1
|
Park HY, Kim SW, Seo J, Jung YP, Kim H, Kim AJ, Kim S, Lim K. Dietary Arginine and Citrulline Supplements for Cardiovascular Health and Athletic Performance: A Narrative Review. Nutrients 2023; 15:1268. [PMID: 36904267 PMCID: PMC10005484 DOI: 10.3390/nu15051268] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
The global market for nutritional supplements (NS) is growing rapidly, and the use of L-arginine (Arg), L-citrulline (Cit), and citrulline malate (CitMal) supplements has been shown to enhance cardiovascular health and athletic performance. Over the past decade, Arg, Cit, and CitMal supplements have received considerable attention from researchers in the field of exercise nutrition, who have investigated their potential effects on hemodynamic function, endothelial function, aerobic and anaerobic capacity, strength, power, and endurance. Previous studies were reviewed to determine the potential impact of Arg, Cit, and CitMal supplements on cardiovascular health and exercise performance. By synthesizing the existing literature, the study aimed to provide insight into the possible uses and limitations of these supplements for these purposes. The results showed that both recreational and trained athletes did not see improved physical performance or increased nitric oxide (NO) synthesis with 0.075 g or 6 g doses of Arg supplement per body weight. However, 2.4 to 6 g of Cit per day for 7 to 16 days of various NSs had a positive impact, increasing NO synthesis, enhancing athletic performance indicators, and reducing feelings of exertion. The effects of an 8 g acute dose of CitMal supplement were inconsistent, and more research is needed to determine its impact on muscle endurance performance. Based on the positive effects reported in previous studies, further testing is warranted in various populations that may benefit from nutritional supplements, including aerobic and anaerobic athletes, resistance-trained individuals, elderly people, and clinical populations, to determine the impact of different doses, timing of ingestion, and long-term and acute effects of Arg, Cit, and CitMal supplements on cardiovascular health and athletic performance.
Collapse
Affiliation(s)
- Hun-Young Park
- Physical Activity and Performance Institute, Konkuk University, Seoul 05029, Republic of Korea
- Department of Sports Medicine and Science, Graduate School, Konkuk University, Seoul 05029, Republic of Korea
| | - Sung-Woo Kim
- Physical Activity and Performance Institute, Konkuk University, Seoul 05029, Republic of Korea
- Department of Sports Medicine and Science, Graduate School, Konkuk University, Seoul 05029, Republic of Korea
| | - Jisoo Seo
- Department of Sports Medicine and Science, Graduate School, Konkuk University, Seoul 05029, Republic of Korea
| | - Yanghoon P. Jung
- CJ CheilJedang Food & Nutrition Tech, Jung-gu, Seoul 04527, Republic of Korea
| | - Hyunji Kim
- CJ CheilJedang Food & Nutrition Tech, Jung-gu, Seoul 04527, Republic of Korea
| | - Ah-Jin Kim
- CJ CheilJedang Food & Nutrition Tech, Jung-gu, Seoul 04527, Republic of Korea
| | - Sonwoo Kim
- CJ CheilJedang Food & Nutrition Tech, Jung-gu, Seoul 04527, Republic of Korea
| | - Kiwon Lim
- Physical Activity and Performance Institute, Konkuk University, Seoul 05029, Republic of Korea
- Department of Sports Medicine and Science, Graduate School, Konkuk University, Seoul 05029, Republic of Korea
- Department of Physical Education, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
2
|
The Effects of Consuming Amino Acids L-Arginine, L-Citrulline (and Their Combination) as a Beverage or Powder, on Athletic and Physical Performance: A Systematic Review. BEVERAGES 2022. [DOI: 10.3390/beverages8030048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Consumption of amino acids L-arginine (L-Arg) and L-citrulline (L-Cit) are purported to increase nitric oxide (NO) production and improve physical performance. Clinical trials have shown relatively more favorable outcomes than not after supplementing with L-Cit and combined L-Arg and L-Cit. However, in most studies, other active ingredients such as malate were included in the supplement. Therefore, the aim of this study was to determine the efficacy of consuming standalone L-Arg, L-Cit, and their combination (in the form of powder or beverage) on blood NO level and physical performance markers. A systematic review was undertaken following PRISMA 2020 guidelines (PROSPERO: CRD42021287530). Four electronic databases (PubMed, Ebscohost, Science Direct, and Google scholar) were used. An acute dose of 0.075 g/kg of L-Arg or 6 g L-Arg had no significant increase in NO biomarkers and physical performance markers (p > 0.05). Consumption of 2.4 to 6 g/day of L-Cit over 7 to 16 days significantly increased NO level and physical performance markers (p < 0.05). Combined L-Arg and L-Cit supplementation significantly increased circulating NO, improved performance, and reduced feelings of exertion (p < 0.05). Standalone L-Cit and combined L-Arg with L-Cit consumed over several days effectively increases circulating NO and improves physical performance and feelings of exertion in recreationally active and well-trained athletes.
Collapse
|
3
|
Bahadoran Z, Mirmiran P, Kashfi K, Ghasemi A. Endogenous flux of nitric oxide: Citrulline is preferred to Arginine. Acta Physiol (Oxf) 2021; 231:e13572. [PMID: 33089645 DOI: 10.1111/apha.13572] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 09/09/2020] [Accepted: 10/17/2020] [Indexed: 02/06/2023]
Abstract
Both arginine (Arg) and its precursor citrulline (Cit) have received much interest in the past two decades because of their potential effects on whole-body nitric oxide (NO) production and augmentation of NO-dependent signalling pathways. However, the usefulness of Arg supplementation for NO production is questionable because of its high splanchnic first pass metabolism (FPM), which limits its systemic availability. Both hepatic- and extrahepatic arginases critically limit the availability of Arg for the NO synthase enzymes (NOSs) and therefore, a limited amount of oral Arg can reach the systemic circulation for NO synthesis. Arg also has some undesired effects including induction of arginase activity, an increase of urea levels, a decrease of cellular uptake of Cit and decrease of recycling of Arg from Cit. In contrast, Cit has more availability as an NO precursor because of its high intestinal absorption, low FPM and high renal reabsorption. At the cellular level, co-localization of Cit transport systems and the enzymes involved in the Cit-Arg-NO pathway facilitates channelling of Cit into NO. Furthermore, cells preferably use Cit rather than either intra- or extracellular Arg to improve NO output, especially in high-demand situations. In conclusion, available evidence strongly supports the concept that Cit leads to higher NO production and suggests that Cit may have a better therapeutic effect than Arg for NO-disrupted conditions.
Collapse
Affiliation(s)
- Zahra Bahadoran
- Nutrition and Endocrine Research Center Research Institute for Endocrine SciencesShahid Beheshti University of Medical Sciences Tehran Iran
| | - Parvin Mirmiran
- Department of Clinical Nutrition and Human Dietetics Faculty of Nutrition Sciences and Food Technology National Nutrition and Food Technology Research InstituteShahid Beheshti University of Medical Sciences Tehran Iran
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences Sophie Davis School of Biomedical Education City University of New York School of Medicine New York NY USA
| | - Asghar Ghasemi
- Endocrine Physiology Research Center Research Institute for Endocrine SciencesShahid Beheshti University of Medical Sciences Tehran Iran
| |
Collapse
|
4
|
Estrada-Alcalde I, Tenorio-Guzman MR, Tovar AR, Salinas-Rubio D, Torre-Villalvazo I, Torres N, Noriega LG. Metabolic Fate of Branched-Chain Amino Acids During Adipogenesis, in Adipocytes From Obese Mice and C2C12 Myotubes. J Cell Biochem 2016; 118:808-818. [DOI: 10.1002/jcb.25755] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 09/29/2016] [Indexed: 01/04/2023]
Affiliation(s)
- Isabela Estrada-Alcalde
- Depto. de Fisiología de la Nutrición; Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”; Ciudad de México México
| | - Miriam R. Tenorio-Guzman
- Depto. de Fisiología de la Nutrición; Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”; Ciudad de México México
| | - Armando R. Tovar
- Depto. de Fisiología de la Nutrición; Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”; Ciudad de México México
| | - Daniela Salinas-Rubio
- Depto. de Fisiología de la Nutrición; Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”; Ciudad de México México
| | - Ivan Torre-Villalvazo
- Depto. de Fisiología de la Nutrición; Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”; Ciudad de México México
| | - Nimbe Torres
- Depto. de Fisiología de la Nutrición; Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”; Ciudad de México México
| | - Lilia G. Noriega
- Depto. de Fisiología de la Nutrición; Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”; Ciudad de México México
| |
Collapse
|
5
|
Ahmed AA, Balogun KA, Bykova NV, Cheema SK. Novel regulatory roles of omega-3 fatty acids in metabolic pathways: a proteomics approach. Nutr Metab (Lond) 2014; 11:6. [PMID: 24438320 PMCID: PMC3898484 DOI: 10.1186/1743-7075-11-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 01/15/2014] [Indexed: 12/28/2022] Open
Abstract
Background Omega-3 polyunsaturated fatty acids (n-3 PUFA) have been shown to alleviate the symptoms of metabolic disorders, such as heart disease, diabetes, obesity and insulin resistance. Several putative mechanisms by which n-3 PUFA elicit beneficial health effects have been proposed; however, there is still a shortage of knowledge on the proteins and pathways that are regulated by n-3 PUFA. Methods Using two dimensional polyacrylamide gel electrophoresis (2D-PAGE) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis, we investigated the effects of diets high or low in n-3 PUFA on hepatic proteomic profile of C57BL/6 mice. Results The findings show for the first time that high dietary n-3 PUFA reduced the expression of regucalcin, adenosine kinase and aldehyde dehydrogenase. On the other hand, diets high in n-3 PUFA increased the expression of apolipoprotein A-I, S-adenosylmethionine synthase, fructose-1, 6-bisphosphatase, ketohexokinase, malate dehydrogenase, GTP-specific succinyl CoA synthase, ornithine aminotransferase and protein disulfide isomerase-A3. Conclusions Our findings revealed for the first time that n-3 PUFA causes alterations in several novel functional proteins involved in regulating lipid, carbohydrate, one-carbon, citric acid cycle and protein metabolism, suggesting integrated regulation of metabolic pathways. These novel proteins are potential targets to develop therapeutic strategies against metabolic disorders.
Collapse
Affiliation(s)
| | | | | | - Sukhinder K Cheema
- Department of Biochemistry, Memorial University of Newfoundland, St, John's, NL, A1B 3X9, Canada.
| |
Collapse
|
6
|
Dioguardi FS. To give or not to give? Lessons from the arginine paradox. JOURNAL OF NUTRIGENETICS AND NUTRIGENOMICS 2011; 4:90-8. [PMID: 21625171 DOI: 10.1159/000327777] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Arginine is one of the 20 amino acids (AA) found in proteins and synthesized by human cells. However, arginine is also the substrate for a series of reactions leading to the synthesis of other AA and is an obligatory substrate for two enzymes with diverging actions, arginases and nitric oxide synthases (NOS), giving origin to urea and NO, respectively. NO is a very potent vasodilator when produced by endothelial NOS (eNOS). The 'arginine paradox' is the fact that, despite intracellular physiological concentration of arginine being several hundred micromoles per liter, far exceeding the ∼5 μM K(M) of eNOS, the acute provision of exogenous arginine still increases NO production. Clinically, an additional paradox is that the largest controlled study on chronic oral arginine supplementation in patients after myocardial infarction had to be interrupted for excess mortality in treated patients. Expression and activity of arginases, which produce urea and divert arginine from NOS, are positively related to exogenous arginine supplementation. Therefore, the more arginine is introduced, the more it is destroyed, eventually leading to impaired NO production. In this review, conditions influencing the low arginine concentrations found in plasma will be reviewed, revising the paradigm that simple replenishment of what is lacking will always produce beneficial consequences.
Collapse
|
7
|
Evidence for a role of the ileum in the control of nitrogen homeostasis via the regulation of arginine metabolism. Br J Nutr 2011; 106:227-36. [DOI: 10.1017/s0007114511000079] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
As arginine plays a key role in the regulation of liver ureagenesis, we hypothesised that a modulation of enzymes involved in arginine metabolism within the intestine contributes to the regulation of N homeostasis according to protein supply. Our aim was to study the influence of variations in protein or amino acid (AA) supply on intestinal arginase, glutaminase, ornithine aminotransferase (OAT), argininosuccinate lyase and argininosuccinate synthetase. We evaluated in vivo in rats the responses of these enzymes to short-term (ST, 16 h) and long-term (LT, 15 d) variations in dietary protein (10, 17 or 25 % protein diet). In addition, in order to test whether these responses could involve a direct action of AA on the gene expression and activity of these enzymes, Caco-2/TC7 cells were cultured for 3 d with increasing AA concentrations. In vivo, in the ST, both high- and low-protein diets increased arginase activity in the intestinal mucosa (ST25 %: 46 (sem 2) μmol/g per min and ST10 %: 46 (sem 2) μmol/g per min v. ST17 %: 36 (sem 3) μmol/g per min, P < 0·05). In the LT, OAT expression was increased in the LT10 % group (+277 %, P < 0·05) compared with the LT17 % group. Caco-2/TC7 cells showed inverse relationships between AA supply and arginase (P = 0·058) and OAT (P = 0·035) expressions. The present study demonstrates the regulation of intestinal arginase and OAT expressions in response to protein supply. Our in vitro experiments further indicate a direct AA-induced regulation of the mRNA abundance of these enzymes. In situations of limited protein supply, this regulation would increase intestinal arginine catabolism and, possibly via a decrease in arginine portal release, decrease hepatic AA oxidation, thus promoting N sparing.
Collapse
|
8
|
Abstract
Ornithine aminotransferase (OAT) is a reversible enzyme expressed mainly in the liver, kidney and intestine. OAT controls the interconversion of ornithine into glutamate semi-aldehyde, and is therefore involved in the metabolism of arginine and glutamine which play a major role in N homeostasis. We hypothesised that OAT could be a limiting step in glutamine–arginine interconversion. To study the contribution of the OAT enzyme in amino acid metabolism, transgenic mice that specifically overexpress human OAT in the liver, kidneys and intestine were generated. The transgene expression was analysed byin situhybridisation and real-time PCR. Tissue (liver, jejunum and kidney) OAT activity, and plasma and tissue (liver and jejunum) amino acid concentrations were measured. Transgenic male mice exhibited higher OAT activity in the liver (25 (sem4)v.11 (sem1) nmol/min per μg protein for wild-type (WT) mice;P < 0·05) but there were no differences in kinetic parameters (i.e.Kmand maximum rate of reaction (Vmax)) between WT and transgenic animals. OAT overexpression decreased plasma and liver ornithine concentrations but did not affect glutamine or arginine homeostasis. There was an inverse relationship between ornithine levels and OAT activity. We conclude that OAT overexpression has only limited metabolic effects, probably due to the reversible nature of the enzyme. Moreover, these metabolic modifications had no effect on phenotype.
Collapse
|
9
|
Jourdan M, Cynober L, Moinard C, Blanc MC, Neveux N, De Bandt JP, Aussel C. Splanchnic sequestration of amino acids in aged rats: in vivo and ex vivo experiments using a model of isolated perfused liver. Am J Physiol Regul Integr Comp Physiol 2007; 294:R748-55. [PMID: 18056986 DOI: 10.1152/ajpregu.00291.2007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Splanchnic sequestration of amino acids (SSAA) is a process observed during aging that leads to decreased peripheral amino acid (AA) availability. The mechanisms underlying SSAA remain unknown. The aim of the present study was to determine whether a high-protein diet could increase nitrogen retention in aged rats by saturating SSAA and whether SSAA could be explained by dysregulation of hepatic nitrogen metabolism. Adult and aged male Sprague-Dawley rats were housed in individual metabolic cages and fed a normal-protein (17% protein) or high-protein diet (27%) for 2 wk. Nitrogen balance (NB) was calculated daily. On day 14, livers were isolated and perfused for 90 min to study AA and urea fluxes. NB was lower in aged rats fed a normal-protein diet than in adults, but a high-protein diet restored NB to adult levels. Isolated perfused livers from aged rats showed decreased urea production and arginine uptake, together with a release of alanine (vs. uptake in adult rats) and a hepatic accumulation of alanine. The in vivo data suggest that SSAA is a saturable process that responds to an increase in dietary protein content. The hepatic metabolism of AA in aged rats is greatly modified, and urea production decreases. This result refutes the hypothesis that SSAA is associated with an increase in AA disposal via urea production.
Collapse
Affiliation(s)
- M Jourdan
- Laboratory of Biological Nutrition, René Descartes Paris 5 University, Paris, France
| | | | | | | | | | | | | |
Collapse
|
10
|
Horyn O, Luhovyy B, Lazarow A, Daikhin Y, Nissim I, Yudkoff M, Nissim I. Biosynthesis of agmatine in isolated mitochondria and perfused rat liver: studies with 15N-labelled arginine. Biochem J 2005; 388:419-25. [PMID: 15656789 PMCID: PMC1138948 DOI: 10.1042/bj20041260] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
An important but unresolved question is whether mammalian mitochondria metabolize arginine to agmatine by the ADC (arginine decarboxylase) reaction. 15N-labelled arginine was used as a precursor to address this question and to determine the flux through the ADC reaction in isolated mitochondria obtained from rat liver. In addition, liver perfusion system was used to examine a possible action of insulin, glucagon or cAMP on a flux through the ADC reaction. In mitochondria and liver perfusion, 15N-labelled agmatine was generated from external 15N-labelled arginine. The production of 15N-labelled agmatine was time- and dose-dependent. The time-course of [U-15N4]agmatine formation from 2 mM [U-15N4]arginine was best fitted to a one-phase exponential curve with a production rate of approx. 29 pmol x min(-1) x (mg of protein)(-1). Experiments with an increasing concentration (0- 40 mM) of [guanidino-15N2]arginine showed a Michaelis constant Km for arginine of 46 mM and a Vmax of 3.7 nmol x min(-1) x (mg of protein)(-1) for flux through the ADC reaction. Experiments with broken mitochondria showed little changes in Vmax or Km values, suggesting that mitochondrial arginine uptake had little effect on the observed Vmax or Km values. Experiments with liver perfusion demonstrated that over 95% of the effluent agmatine was derived from perfusate [guanidino-15N2]arginine regardless of the experimental condition. However, the output of 15N-labelled agmatine (nmol x min(-1) x g(-1)) increased by approx. 2-fold (P<0.05) in perfusions with cAMP. The findings of the present study provide compelling evidence that mitochondrial ADC is present in the rat liver, and suggest that cAMP may stimulate flux through this pathway.
Collapse
Affiliation(s)
- Oksana Horyn
- Children's Hospital of Philadelphia, Division of Child Development and Rehabilitation Medicine, Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, U.S.A
| | - Bohdan Luhovyy
- Children's Hospital of Philadelphia, Division of Child Development and Rehabilitation Medicine, Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, U.S.A
| | - Adam Lazarow
- Children's Hospital of Philadelphia, Division of Child Development and Rehabilitation Medicine, Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, U.S.A
| | - Yevgeny Daikhin
- Children's Hospital of Philadelphia, Division of Child Development and Rehabilitation Medicine, Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, U.S.A
| | - Ilana Nissim
- Children's Hospital of Philadelphia, Division of Child Development and Rehabilitation Medicine, Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, U.S.A
| | - Marc Yudkoff
- Children's Hospital of Philadelphia, Division of Child Development and Rehabilitation Medicine, Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, U.S.A
| | - Itzhak Nissim
- Children's Hospital of Philadelphia, Division of Child Development and Rehabilitation Medicine, Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, U.S.A
- To whom correspondence should be addressed, at Division of Child Development, Abramson Pediatrics Research Center, Room 510C, 34th Street, and Civic Center Boulevard, Philadelphia, PA 19104-4318, U.S.A. (email )
| |
Collapse
|
11
|
Loï C, Nakib S, Neveux N, Arnaud-Battandier F, Cynober L. Ornithine alpha-ketoglutarate metabolism in the healthy rat in the postabsorptive state. Metabolism 2005; 54:1108-14. [PMID: 16092063 DOI: 10.1016/j.metabol.2005.03.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To gain further insight into the ability of ornithine alpha-ketoglutarate (OKG) to generate key metabolites, the aim of this work was to study the short-term metabolism, that is, 1 hour after administration, of OKG in plasma and tissues. Particular attention was paid to keto acids (alpha-ketoglutarate and branched-chain keto acids). Young (3 weeks old) male Wistar rats in the postabsorptive state received either 1.5 g/kg of monohydrated OKG (OKG group, n = 8) diluted in distilled water or an equivalent volume of saline solution at 0.9% (control group, n = 8) by gavage and were killed 1 hour later. Plasma, liver, jejunal and ileal mucosa, and the extensor digitorum longus muscle were removed to analyze amino and keto acid contents. Major metabolites detected after OKG ingestion (ornithine [ORN], alpha-ketoglutarate, proline and glutamate; OKG vs control, P < .05) and the absence of increased arginine (and even a decrease in jejunum and muscle) and citrulline levels suggested that ORN was mainly metabolized by the ORN aminotransferase pathway. In addition, significantly decreased plasma branched-chain keto acids and increased hepatic branched-chain amino acids (OKG vs control, P < .05) were observed upon OKG ingestion. Finally, glutamine accumulation restricted to the intestine, as evidenced in this short-term study, suggests that the effects of OKG on glutamine pools in other tissues in various pathological states after several days of treatment, as observed in previous studies, may be related to a long-term induction of glutamine synthetase.
Collapse
Affiliation(s)
- Cécile Loï
- Faculté de Pharmacie, Laboratoire de Biologie de la Nutrition, EA 2498, Paris Descartes University, 75270 Paris Cedex 6, France.
| | | | | | | | | |
Collapse
|
12
|
Mouillé B, Robert V, Blachier F. Adaptative increase of ornithine production and decrease of ammonia metabolism in rat colonocytes after hyperproteic diet ingestion. Am J Physiol Gastrointest Liver Physiol 2004; 287:G344-51. [PMID: 15064231 DOI: 10.1152/ajpgi.00445.2003] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Chronic high-protein consumption leads to increased concentrations of NH(4)(+)/NH(3) in the colon lumen. We asked whether this increase has consequences on colonic epithelial cell metabolism. Rats were fed isocaloric diets containing 20 (P20) or 58% (P58) casein as the protein source for 7 days. NH(4)(+)/NH(3) concentration in the colonic lumen and in the colonic vein blood as well as ammonia metabolism by isolated surface colonic epithelial cells was determined. After 2 days of consumption of the P58 diet, marked increases of luminal and colonic vein blood NH(4)(+)/NH(3) concentrations were recorded when compared with the values obtained in the P20 group. Colonocytes recovered from the P58 group were characterized at that time and thereafter by an increased capacity for l-ornithine and urea production through arginase (P < 0.05). l-Ornithine was mostly used in the presence of NH(4)Cl for the synthesis of the metabolic end product l-citrulline. After 7 days of the P58 diet consumption, however, the ammonia metabolism into l-citrulline was found lower (P < 0.01) when compared with the values measured in the colonocytes recovered from the P20 group despite any decrease in the related enzymatic activities (i.e., carbamoyl-phosphate synthetase I and ornithine carbamoyl transferase). This decrease was found to coincide with a return of blood NH(4)(+)/NH(3) concentration in colonic portal blood to values close to the one recorded in the P20 group. In response to increased NH(4)(+)/NH(3) concentration in the colon, the increased capacity of the colonocytes to synthesize l-ornithine is likely to correspond to an elevated l-ornithine requirement for the elimination of excessive blood ammonia in the liver urea cycle. Moreover, in the presence of NH(4)Cl, colonocytes diminished their synthesis capacity of l-citrulline from l-ornithine, allowing a lower cellular utilization of this latter amino acid. These results are discussed in relationship with an adaptative process that would be related to both interorgan metabolism and to the role of the colonic epithelium as a first line of defense toward luminal NH(4)(+)/NH(3) concentrations.
Collapse
Affiliation(s)
- Béatrice Mouillé
- Laboratoire de Nutrition et Sécurité Alimentaire, Institut National de la Recherche Agronomique, 78350 Jouy-en-Josas, France
| | | | | |
Collapse
|
13
|
Nissim I, Horyn O, Daikhin Y, Nissim I, Lazarow A, Yudkoff M. Regulation of urea synthesis by agmatine in the perfused liver: studies with 15N. Am J Physiol Endocrinol Metab 2002; 283:E1123-34. [PMID: 12388162 DOI: 10.1152/ajpendo.00246.2002] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Administration of arginine or a high-protein diet increases the hepatic content of N-acetylglutamate (NAG) and the synthesis of urea. However, the underlying mechanism is unknown. We have explored the hypothesis that agmatine, a metabolite of arginine, may stimulate NAG synthesis and, thereby, urea synthesis. We tested this hypothesis in a liver perfusion system to determine 1) the metabolism of l-[guanidino-15N2]arginine to either agmatine, nitric oxide (NO), and/or urea; 2) hepatic uptake of perfusate agmatine and its action on hepatic N metabolism; and 3) the role of arginine, agmatine, or NO in regulating NAG synthesis and ureagenesis in livers perfused with 15N-labeled glutamine and unlabeled ammonia or 15NH4Cl and unlabeled glutamine. Our principal findings are 1) [guanidino-15N2]agmatine is formed in the liver from perfusate l-[guanidino-15N2]arginine ( approximately 90% of hepatic agmatine is derived from perfusate arginine); 2) perfusions with agmatine significantly stimulated the synthesis of 15N-labeled NAG and [15N]urea from 15N-labeled ammonia or glutamine; and 3) the increased levels of hepatic agmatine are strongly correlated with increased levels and synthesis of 15N-labeled NAG and [15N]urea. These data suggest a possible therapeutic strategy encompassing the use of agmatine for the treatment of disturbed ureagenesis, whether secondary to inborn errors of metabolism or to liver disease.
Collapse
Affiliation(s)
- Itzhak Nissim
- Children's Hospital of Philadelphia and Division of Child Development and Rehabilitation, Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | |
Collapse
|