1
|
Park JH, Kim JH, Shin JY, Kang ES, Cho BO. Anti-inflammatory effects of Peucedanum japonicum Thunberg leaves extract in Lipopolysaccharide-stimulated RAW264.7 cells. JOURNAL OF ETHNOPHARMACOLOGY 2023; 309:116362. [PMID: 36907479 DOI: 10.1016/j.jep.2023.116362] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/02/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Peucedanum japonicum Thunberg are perennial herbaceous plants known to be cultivated for food and traditional medicinal purposes. P. japonicum has been used in traditional medicine to soothe coughs and colds, and to treat many other inflammatory diseases. However, there are no studies on the anti-inflammatory effects of the leaves. AIM OF THE STUDY Inflammation plays an important role in our body as a defense response of biological tissues to certain stimuli. However, the excessive inflammatory response can lead to various diseases. This study aimed to investigate the anti-inflammatory effects of P. japonicum leaves extract (PJLE) in LPS-stimulated RAW 264.7 cells. MATERIAL AND METHODS Nitric Oxide (NO) production assay measured by NO assay. Inducible NO synthase (iNOS), COX-2, MAPKs, AKT, NF-κB, HO-1, Nrf-2 were examined by western blotting. PGE2, TNF-α, and IL-6 were analyzed by ELSIA. Nuclear translocation of NF-κB was detected by immunofluorescence staining. RESULTS PJLE suppressed inducible nitric oxygen synthase (iNOS) and prostaglandin-endoperoxide synthase 2 (cyclooxygenase-2, COX-2) expression, increased heme oxygenase 1 (HO-1) expression, and decreased nitric oxide production. And PJLE inhibited the phosphorylation of AKT, MAPK, and NF-κB. Taken together, PJLE down-regulated inflammatory factors such as iNOS and COX-2 by inhibiting the phosphorylation of AKT, MAPK, and NF-κB. CONCLUSIONS These results suggest that PJLE can be used as a therapeutic material to modulate inflammatory diseases.
Collapse
Affiliation(s)
- Ji Hyeon Park
- Institute of Health Science, Jeonju University, Jeonju-si, Jeollabuk-do, 55069, Republic of Korea.
| | - Jang Hoon Kim
- Department of Herbal Crop Research, National Institute of Horticultural & Herbal Science, RDA, Eumsung, 27709, Republic of Korea.
| | - Jae Young Shin
- Institute of Health Science, Jeonju University, Jeonju-si, Jeollabuk-do, 55069, Republic of Korea.
| | - Eun Seo Kang
- Institute of Health Science, Jeonju University, Jeonju-si, Jeollabuk-do, 55069, Republic of Korea.
| | - Byoung Ok Cho
- Institute of Health Science, Jeonju University, Jeonju-si, Jeollabuk-do, 55069, Republic of Korea.
| |
Collapse
|
2
|
Charlie-Silva I, Feitosa NM, Pontes LG, Fernandes BH, Nóbrega RH, Gomes JMM, Prata MNL, Ferraris FK, Melo DC, Conde G, Rodrigues LF, Aracati MF, Corrêa-Junior JD, Manrique WG, Superio J, Garcez AS, Conceição K, Yoshimura TM, Núñez SC, Eto SF, Fernandes DC, Freitas AZ, Ribeiro MS, Nedoluzhko A, Lopes-Ferreira M, Borra RC, Barcellos LJG, Perez AC, Malafaia G, Cunha TM, Belo MAA, Galindo-Villegas J. Plasma proteome responses in zebrafish following λ-carrageenan-Induced inflammation are mediated by PMN leukocytes and correlate highly with their human counterparts. Front Immunol 2022; 13:1019201. [PMID: 36248846 PMCID: PMC9559376 DOI: 10.3389/fimmu.2022.1019201] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 09/09/2022] [Indexed: 11/23/2022] Open
Abstract
Regulation of inflammation is a critical process for maintaining physiological homeostasis. The λ-carrageenan (λ-CGN) is a mucopolysaccharide extracted from the cell wall of red algae (Chondrus crispus) capable of inducing acute intestinal inflammation, which is translated into the production of acute phase reactants secreted into the blood circulation. However, the associated mechanisms in vertebrates are not well understood. Here, we investigated the crucial factors behind the inflammatory milieu of λ-CGN-mediated inflammation administered at 0, 1.75, and 3.5% (v/w) by i.p. injection into the peritoneal cavity of adult zebrafish (ZF) (Danio rerio). We found that polymorphonuclear leukocytes (neutrophils) and lymphocytes infiltrating the ZF peritoneal cavity had short-term persistence. Nevertheless, they generate a strong pattern of inflammation that affects systemically and is enough to produce edema in the cavity. Consistent with these findings, cell infiltration, which causes notable tissue changes, resulted in the overexpression of several acute inflammatory markers at the protein level. Using reversed-phase high-performance liquid chromatography followed by a hybrid linear ion-trap mass spectrometry shotgun proteomic approach, we identified 2938 plasma proteins among the animals injected with PBS and 3.5% λ-CGN. First, the bioinformatic analysis revealed the composition of the plasma proteome. Interestingly, 72 commonly expressed proteins were recorded among the treated and control groups, but, surprisingly, 2830 novel proteins were differentially expressed exclusively in the λ-CGN-induced group. Furthermore, from the commonly expressed proteins, compared to the control group 62 proteins got a significant (p < 0.05) upregulation in the λ-CGN-treated group, while the remaining ten proteins were downregulated. Next, we obtained the major protein-protein interaction networks between hub protein clusters in the blood plasma of the λ-CGN induced group. Moreover, to understand the molecular underpinnings of these effects based on the unveiled protein sets, we performed a bioinformatic structural similarity analysis and generated overlapping 3D reconstructions between ZF and humans during acute inflammation. Biological pathway analysis pointed to the activation and abundance of diverse classical immune and acute phase reactants, several catalytic enzymes, and varied proteins supporting the immune response. Together, this information can be used for testing and finding novel pharmacological targets to treat human intestinal inflammatory diseases.
Collapse
Affiliation(s)
| | - Natália M. Feitosa
- Integrated Laboratory of Translational Bioscience, Institute of Biodiversity and Sustainability, Federal University of Rio de Janeiro, Macaé, Brazil
| | | | - Bianca H. Fernandes
- Laboratório de Controle Genético e Sanitário, Faculdade de Medicina Universidade de São Paulo, São Paulo, Brazil
| | - Rafael H. Nóbrega
- Reproductive and Molecular Biology Group, Department of Morphology, Institute of Biosciences, São Paulo State University, São Paulo, Brazil
| | - Juliana M. M. Gomes
- Transplantation Immunobiology Lab, Department of Immunology, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo, Brazil
| | - Mariana N. L. Prata
- Department of Pharmacology, Instituto de CiênciasBiomédicas-Universidade Federal de Minas Gerais (ICB-UFMG), Belo Horizonte, Brazil
| | - Fausto K. Ferraris
- Department of Pharmacology and Toxicology, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Daniela C. Melo
- Laboratory of Zebrafish from Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Gabriel Conde
- Department of Preventive Veterinary Medicine, São Paulo State University, São Paulo, Brazil
| | - Letícia F. Rodrigues
- Department of Preventive Veterinary Medicine, São Paulo State University, São Paulo, Brazil
| | - Mayumi F. Aracati
- Department of Preventive Veterinary Medicine, São Paulo State University, São Paulo, Brazil
| | - José D. Corrêa-Junior
- Department of Morphology, Instituto de CiênciasBiomédicas-Universidade Federal de Minas Gerais (ICB-UFMG), Belo Horizonte, Brazil
| | - Wilson G. Manrique
- Veterinary College, Federal University of Rondonia, Rolim de Moura, Brazil
| | - Joshua Superio
- Department of Aquaculture, Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | | | - Katia Conceição
- Peptide Biochemistry Laboratory, Universidade Federal de São Paulo (UNIFESP), Sao Jose Dos Campos, Brazil
| | - Tania M. Yoshimura
- Center for Lasers and Applications, Instituto de PesquisasEnergéticas e Nucleares (IPEN-CNEN), Sao Paulo, Brazil
| | - Silvia C. Núñez
- University Brazil, São Paulo, Brazil
- University Brazil, Descalvado, Brazil
| | - Silas F. Eto
- Development and Innovation Laboratory, Center of Innovation and Development, Butantan Institute, São Paulo, Brazil
| | - Dayanne C. Fernandes
- Department of Preventive Veterinary Medicine, São Paulo State University, São Paulo, Brazil
| | - Anderson Z. Freitas
- Center for Lasers and Applications, Instituto de PesquisasEnergéticas e Nucleares (IPEN-CNEN), Sao Paulo, Brazil
| | - Martha S. Ribeiro
- Center for Lasers and Applications, Instituto de PesquisasEnergéticas e Nucleares (IPEN-CNEN), Sao Paulo, Brazil
| | - Artem Nedoluzhko
- Paleogenomics Laboratory, European University at Saint Petersburg, Saint Petersburg, Russia
| | | | - Ricardo C. Borra
- Department of Genetics and Evolution, Federal University of São Carlos, São Paulo, Brazil
| | - Leonardo J. G. Barcellos
- Postgraduate Program in Pharmacology, Federal University of Santa Maria, Rio Grande do Sul, Brazil
- Postgraduate Program in Bioexperimentation. University of Passo Fundo, Rio Grande do Sul, Brazil
| | - Andrea C. Perez
- Department of Pharmacology and Toxicology, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Guilheme Malafaia
- Biological Research Laboratory, Goiano Federal Institute, Urutaí, Brazil
| | - Thiago M. Cunha
- Center of Research in Inflammatory Diseases, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Marco A. A. Belo
- Department of Preventive Veterinary Medicine, São Paulo State University, São Paulo, Brazil
- University Brazil, São Paulo, Brazil
- University Brazil, Descalvado, Brazil
| | - Jorge Galindo-Villegas
- Department of Genomics, Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| |
Collapse
|
3
|
Harikrishnan R, Devi G, Van Doan H, Balamurugan P, Arockiaraj J, Balasundaram C. Hepatic antioxidant activity, immunomodulation, and pro-anti-inflammatory cytokines manipulation of κ-carrageenan (κ-CGN) in cobia, Rachycentron canadum against Lactococcus garvieae. FISH & SHELLFISH IMMUNOLOGY 2021; 119:128-144. [PMID: 34562582 DOI: 10.1016/j.fsi.2021.09.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
The effects of dietary k-Carrageenan (k-CGN) at 10, 20, and 30 g kg-1 on growth rate, hemato-biochemical indices, innate-adaptive parameters and modification of pro- and/or anti-inflammatory cytokines and chemokines pathway in cobia, Rachycentron canadum against Lactococcus garvieae is reported. The weight gain (WG) increased substantially (P < 0.05) in all k-CGN treated groups; the specific growth rate (SGR) was significant in healthy uninfected normal (HuN) and L. garvieae challenged (LaC) groups fed with 20 g kg-1k-CGN diet on 45 and 60 days. The white blood cell (WBC) counts, total protein (TP) level, total anti-oxidant (T-AOC), catalase (CAT), and glutathione (GSH) activities increased significantly when fed with 20 g and 30 g kg-1k-CG diets on 45th and 60th day. The immunological parameters such as phagocytic (PC) index and the activity of phagocytic (PC), respiratory burst (RB), superoxide dismutase (SOD), alternate complement pathway (ACH50), and lysozyme (LZM) were significantly enhanced with all k-CG diets in 45 and 60 days of treatment. No cumulative mortality (CM) in HuN group fed by control or any k-CGN diets. CM was 5% in LaC group fed with 20 g kg-1k-CGN diet whereas in LaC groups fed with 10 g and 30 g kg-1k-CGN diets the CM was 10%. The interleukin 1 beta (IL-1β) and tumor necrosis factor alpha (TNFα) pro-inflammatory cytokines mRNA transcripts were one-fold high (P < 0.05) in both HuN and LaC group fed all k-CGN enriched diets on 45 and 60 days. Similarly, IL-18 and TLR2 mRNA was one-fold high expression in both groups fed the 20 g and 30 g kg-1k-CGN enriched diets on 45 or 60 days. Interferon gamma (IFNγ) and interferon regulatory factor 3/7 (IRF3/IRF7) mRNA transcripts did not change with any diet. IL-6, IL-10, and IL-11 mRNA were one-fold high expressions in both groups fed the 20 g and 30 g kg-1k-CGN enriched diets on 45 and 60 days. However, the expression of CC1, CC3, and CCR9 pro-inflammatory chemokines mRNA did not vary with any control or k-CGN enriched diets. The results indicate that diet enriched with k-CGN at 20 g kg-1 significantly influences the growth, antioxidant and innate-adaptive immune performance, and pro-anti-inflammatory cytokines and chemokines regulation in cobia against L. garvieae.
Collapse
Affiliation(s)
- Ramasamy Harikrishnan
- Department of Zoology, Pachaiyappa's College for Men, Kanchipuram, 631 501, Tamil Nadu, India
| | - Gunapathy Devi
- Department of Zoology, Nehru Memorial College, Puthanampatti, 621 007, Tamil Nadu, India
| | - Hien Van Doan
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand; Science and Technology Research Institute, Chiang Mai University, 239 Huay Keaw Rd., Suthep, Muang, Chiang Mai, 50200, Thailand.
| | - Paramaraj Balamurugan
- Department of Biotechnology, St. Michael College of Engineering and Technology, Kalayarkoil, 630 551, Tamil Nadu, India
| | - Jesu Arockiaraj
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chennai, Tamil Nadu, India; Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chennai, Tamil Nadu, India
| | - Chellam Balasundaram
- Department of Herbal and Environmental Science, Tamil University, Thanjavur, 613 005, Tamil Nadu, India
| |
Collapse
|
4
|
Borsani B, De Santis R, Perico V, Penagini F, Pendezza E, Dilillo D, Bosetti A, Zuccotti GV, D’Auria E. The Role of Carrageenan in Inflammatory Bowel Diseases and Allergic Reactions: Where Do We Stand? Nutrients 2021; 13:3402. [PMID: 34684400 PMCID: PMC8539934 DOI: 10.3390/nu13103402] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 12/17/2022] Open
Abstract
Carrageenan (CGN) is a high molecular weight polysaccharide extracted from red seaweeds, composed of D-galactose residues linked in β-1,4 and α-1,3 galactose-galactose bond, widely used as a food additive in processed foods for its properties as a thickener, gelling agent, emulsifier, and stabilizer. In recent years, with the spread of the Western diet (WD), its consumption has increased. Nonetheless, there is a debate on its safety. CGN is extensively used as an inflammatory and adjuvant agent in vitro and in animal experimental models for the investigation of immune processes or to assess the activity of anti-inflammatory drugs. CGN can activate the innate immune pathways of inflammation, alter the gut microbiota composition and the thickness of the mucus barrier. Clinical evidence suggests that CGN is involved in the pathogenesis and clinical management of inflammatory bowel diseases (IBD), indeed food-exclusion diets can be an effective therapy for disease remission. Moreover, specific IgE to the oligosaccharide α-Gal has been associated with allergic reactions commonly referred to as the "α-Gal syndrome". This review aims to discuss the role of carrageenan in inflammatory bowel diseases and allergic reactions following the current evidence. Furthermore, as no definitive data are available on the safety and the effects of CGN, we suggest gaps to be filled and advise to limit the human exposure to CGN by reducing the consumption of ultra-processed foods.
Collapse
Affiliation(s)
- Barbara Borsani
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20122 Milan, Italy; (R.D.S.); (V.P.); (F.P.); (E.P.); (D.D.); (A.B.); (G.V.Z.); (E.D.)
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Leonard W, Zhang P, Ying D, Fang Z. Tyramine-derived hydroxycinnamic acid amides in plant foods: sources, synthesis, health effects and potential applications in food industry. Crit Rev Food Sci Nutr 2020; 62:1608-1625. [PMID: 33206548 DOI: 10.1080/10408398.2020.1845603] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Tyramine-derived hydroxycinnamic acid amines (HCAAT) are naturally occurring group of secondary metabolites present in various plant genera, such as Allium, Cannabis, Lycium, Polyganotum and Solanum. It belongs to the neutral, water-insoluble compounds and plays a role in plant growth, development and defence mechanism. The past two decades have seen a shift in the study of HCAAT from its role in plants to its potent biological activities. This review highlights the sources, roles in plants, biosynthetic pathways, metabolic engineering and chemical synthesis of HCAAT. The biological properties of HCAAT remain the focus in this paper, including antioxidant, anti-inflammatory, anti-cancer, anti-diabetic, anti-melanogenesis and neuroprotective properties. The effects of food processing and technology on HCAAT are also discussed. Given the current research gap, this review proposes future directions on the study of HCAAT, as well as its potential applications in food and pharmaceutical industry.
Collapse
Affiliation(s)
- William Leonard
- School of Agriculture and Food, The University of Melbourne, Melbourne, Victoria, Australia
| | - Pangzhen Zhang
- School of Agriculture and Food, The University of Melbourne, Melbourne, Victoria, Australia
| | - Danyang Ying
- CSIRO Agriculture & Food, Werribee, Victoria, Australia
| | - Zhongxiang Fang
- School of Agriculture and Food, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
6
|
Protopine attenuates inflammation stimulated by carrageenan and LPS via the MAPK/NF-κB pathway. Food Chem Toxicol 2019; 131:110583. [PMID: 31220533 DOI: 10.1016/j.fct.2019.110583] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/11/2019] [Accepted: 06/12/2019] [Indexed: 12/26/2022]
Abstract
We investigated the anti-inflammatory activity of protopine (PTP) and sought to determine its mechanism of action in LPS-stimulated BV2 cells and a carrageenan (CA)-induced mouse model. Treatment with PTP (5, 10, and 20 μM) significantly suppresses the secretion of NO and PGE2 in a concentration-dependent manner without affecting cell viability by downregulating iNOS and COX-2 expression in LPS-induced BV2 cells. PTP also attenuates the production of pro-inflammatory chemokines, such as MCP-1, and cytokines, including TNF-α, IL-1β and IL-6, and augments the expression of the anti-inflammatory cytokine IL-10. In addition, PTP suppresses the nuclear translocation of NF-κB by hindering the degradation of IκB and downregulating the expression of mitogen-activated protein kinases (MAPKs), including p38, ERK1/2 and JNK protein. Furthermore, PTP treatment significantly suppresses CA-induced paw oedema in mice compared to that seen in untreated mice. Expression of iNOS and COX-2 proteins is also abrogated by PTP (50 mg/kg) treatment in CA-induced mice. PTP treatment also abolishes IκB phosphorylation, which hinders the activation of NF-κB. Collectively, these results suggest PTP has potential for attenuating CA- and LPS-induced inflammatory symptoms through modulation of MAPKs/NF-κB signaling cascades.
Collapse
|
7
|
Maprotiline inhibits COX2 and iNOS gene expression in lipopolysaccharide-stimulated U937 macrophages and carrageenan-induced paw edema in rats. Cent Eur J Immunol 2019; 44:15-22. [PMID: 31114432 PMCID: PMC6526590 DOI: 10.5114/ceji.2019.84011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 01/09/2017] [Indexed: 12/21/2022] Open
Abstract
Maprotiline, a tetracyclic antidepressant, is used for the management of mental disorders and various types of chronic pain. In our previous work, we found the inhibitory effect of maprotiline on inflammatory mediator’s expression like tumor necrosis factor α (TNF-α and interleukin 1β (IL-1β. As part of that study, we sought to evaluate the effect of maprotiline on the expression of some inflammatory mediators such as cyclooxygenases 2 (COX2) and inducible nitric oxide synthase (iNOS). For this reason we used an in vitro model system of lipopolysaccharide (LPS)-stimulated human U937 macrophages and also an in vivo model of carrageenan-induced paw edema in rats. We measured the expression of these genes by quantitative RT-real time PCR. The expression of COX2 and iNOS significantly decreased by maprotiline in U937 macrophages and carrageenan-induced paw inflammation in rats. Our finding also confirmed that intraperitoneal (i.p.) injection of maprotiline inhibited carrageenan-induced paw edema. Moreover, maprotiline significantly decreased the migration of polymorphonuclear (PMN) leukocytes to the site of inflammation. The results of the present study provide further evidence for the anti-inflammatory effect of maprotiline. This effect appears to be mediated by down regulation of inflammatory genes. Further studies are needed to evaluate the complex cellular and molecular mechanisms of maprotiline.
Collapse
|
8
|
Valiño-Rivas L, Vaquero JJ, Sucunza D, Gutierrez S, Sanz AB, Fresno M, Ortiz A, Sanchez-Niño MD. NIK as a Druggable Mediator of Tissue Injury. Trends Mol Med 2019; 25:341-360. [PMID: 30926358 DOI: 10.1016/j.molmed.2019.02.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/07/2019] [Accepted: 02/13/2019] [Indexed: 12/15/2022]
Abstract
NF-κB-inducing kinase (NIK, MAP3K14) is best known as the apical kinase that triggers non-canonical NF-κB activation and by its role in the immune system. Recent data indicate a role for NIK expressed by non-lymphoid cells in cancer, kidney disease, liver injury, glucose homeostasis, osteosarcopenia, vascular calcification, hematopoiesis, and endothelial function. The spectrum of NIK-associated disease now ranges from immunodeficiency (when NIK is defective) to autoimmunity, cancer, sterile inflammation, fibrosis, and metabolic disease when NIK is overactive. The development of novel small-molecule NIK inhibitors has paved the way to test NIK targeting to treat disease in vivo, and may eventually lead to NIK targeting in the clinic. In addition, NIK activators are being explored for specific conditions such as myeloid leukemia.
Collapse
Affiliation(s)
- Lara Valiño-Rivas
- Department of Nephrology and Hypertension, Instituto de Investigación Sanitaria (IIS) Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma de Madrid (UAM), Red de Investigación Renal (REDINREN), and Fundación Renal Íñigo Álvarez de Toledo (FRIAT), Madrid, Spain
| | - Juan José Vaquero
- Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcala and REDINREN, Madrid, Spain
| | - David Sucunza
- Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcala and REDINREN, Madrid, Spain
| | - Sara Gutierrez
- Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcala and REDINREN, Madrid, Spain
| | - Ana B Sanz
- Department of Nephrology and Hypertension, Instituto de Investigación Sanitaria (IIS) Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma de Madrid (UAM), Red de Investigación Renal (REDINREN), and Fundación Renal Íñigo Álvarez de Toledo (FRIAT), Madrid, Spain
| | - Manuel Fresno
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas de la UAM, Madrid, Spain
| | - Alberto Ortiz
- Department of Nephrology and Hypertension, Instituto de Investigación Sanitaria (IIS) Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma de Madrid (UAM), Red de Investigación Renal (REDINREN), and Fundación Renal Íñigo Álvarez de Toledo (FRIAT), Madrid, Spain; These authors contributed equally.
| | - Maria Dolores Sanchez-Niño
- Department of Nephrology and Hypertension, Instituto de Investigación Sanitaria (IIS) Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma de Madrid (UAM), Red de Investigación Renal (REDINREN), and Fundación Renal Íñigo Álvarez de Toledo (FRIAT), Madrid, Spain; These authors contributed equally.
| |
Collapse
|
9
|
Choi HS, Kang SY, Roh DH, Choi SR, Ryu Y, Lee JH. Bee venom stimulation of a lung meridian acupoint reduces inflammation in carrageenan-induced pleurisy: an alternative therapeutic approach for respiratory inflammation. J Vet Sci 2018; 19:708-715. [PMID: 29929357 PMCID: PMC6167347 DOI: 10.4142/jvs.2018.19.5.708] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 05/30/2018] [Accepted: 06/04/2018] [Indexed: 11/20/2022] Open
Abstract
Respiratory inflammation is a frequent and fatal pathologic state encountered in veterinary medicine. Although diluted bee venom (dBV) has potent anti-inflammatory effects, the clinical use of dBV is limited to several chronic inflammatory diseases. The present study was designed to propose an acupoint dBV treatment as a novel therapeutic strategy for respiratory inflammatory disease. Experimental pleurisy was induced by injection of carrageenan into the left pleural space in mouse. The dBV was injected into a specific lung meridian acupoint (LU-5) or into an arbitrary non-acupoint located near the midline of the back in mouse. The inflammatory responses were evaluated by analyzing inflammatory indicators in pleural exudate. The dBV injection into the LU-5 acupoint significantly suppressed the carrageenan-induced increase of pleural exudate volume, leukocyte accumulation, and myeloperoxidase activity. Moreover, dBV acupoint treatment effectively inhibited the production of interleukin 1 beta, but not tumor necrosis factor alpha in the pleural exudate. On the other hand, dBV treatment at non-acupoint did not inhibit the inflammatory responses in carrageenan-induced pleurisy. The present results demonstrate that dBV stimulation in the LU-5 lung meridian acupoint can produce significant anti-inflammatory effects on carrageenan-induced pleurisy suggesting that dBV acupuncture may be a promising alternative medicine therapy for respiratory inflammatory diseases.
Collapse
Affiliation(s)
- Hoon-Seong Choi
- Department of Veterinary Physiology, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Suk-Yun Kang
- KM Fundamental Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea
| | - Dae-Hyun Roh
- Department of Oral Physiology, School of Dentistry, Kyung Hee University, Seoul 02447, Korea
| | - Sheu-Ran Choi
- Department of Veterinary Physiology, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Yeonhee Ryu
- KM Fundamental Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea
| | - Jang-Hern Lee
- Department of Veterinary Physiology, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
10
|
Linus LO, Wang SL, Shi N, Hanson C, Lu YT, Alolga RN, Liu Q, Njokuocha RC, Qi LW. The new plant Parinari kerstingii Engl.: Toxicity studies and anti-inflammatory properties. JOURNAL OF ETHNOPHARMACOLOGY 2018; 220:26-34. [PMID: 29551451 DOI: 10.1016/j.jep.2018.03.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 03/10/2018] [Accepted: 03/11/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Parinari kerstingii Engl. extract is traditionally used for the treatment of inflammation, bronchopneumonia, feverish pains, and breast cancer. However, there have not been any scientific reports regarding the medicinal properties of this plant, and no experiments have been done to ascertain the safety of the extract. AIM OF THE STUDY The objective of this work was to evaluate the toxicity of Parinari kerstingii Engl. extracts as an herbal remedy and to investigate its anti-inflammatory potential in vivo. MATERIALS AND METHODS Sprague-Dawley albino male rats were used in these experiments. 100, 300 and 600 mg/kg of body weight doses of Parinari kerstingii Engl. water extract (PKWE) were used for a 14 day toxicity study. For the anti-inflammatory studies, the carrageenan-induced paw edema model was used to investigate the effect of four fractions of Parinari kerstingii Engl. ethanol extract [petroleum ether (fraction A), ethyl acetate (fraction B), n -butanol (fraction C) and water (fraction D)] on the paw size of rats and to investigate the inhibitory effects of Parinari kerstingii Engl. water (PKWE) and Parinari kerstingii Engl. ethanol extract (PKEE). RESULTS The administration of 100 mg/kg and 300 mg/kg of body weight doses of Parinari kerstingii Engl. water extract showed no sign of toxicity. However, the 600 mg/kg of body weight dose showed a very significant increase in creatinine concentration. All the fractions of Parinari kerstingii Engl. extract demonstrated anti-inflammatory effects, as shown by a significant reduction in carrageenan-induced paw edema and by a significant decrease in the production of IL-1, TNF-α, COX-2, NF-кB, and PGE2. Moreover, fraction A and B showed enhanced in vivo anti-inflammatory effects compared to aspirin. Furthermore, PKEE was demonstrated to be more effective than PKWE. CONCLUSION We present the first report on the plant Parinari kerstingii Engl. Based on our findings, PKWE at a dose of up to 300 mg/kg of body weight for 14 days is considered safe, and our anti-inflammatory results support its traditional use. Overall, Parinari kerstingii Engl. has been demonstrated to be a potential drug candidate. Thus, further experiments, such as isolation/structural elucidation of the phytochemicals and biological screening of this plant, need to be done.
Collapse
Affiliation(s)
- Loveth O Linus
- State Key Laboratory of Natural Medicines, Department of Pharmacognosy, China Pharmaceutical University, # 639 Longmian Avenue, Jiangning District, Nanjing 211198, China
| | - Shi-Lei Wang
- State Key Laboratory of Natural Medicines, Department of Pharmacognosy, China Pharmaceutical University, # 639 Longmian Avenue, Jiangning District, Nanjing 211198, China
| | - Ning Shi
- State Key Laboratory of Natural Medicines, Department of Pharmacognosy, China Pharmaceutical University, # 639 Longmian Avenue, Jiangning District, Nanjing 211198, China
| | - Christian Hanson
- Department of Pharmacology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yi-Tong Lu
- State Key Laboratory of Natural Medicines, Department of Pharmacognosy, China Pharmaceutical University, # 639 Longmian Avenue, Jiangning District, Nanjing 211198, China
| | - Raphael N Alolga
- State Key Laboratory of Natural Medicines, Department of Pharmacognosy, China Pharmaceutical University, # 639 Longmian Avenue, Jiangning District, Nanjing 211198, China
| | - Qun Liu
- State Key Laboratory of Natural Medicines, Department of Pharmacognosy, China Pharmaceutical University, # 639 Longmian Avenue, Jiangning District, Nanjing 211198, China
| | - Reginald C Njokuocha
- Department of Plant Science and Biotechnology, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Lian-Wen Qi
- State Key Laboratory of Natural Medicines, Department of Pharmacognosy, China Pharmaceutical University, # 639 Longmian Avenue, Jiangning District, Nanjing 211198, China.
| |
Collapse
|
11
|
A Critical Role for Dopamine D5 Receptors in Pain Chronicity in Male Mice. J Neurosci 2017; 38:379-397. [PMID: 29167404 DOI: 10.1523/jneurosci.2110-17.2017] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 11/08/2017] [Accepted: 11/10/2017] [Indexed: 01/11/2023] Open
Abstract
Dopaminergic modulation of spinal cord plasticity has long been recognized, but circuits affected by this system and the precise receptor subtypes involved in this modulation have not been defined. Dopaminergic modulation from the A11 nucleus of the hypothalamus contributes to plasticity in a model of chronic pain called hyperalgesic priming. Here we tested the hypothesis that the key receptor subtype mediating this effect is the D5 receptor (D5R). We find that a spinally directed lesion of dopaminergic neurons reverses hyperalgesic priming in both sexes and that a D1/D5 antagonist transiently inhibits neuropathic pain. We used mice lacking D5Rs (DRD5KO mice) to show that carrageenan, interleukin 6, as well as BDNF-induced hyperalgesia and priming are reduced specifically in male mice. These male DRD5KO mice also show reduced formalin pain responses and decreased heat pain. To characterize the subtypes of dorsal horn neurons engaged by dopamine signaling in the hyperalgesic priming model, we used c-fos labeling. We find that a mixed D1/D5 agonist given spinally to primed mice activates a subset of neurons in lamina III and IV of the dorsal horn that coexpress PAX2, a transcription factor for GABAergic interneurons. In line with this, we show that gabazine, a GABA-A receptor antagonist, is antihyperalgesic in primed mice exposed to spinal administration of a D1/D5 agonist. Therefore, the D5R, in males, and the D1R, in females, exert a powerful influence over spinal cord circuitry in pathological pain likely via modulation of deep dorsal horn GABAergic neurons.SIGNIFICANCE STATEMENT Pain is the most prominent reason why people seek medical attention, and chronic pain incidence worldwide has been estimated to be as high as 33%. This study provides new insight into how descending dopamine controls pathological pain states. Our work demonstrates that dopaminergic spinal projections are necessary for the maintenance of a chronic pain state in both sexes; however, D5 receptors seem to play a critical role in males whereas females rely more heavily on D1 receptors, an effect that could be explained by sexual dimorphisms in receptor expression levels. Collectively, our work provides new insights into how the dopaminergic system interacts with spinal circuits to promote pain plasticity.
Collapse
|
12
|
Zhang K, Zeng X, Chen Y, Zhao R, Wang H, Wu J. Therapeutic effects of Qian-Yu decoction and its three extracts on carrageenan-induced chronic prostatitis/chronic pelvic pain syndrome in rats. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 17:75. [PMID: 28122556 PMCID: PMC5264336 DOI: 10.1186/s12906-016-1553-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 12/20/2016] [Indexed: 01/07/2023]
Abstract
BACKGROUND Qian-Yu decoction (QYD) is a traditional Chinese medicinal recipe composed of Radix astragali (Astragalus membranaceus (Fisch.) Bunge var. mongholicus (Bunge) P.K. Hsiao, Fabaceae ), Herba epimedii (Epimedium brevicornum Maxim., Berberidaceae), Herba leonuri (Leonurus japonicus Houtt., Lamiaceae), Cortex phellodendri (Phellodendron chinense Schneid., Rutaceae) and Radix achyranthis bidentatae (Achyranthes bidentata Bl., Amaranthaceae). This study aimed to evaluate the therapeutic activity of QYD against carrageenan-induced chronic prostatic/chronic pelvic pain syndrome (CP/CPPS) in rats and further elucidate its effective components. METHODS Three types of components, total polysaccharides, total flavonoids and total saponins were separately extracted from QYD. Carrageenan-induced CP/CPPS rats were intragastrically administered with lyophilized product of QYD, individual extracts and all the combined forms of extracts for three weeks. Prostatic index (PI) was determined and histopathological analysis was performed. The levels of tumor necrosis factor alpha (TNF-α), interleukin-1 beta (IL-1β), cyclooxygenase-2 (COX-2) and prostaglandin E2 (PEG2) in rat prostate tissues were measured using ELISA. The production of inducible nitric oxide synthase (iNOS) was evaluated by an enzymatic activity assay, and the release of nitric oxide (NO) was determined by a nitrate/nitrite assay. RESULTS Treatment with QYD significantly ameliorated the histological changes of CP/CPPS rats and reduced the PI by 44.3%, with a marked downregulation of TNF-α (42.8% reduction), IL-1β (45.3%), COX-2 (36.6%), PGE2 (44.2%), iNOS (54.1%) and NO (46.0%). Each of three extracts attenuated the symptom of CP/CPPS, but much more weakly than QYD. The combined administration of three extracts showed efficacy comparable to that of QYD while better than that of any combination of two extracts. A principal component analysis of the six inflammatory mediators as variables indicated that the effects of TS on CP/CPPS were rather different from those of TF and TP, which were similar. CONCLUSIONS QYD can be beneficial in prevention and treatment of CP/CPPS. Polysaccharides, flavonoids and saponins, as the major effective components of QYD, exert a cooperative effect on CP/CPPS.
Collapse
|
13
|
McKim JM, Baas H, Rice GP, Willoughby JA, Weiner ML, Blakemore W. Effects of carrageenan on cell permeability, cytotoxicity, and cytokine gene expression in human intestinal and hepatic cell lines. Food Chem Toxicol 2016; 96:1-10. [DOI: 10.1016/j.fct.2016.07.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 06/17/2016] [Accepted: 07/09/2016] [Indexed: 12/31/2022]
|
14
|
McDaniel DK, Eden K, Ringel VM, Allen IC. Emerging Roles for Noncanonical NF-κB Signaling in the Modulation of Inflammatory Bowel Disease Pathobiology. Inflamm Bowel Dis 2016; 22:2265-79. [PMID: 27508514 PMCID: PMC4992436 DOI: 10.1097/mib.0000000000000858] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Crohn's disease and ulcerative colitis are common and debilitating manifestations of inflammatory bowel disease (IBD). IBD is characterized by a radical imbalance in the activation of proinflammatory and anti-inflammatory signaling pathways in the gut. These pathways are controlled by NF-κB, which is a master regulator of gene transcription. In IBD patients, NF-κB signaling is often dysregulated resulting in overzealous inflammation. NF-κB activation occurs through 2 distinct pathways, defined as either canonical or noncanonical. Canonical NF-κB pathway activation is well studied in IBD and is associated with the rapid, acute production of diverse proinflammatory mediators, such as COX-2, IL-1β, and IL-6. In contrast to the canonical pathway, the noncanonical or "alternative" NF-κB signaling cascade is tightly regulated and is responsible for the production of highly specific chemokines that tend to be associated with less acute, chronic inflammation. There is a relative paucity of literature regarding all aspects of noncanonical NF-ĸB signaling. However, it is clear that this alternative signaling pathway plays a considerable role in maintaining immune system homeostasis and likely contributes significantly to the chronic inflammation underlying IBD. Noncanonical NF-κB signaling may represent a promising new direction in the search for therapeutic targets and biomarkers associated with IBD. However, significant mechanistic insight is still required to translate the current basic science findings into effective therapeutic strategies.
Collapse
Affiliation(s)
- Dylan K. McDaniel
- Department of Biomedical Sciences and Pathobiology, Virginia Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061
| | - Kristin Eden
- Department of Biomedical Sciences and Pathobiology, Virginia Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061
| | - Veronica M. Ringel
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA 24061
| | - Irving C. Allen
- Department of Biomedical Sciences and Pathobiology, Virginia Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA 24061
| |
Collapse
|
15
|
Merga YJ, O'Hara A, Burkitt MD, Duckworth CA, Probert CS, Campbell BJ, Pritchard DM. Importance of the alternative NF-κB activation pathway in inflammation-associated gastrointestinal carcinogenesis. Am J Physiol Gastrointest Liver Physiol 2016; 310:G1081-90. [PMID: 27102559 DOI: 10.1152/ajpgi.00026.2016] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 04/17/2016] [Indexed: 02/07/2023]
Abstract
Chronic inflammation is a common factor in the development of many gastrointestinal malignancies. Examples include inflammatory bowel disease predisposing to colorectal cancer, Barrett's esophagus as a precursor of esophageal adenocarcinoma, and Helicobacter pylori-induced gastric cancer. The classical activation pathway of NF-κB signaling has been identified as regulating several sporadic and inflammation-associated gastrointestinal tract malignancies. Emerging evidence suggests that the alternative NF-κB signaling pathway also exerts a distinct influence on these processes. This review brings together current knowledge of the role of the alternative NF-κB signaling pathway in the gastrointestinal tract, with a particular emphasis on inflammation-associated cancer development.
Collapse
Affiliation(s)
- Yvette J Merga
- Gastroenterology Research Unit, Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Adrian O'Hara
- Gastroenterology Research Unit, Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Michael D Burkitt
- Gastroenterology Research Unit, Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Carrie A Duckworth
- Gastroenterology Research Unit, Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Christopher S Probert
- Gastroenterology Research Unit, Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Barry J Campbell
- Gastroenterology Research Unit, Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - D Mark Pritchard
- Gastroenterology Research Unit, Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
16
|
Parameters and pitfalls to consider in the conduct of food additive research, Carrageenan as a case study. Food Chem Toxicol 2016; 87:31-44. [DOI: 10.1016/j.fct.2015.11.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 11/10/2015] [Accepted: 11/14/2015] [Indexed: 11/20/2022]
|
17
|
Cian RE, Drago SR, de Medina FS, Martínez-Augustin O. Proteins and Carbohydrates from Red Seaweeds: Evidence for Beneficial Effects on Gut Function and Microbiota. Mar Drugs 2015; 13:5358-83. [PMID: 26308006 PMCID: PMC4557026 DOI: 10.3390/md13085358] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/22/2015] [Accepted: 08/04/2015] [Indexed: 12/12/2022] Open
Abstract
Based on their composition, marine algae, and namely red seaweeds, are good potential functional foods. Intestinal mucosal barrier function refers to the capacity of the intestine to provide adequate containment of luminal microorganisms and molecules. Here, we will first outline the component of seaweeds and will summarize the effects of these on the regulation of mucosal barrier function. Special attention will be paid to unique components of red seaweeds: proteins and derived peptides (e.g., phycobiliproteins, glycoproteins that contain “cellulose binding domains”, phycolectins and the related mycosporine-like amino acids) together with polysaccharides (e.g., floridean starch and sulfated galactans, such as carrageenans, agarans and “dl-hybrid”) and minerals. These compounds have been shown to exert prebiotic effects, to regulate intestinal epithelial cell, macrophage and lymphocyte proliferation and differentiation and to modulate the immune response. Molecular mechanisms of action of peptides and polysaccharides are starting to be elucidated, and evidence indicating the involvement of epidermal growth factor receptor (EGFR), insulin-like growth factor receptor (IGFR), Toll-like receptors (TLR) and signal transduction pathways mediated by protein kinase B (PKB or AKT), nuclear factor-κB (NF-κB) and mitogen activated protein kinases (MAPK) will also be summarized. The need for further research is clear, but in vivo experiments point to an overall antiinflammatory effect of these algae, indicating that they can reinforce membrane barrier function.
Collapse
Affiliation(s)
- Raúl E Cian
- Instituto de Tecnología de Alimentos, Facultad de Ingeniería Química, Universidad Nacional del Litoral, 1° de Mayo 3250, (3000) Santa Fe, República Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917 (C1033AAJ), Ciudad Autónoma de Buenos Aires, República Argentina.
| | - Silvina R Drago
- Instituto de Tecnología de Alimentos, Facultad de Ingeniería Química, Universidad Nacional del Litoral, 1° de Mayo 3250, (3000) Santa Fe, República Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917 (C1033AAJ), Ciudad Autónoma de Buenos Aires, República Argentina.
| | - Fermín Sánchez de Medina
- Department of Pharmacology, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Universidad de Granada, Campus de Cartuja s/n, 18071 Granada, Spain.
- Instituto de Ciencia y Tecnología de los Alimentos José Mataix, Universidad de Granada, 18071 Granada, Spain.
| | - Olga Martínez-Augustin
- Instituto de Ciencia y Tecnología de los Alimentos José Mataix, Universidad de Granada, 18071 Granada, Spain.
- Department of Biochemistry and Molecular Biology II, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Universidad de Granada, Campus de Cartuja s/n, 18071 Granada, Spain.
- Instituto de Investigación Biosanitaria. ibs. GRANADA, University of Granada, 18071 Granada, Spain.
| |
Collapse
|
18
|
Elevated TAK1 augments tumor growth and metastatic capacities of ovarian cancer cells through activation of NF-κB signaling. Oncotarget 2015; 5:7549-62. [PMID: 25277189 PMCID: PMC4202143 DOI: 10.18632/oncotarget.2273] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Transforming growth factor (TGF)-β-activating kinase 1 (TAK1) is a serine/threonine kinase which is frequently associated with human cancer progression. However, its functional role in tumorigenesis is still controversial. Here, we report that TAK1 enhances the oncogenic capacity of ovarian cancer cells through the activation of NF-κB signaling. We found that TAK1 is frequently upregulated and significantly associated with high-grade and metastatic ovarian cancers. Mechanistic studies showed that Ser412 phosphorylation is required for TAK1 in activating NF-κB signaling and promotes aggressiveness of ovarian cancer cells. Conversely, suppression of TAK1 activity by point mutation at Ser412, RNAi mediated gene knockdown or TAK1 specific inhibitor ((5Z) -7-Oxozeaenol) remarkably impairs tumor growth and metastasis in ovarian cancer in vitro and in vivo. Our study underscores the importance of targeting TAK1 as a promising therapeutic approach to counteract the ovarian cancer progression.
Collapse
|
19
|
Animal models of inflammatory bowel disease: a review. Inflammopharmacology 2014; 22:219-33. [PMID: 24906689 DOI: 10.1007/s10787-014-0207-y] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 05/09/2014] [Indexed: 02/06/2023]
Abstract
Inflammatory bowel disease (IBD) represents a group of idiopathic chronic inflammatory intestinal conditions associated with various areas of the GI tract, including two types of inflammatory conditions, i.e., ulcerative colitis (UC) and Crohn's disease (CD). Both UC and CD are chronic inflammatory disorders of the intestine; in UC, inflammation starts in the rectum and generally extends proximally in a continuous manner through the entire colon. Bloody diarrhea, presence of blood and mucus mixed with stool, accompanied by lower abdominal cramping, are the characteristic symptoms of the disease. While in CD, inflammatory condition may affect any part of the GI tract from mouth to anus. It mainly causes abdominal pain, diarrhea, vomiting and weight loss. Although the basic etiology of IBD is unknown, there are several factors that may contribute to the pathogenesis of this disease, such as dysregulation of immune system or commensal bacteria, oxidative stress and inflammatory mediators. In order to understand these different etiological factors, a number of experimental models are available in the scientific research, including chemical-induced, spontaneous, genetically engineered and transgenic models. These models represent a major source of information about biological systems and are clinically relevant to the human IBD. Since there is less collective data available in one single article discussing about all these models, in this review an effort is made to study the outline of pathophysiology and various types of animal models used in the research study of IBD and other disease-related complications.
Collapse
|
20
|
Allegra M, Ianaro A, Tersigni M, Panza E, Tesoriere L, Livrea MA. Indicaxanthin from cactus pear fruit exerts anti-inflammatory effects in carrageenin-induced rat pleurisy. J Nutr 2014; 144:185-92. [PMID: 24306215 DOI: 10.3945/jn.113.183657] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Nutritional research has shifted recently from alleviating nutrient deficiencies to chronic disease prevention. We investigated the activity of indicaxanthin, a bioavailable phytochemical of the betalain class from the edible fruit of Opuntia ficus-indica (L. Miller) in a rat model of acute inflammation. Rat pleurisy was achieved by injection of 0.2 mL of λ-carrageenin in the pleural cavity, and rats were killed 4, 24, and 48 h later; exudates were collected to analyze inflammatory parameters, such as nitric oxide (NO), prostaglandin E(2) (PGE(2)), interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α); cells recruited in pleura were analyzed for cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS) expression, and nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) activation. Indicaxanthin (0.5, 1, or 2 μmol/kg), given orally before carrageenin, time- and dose-dependently, reduced the exudate volume (up to 70%) and the number of leukocytes recruited in the pleural cavity (up to 95%) at 24 h. Pretreatment with indicaxanthin at 2 μmol/kg inhibited the carrageenin-induced release of PGE(2) (91.4%), NO (67.7%), IL-1β (53.6%), and TNF-α (71.1%), and caused a decrease of IL-1β (34.5%), TNF-α (81.6%), iNOS (75.2%), and COX2 (87.7%) mRNA, as well as iNOS (71.9%) and COX-2 (65.9%) protein expression, in the recruited leukocytes. Indicaxanthin inhibited time- and dose- dependently the activation of NF-κB, a key transcription factor in the whole inflammatory cascade. A pharmacokinetic study with a single 2 μmol/kg oral administration showed a maximum 0.22 ± 0.02 μmol/L (n = 15) plasma concentration of indicaxanthin, with a half-life of 1.15 ± 0.11 h. When considering the high bioavailability of indicaxanthin in humans, our findings suggest that this dietary pigment has the potential to improve health and prevent inflammation-based disorders.
Collapse
Affiliation(s)
- Mario Allegra
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | | | | | | | | | | |
Collapse
|
21
|
McKim JM. Food additive carrageenan: Part I: A critical review of carrageenanin vitrostudies, potential pitfalls, and implications for human health and safety. Crit Rev Toxicol 2014; 44:211-43. [DOI: 10.3109/10408444.2013.861797] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
22
|
Bhattacharyya S, Feferman L, Borthakur S, Tobacman JK. Common food additive carrageenan stimulates Wnt/ β-catenin signaling in colonic epithelium by inhibition of nucleoredoxin reduction. Nutr Cancer 2013; 66:117-27. [PMID: 24328990 DOI: 10.1080/01635581.2014.852228] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Exposure to the common food additive carrageenan was previously associated with increased Wnt9A expression and increased cytoplasmic β-catenin in human colonic epithelial cells. In this report, exposure of human colonic epithelial cells in culture and of mouse colonic epithelium in vivo to low concentrations of carrageenan is shown to activate the Wnt/β-catenin signaling pathway, leading to increases in nuclear β-catenin, T-cell factor/lymphoid enhancer factor activation, and cyclin D1 expression and decline in bone morphogenetic protein-4. These effects are mediated through carrageenan-induced reactive oxygen species (ROS), and inhibited by the ROS scavenger Tempol. Carrageenan exposure and ROS production inhibited thioredoxin reductase activity and increased oxidation of nucleoredoxin, a member of the thioredoxin family of redox proteins. When oxidized, nucleoredoxin co-immunoprecipitation with dishevelled (DVL) declined, enabling DVL to interact with and inhibit the cytoplasmic β-catenin destruction complex, and facilitating nuclear translocation of β-catenin. Both nucleoredoxin silencing and carrageenan exposure produced similar declines in thioredoxin reductase activity. In addition to activation of Wnt signaling, carrageenan exposure also increased Wnt9A mRNA expression in the mouse colonic epithelium and the human colonic epithelial cells, thereby potentially permitting ongoing stimulation of the Wnt/β-catenin pathway. These findings suggest how a common dietary ingredient can contribute to colon carcinogenesis by effects on Wnt signaling and Wnt expression.
Collapse
Affiliation(s)
- Sumit Bhattacharyya
- a Department of Medicine , University of Illinois at Chicago , Chicago , Illinois , USA
| | | | | | | |
Collapse
|
23
|
Carrageenan-induced colonic inflammation is reduced in Bcl10 null mice and increased in IL-10-deficient mice. Mediators Inflamm 2013; 2013:397642. [PMID: 23766559 PMCID: PMC3677668 DOI: 10.1155/2013/397642] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 04/29/2013] [Accepted: 05/08/2013] [Indexed: 12/19/2022] Open
Abstract
The common food additive carrageenan is a known activator of inflammation in mammalian tissues and stimulates both the canonical and noncanonical pathways of NF-κB activation. Exposure to low concentrations of carrageenan (10 μg/mL in the water supply) has produced glucose intolerance, insulin resistance, and impaired insulin signaling in C57BL/6 mice. B-cell leukemia/lymphoma 10 (Bcl10) is a mediator of inflammatory signals from Toll-like receptor (TLR) 4 in myeloid and epithelial cells. Since the TLR4 signaling pathway is activated in diabetes and by carrageenan, we addressed systemic and intestinal inflammatory responses following carrageenan exposure in Bcl10 wild type, heterozygous, and null mice. Fecal calprotectin and circulating keratinocyte chemokine (KC), nuclear RelA and RelB, phospho(Thr559)-NF-κB-inducing kinase (NIK), and phospho(Ser36)-IκBα in the colonic epithelial cells were significantly less (P < 0.001) in the carrageenan-treated Bcl10 null mice than in controls. IL-10-deficient mice exposed to carrageenan in a germ-free environment showed an increase in activation of the canonical pathway of NF-κB (RelA) activation, but without increase in RelB or phospho-Bcl10, and exogenous IL-10 inhibited only the canonical pathway of NF-κB activation in cultured colonic cells. These findings demonstrate a Bcl10 requirement for maximum development of carrageenan-induced inflammation and lack of complete suppression by IL-10 of carrageenan-induced inflammation.
Collapse
|
24
|
Borthakur A, Bhattacharyya S, Anbazhagan AN, Kumar A, Dudeja PK, Tobacman JK. Prolongation of carrageenan-induced inflammation in human colonic epithelial cells by activation of an NFκB-BCL10 loop. Biochim Biophys Acta Mol Basis Dis 2012; 1822:1300-7. [PMID: 22579587 DOI: 10.1016/j.bbadis.2012.05.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 04/25/2012] [Accepted: 05/01/2012] [Indexed: 01/08/2023]
Abstract
Carrageenan, a sulfated polysaccharide that is widely used as a food additive, induces inflammatory responses in animal models and human cells. The carrageenan-induced inflammatory cascades involve toll-like receptor (TLR)4- and B-cell leukemia/lymphoma (BCL)10-dependent activation of NF-κB, leading to increased IL-8 production. Translocations involving BCL10 in the mucosa-associated lymphoid tissue (MALT) lymphomas are associated with constitutive activation of NF-κB. This report presents a mechanism by which carrageenan exposure leads to prolonged activation of both BCL10 and NF-κB in human colonic epithelial cells. Study findings demonstrate that nuclear RelA and RelB bind to an NF-κB binding motif in the BCL10 promoter in human colonic epithelial NCM460 and HT-29 cells. In vitro oligonucleotide binding assay, non-radioactive gel shift assay, and chromatin immunoprecipitation (ChIP) indicate binding of RelA and RelB to the BCL10 promoter. Prolonged inflammation follows activation of the BCL10-NFκB inflammatory loop in response to carrageenan, shown by increased BCL10, RelA, and IL-8 for 36 to 48h and increased RelB for 24h following withdrawal of carrageenan after 12h. In contrast, exposure to dextran sulfate sodium, which does not cause inflammation through TLR4 and BCL10 in the colonic epithelial cells, did not provoke prolonged activation of inflammation. The carrageenan-enhanced BCL10 promoter activity was blocked by caffeic acid phenethyl ester (CAPE) and MB-132 which inhibit NF-κB activation. These results indicate that NF-κB binding to the BCL10 promoter can lead to prolonged activation of the carrageenan-induced inflammatory cascade by a transcriptional mechanism involving an NF-κB-BCL10 loop.
Collapse
Affiliation(s)
- Alip Borthakur
- Department of Medicine, University of Illinois at Chicago, IL, USA
| | | | | | | | | | | |
Collapse
|