acid metabolism were monitored to identify pathway shifts during activation and their linkage to cellular redox regulation. RESULTS Metabolite concentrations most significantly changed after treatment of a macrophage-like cell line (RAW) with LPS for 24 hrs were citrulline (Cit) (48-fold increase), ornithine (Orn) (8.5-fold increase), arginine (Arg) (66% decrease), and aspartic acid (Asp) (73% decrease). The ratio Cit + Orn/Arg + Asp (CO/AA) was more sensitive to LPS stimulation than other amino acid ratios commonly used to measure LPS-dependent inflammation (e.g., SAM/SAH, GSH/GSSG) and total media NOx. The CO/AA ratio was also the first ratio to change significantly after LPS treatment (4 hrs). Changes in the overall metabolomic profile over time indicated that metabolic pathways shifted from Arg catabolism to thiol oxidation. CONCLUSIONS Simultaneous quantification of Arg and SAA metabolic pathway shifts following LPS challenge of macrophage indicate that, in this system, the Arg-Citrulline/NO cycle and arginase pathways are the amino acid metabolic pathways most sensitive to LPS-challenge. The cellular (Cit + Orn)/(Arg + Asp) ratio, which summarizes this pathway, was more responsive to lower concentrations of LPS and responded earlier than other metabolic biomarkers of macrophage activation including GSH redox. It is suggested that the CO/AA ratio is a redox- independent early biomarker of macrophage activation. The ability to measure both the CO/AA and GSH-redox ratios simultaneously permits quantification of the relative effects of LPS challenge on macrophage inflammation and oxidative stress pathways. The use of this assay in humans is discussed, as are clinical implications.
Collapse
Affiliation(s)
- Jung H Suh
- Nutrition and Metabolism Center, Children’s Hospital Oakland Research Institute, Oakland, CA, USA
| | - Robert Y Kim
- Nutrition and Metabolism Center, Children’s Hospital Oakland Research Institute, Oakland, CA, USA
| | - Daniel S Lee
- Nutrition and Metabolism Center, Children’s Hospital Oakland Research Institute, Oakland, CA, USA
| |
Collapse
|
42
|
Ming X, Rajapakse AG, Yepuri G, Xiong Y, Carvas JM, Ruffieux J, Scerri I, Wu Z, Popp K, Li J, Sartori C, Scherrer U, Kwak BR, Montani J, Yang Z. Arginase II Promotes Macrophage Inflammatory Responses Through Mitochondrial Reactive Oxygen Species, Contributing to Insulin Resistance and Atherogenesis. J Am Heart Assoc 2012; 1:e000992. [PMID: 23130157 PMCID: PMC3487353 DOI: 10.1161/jaha.112.000992] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 06/08/2012] [Indexed: 12/29/2022]
Abstract
BACKGROUND Macrophage-mediated chronic inflammation is mechanistically linked to insulin resistance and atherosclerosis. Although arginase I is considered antiinflammatory, the role of arginase II (Arg-II) in macrophage function remains elusive. This study characterizes the role of Arg-II in macrophage inflammatory responses and its impact on obesity-linked type II diabetes mellitus and atherosclerosis. METHODS AND RESULTS In human monocytes, silencing Arg-II decreases the monocytes' adhesion to endothelial cells and their production of proinflammatory mediators stimulated by oxidized low-density lipoprotein or lipopolysaccharides, as evaluated by real-time quantitative reverse transcription-polymerase chain reaction and enzyme-linked immunosorbent assay. Macrophages differentiated from bone marrow cells of Arg-II-deficient (Arg-II(-/-)) mice express lower levels of lipopolysaccharide-induced proinflammatory mediators than do macrophages of wild-type mice. Importantly, reintroducing Arg-II cDNA into Arg-II(-/-) macrophages restores the inflammatory responses, with concomitant enhancement of mitochondrial reactive oxygen species. Scavenging of reactive oxygen species by N-acetylcysteine prevents the Arg-II-mediated inflammatory responses. Moreover, high-fat diet-induced infiltration of macrophages in various organs and expression of proinflammatory cytokines in adipose tissue are blunted in Arg-II(-/-) mice. Accordingly, Arg-II(-/-) mice reveal lower fasting blood glucose and improved glucose tolerance and insulin sensitivity. Furthermore, apolipoprotein E (ApoE)-deficient mice with Arg-II deficiency (ApoE(-/-)Arg-II(-/-)) display reduced lesion size with characteristics of stable plaques, such as decreased macrophage inflammation and necrotic core. In vivo adoptive transfer experiments reveal that fewer donor ApoE(-/-)Arg-II(-/-) than ApoE(-/-)Arg-II(+/+) monocytes infiltrate into the plaque of ApoE(-/-)Arg-II(+/+) mice. Conversely, recipient ApoE(-/-)Arg-II(-/-) mice accumulate fewer donor monocytes than do recipient ApoE(-/-)Arg-II(+/+) animals. CONCLUSIONS Arg-II promotes macrophage proinflammatory responses through mitochondrial reactive oxygen species, contributing to insulin resistance and atherogenesis. Targeting Arg-II represents a potential therapeutic strategy in type II diabetes mellitus and atherosclerosis. (J Am Heart Assoc. 2012;1:e000992 doi: 10.1161/JAHA.112.000992.).
Collapse
Affiliation(s)
- Xiu‐Fen Ming
- From the Laboratory of Vascular Biology, Department of Medicine, Division of Physiology, Faculty of Science, University of Fribourg, Switzerland (X.-F.M.,
A.G.R., G.Y., Y.X., J.M.C., J.R., I.S., Z.W., K.P., J.-P.M., Z.Y.)
| | - Angana G. Rajapakse
- From the Laboratory of Vascular Biology, Department of Medicine, Division of Physiology, Faculty of Science, University of Fribourg, Switzerland (X.-F.M.,
A.G.R., G.Y., Y.X., J.M.C., J.R., I.S., Z.W., K.P., J.-P.M., Z.Y.)
| | - Gautham Yepuri
- From the Laboratory of Vascular Biology, Department of Medicine, Division of Physiology, Faculty of Science, University of Fribourg, Switzerland (X.-F.M.,
A.G.R., G.Y., Y.X., J.M.C., J.R., I.S., Z.W., K.P., J.-P.M., Z.Y.)
| | - Yuyan Xiong
- From the Laboratory of Vascular Biology, Department of Medicine, Division of Physiology, Faculty of Science, University of Fribourg, Switzerland (X.-F.M.,
A.G.R., G.Y., Y.X., J.M.C., J.R., I.S., Z.W., K.P., J.-P.M., Z.Y.)
| | - João M. Carvas
- From the Laboratory of Vascular Biology, Department of Medicine, Division of Physiology, Faculty of Science, University of Fribourg, Switzerland (X.-F.M.,
A.G.R., G.Y., Y.X., J.M.C., J.R., I.S., Z.W., K.P., J.-P.M., Z.Y.)
| | - Jean Ruffieux
- From the Laboratory of Vascular Biology, Department of Medicine, Division of Physiology, Faculty of Science, University of Fribourg, Switzerland (X.-F.M.,
A.G.R., G.Y., Y.X., J.M.C., J.R., I.S., Z.W., K.P., J.-P.M., Z.Y.)
| | - Isabelle Scerri
- From the Laboratory of Vascular Biology, Department of Medicine, Division of Physiology, Faculty of Science, University of Fribourg, Switzerland (X.-F.M.,
A.G.R., G.Y., Y.X., J.M.C., J.R., I.S., Z.W., K.P., J.-P.M., Z.Y.)
| | - Zongsong Wu
- From the Laboratory of Vascular Biology, Department of Medicine, Division of Physiology, Faculty of Science, University of Fribourg, Switzerland (X.-F.M.,
A.G.R., G.Y., Y.X., J.M.C., J.R., I.S., Z.W., K.P., J.-P.M., Z.Y.)
| | - Katja Popp
- From the Laboratory of Vascular Biology, Department of Medicine, Division of Physiology, Faculty of Science, University of Fribourg, Switzerland (X.-F.M.,
A.G.R., G.Y., Y.X., J.M.C., J.R., I.S., Z.W., K.P., J.-P.M., Z.Y.)
| | - Jianhui Li
- Department of Intensive Care Medicine, University Hospital Center and Faculty of Biology and Medicine, Lausanne, Switzerland (J.L.)
- Dr Li is currently affiliated with the Department of Hepatobiliary and Pancreatic Surgery and Centre of Organ Transplantation, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China (J.L.)
| | - Claudio Sartori
- Department of Internal Medicine, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland (C.S.)
| | - Urs Scherrer
- Department of Cardiology, University Hospital, Bern, Switzerland (U.S.)
- Facultad de Ciencias, Departamento de Biología, Universidad de Tarapacá, Arica, Chile (U.S.)
| | - Brenda R. Kwak
- Department of Pathology and Immunology, Department of Internal Medicine–Cardiology, University of Geneva, Switzerland (B.R.K.)
| | - Jean‐Pierre Montani
- From the Laboratory of Vascular Biology, Department of Medicine, Division of Physiology, Faculty of Science, University of Fribourg, Switzerland (X.-F.M.,
A.G.R., G.Y., Y.X., J.M.C., J.R., I.S., Z.W., K.P., J.-P.M., Z.Y.)
| | - Zhihong Yang
- From the Laboratory of Vascular Biology, Department of Medicine, Division of Physiology, Faculty of Science, University of Fribourg, Switzerland (X.-F.M.,
A.G.R., G.Y., Y.X., J.M.C., J.R., I.S., Z.W., K.P., J.-P.M., Z.Y.)
| |
Collapse
|
43
|
Vaisman BL, Andrews KL, Khong SML, Wood KC, Moore XL, Fu Y, Kepka-Lenhart DM, Morris SM, Remaley AT, Chin-Dusting JPF. Selective endothelial overexpression of arginase II induces endothelial dysfunction and hypertension and enhances atherosclerosis in mice. PLoS One 2012; 7:e39487. [PMID: 22829869 PMCID: PMC3400622 DOI: 10.1371/journal.pone.0039487] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 05/21/2012] [Indexed: 01/10/2023] Open
Abstract
Background Cardiovascular disorders associated with endothelial dysfunction, such as atherosclerosis, have decreased nitric oxide (NO) bioavailability. Arginase in the vasculature can compete with eNOS for L-arginine and has been implicated in atherosclerosis. The aim of this study was to evaluate the effect of endothelial-specific elevation of arginase II expression on endothelial function and the development of atherosclerosis. Methodology/Principal Findings Transgenic mice on a C57BL/6 background with endothelial-specific overexpression of human arginase II (hArgII) gene under the control of the Tie2 promoter were produced. The hArgII mice had elevated tissue arginase activity except in liver and in resident peritoneal macrophages, confirming endothelial specificity of the transgene. Using small-vessel myography, aorta from these mice exhibited endothelial dysfunction when compared to their non-transgenic littermate controls. The blood pressure of the hArgII mice was 17% higher than their littermate controls and, when crossed with apoE −/− mice, hArgII mice had increased aortic atherosclerotic lesions. Conclusion We conclude that overexpression of arginase II in the endothelium is detrimental to the cardiovascular system.
Collapse
Affiliation(s)
- Boris L. Vaisman
- Cardiovascular-Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Karen L. Andrews
- Vascular Pharmacology Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
- * E-mail:
| | - Sacha M. L. Khong
- Vascular Pharmacology Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Katherine C. Wood
- Cardiovascular-Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Xiao L. Moore
- Vascular Pharmacology Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Yi Fu
- Vascular Pharmacology Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Diane M. Kepka-Lenhart
- Departments of Microbiology and Molecular Genetics, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Sidney M. Morris
- Departments of Microbiology and Molecular Genetics, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Alan T. Remaley
- Cardiovascular-Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jaye P. F. Chin-Dusting
- Vascular Pharmacology Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
| |
Collapse
|
44
|
Chen B, Calvert AE, Meng X, Nelin LD. Pharmacologic agents elevating cAMP prevent arginase II expression and proliferation of pulmonary artery smooth muscle cells. Am J Respir Cell Mol Biol 2012; 47:218-26. [PMID: 22447968 DOI: 10.1165/rcmb.2011-0015oc] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Arginase II has been shown to be involved in the hypoxia-induced proliferation of human pulmonary artery smooth muscle cells (hPASMCs). The signal transduction pathways responsible for the induction of arginase II are poorly understood. Cyclic AMP is involved in many intracellular processes, and cAMP levels are regulated by a balance between production via adenylate cyclases and degradation via phosphodiesterases. The purpose of this study was to determine the effects of cAMP on hypoxia-induced arginase expression, activity, and proliferation in hPASMCs. We found that the cAMP analog 8-Bromo-cAMP (8-Br-cAMP), the adenylate cyclase activator forskolin, and the phosphodiesterase 3 inhibitor cilostamide prevented the hypoxic induction of arginase II mRNA and protein expression in hPASMCs. The inhibition of arginase II protein was found to be mediated by exchange protein directly activated by cAMP. Arginase activity was decreased by 8-Br-cAMP, as evidenced by significantly lower V(max) for arginase in normoxia and hypoxia. The hypoxia-induced hPASMC proliferation was completely prevented by the addition of 8-Br-cAMP, forskolin, or cilostamide. These data are the first to describe the inhibitory effect of cAMP on arginase activity, expression, and resultant proliferation of hypoxic hPASMCs.
Collapse
Affiliation(s)
- Bernadette Chen
- Pulmonary Hypertension Group, Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA.
| | | | | | | |
Collapse
|
45
|
Osorio EY, Zhao W, Espitia C, Saldarriaga O, Hawel L, Byus CV, Travi BL, Melby PC. Progressive visceral leishmaniasis is driven by dominant parasite-induced STAT6 activation and STAT6-dependent host arginase 1 expression. PLoS Pathog 2012; 8:e1002417. [PMID: 22275864 PMCID: PMC3261917 DOI: 10.1371/journal.ppat.1002417] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 10/19/2011] [Indexed: 01/11/2023] Open
Abstract
The clinicopathological features of the hamster model of visceral leishmaniasis (VL) closely mimic active human disease. Studies in humans and hamsters indicate that the inability to control parasite replication in VL could be related to ineffective classical macrophage activation. Therefore, we hypothesized that the pathogenesis of VL might be driven by a program of alternative macrophage activation. Indeed, the infected hamster spleen showed low NOS2 but high arg1 enzyme activity and protein and mRNA expression (p<0.001) and increased polyamine synthesis (p<0.05). Increased arginase activity was also evident in macrophages isolated from the spleens of infected hamsters (p<0.05), and arg1 expression was induced by L. donovani in primary hamster peritoneal macrophages (p<0.001) and fibroblasts (p<0.01), and in a hamster fibroblast cell line (p<0.05), without synthesis of endogenous IL-4 or IL-13 or exposure to exogenous cytokines. miRNAi-mediated selective knockdown of hamster arginase 1 (arg1) in BHK cells led to increased generation of nitric oxide and reduced parasite burden (p<0.005). Since many of the genes involved in alternative macrophage activation are regulated by Signal Transducer and Activator of Transcription-6 (STAT6), and because the parasite-induced expression of arg1 occurred in the absence of exogenous IL-4, we considered the possibility that L. donovani was directly activating STAT6. Indeed, exposure of hamster fibroblasts or macrophages to L. donovani resulted in dose-dependent STAT6 activation, even without the addition of exogenous cytokines. Knockdown of hamster STAT6 in BHK cells with miRNAi resulted in reduced arg1 mRNA expression and enhanced control of parasite replication (p<0.0001). Collectively these data indicate that L. donovani infection induces macrophage STAT6 activation and STAT6-dependent arg1 expression, which do not require but are amplified by type 2 cytokines, and which contribute to impaired control of infection. Visceral leishmaniasis (VL), caused by the intracellular protozoan Leishmania donovani, is a progressive, potentially fatal infection found in many resource-poor regions of the world. We initiated these studies of an experimental model of VL to better understand the molecular and cellular determinants underlying this disease. We found that host macrophages or fibroblasts, when infected with Leishmania donovani or exposed to products secreted by the parasite, are permissive to infection because they fail to metabolize arginine to generate nitric oxide, the effector molecule needed to kill the intracellular parasites. Instead, the infected host cells are activated in a way that leads to the expression of arginase, an enzyme that metabolizes arginine to produce polyamines, which support parasite growth. This detrimental activation pathway was dependent on the parasite-induced activation of the transcription factor STAT6, but contrary to the previously accepted paradigm, did not require (but was amplified by) the presence of polarized Th2 cells or type 2 cytokines. Knockdown of host arginase or STAT6 enhanced control of the infection, indicating that this activation pathway has a critical role in the pathogenesis of the disease. Interventions designed to inhibit the STAT6-arginase-polyamine pathway could help in the treatment or prevention of VL.
Collapse
Affiliation(s)
- E. Yaneth Osorio
- Research Service, Department of Veterans Affairs Medical Center, South Texas Veterans Health Care System, San Antonio, Texas, United States of America
- Department of Medicine, The University of Texas Health Science Center, San Antonio, Texas, United States of America
| | - Weiguo Zhao
- Research Service, Department of Veterans Affairs Medical Center, South Texas Veterans Health Care System, San Antonio, Texas, United States of America
- Department of Medicine, The University of Texas Health Science Center, San Antonio, Texas, United States of America
| | - Claudia Espitia
- Research Service, Department of Veterans Affairs Medical Center, South Texas Veterans Health Care System, San Antonio, Texas, United States of America
- Department of Medicine, The University of Texas Health Science Center, San Antonio, Texas, United States of America
| | - Omar Saldarriaga
- Research Service, Department of Veterans Affairs Medical Center, South Texas Veterans Health Care System, San Antonio, Texas, United States of America
- Department of Microbiology and Immunology, The University of Texas Health Science Center, San Antonio, Texas, United States of America
| | - Leo Hawel
- Division of Biomedical Sciences, University of California, Riverside, California, United States of America
| | - Craig V. Byus
- Division of Biomedical Sciences, University of California, Riverside, California, United States of America
| | - Bruno L. Travi
- Research Service, Department of Veterans Affairs Medical Center, South Texas Veterans Health Care System, San Antonio, Texas, United States of America
- Department of Medicine, The University of Texas Health Science Center, San Antonio, Texas, United States of America
| | - Peter C. Melby
- Research Service, Department of Veterans Affairs Medical Center, South Texas Veterans Health Care System, San Antonio, Texas, United States of America
- Department of Medicine, The University of Texas Health Science Center, San Antonio, Texas, United States of America
- Department of Microbiology and Immunology, The University of Texas Health Science Center, San Antonio, Texas, United States of America
- * E-mail:
| |
Collapse
|
46
|
Upregulation of arginase-II contributes to decreased age-related myocardial contractile reserve. Eur J Appl Physiol 2011; 112:2933-41. [PMID: 22160208 DOI: 10.1007/s00421-011-2257-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Accepted: 11/18/2011] [Indexed: 10/14/2022]
Abstract
Arginase-II (Arg-II) reciprocally regulates nitric oxide synthase (NOS) and offsets basal myocardial contractility. Furthermore, decreased or absent myocardial NOS activity is associated with a depression in myocardial contractile reserve. We therefore hypothesized that upregulation of Arg-II might in part be responsible for depressed myocardial contractility associated with age. We studied arginase activity/expression, NOS expression, NO production in the presence and absence of the arginase inhibitor S-(2-boronoethyl)-L: -cysteine (BEC) in old (22 months) and young (3 months) rat hearts and myocytes. The spatial confinement of Arg-II and NOS was determined with immuno-electron-miocrographic (IEM) and immuno-histochemical studies. We tested the effect of BEC on the force frequency response (FFR) in myocytes, as well as NOS abundance and activity. Arginase activity and Arg-II expression was increased in old hearts (2.27 ± 0.542 vs. 0.439 ± 0.058 nmol urea/mg protein, p = 0.02). This was associated with a decrease in NO production, which was restored with BEC (4.54 ± 0.582 vs. 12.88 ± 0.432 μmol/mg, p < 0.01). IEM illustrates increased mitochondrial density in old myocytes (51.7 ± 1.8 vs. 69 ± 2.2 × 10(6)/cm(2), p < 0.01), potentially contributing to increased Arg-II abundance and activity. Immunohistochemistry revealed an organized pattern of mitochondria and Arg-II that appears disrupted in old myocytes. The FFR was significantly depressed in old myocytes (61.42 ± 16.04 vs. -5.15 ± 5.65%), while inhibition of Arg-II restored the FFR (-5.15 ± 5.65 vs. 70.98 ± 6.10%). NOS-2 is upregulated sixfold in old hearts contributing to increased production of reactive oxygen species which is attenuated with NOS-2 inhibition by 1400 W (4,735 ± 427 vs. 4,014 ± 314 RFU/min/mg protein, p = 0.005). Arg-II upregulation in aging rat hearts contributes to age-related decreased contractile function.
Collapse
|
47
|
Morris SM, Gao T, Cooper TK, Kepka-Lenhart D, Awad AS. Arginase-2 mediates diabetic renal injury. Diabetes 2011; 60:3015-22. [PMID: 21926276 PMCID: PMC3198072 DOI: 10.2337/db11-0901] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 08/12/2011] [Indexed: 01/15/2023]
Abstract
OBJECTIVE To determine 1) whether renal arginase activity or expression is increased in diabetes and 2) whether arginase plays a role in development of diabetic nephropathy (DN). RESEARCH DESIGN AND METHODS The impact of arginase activity and expression on renal damage was evaluated in spontaneously diabetic Ins2(Akita) mice and in streptozotocin (STZ)-induced diabetic Dilute Brown Agouti (DBA) and arginase-2-deficient mice (Arg2(-/-)). RESULTS Pharmacological blockade or genetic deficiency of arginase-2 conferred kidney protection in Ins2(Akita) mice or STZ-induced diabetic renal injury. Blocking arginases using S-(2-boronoethyl)-L-cysteine for 9 weeks in Ins2(Akita) mice or 6 weeks in STZ-induced diabetic DBA mice significantly attenuated albuminuria, the increase in blood urea nitrogen, histopathological changes, and kidney macrophage recruitment compared with vehicle-treated Ins2(Akita) mice. Furthermore, kidney arginase-2 expression increased in Ins2(Akita) mice compared with control. In contrast, arginase-1 expression was undetectable in kidneys under normal or diabetes conditions. Arg2(-/-) mice mimicked arginase blockade by reducing albuminuria after 6 and 18 weeks of STZ-induced diabetes. In wild-type mice, kidney arginase activity increased significantly after 6 and 18 weeks of STZ-induced diabetes but remained very low in STZ-diabetic Arg2(-/-) mice. The increase in kidney arginase activity was associated with a reduction in renal medullary blood flow in wild-type mice after 6 weeks of STZ-induced diabetes, an effect significantly attenuated in diabetic Arg2(-/-) mice. CONCLUSIONS These findings indicate that arginase-2 plays a major role in induction of diabetic renal injury and that blocking arginase-2 activity or expression could be a novel therapeutic approach for treatment of DN.
Collapse
Affiliation(s)
- Sidney M. Morris
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ting Gao
- Department of Medicine, Penn State University College of Medicine, Hershey, Pennsylvania
| | - Timothy K. Cooper
- Department of Comparative Medicine, Penn State University College of Medicine, Hershey, Pennsylvania
- Department of Pathology, Penn State University College of Medicine, Hershey, Pennsylvania
| | - Diane Kepka-Lenhart
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Alaa S. Awad
- Department of Medicine, Penn State University College of Medicine, Hershey, Pennsylvania
| |
Collapse
|
48
|
Yamamoto M, Tochino Y, Chibana K, Trudeau JB, Holguin F, Wenzel SE. Nitric oxide and related enzymes in asthma: relation to severity, enzyme function and inflammation. Clin Exp Allergy 2011; 42:760-8. [PMID: 22092728 DOI: 10.1111/j.1365-2222.2011.03860.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 07/04/2011] [Accepted: 08/03/2011] [Indexed: 12/18/2022]
Abstract
BACKGROUND Exhaled nitric oxide (FeNO) associates with asthma and eosinophilic inflammation. However, relationships between nitric oxide synthases, arginase, FeNO, asthma severity and inflammation remain poorly understood. OBJECTIVES To determine the relationships of iNOS expression/activation and arginase 2 expression with asthma severity, FeNO, nitrotyrosine (NT) and eosinophilic inflammation. METHODS Bronchial brushings and sputum were obtained from 25 normal controls, eight mild/no inhaled corticosteroids (ICS), 16 mild-moderate/with ICS and 35 severe asthmatics. The FeNO was measured the same day by ATS/ERS standards. The iNOS, arginase2 mRNA/protein and NT protein were measured in lysates from bronchial brushings by quantitative real-time PCR and Western blot. Induced sputum differentials were obtained. RESULTS Severe asthma was associated with the highest levels of iNOS protein and mRNA, although the index of iNOS mRNA to arginase2 mRNA most strongly differentiated severe from milder asthma. When evaluating NO-related enzyme functionality, iNOS mRNA/protein expression both strongly predicted FeNO (r = 0.61, P < 0.0001 for both). Only iNOS protein predicted NT levels (r = 0.48, P = 0.003) with the strongest relationship in severe asthma (r = 0.61, P = 0.009). The iNOS protein, FeNO and NT, all correlated with sputum eosinophils, but the relationships were again strongest in severe asthma. Controlling for arginase 2 mRNA/protein did not impact any functional outcome. CONCLUSIONS AND CLINICAL RELEVANCE These data suggest that while iNOS expression from epithelial brushings is highest in severe asthma, factors controlling arginase2 mRNA expression significantly improve differentiation of severity. In contrast, functionality of the NO pathway as measured by FeNO, NT and eosinophilic inflammation, is strongly associated with iNOS expression alone, particularly in severe asthma.
Collapse
Affiliation(s)
- M Yamamoto
- Pulmonary, Allergy and Critical Care Medicine Division, Department of Medicine, University of Pittsburgh Asthma Institute, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | | | | | | | | | | |
Collapse
|
49
|
Nelson SM, Lei X, Prabhu KS. Selenium levels affect the IL-4-induced expression of alternative activation markers in murine macrophages. J Nutr 2011; 141:1754-61. [PMID: 21775527 PMCID: PMC3159059 DOI: 10.3945/jn.111.141176] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Selenium (Se), in the form of selenoproteins, imparts many health benefits with antiinflammatory properties. Previous studies have shown that Se supplementation of macrophages negatively regulates the LPS-dependent production of inducible NO synthase (iNOS), a proinflammatory gene. Therefore, we hypothesized that l-arginine, a substrate for iNOS, is acted upon by arginase-I (Arg-I), contributing to the resolution of inflammation. We investigated the antiinflammatory activity of Se using LPS and IL-4-treated C57BL/6 murine bone marrow-derived macrophages (BMDM) from mice fed Se-deficient and Se-adequate diets. Supplementation with Se (100 nmol/L) of IL-4-treated macrophages significantly increased the expression of alternatively activated macrophage (M2) markers, Arg-I, Fizz1, and Mrc-1. Se treatment also increased the enzymatic activity of Arg-I and surface expression of Mrc-1. Conversely, expression of classically activated macrophage (M1) markers, TNFα, and IL-1β, was significantly decreased in LPS-treated macrophages that were cultured in Se and IL-4, suggesting a synergistic effect between Se and IL-4. Additionally, Arg-I activity was decreased in BMDM harvested from glutathione peroxidase (GPX) knockout mice compared to GPX wild-type mice, further establishing an important role for selenoproteins. Furthermore, BMDM treated with inhibitors of PPARγ and STAT6, pivotal transcription factors that mediate the activity of Se and IL-4, respectively, showed complete ablation of Se-dependent expression of M2 markers. In summary, these studies suggest that Se supplementation of macrophages produces endogenous activators to mediate the PPARγ-dependent switch from M1 to M2 phenotype in the presence of IL-4, possibly affecting pathways of wound healing and inflammation resolution.
Collapse
Affiliation(s)
- Shakira M. Nelson
- Graduate Program in Pathobiology, Center for Molecular Immunology and Infectious Disease and Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA
| | - Xingen Lei
- Department of Animal Sciences, Cornell University, Ithaca, NY
| | - K. Sandeep Prabhu
- Graduate Program in Pathobiology, Center for Molecular Immunology and Infectious Disease and Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA,To whom correspondence should be addressed. E-mail:
| |
Collapse
|
50
|
Sharda DR, Yu S, Ray M, Squadrito ML, De Palma M, Wynn TA, Morris SM, Hankey PA. Regulation of macrophage arginase expression and tumor growth by the Ron receptor tyrosine kinase. THE JOURNAL OF IMMUNOLOGY 2011; 187:2181-92. [PMID: 21810604 DOI: 10.4049/jimmunol.1003460] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
M1 activation of macrophages promotes inflammation and immunity to intracellular pathogens, whereas M2 macrophage activation promotes resolution of inflammation, wound healing, and tumor growth. These divergent phenotypes are characterized, in part, by the expression of inducible NO synthase and arginase I (Arg1) in M1 versus M2 activated macrophages, respectively. In this study, we demonstrate that the Ron receptor tyrosine kinase tips the balance of macrophage activation by attenuating the M1 phenotype while promoting expression of Arg1 through a Stat6-independent mechanism. Induction of the Arg1 promoter by Ron is mediated by an AP-1 site located 433 bp upstream of the transcription start site. Treatment of primary macrophages with macrophage stimulating protein, the ligand for Ron, induces potent MAPK activation, upregulates Fos, and enhances binding of Fos to the AP-1 site in the Arg1 promoter. In vivo, Arg1 expression in tumor-associated macrophages (TAMs) from Ron(-/-) mice was significantly reduced compared with that in TAMs from control animals. Furthermore, we show that Ron is expressed specifically by Tie2-expressing macrophages, a TAM subset that exhibits a markedly skewed M2 and protumoral phenotype. Decreased Arg1 in TAMs from Ron(-/-) mice was associated with reduced syngeneic tumor growth in these animals. These findings indicate that Ron induces Arg1 expression in macrophages through a previously uncharacterized AP-1 site in the Arg1 promoter and that Ron could be therapeutically targeted in the tumor microenvironment to inhibit tumor growth by targeting expression of Arg1.
Collapse
Affiliation(s)
- Daniel R Sharda
- Graduate Program in Pathobiology, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | | | | | | | |
Collapse
|