1
|
Martí I Líndez AA, Reith W. Arginine-dependent immune responses. Cell Mol Life Sci 2021; 78:5303-5324. [PMID: 34037806 PMCID: PMC8257534 DOI: 10.1007/s00018-021-03828-4] [Citation(s) in RCA: 121] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 03/23/2021] [Accepted: 03/29/2021] [Indexed: 02/07/2023]
Abstract
A growing body of evidence indicates that, over the course of evolution of the immune system, arginine has been selected as a node for the regulation of immune responses. An appropriate supply of arginine has long been associated with the improvement of immune responses. In addition to being a building block for protein synthesis, arginine serves as a substrate for distinct metabolic pathways that profoundly affect immune cell biology; especially macrophage, dendritic cell and T cell immunobiology. Arginine availability, synthesis, and catabolism are highly interrelated aspects of immune responses and their fine-tuning can dictate divergent pro-inflammatory or anti-inflammatory immune outcomes. Here, we review the organismal pathways of arginine metabolism in humans and rodents, as essential modulators of the availability of this semi-essential amino acid for immune cells. We subsequently review well-established and novel findings on the functional impact of arginine biosynthetic and catabolic pathways on the main immune cell lineages. Finally, as arginine has emerged as a molecule impacting on a plethora of immune functions, we integrate key notions on how the disruption or perversion of arginine metabolism is implicated in pathologies ranging from infectious diseases to autoimmunity and cancer.
Collapse
Affiliation(s)
| | - Walter Reith
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
2
|
Stead CA, Hesketh SJ, Bennett S, Sutherland H, Jarvis JC, Lisboa PJ, Burniston JG. Fractional Synthesis Rates of Individual Proteins in Rat Soleus and Plantaris Muscles. Proteomes 2020; 8:proteomes8020010. [PMID: 32403418 PMCID: PMC7356555 DOI: 10.3390/proteomes8020010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/08/2020] [Accepted: 05/09/2020] [Indexed: 12/14/2022] Open
Abstract
Differences in the protein composition of fast- and slow-twitch muscle may be maintained by different rates of protein turnover. We investigated protein turnover rates in slow-twitch soleus and fast-twitch plantaris of male Wistar rats (body weight 412 ± 69 g). Animals were assigned to four groups (n = 3, in each), including a control group (0 d) and three groups that received deuterium oxide (D2O) for either 10 days, 20 days or 30 days. D2O administration was initiated by an intraperitoneal injection of 20 μL of 99% D2O-saline per g body weight, and maintained by provision of 4% (v/v) D2O in the drinking water available ad libitum. Soluble proteins from harvested muscles were analysed by liquid chromatography–tandem mass spectrometry and identified against the SwissProt database. The enrichment of D2O and rate constant (k) of protein synthesis was calculated from the abundance of peptide mass isotopomers. The fractional synthesis rate (FSR) of 44 proteins in soleus and 34 proteins in plantaris spanned from 0.58%/day (CO1A1: Collagen alpha-1 chain) to 5.40%/day NDRG2 (N-myc downstream-regulated gene 2 protein). Eight out of 18 proteins identified in both muscles had a different FSR in soleus than in plantaris (p < 0.05).
Collapse
Affiliation(s)
- Connor A. Stead
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK; (C.A.S.); (S.J.H.); (S.B.); (H.S.); (J.C.J.)
| | - Stuart J. Hesketh
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK; (C.A.S.); (S.J.H.); (S.B.); (H.S.); (J.C.J.)
| | - Samuel Bennett
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK; (C.A.S.); (S.J.H.); (S.B.); (H.S.); (J.C.J.)
| | - Hazel Sutherland
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK; (C.A.S.); (S.J.H.); (S.B.); (H.S.); (J.C.J.)
| | - Jonathan C. Jarvis
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK; (C.A.S.); (S.J.H.); (S.B.); (H.S.); (J.C.J.)
| | - Paulo J. Lisboa
- Department of Applied Mathematics, Liverpool John Moores University, Liverpool L3 3AF, UK;
| | - Jatin G. Burniston
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK; (C.A.S.); (S.J.H.); (S.B.); (H.S.); (J.C.J.)
- Correspondence: ; Tel.: +44-(0)-151-904-6265
| |
Collapse
|
3
|
Cielen N, Heulens N, Maes K, Carmeliet G, Mathieu C, Janssens W, Gayan-Ramirez G. Vitamin D deficiency impairs skeletal muscle function in a smoking mouse model. J Endocrinol 2016; 229:97-108. [PMID: 26906744 PMCID: PMC5064769 DOI: 10.1530/joe-15-0491] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 02/23/2016] [Indexed: 12/18/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is associated with skeletal muscle dysfunction. Vitamin D plays an important role in muscle strength and performance in healthy individuals. Vitamin D deficiency is highly prevalent in COPD, but its role in skeletal muscle dysfunction remains unclear. We examined the time-course effect of vitamin D deficiency on limb muscle function in mice with normal or deficient vitamin D serum levels exposed to air or cigarette smoke for 6, 12 or 18 weeks. The synergy of smoking and vitamin D deficiency increased lung inflammation and lung compliance from 6 weeks on with highest emphysema scores observed at 18 weeks. Smoking reduced body and muscle mass of the soleus and extensor digitorum longus (EDL), but did not affect contractility, despite type II atrophy. Vitamin D deficiency did not alter muscle mass but reduced muscle force over time, downregulated vitamin D receptor expression, and increased muscle lipid peroxidation but did not alter actin and myosin expression, fiber dimensions or twitch relaxation time. The combined effect of smoking and vitamin D deficiency did not further deteriorate muscle function but worsened soleus mass loss and EDL fiber atrophy at 18 weeks. We conclude that the synergy of smoking and vitamin D deficiency in contrast to its effect on lung disease, had different, independent but important noxious effects on skeletal muscles in a mouse model of mild COPD.
Collapse
Affiliation(s)
- Nele Cielen
- Laboratory of Respiratory DiseasesDepartment of Clinical and Experimental Medicine, KULeuven, Leuven, Belgium
| | - Nele Heulens
- Laboratory of Respiratory DiseasesDepartment of Clinical and Experimental Medicine, KULeuven, Leuven, Belgium
| | - Karen Maes
- Laboratory of Respiratory DiseasesDepartment of Clinical and Experimental Medicine, KULeuven, Leuven, Belgium
| | - Geert Carmeliet
- Laboratory of Clinical and Experimental EndocrinologyDepartment of Clinical and Experimental Medicine, KULeuven, Leuven, Belgium
| | - Chantal Mathieu
- Laboratory of Clinical and Experimental EndocrinologyDepartment of Clinical and Experimental Medicine, KULeuven, Leuven, Belgium
| | - Wim Janssens
- Laboratory of Respiratory DiseasesDepartment of Clinical and Experimental Medicine, KULeuven, Leuven, Belgium
| | - Ghislaine Gayan-Ramirez
- Laboratory of Respiratory DiseasesDepartment of Clinical and Experimental Medicine, KULeuven, Leuven, Belgium
| |
Collapse
|
4
|
Shankaran M, King CL, Angel TE, Holmes WE, Li KW, Colangelo M, Price JC, Turner SM, Bell C, Hamilton KL, Miller BF, Hellerstein MK. Circulating protein synthesis rates reveal skeletal muscle proteome dynamics. J Clin Invest 2016; 126:288-302. [PMID: 26657858 PMCID: PMC4701543 DOI: 10.1172/jci79639] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 11/05/2015] [Indexed: 11/17/2022] Open
Abstract
Here, we have described and validated a strategy for monitoring skeletal muscle protein synthesis rates in rodents and humans over days or weeks from blood samples. We based this approach on label incorporation into proteins that are synthesized specifically in skeletal muscle and escape into the circulation. Heavy water labeling combined with sensitive tandem mass spectrometric analysis allowed integrated synthesis rates of proteins in muscle tissue across the proteome to be measured over several weeks. Fractional synthesis rate (FSR) of plasma creatine kinase M-type (CK-M) and carbonic anhydrase 3 (CA-3) in the blood, more than 90% of which is derived from skeletal muscle, correlated closely with FSR of CK-M, CA-3, and other proteins of various ontologies in skeletal muscle tissue in both rodents and humans. Protein synthesis rates across the muscle proteome generally changed in a coordinate manner in response to a sprint interval exercise training regimen in humans and to denervation or clenbuterol treatment in rodents. FSR of plasma CK-M and CA-3 revealed changes and interindividual differences in muscle tissue proteome dynamics. In human subjects, sprint interval training primarily stimulated synthesis of structural and glycolytic proteins. Together, our results indicate that this approach provides a virtual biopsy, sensitively revealing individualized changes in proteome-wide synthesis rates in skeletal muscle without a muscle biopsy. Accordingly, this approach has potential applications for the diagnosis, management, and treatment of muscle disorders.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Christopher Bell
- Department of Health and Exercise Science, Colorado State University, Fort Collins, Colorado, USA
| | - Karyn L. Hamilton
- Department of Health and Exercise Science, Colorado State University, Fort Collins, Colorado, USA
| | - Benjamin F. Miller
- Department of Health and Exercise Science, Colorado State University, Fort Collins, Colorado, USA
| | - Marc K. Hellerstein
- KineMed Inc., Emeryville, California, USA
- Department of Nutritional Sciences, University of California, Berkeley, California, USA
| |
Collapse
|
5
|
Iresjö BM, Lundholm K. Myosin heavy chain 2A and α-actin expression in human and murine skeletal muscles at feeding; particularly amino acids. J Transl Med 2012. [PMID: 23190566 PMCID: PMC3542095 DOI: 10.1186/1479-5876-10-238] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Protein dynamics during non-steady state conditions as feeding are complex. Such studies usually demand combinations of methods to give conclusive information, particularly on myofibrillar proteins with slow turnover. Therefore, time course transcript analyses were evaluated as possible means to monitor changes in myofibrillar biosynthesis in skeletal muscles in conditions with clinical nutrition; i.e. long term exposure of nutrients. METHODS Muscle tissue from overnight intravenously fed surgical patients were used as a model combined with muscle tissue from starved and refed mice as well as cultured L6 muscle cells. Transcripts of acta 1 (α-actin), mhc2A (myosin) and slc38 a2/Snat 2 (amino acid transporter) were quantified (qPCR) as markers of muscle protein dynamics. RESULTS Myosin heavy chain 2A transcripts decreased significantly in skeletal muscle tissue from overnight parenterally fed patients but did not change significantly in orally refed mice. Alpha-actin transcripts did not change significantly in muscle cells from fed patients, mice or cultured L6 cells during provision of AA. The AA transporter Snat 2 decreased in L6 cells refed by all AA and by various combinations of AA but did not change during feeding in muscle tissue from patients or mice. CONCLUSION Our results confirm that muscle cells are sensitive to alterations in extracellular concentrations of AA for induction of protein synthesis and anabolism. However, transcripts of myofibrillar proteins and amino acid transporters showed complex alterations in response to feeding with provision of amino acids. Therefore, muscle tissue transcript levels of actin and myosin do not reflect protein accretion in skeletal muscles at feeding.
Collapse
Affiliation(s)
- Britt-Marie Iresjö
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, Sahlgrenska University Hospital, Gothenburg, Sweden.
| | | |
Collapse
|
6
|
Dickinson JM, Lee JD, Sullivan BE, Harber MP, Trappe SW, Trappe TA. A new method to study in vivo protein synthesis in slow- and fast-twitch muscle fibers and initial measurements in humans. J Appl Physiol (1985) 2010; 108:1410-6. [PMID: 20203068 DOI: 10.1152/japplphysiol.00905.2009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The aim of this study was to develop an approach to directly assess protein fractional synthesis rate (FSR) in isolated human muscle fibers in a fiber type-specific fashion. Individual muscle fibers were isolated from biopsies of the vastus lateralis (VL) and soleus (SOL) obtained from eight young men during a primed, continuous infusion of [5,5,5-(2)H3]leucine performed under basal conditions. To determine mixed protein FSR, a portion of each fiber was used to identify fiber type, fibers of the same type were pooled, and the [5,5,5-(2)H3]leucine enrichment was determined via GC-MS. Processing isolated slow-twitch [myosin heavy chain (MHC) I] and fast-twitch (MHC IIa) fibers for mixed protein bound [5,5,5-(2)H3]leucine enrichment yielded mass ion chromatographic peaks that were similar in shape, abundance, and measurement reliability as tissue homogenates. In the VL, MHC I fibers exhibited a 33% faster (P<0.05) mixed protein FSR compared with MHC IIa fibers (0.068+/-0.006 vs. 0.051+/-0.003%/h). MHC I fibers from the SOL (0.060+/-0.005%/h) and MHC I fibers from the VL displayed similar (P>0.05) mixed protein FSR. Feasibility of processing isolated human muscle fibers for analysis of myofibrillar protein [5,5,5-(2)H3]leucine enrichment was also confirmed in non-fiber-typed pooled fibers from the VL. These methods can be applied to the study of fiber type-specific responses in human skeletal muscle. The need for this level of investigation is underscored by the different contributions of each fiber type to whole muscle function and the numerous distinct adaptive functional and metabolic changes in MHC I and MHC II fibers originating from the same muscle.
Collapse
Affiliation(s)
- J M Dickinson
- Human Performance Laboratory, Ball State University, Muncie, IN 47306, USA
| | | | | | | | | | | |
Collapse
|
7
|
Jaleel A, Short KR, Asmann YW, Klaus KA, Morse DM, Ford GC, Nair KS. In vivo measurement of synthesis rate of individual skeletal muscle mitochondrial proteins. Am J Physiol Endocrinol Metab 2008; 295:E1255-68. [PMID: 18765679 PMCID: PMC2584812 DOI: 10.1152/ajpendo.90586.2008] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Skeletal muscle mitochondrial dysfunction occurs in many conditions including aging and insulin resistance, but the molecular pathways of the mitochondrial dysfunction remain unclear. Presently, no methodologies are available to measure synthesis rates of individual mitochondrial proteins, which limits our ability to fully understand the translational regulation of gene transcripts. Here, we report a methodology to measure synthesis rates of multiple muscle mitochondrial proteins, which, along with large-scale measurements of mitochondrial gene transcripts and protein concentrations, will enable us to determine whether mitochondrial alteration is due to transcriptional or translational changes. The methodology involves in vivo labeling of muscle proteins with l-[ring-(13)C(6)]phenylalanine, protein purification by two-dimensional gel electrophoresis of muscle mitochondrial fraction, and protein identification and stable isotope abundance measurements by tandem mass spectrometry. Synthesis rates of 68 mitochondrial and 23 nonmitochondrial proteins from skeletal muscle mitochondrial fraction showed a 10-fold range, with the lowest rate for a structural protein such as myosin heavy chain (0.16 +/- 0.04%/h) and the highest for a mitochondrial protein such as dihydrolipoamide branched chain transacylase E2 (1.5 +/- 0.42%/h). This method offers an opportunity to better define the translational regulation of proteins in skeletal muscle or other tissues.
Collapse
Affiliation(s)
- Abdul Jaleel
- Division of Endocrinology, Endocrine Research Unit, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Guerrero M, Guiu-Comadevall M, Cadefau JA, Parra J, Balius R, Estruch A, Rodas G, Bedini JL, Cussó R. Fast and slow myosins as markers of muscle injury. Br J Sports Med 2007; 42:581-4; discussion 584. [PMID: 18070807 PMCID: PMC2564766 DOI: 10.1136/bjsm.2007.037945] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Objective: The diagnosis of muscular lesions suffered by athletes is usually made by clinical criteria combined with imaging of the lesion (ultrasonography and/or magnetic resonance) and blood tests to detect the presence of non-specific muscle markers. This study was undertaken to evaluate injury to fast and slow-twitch fibres using specific muscle markers for these fibres. Methods: Blood samples were obtained from 51 non-sports people and 38 sportsmen with skeletal muscle injury. Western blood analysis was performed to determine fast and slow myosin and creatine kinase (CK) levels. Skeletal muscle damage was diagnosed by physical examination, ultrasonography and magnetic resonance and biochemical markers. Results: The imaging tests were found to be excellent for detecting and confirming grade II and III lesions. However, grade I lesions were often unconfirmed by these techniques. Grade I lesions have higher levels of fast myosin than slow myosin with a very small increase in CK levels. Grade II and III lesions have high values of both fast and slow myosin. Conclusions: The evaluation of fast and slow myosin in the blood 48 h after the lesion occurs is a useful aid for the detection of type I lesions in particular, since fast myosin is an exclusive skeletal muscle marker. The correct diagnosis of grade I lesions can prevent progression of the injury in athletes undergoing continual training sessions and competitions, thus aiding sports physicians in their decision making.
Collapse
Affiliation(s)
- M Guerrero
- University of Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Bateman RJ, Munsell LY, Chen X, Holtzman DM, Yarasheski KE. Stable isotope labeling tandem mass spectrometry (SILT) to quantify protein production and clearance rates. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2007; 18:997-1006. [PMID: 17383190 PMCID: PMC2040126 DOI: 10.1016/j.jasms.2007.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2006] [Revised: 02/07/2007] [Accepted: 02/14/2007] [Indexed: 05/11/2023]
Abstract
In all biological systems, protein amount is a function of the rate of production and clearance. The speed of a response to a disturbance in protein homeostasis is determined by turnover rate. Quantifying alterations in protein synthesis and clearance rates is vital to understanding disease pathogenesis (e.g., aging, inflammation). No methods currently exist for quantifying production and clearance rates of low-abundance (femtomole) proteins in vivo. We describe a novel, mass spectrometry-based method for quantitating low-abundance protein synthesis and clearance rates in vitro and in vivo in animals and humans. The utility of this method is demonstrated with amyloid-beta (Abeta), an important low-abundance protein involved in Alzheimer's disease pathogenesis. We used in vivo stable isotope labeling, immunoprecipitation of Abeta from cerebrospinal fluid, and quantitative liquid chromatography electrospray-ionization tandem mass spectrometry (LC-ESI-tandem MS) to quantify human Abeta protein production and clearance rates. The method is sensitive and specific for stable isotope-labeled amino acid incorporation into CNS Abeta (+/-1% accuracy). This in vivo method can be used to identify pathophysiologic changes in protein metabolism and may serve as a biomarker for monitoring disease risk, progression, or response to novel therapeutic agents. The technique is adaptable to other macromolecules, such as carbohydrates or lipids.
Collapse
Affiliation(s)
- Randall J Bateman
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | | | | | | | |
Collapse
|
10
|
Bateman RJ, Munsell LY, Morris JC, Swarm R, Yarasheski KE, Holtzman DM. Human amyloid-beta synthesis and clearance rates as measured in cerebrospinal fluid in vivo. Nat Med 2006; 12:856-61. [PMID: 16799555 PMCID: PMC2983090 DOI: 10.1038/nm1438] [Citation(s) in RCA: 438] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2005] [Accepted: 01/24/2006] [Indexed: 01/09/2023]
Abstract
Certain disease states are characterized by disturbances in production, accumulation or clearance of protein. In Alzheimer disease, accumulation of amyloid-beta (Abeta) in the brain and disease-causing mutations in amyloid precursor protein or in enzymes that produce Abeta indicate dysregulation of production or clearance of Abeta. Whether dysregulation of Abeta synthesis or clearance causes the most common form of Alzheimer disease (sporadic, >99% of cases), however, is not known. Here, we describe a method to determine the production and clearance rates of proteins within the human central nervous system (CNS). We report the first measurements of the fractional production and clearance rates of Abeta in vivo in the human CNS to be 7.6% per hour and 8.3% per hour, respectively. This method may be used to search for novel biomarkers of disease, to assess underlying differences in protein metabolism that contribute to disease and to evaluate treatments in terms of their pharmacodynamic effects on proposed disease-causing pathways.
Collapse
Affiliation(s)
- Randall J Bateman
- Department of Neurology, Washington University School of Medicine, 660 South Euclid Avenue, Box 8111, St. Louis, Missouri 63110, USA.
| | | | | | | | | | | |
Collapse
|
11
|
Balagopal P, Olney R, Darmaun D, Mougey E, Dokler M, Sieck G, Hammond D. Oxandrolone enhances skeletal muscle myosin synthesis and alters global gene expression profile in Duchenne muscular dystrophy. Am J Physiol Endocrinol Metab 2006; 290:E530-9. [PMID: 16263771 DOI: 10.1152/ajpendo.00412.2005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Earlier studies have shown that the progressive, unrelenting muscle loss associated with Duchenne muscular dystrophy (DMD) involves an imbalance between the rates of synthesis and degradation of muscle proteins. Although previous studies have suggested that oxandrolone may be beneficial in DMD, the mechanism of action of oxandrolone on muscle in DMD remains unclear. To address these issues, we combined stable isotope studies and gene expression analysis to measure the fractional synthesis rate of myosin heavy chain (MHC), the key muscle contractile protein, the transcript levels of the isoforms of MHC, and global gene expression profiles in four children with DMD before and after 3 mo of treatment with oxandrolone. Gastrocnemius muscle biopsies and blood samples were collected during the course of a primed 6-h continuous infusion of l-[U-(13)C]leucine on two separate occasions, before and after the 3-mo treatment with oxandrolone (0.1 mg.kg(-1).day(-1)). Gene expression analysis was done with microarrays and RT-qPCR. In response to the treatment, MHC synthesis rate increased 42%, and this rise was accounted for, at least in part, by an upregulation of the transcript for MHC8 (perinatal MHC). Gene expression data suggested a decrease in muscle regeneration as a consequence of oxandrolone therapy, presumably because of a decrease in muscle degeneration. These findings suggest that 1) oxandrolone has a powerful protein anabolic effect on a key contractile protein and 2) larger and longer-term studies are warranted to determine whether these changes translate into meaningful therapy for these patients.
Collapse
|
12
|
Toth MJ, Matthews DE, Tracy RP, Previs MJ. Age-related differences in skeletal muscle protein synthesis: relation to markers of immune activation. Am J Physiol Endocrinol Metab 2005; 288:E883-91. [PMID: 15613683 DOI: 10.1152/ajpendo.00353.2004] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Aging is associated with decreased skeletal muscle mass and function. These changes are thought to derive, in part, from a reduction in skeletal muscle protein synthesis. Although some studies have shown reduced postabsorptive muscle protein synthesis with age in humans, recent studies have failed to find an age effect. In addition to this disparity, few studies have attempted to characterize the hormonal factors that may contribute to changes in protein synthesis. Thus we examined the effect of age on skeletal muscle protein metabolism, with a specific emphasis on myosin heavy chain (MHC) protein, and the relationship of protein synthesis rates to plasma hormone levels. We measured body composition, muscle function, muscle protein synthesis, MHC and actin protein content, MHC isoform distribution, and plasma concentrations of cytokines and insulin-like growth factor-I (IGF-I) in 7 young [29 +/- 2 (SE) yr] and 15 old (72 +/- 1 yr; P < 0.01) volunteers. Mixed-muscle (-19%; P = 0.11), MHC (-22%; P = 0.08), and nonmyofibrillar (-17%; P = 0.10) protein synthesis all tended to be lower in old volunteers. Old volunteers were characterized by increased circulating tumor necrosis factor-alpha receptor II (P < 0.05) and reduced IGF-I (P < 0.01). In addition, plasma C-reactive protein, interleukin-6, and tumor necrosis factor-alpha receptor II concentrations were negatively related to mixed-muscle and MHC protein synthesis rates (range of r values: -0.422 to -0.606; P < 0.05 to <0.01). No differences in MHC or actin protein content were found. Old volunteers showed reduced (P < 0.05) MHC IIx content compared with young volunteers but no differences in MHC I or IIa. Our data show strong trends toward reduced postabsorptive muscle protein synthesis with age. Moreover, reduced muscle protein synthesis rates were related to increased circulating concentrations of several markers of immune activation.
Collapse
Affiliation(s)
- Michael J Toth
- Department of Medicine, Health Science Research Facility 126 B, 149 Beaumont Ave., University of Vermont, Burlington, VT 05405, USA.
| | | | | | | |
Collapse
|
13
|
Toth MJ, Matthews DE, Ades PA, Tischler MD, Van Buren P, Previs M, LeWinter MM. Skeletal muscle myofibrillar protein metabolism in heart failure: relationship to immune activation and functional capacity. Am J Physiol Endocrinol Metab 2005; 288:E685-92. [PMID: 15562248 DOI: 10.1152/ajpendo.00444.2004] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chronic heart failure is characterized by changes in skeletal muscle that contribute to physical disability. Most studies to date have investigated defects in skeletal muscle oxidative capacity. In contrast, less is known about how heart failure affects myofibrillar protein metabolism. Thus we examined the effect of heart failure on skeletal muscle myofibrillar protein metabolism, with a specific emphasis on changes in myosin heavy chain (MHC) protein content, synthesis, and isoform distribution in 10 patients with heart failure (63 +/- 3 yr) and 11 controls (70 +/- 3 yr). In addition, we examined the relationship of MHC protein metabolism to inflammatory markers and physical function. Although MHC and actin protein content did not differ between groups, MHC protein content decreased with increasing disease severity in heart failure patients (r = -0.748, P < 0.02), whereas actin protein content was not related to disease severity. No difference in MHC protein synthesis was found between groups, and MHC protein synthesis rates were not related to disease severity. There were, however, relationships between C-reactive protein and both MHC protein synthesis (r = -0.442, P = 0.05) and the ratio of MHC to mixed muscle protein synthesis (r = -0.493, P < 0.03). Heart failure patients showed reduced relative amounts of MHC I (P < 0.05) and a trend toward increased MHC IIx (P = 0.06). In regression analyses, decreased MHC protein content was related to decreased exercise capacity and muscle strength in heart failure patients. Our results demonstrate that heart failure affects both the quantity and isoform distribution of skeletal muscle MHC protein. The fact that MHC protein content was related to both exercise capacity and muscle strength further suggests that quantitative alterations in MHC protein may have functional significance.
Collapse
Affiliation(s)
- Michael J Toth
- Health Science Research Facility 126 B, 149 Beaumont Ave., University of Vermont, Burlington, VT 05405, USA.
| | | | | | | | | | | | | |
Collapse
|
14
|
Shanely RA, Van Gammeren D, Deruisseau KC, Zergeroglu AM, McKenzie MJ, Yarasheski KE, Powers SK. Mechanical ventilation depresses protein synthesis in the rat diaphragm. Am J Respir Crit Care Med 2004; 170:994-9. [PMID: 15297271 DOI: 10.1164/rccm.200304-575oc] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Prolonged mechanical ventilation results in diaphragmatic atrophy and contractile dysfunction in animals. We hypothesized that mechanical ventilation-induced diaphragmatic atrophy is associated with decreased synthesis of both mixed muscle protein and myosin heavy chain protein in the diaphragm. To test this postulate, adult rats were mechanically ventilated for 6, 12, or 18 hours and diaphragmatic protein synthesis was measured in vivo. Six hours of mechanical ventilation resulted in a 30% decrease (p < 0.05) in the rate of mixed muscle protein synthesis and a 65% decrease (p < 0.05) in the rate of myosin heavy chain protein synthesis; this depression in diaphragmatic protein synthesis persisted throughout 18 hours of mechanical ventilation. Real-time polymerase chain reaction analyses revealed that mechanical ventilation, in comparison with time-matched controls, did not alter diaphragmatic levels of Type I and IIx myosin heavy chain messenger ribonucleic acid levels in the diaphragm. These data support the hypothesis that mechanical ventilation results in a decrease in both mixed muscle protein and myosin heavy chain protein synthesis in the diaphragm. Further, the decline in myosin heavy chain protein synthesis does not appear to be associated with a decrease in myosin heavy chain messenger ribonucleic acid.
Collapse
Affiliation(s)
- R Andrew Shanely
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville 32611, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Age-associated alterations in muscle protein quantity and quality that adversely affect muscle structure, composition, and function have been referred to as sarcopenia. Muscle protein is metabolically active, and the age-associated loss of muscle protein mass is related to a loss of physical function and an inability to perform activities of daily living (physical frailty). It is important to maintain adequate reserves of muscle protein and amino acids as we age. As in all cachectic conditions, sarcopenia can be explained by an imbalance between the rates of muscle protein synthesis and muscle proteolysis, in which net muscle protein balance is negative. This review summarizes evidence that supports the notion that: (a). advancing age and physical frailty are associated with a reduction in the fasting rate of mixed and myosin heavy chain protein synthesis, which contributes to muscle protein wasting in advancing age; (b). this impairment can be corrected because resistance exercise acutely and dramatically increases the rate of muscle protein synthesis in men and women aged 76 years and older; and (c). resistance exercise training maintains a modest increment in the rate of muscle protein synthesis and contributes to muscle hypertrophy and improved muscle strength in frail elderly men and women. The cellular mechanisms responsible for these adaptations, as well as the role of nutrition and hormone replacement in reversing sarcopenia, require further investigation.
Collapse
Affiliation(s)
- Kevin E Yarasheski
- Washington University School of Medicine, St Louis, Missouri 63110, USA.
| |
Collapse
|
16
|
Parise G, Yarasheski KE. The utility of resistance exercise training and amino acid supplementation for reversing age-associated decrements in muscle protein mass and function. Curr Opin Clin Nutr Metab Care 2000; 3:489-95. [PMID: 11085836 DOI: 10.1097/00075197-200011000-00012] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Advancing age is associated with reduced skeletal muscle protein synthesis, altered expression of and chemical modifications to muscle proteins, reduced muscle strength, muscle strength per unit muscle mass and muscle power (sarcopenia). These age-associated impairments in the quantity and quality of contractile protein contribute to physical disability and frailty, a loss of independent function, the risk of falling and fractures, and escalating health-care costs. Progressive resistance exercise training is a potent, non-pharmacologic, efficacious therapy for the impairment in muscle quantity and quality in middle age and physically frail adults. Evidence is accumulating that dietary amino acid supplementation may also improve muscle protein balance in the elderly. Several potential cellular mechanisms for the loss of muscle protein and resistance exercise-induced improvements in muscle quantity and quality in elderly adults are reviewed.
Collapse
Affiliation(s)
- G Parise
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | | |
Collapse
|
17
|
Hasten DL, Pak-Loduca J, Obert KA, Yarasheski KE. Resistance exercise acutely increases MHC and mixed muscle protein synthesis rates in 78-84 and 23-32 yr olds. Am J Physiol Endocrinol Metab 2000; 278:E620-6. [PMID: 10751194 DOI: 10.1152/ajpendo.2000.278.4.e620] [Citation(s) in RCA: 199] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We determined whether short-term weight-lifting exercise increases the synthesis rate of the major contractile proteins, myosin heavy chain (MHC), actin, and mixed muscle proteins in nonfrail elders and younger women and men. Fractional synthesis rates of mixed, MHC, and actin proteins were determined in seven healthy sedentary 23- to 32-yr-old and seven healthy 78- to 84-yr-old participants in paired studies done before and at the end of a 2-wk weight-lifting program. The in vivo rate of incorporation of 1-[(13)C]leucine into vastus lateralis MHC, actin, and mixed proteins was determined using a 14-h constant intravenous infusion of 1-[(13)C]leucine. Before exercise, the mixed and MHC fractional synthetic rates were lower in the older than in the younger participants (P < or = 0.04). Baseline actin protein synthesis rates were similar in the two groups (P = not significant). Over a 2-wk period, participants completed ten 1- to 1. 5-h weight-lifting exercise sessions: 2-3 sets per day of 9 exercises, 8-12 repetitions per set, at 60-90% of maximum voluntary muscle strength. At the end of exercise, MHC and mixed protein synthetic rates increased in the younger (88 and 121%) and older participants (105 and 182%; P < 0.001 vs. baseline). These findings indicate that MHC and mixed protein synthesis rates are reduced more than actin in advanced age. Similar to that of 23-32 yr olds, the vastus lateralis muscle in 78-84 yr olds retains the capacity to increase MHC and mixed protein synthesis rates in response to short-term resistance exercise.
Collapse
Affiliation(s)
- D L Hasten
- Claude D. Pepper Older Americans Independence Center, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
18
|
Meier-Augenstein W. Use of gas chromatography-combustion-isotope ratio mass spectrometry in nutrition and metabolic research. Curr Opin Clin Nutr Metab Care 1999; 2:465-70. [PMID: 10678674 DOI: 10.1097/00075197-199911000-00005] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Linking gas chromatography via an on-line combustion interface to isotope ratio mass spectrometry has opened the door to high-precision compound-specific isotope analysis. For this reason, gas chromatography-combustion-isotope ratio mass spectrometry is now increasingly employed in metabolic and nutritional research because it offers a reliable and risk-free alternative to the use of radioactive tracers.
Collapse
Affiliation(s)
- W Meier-Augenstein
- University of Dundee, Department of Anatomy and Physiology, OMS, Small's Wynd, UK.
| |
Collapse
|