1
|
Ortega A, Olea-Herrero N, Arenas MI, Vélez-Vélez E, Moreno-Gómez-Toledano R, Muñoz-Moreno C, Lázaro A, Esbrit P, Tejedor A, Bosch RJ. Urinary excretion of parathyroid hormone-related protein correlates with renal function in control rats and rats with cisplatin nephrotoxicity. Am J Physiol Renal Physiol 2019; 317:F874-F880. [DOI: 10.1152/ajprenal.00091.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Parathyroid hormone-related protein (PTHrP) and its receptor are abundantly expressed throughout the renal parenchyma, where PTHrP exerts a modulatory action on renal function. PTHrP upregulation is a common event associated with the mechanism of renal injury and repair. However, no study has yet explored the putative excretion of PTHrP in urine, including its potential relationship with renal function. In the present study, we tested this hypothesis by studying the well-known rat model of acute renal injury induced by the chemotherapeutic agent cisplatin. Using Western blot analysis, we could detect a single protein band, corresponding to intact PTHrP, in the urine of both control and cisplatin-injected rats, whose levels were significantly higher in the latter group. PTHrP was detected in rat urine by dot blot, and its quantification with two specific ELISA kits showed that, compared with control rats, those treated with cisplatin displayed a significant increase in urinary PTHrP (expressed as the PTHrP-to-creatinine ratio or 24-h excretion). In addition, a positive correlation between urinary PTHrP excretion and serum creatinine was found in these animals. In conclusion, our data demonstrate that PTHrP is excreted in rat urine and that this excretion is higher with the decrease of renal function. This suggests that urinary PTHrP levels might be a renal function marker.
Collapse
Affiliation(s)
- Arantxa Ortega
- Laboratory of Renal Physiology and Experimental Nephrology, Department of Biological Systems/Physiology, University of Alcala, Madrid, Spain
| | - Nuria Olea-Herrero
- Laboratory of Renal Physiology and Experimental Nephrology, Department of Biological Systems/Physiology, University of Alcala, Madrid, Spain
| | - M. Isabel Arenas
- Department of Biomedicine and Biotechnology, University of Alcala, Madrid, Spain
| | - Esperanza Vélez-Vélez
- Fundación Jiménez Díaz School of Nursing, Autonomous University of Madrid, Jiménez Díaz Foundation IDC Salud, Madrid, Spain
| | - Rafael Moreno-Gómez-Toledano
- Laboratory of Renal Physiology and Experimental Nephrology, Department of Biological Systems/Physiology, University of Alcala, Madrid, Spain
| | - Carmen Muñoz-Moreno
- Laboratory of Renal Physiology and Experimental Nephrology, Department of Biological Systems/Physiology, University of Alcala, Madrid, Spain
| | - Alberto Lázaro
- Renal Physiopathology Laboratory, Department of Nephrology, Instituto de Investigación Sanitaria Gregorio Marañón, Hospital General Universitario Gregorio Marañón, Universidad Complutense de Madrid, Madrid, Spain
| | - Pedro Esbrit
- Bone and Cartilage Unit, Instituto de Investigación Sanitaria, Fundación Jiménez Díaz, Madrid, Spain
| | - Alberto Tejedor
- Renal Physiopathology Laboratory, Department of Nephrology, Instituto de Investigación Sanitaria Gregorio Marañón, Hospital General Universitario Gregorio Marañón, Universidad Complutense de Madrid, Madrid, Spain
| | - Ricardo J. Bosch
- Laboratory of Renal Physiology and Experimental Nephrology, Department of Biological Systems/Physiology, University of Alcala, Madrid, Spain
| |
Collapse
|
2
|
Parathyroid hormone-related protein induces fibronectin up-regulation in rat mesangial cells through reactive oxygen species/Src/EGFR signaling. Biosci Rep 2019; 39:BSR20182293. [PMID: 30926678 PMCID: PMC6487264 DOI: 10.1042/bsr20182293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/26/2019] [Accepted: 03/28/2019] [Indexed: 01/19/2023] Open
Abstract
Parathyroid hormone-related protein (PTHrP) is known to be up-regulated in both glomeruli and tubules in patients with diabetic kidney disease (DKD), but its role remains unclear. Previous studies show that PTHrP-induced hypertrophic response in mesangial cells (MCs) and epithelial-mesenchymal transition (EMT) in tubuloepithelial cells can be mediated by TGF-β1. In the present study, although long-term PHTrP (1-34) treatment increased the mRNA and protein level of TGF-β1 in primary rat MCs, fibronectin up-regulation occurred earlier, suggesting that fibronectin induction is independent of TGF-β1/Smad signaling. We thus evaluated the involvement of epidermal growth factor receptor (EGFR) signaling and found that nicotinamide adenine dinucleotide phosphate oxidase-derived reactive oxygen species mediates PTHrP (1-34)-induced Src kinase activation. Src phosphorylates EGFR at tyrosine 845 and then transactive EGFR. Subsequent PI3K activation mediates Akt and ERK1/2 activation. Akt and ERK1/2 discretely lead to excessive protein synthesis of fibronectin. Our study thus demonstrates the new role of PTHrP in fibronectin up-regulation for the first time in glomerular MCs. These data also provided new insights to guide development of therapy for glomerular sclerosis.
Collapse
|
3
|
Abstract
The common relationships among a great variety of biological phenomena seem enigmatic when considered solely at the level of the phenotype. The deep connections in physiology, for example, between the effects of maternal food restriction in utero and the subsequent incidence of metabolic syndrome in offspring, the effects of microgravity on cell polarity and reproduction in yeast, stress effects on jellyfish, and their endless longevity, or the relationship between nutrient abundance and the colonial form in slime molds, are not apparent by phenotypic observation. Yet all of these phenomena are ultimately determined by the Target of Rapamycin (TOR) gene and its associated signaling complexes. In the same manner, the unfolding of evolutionary physiology can be explained by a comparable application of the common principle of cell-cell signaling extending across complex developmental and phylogenetic traits. It is asserted that a critical set of physiologic and phenotypic adaptations emanated from a few crucial, ancestral receptor gene duplications that enabled the successful terrestrial transition of vertebrates from water to land. In combination, mTor and its cognate receptors and a few crucial genetic duplications provide a mechanistic common denominator across a diverse spectrum of biological responses. The proper understanding of their purpose yields a unified concept of physiology and its evolutionary development. © 2018 American Physiological Society. Compr Physiol 8:761-771, 2018.
Collapse
Affiliation(s)
- John S Torday
- Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, California, USA
| | | |
Collapse
|
4
|
Dual roles of parathyroid hormone related protein in TGF-β1 signaling and fibronectin up-regulation in mesangial cells. Biosci Rep 2017; 37:BSR20171061. [PMID: 28954822 PMCID: PMC5665616 DOI: 10.1042/bsr20171061] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 09/05/2017] [Accepted: 09/21/2017] [Indexed: 01/15/2023] Open
Abstract
Little is known about the cross-talk between parathyroid hormone (PTH) related protein (PTHrP) and TGF-β1 in mesangial cells (MCs). Our results showed that PTHrP treatment (≤3 h) induced internalization of PTH1R (PTH/PTHrP receptor)–TβRII (TGF-β type 2 receptor) complex and suppressed TGF-β1-mediated Smad2/3 activation and fibronectin (FN) up-regulation. However, prolonged PTHrP treatment (12–48 h) failed to induce PTH1R–TβRII association and internalization. Total protein levels of PTH1R and TβRII were unaffected by PTHrP treatment. These results suggest that internalization of PTH1R and TβRII after short PTHrP treatment might not lead to their proteolytic destruction, allowing the receptors to be recycled back to the plasma membrane during prolonged PTHrP exposure. Receptor re-expression at the cell surface allows PTHrP to switch from its initial inhibitory effect to promote induction of FN. Our study thus demonstrates the dual roles of PTHrP on TGF-β1 signaling and FN up-regulation for the first time in glomerular MCs. These data also provided new insights to guide development of therapy for diabetic kidney disease (DKD).
Collapse
|
5
|
The Unicellular State as a Point Source in a Quantum Biological System. BIOLOGY 2016; 5:biology5020025. [PMID: 27240413 PMCID: PMC4929539 DOI: 10.3390/biology5020025] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 05/04/2016] [Accepted: 05/23/2016] [Indexed: 01/03/2023]
Abstract
A point source is the central and most important point or place for any group of cohering phenomena. Evolutionary development presumes that biological processes are sequentially linked, but neither directed from, nor centralized within, any specific biologic structure or stage. However, such an epigenomic entity exists and its transforming effects can be understood through the obligatory recapitulation of all eukaryotic lifeforms through a zygotic unicellular phase. This requisite biological conjunction can now be properly assessed as the focal point of reconciliation between biology and quantum phenomena, illustrated by deconvoluting complex physiologic traits back to their unicellular origins.
Collapse
|
6
|
Torday JS. Pleiotropy as the Mechanism for Evolving Novelty: Same Signal, Different Result. BIOLOGY 2015; 4:443-59. [PMID: 26103090 PMCID: PMC4498309 DOI: 10.3390/biology4020443] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 06/02/2015] [Accepted: 06/10/2015] [Indexed: 11/22/2022]
Abstract
In contrast to the probabilistic way of thinking about pleiotropy as the random expression of a single gene that generates two or more distinct phenotypic traits, it is actually a deterministic consequence of the evolution of complex physiology from the unicellular state. Pleiotropic novelties emerge through recombinations and permutations of cell-cell signaling exercised during reproduction based on both past and present physical and physiologic conditions, in service to the future needs of the organism for its continued survival. Functional homologies ranging from the lung to the kidney, skin, brain, thyroid and pituitary exemplify the evolutionary mechanistic strategy of pleiotropy. The power of this perspective is exemplified by the resolution of evolutionary gradualism and punctuated equilibrium in much the same way that Niels Bohr resolved the paradoxical duality of light as Complementarity.
Collapse
Affiliation(s)
- John S Torday
- Harbor-UCLA Medical Center, 1124 West Carson Street, Torrance, CA 90502-2006, USA.
| |
Collapse
|
7
|
Romero M, Ortega A, Olea N, Arenas MI, Izquierdo A, Bover J, Esbrit P, Bosch RJ. Novel role of parathyroid hormone-related protein in the pathophysiology of the diabetic kidney: evidence from experimental and human diabetic nephropathy. J Diabetes Res 2013; 2013:162846. [PMID: 23984429 PMCID: PMC3747478 DOI: 10.1155/2013/162846] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 07/04/2013] [Indexed: 11/17/2022] Open
Abstract
Parathyroid hormone-related protein (PTHrP) and its receptor type 1 (PTH1R) are extensively expressed in the kidney, where they are able to modulate renal function. Renal PTHrP is known to be overexpressed in acute renal injury. Recently, we hypothesized that PTHrP involvement in the mechanisms of renal injury might not be limited to conditions with predominant damage of the renal tubulointerstitium and might be extended to glomerular diseases, such as diabetic nephropathy (DN). In experimental DN, the overexpression of both PTHrP and the PTH1R contributes to the development of renal hypertrophy as well as proteinuria. More recent data have shown, for the first time, that PTHrP is upregulated in the kidney from patients with DN. Collectively, animal and human studies have shown that PTHrP acts as an important mediator of diabetic renal cell hypertrophy by a mechanism which involves the modulation of cell cycle regulatory proteins and TGF- β 1. Furthermore, angiotensin II (Ang II), a critical factor in the progression of renal injury, appears to be responsible for PTHrP upregulation in these conditions. These findings provide novel insights into the well-known protective effects of Ang II antagonists in renal diseases, paving the way for new therapeutic approaches.
Collapse
Affiliation(s)
- Montserrat Romero
- Laboratory of Renal Physiology and Experimental Nephrology, Department of Biological Systems/Physiology Unit, University of Alcalá, Alcalá de Henares, Madrid, Spain
| | - Arantxa Ortega
- Laboratory of Renal Physiology and Experimental Nephrology, Department of Biological Systems/Physiology Unit, University of Alcalá, Alcalá de Henares, Madrid, Spain
| | - Nuria Olea
- Laboratory of Renal Physiology and Experimental Nephrology, Department of Biological Systems/Physiology Unit, University of Alcalá, Alcalá de Henares, Madrid, Spain
| | - María Isabel Arenas
- Department of Biomedicine and Biotechnology/Cell Biology Unit, University of Alcalá, Alcalá de Henares, Madrid, Spain
| | - Adriana Izquierdo
- Laboratory of Renal Physiology and Experimental Nephrology, Department of Biological Systems/Physiology Unit, University of Alcalá, Alcalá de Henares, Madrid, Spain
| | - Jordi Bover
- Nephrology Department, Fundació Puigvert, Barcelona, Spain
| | - Pedro Esbrit
- Bone and Mineral Metabolism Laboratory, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Madrid, Spain
| | - Ricardo J. Bosch
- Laboratory of Renal Physiology and Experimental Nephrology, Department of Biological Systems/Physiology Unit, University of Alcalá, Alcalá de Henares, Madrid, Spain
- Department of Biomedicine and Biotechnology/Cell Biology Unit, University of Alcalá, Alcalá de Henares, Madrid, Spain
- *Ricardo J. Bosch:
| |
Collapse
|
8
|
A transgenic mouse model for studying the role of the parathyroid hormone-related protein system in renal injury. J Biomed Biotechnol 2010; 2011:290874. [PMID: 21052497 PMCID: PMC2967837 DOI: 10.1155/2011/290874] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Accepted: 10/11/2010] [Indexed: 01/15/2023] Open
Abstract
Parathyroid hormone- (PTH-) related protein (PTHrP) and its receptor, the PTH1 receptor (PTH1R), are widely expressed in the kidney, where PTHrP exerts a modulatory action on renal function. PTHrP is known to be upregulated in several experimental nephropathies such as acute renal failure (ARF), obstructive nephropathy (ON) as well as diabetic nephropathy (DN). In this paper, we will discuss the functional consequences of chronic PTHrP overexpression in the damaged kidney using a transgenic mouse strain overexpressing PTHrP in the renal proximal tubule. In both ARF and ON, PTHrP displays proinflammatory and profibrogenic actions including the induction of epithelia to mesenquima transition. Moreover, PTHrP participates in the mechanisms of renal hypertrophy as well as proteinuria in experimental DN. Angiotensin II (Ang II), a critical factor in the progression of renal injury, appears to be, at least in part, responsible for endogenous PTHrP upregulation in these pathophysiological settings. These findings provide novel insights into the well-known protective effects of Ang II antagonists in renal diseases, paving the way for new therapeutic approaches.
Collapse
|
9
|
Torday JS, Rehan VK. Cell-cell signaling drives the evolution of complex traits: introduction-lung evo-devo. Integr Comp Biol 2009; 49:142-54. [PMID: 20607136 PMCID: PMC2895351 DOI: 10.1093/icb/icp017] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Physiology integrates biology with the environment through cell–cell interactions at multiple levels. The evolution of the respiratory system has been “deconvoluted” (Torday and Rehan in Am J Respir Cell Mol Biol 31:8–12, 2004) through Gene Regulatory Networks (GRNs) applied to cell–cell communication for all aspects of lung biology development, homeostasis, regeneration, and aging. Using this approach, we have predicted the phenotypic consequences of failed signaling for lung development, homeostasis, and regeneration based on evolutionary principles. This cell–cell communication model predicts other aspects of vertebrate physiology as adaptational responses. For example, the oxygen-induced differentiation of alveolar myocytes into alveolar adipocytes was critical for the evolution of the lung in land dwelling animals adapting to fluctuating Phanarezoic oxygen levels over the past 500 million years. Adipocytes prevent lung injury due to oxygen radicals and facilitate the rise of endothermy. In addition, they produce the class I cytokine leptin, which augments pulmonary surfactant activity and alveolar surface area, increasing selection pressure for both respiratory oxygenation and metabolic demand initially constrained by high-systemic vascular pressure, but subsequently compensated by the evolution of the adrenomedullary beta-adrenergic receptor mechanism. Conserted positive selection for the lung and adrenals created further selection pressure for the heart, which becomes progressively more complex phylogenetically in tandem with the lung. Developmentally, increasing heart complexity and size impinges precociously on the gut mesoderm to induce the liver. That evolutionary-developmental interaction is significant because the liver provides regulated sources of glucose and glycogen to the evolving physiologic system, which is necessary for the evolution of the neocortex. Evolution of neocortical control furthers integration of physiologic systems. Such an evolutionary vertical integration of cell-to-tissue-to-organ-to-physiology of intrinsic cell–cell signaling and extrinsic factors is the reverse of the “top-down” conventional way in which physiologic systems are usually regarded. This novel mechanistic approach, incorporating a “middle-out” cell–cell signaling component, will lead to a readily available algorithm for integrating genes and phenotypes. This symposium surveyed the phylogenetic origins of such vertically integrated mechanisms for the evolution of cell–cell communication as the basis for complex physiologic traits, from sponges to man.
Collapse
Affiliation(s)
- John S Torday
- Laboratory for Evolutionary Preventive Medicine, Department of Pediatrics, David Geffen School of Medicine at UCLA, Laboratory for Evolutionary Preventive Medicine, Harbor-UCLA Medical Center, Torrance, CA, USA
| | | |
Collapse
|
10
|
Abstract
In the postgenomic era, we need an algorithm to readily translate genes into physiologic principles. The failure to advance biomedicine is due to the false hope raised in the wake of the Human Genome Project (HGP) by the promise of systems biology as a ready means of reconstructing physiology from genes. like the atom in physics, the cell, not the gene, is the smallest completely functional unit of biology. Trying to reassemble gene regulatory networks without accounting for this fundamental feature of evolution will result in a genomic atlas, but not an algorithm for functional genomics. For example, the evolution of the lung can be "deconvoluted" by applying cell-cell communication mechanisms to all aspects of lung biology development, homeostasis, and regeneration/repair. Gene regulatory networks common to these processes predict ontogeny, phylogeny, and the disease-related consequences of failed signaling. This algorithm elucidates characteristics of vertebrate physiology as a cascade of emergent and contingent cellular adaptational responses. By reducing complex physiological traits to gene regulatory networks and arranging them hierarchically in a self-organizing map, like the periodic table of elements in physics, the first principles of physiology will emerge.
Collapse
Affiliation(s)
- J S Torday
- Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California 90502, USA.
| | | |
Collapse
|
11
|
Massfelder T, Helwig JJ. The parathyroid hormone-related protein system: more data but more unsolved questions. Curr Opin Nephrol Hypertens 2003; 12:35-42. [PMID: 12496664 DOI: 10.1097/00041552-200301000-00007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW The present review focuses on recent studies that might be considered as the most relevant advances in the parathyroid hormone-related protein field, with special emphasis on proven functions in renovascular and cardiovascular systems, in physiological as well as pathological conditions. Thus, the questions as to whether and how parathyroid hormone-related protein intervenes in vascular development and homeostasis and in vascular diseases such as hypertension, atherosclerosis, restenosis and heart failure have begun to be unraveled. RECENT FINDINGS Since its discovery from hypercalcemia-associated tumors in 1987, it has become clear that parathyroid hormone-related protein is a ubiquitously expressed poly-hormone and plays crucial roles in normal life. The early lethality to parathyroid hormone-related protein knockout mice emphasizes the crucial roles of the protein in development but has limited the use of these models. However, data accumulated from transgenic animals overexpressing the protein in particular cells have provided considerable support to its physiological and pathological relevance. The recent demonstration that nascent parathyroid hormone-related protein not only follows the secretory pathways, but also directly translocates to the nucleus, is beginning to uncover new actions for the protein in a number of physiological systems such as bone, mammary gland and vascular smooth muscle, as well as in pathological situations, such as cancer, osteoporosis, sepsis, atherosclerosis and hypertension. SUMMARY The development of mice with conditionally deleted parathyroid hormone-related protein or parathyroid hormone-1 receptor alleles will allow the creation of cell- or tissue-specific parathyroid hormone-related protein knockout mice which will greatly facilitate the determination of the biological relevance of this protein in a specific cell or tissue type, particularly in the cardiovascular system.
Collapse
Affiliation(s)
- Thierry Massfelder
- Division of Renovascular Pharmacology and Physiology, INSERM-ULP, University of Louis Pastuer Medical School, Strasbourg, France
| | | |
Collapse
|
12
|
Clemens TL, Cormier S, Eichinger A, Endlich K, Fiaschi-Taesch N, Fischer E, Friedman PA, Karaplis AC, Massfelder T, Rossert J, Schlüter KD, Silve C, Stewart AF, Takane K, Helwig JJ. Parathyroid hormone-related protein and its receptors: nuclear functions and roles in the renal and cardiovascular systems, the placental trophoblasts and the pancreatic islets. Br J Pharmacol 2001; 134:1113-36. [PMID: 11704631 PMCID: PMC1573066 DOI: 10.1038/sj.bjp.0704378] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2001] [Accepted: 09/10/2001] [Indexed: 11/09/2022] Open
Abstract
The cloning of the so-called 'parathyroid hormone-related protein' (PTHrP) in 1987 was the result of a long quest for the factor which, by mimicking the actions of PTH in bone and kidney, is responsible for the hypercalcemic paraneoplastic syndrome, humoral calcemia of malignancy. PTHrP is distinct from PTH in a number of ways. First, PTHrP is the product of a separate gene. Second, with the exception of a short N-terminal region, the structure of PTHrP is not closely related to that of PTH. Third, in contrast to PTH, PTHrP is a paracrine factor expressed throughout the body. Finally, most of the functions of PTHrP have nothing in common with those of PTH. PTHrP is a poly-hormone which comprises a family of distinct peptide hormones arising from post-translational endoproteolytic cleavage of the initial PTHrP translation products. Mature N-terminal, mid-region and C-terminal secretory forms of PTHrP are thus generated, each of them having their own physiologic functions and probably their own receptors. The type 1 PTHrP receptor, binding both PTH(1-34) and PTHrP(1-36), is the only cloned receptor so far. PTHrP is a PTH-like calciotropic hormone, a myorelaxant, a growth factor and a developmental regulatory molecule. The present review reports recent aspects of PTHrP pharmacology and physiology, including: (a) the identification of new peptides and receptors of the PTH/PTHrP system; (b) the recently discovered nuclear functions of PTHrP and the role of PTHrP as an intracrine regulator of cell growth and cell death; (c) the physiological and developmental actions of PTHrP in the cardiovascular and the renal glomerulo-vascular systems; (d) the role of PTHrP as a regulator of pancreatic beta cell growth and functions, and, (e) the interactions of PTHrP and calcium-sensing receptors for the control of the growth of placental trophoblasts. These new advances have contributed to a better understanding of the pathophysiological role of PTHrP, and will help to identify its therapeutic potential in a number of diseases.
Collapse
Affiliation(s)
- Thomas L Clemens
- Department of Medicine, University of Cincinnati, Cincinnati, Ohio, U.S.A
- Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, Ohio, U.S.A
| | - Sarah Cormier
- INSERM U 426 and Institut Federatif de Recherche ‘Cellules Epitheliales', Faculte de Medecine Xavier Bichat, Paris, France
| | - Anne Eichinger
- Section of Renovascular Pharmacology and Physiology, INSERM E0015-ULP, University Louis Pasteur School of Medicine, Strasbourg, France
| | - Karlhans Endlich
- Institut für Anatomie und Zellbiologie 1, Universität Heidelberg, Heidelberg, Germany
| | - Nathalie Fiaschi-Taesch
- Section of Renovascular Pharmacology and Physiology, INSERM E0015-ULP, University Louis Pasteur School of Medicine, Strasbourg, France
- Division of Endocrinology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, PA 15213, U.S.A
| | - Evelyne Fischer
- Department of Nephrology, University Hospital of Strasbourg, Strasbourg, France
| | - Peter A Friedman
- Department of Pharmacology, University of Pittsburgh School of Medicine, Pittsburgh, U.S.A
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, U.S.A
| | | | - Thierry Massfelder
- Section of Renovascular Pharmacology and Physiology, INSERM E0015-ULP, University Louis Pasteur School of Medicine, Strasbourg, France
| | - Jérôme Rossert
- INSERM U489 and Departments of Nephrology and Pathology, Paris VI University, France
| | | | - Caroline Silve
- INSERM U 426 and Institut Federatif de Recherche ‘Cellules Epitheliales', Faculte de Medecine Xavier Bichat, Paris, France
| | - Andrew F Stewart
- Division of Endocrinology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, PA 15213, U.S.A
| | - Karen Takane
- Division of Endocrinology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, PA 15213, U.S.A
| | - Jean-Jacques Helwig
- Section of Renovascular Pharmacology and Physiology, INSERM E0015-ULP, University Louis Pasteur School of Medicine, Strasbourg, France
| |
Collapse
|
13
|
Esbrit P, Egido J. The emerging role of parathyroid hormone-related protein as a renal regulating factor. Nephrol Dial Transplant 2000; 15:1109-11. [PMID: 10910428 DOI: 10.1093/ndt/15.8.1109] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|