1
|
Li M, Chen L, Zhao Y, Sun H, Zhao L. Research on the Mechanism of HRP Relieving IPEC-J2 Cells Immunological Stress Based on Transcriptome Sequencing Analysis. Front Nutr 2022; 9:944390. [PMID: 35911118 PMCID: PMC9336541 DOI: 10.3389/fnut.2022.944390] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/13/2022] [Indexed: 11/27/2022] Open
Abstract
Early weaning increased the economic benefits of piglets. However, early weaning damages the intestinal barrier of piglets and causes immunological stress. The mechanism by which Hippophae rhamnoides polysaccharide (HRP) alleviates lipopolysaccharide (LPS)-induced intestinal porcine epithelial cells (IPEC-J2) inflammatory damage was investigated using proteomics in our previous studies. In this study we employed RNA-sequencing (RNA-seq) to determine the level and function of differentially expressed genes (DEGs) and further explore the mechanism of the HRP anti-inflammatory and immune process. The differential expression analysis indicated that 3622, 1216, and 2100 DEGs in the IPEC-J2 cells were identified in C vs. L, L vs. H6-L, and C vs. H6-L, respectively. The Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis foundsix identified pathways related to the immune system. Additionally, we used the Science, Technology, Engineering, and Math (STEM) program to categorize the 3,134 DEGs that were differentially expressed in H2-L, H4-L and H6-L into eight possible expression profiles, in which 612 were clustered into two profiles. The accuracy and consistency of RNA-seq data were validated by the results of qRT-PCR of the nuclear factor of kappa light polypeptide gene enhancer in B-cells 2 (NFKB2), MAP kinase interacting serine/threonine kinase 2 (MKNK2), mitogen-activated protein kinase kinase 1 (MAP2K1), mitogen-activated protein kinase kinase kinase 8 (MAP3K8), Ras-related protein R-Ras (RRAS), TNF receptor-associated factor 1 (TRAF1), NF-kappa-B inhibitor alpha (NFKBIA), interleukin 8 (IL8), tumor necrosis factor, alpha-induced protein 3 (TNFAIP3), and transforming growth factor beta-1 (TGFB1). Transcriptome sequencing also indicated that HRP reduced the expression levels of related DEGs and inhibited the activation of the mitogen-activated protein kinase (MAPK)/nuclear factor kappa-B (NF-κB) signaling pathway. Our findings indicate that the application of HRP in piglet diets during the early weaning period can improve intestinal epithelial function and integrity, and relieve intestinal damage, and improve piglet health.
Collapse
Affiliation(s)
- Muyang Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Lu Chen
- Shanxi Animal Husbandry and Veterinary School, Taiyuan, China
| | - Yiran Zhao
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Hui Sun
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- *Correspondence: Lei Zhao
| | - Lei Zhao
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
- Hui Sun
| |
Collapse
|
2
|
P-Cadherin Regulates Intestinal Epithelial Cell Migration and Mucosal Repair, but Is Dispensable for Colitis Associated Colon Cancer. Cells 2022; 11:cells11091467. [PMID: 35563773 PMCID: PMC9100778 DOI: 10.3390/cells11091467] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/20/2022] [Accepted: 04/23/2022] [Indexed: 12/16/2022] Open
Abstract
Recurrent chronic mucosal inflammation, a characteristic of inflammatory bowel diseases (IBD), perturbs the intestinal epithelial homeostasis resulting in formation of mucosal wounds and, in most severe cases, leads to colitis-associated colon cancer (CAC). The altered structure of epithelial cell-cell adhesions is a hallmark of intestinal inflammation contributing to epithelial injury, repair, and tumorigenesis. P-cadherin is an important adhesion protein, poorly expressed in normal intestinal epithelial cells (IEC) but upregulated in inflamed and injured mucosa. The goal of this study was to investigate the roles of P-cadherin in regulating intestinal inflammation and CAC. P-cadherin expression was markedly induced in the colonic epithelium of human IBD patients and CAC tissues. The roles of P-cadherin were investigated in P-cadherin null mice using dextran sulfate sodium (DSS)-induced colitis and an azoxymethane (AOM)/DSS induced CAC. Although P-cadherin knockout did not affect the severity of acute DSS colitis, P-cadherin null mice exhibited faster recovery after colitis. No significant differences in the number of colonic tumors were observed in P-cadherin null and control mice. Consistently, the CRISPR/Cas9-mediated knockout of P-cadherin in human IEC accelerated epithelial wound healing without affecting cell proliferation. The accelerated migration of P-cadherin depleted IEC was driven by activation of Src kinases, Rac1 GTPase and myosin II motors and was accompanied by transcriptional reprogramming of the cells. Our findings highlight P-cadherin as a negative regulator of IEC motility in vitro and mucosal repair in vivo. In contrast, this protein is dispensable for IEC proliferation and CAC development.
Collapse
|
3
|
Speir M, Djajawi TM, Conos SA, Tye H, Lawlor KE. Targeting RIP Kinases in Chronic Inflammatory Disease. Biomolecules 2021; 11:biom11050646. [PMID: 33924766 PMCID: PMC8146010 DOI: 10.3390/biom11050646] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 02/08/2023] Open
Abstract
Chronic inflammatory disorders are characterised by aberrant and exaggerated inflammatory immune cell responses. Modes of extrinsic cell death, apoptosis and necroptosis, have now been shown to be potent drivers of deleterious inflammation, and mutations in core repressors of these pathways underlie many autoinflammatory disorders. The receptor-interacting protein (RIP) kinases, RIPK1 and RIPK3, are integral players in extrinsic cell death signalling by regulating the production of pro-inflammatory cytokines, such as tumour necrosis factor (TNF), and coordinating the activation of the NOD-like receptor protein 3 (NLRP3) inflammasome, which underpin pathological inflammation in numerous chronic inflammatory disorders. In this review, we firstly give an overview of the inflammatory cell death pathways regulated by RIPK1 and RIPK3. We then discuss how dysregulated signalling along these pathways can contribute to chronic inflammatory disorders of the joints, skin, and gastrointestinal tract, and discuss the emerging evidence for targeting these RIP kinases in the clinic.
Collapse
Affiliation(s)
- Mary Speir
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; (M.S.); (T.M.D.); (S.A.C.); (H.T.)
- Department of Molecular and Translational Science, Monash University, Clayton, VIC 3168, Australia
| | - Tirta M. Djajawi
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; (M.S.); (T.M.D.); (S.A.C.); (H.T.)
- Department of Molecular and Translational Science, Monash University, Clayton, VIC 3168, Australia
| | - Stephanie A. Conos
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; (M.S.); (T.M.D.); (S.A.C.); (H.T.)
- Department of Molecular and Translational Science, Monash University, Clayton, VIC 3168, Australia
| | - Hazel Tye
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; (M.S.); (T.M.D.); (S.A.C.); (H.T.)
| | - Kate E. Lawlor
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; (M.S.); (T.M.D.); (S.A.C.); (H.T.)
- Department of Molecular and Translational Science, Monash University, Clayton, VIC 3168, Australia
- Correspondence: ; Tel.: +61-85722700
| |
Collapse
|
4
|
Lechuga S, Naydenov NG, Feygin A, Cruise M, Ervasti JM, Ivanov AI. Loss of β-Cytoplasmic Actin in the Intestinal Epithelium Increases Gut Barrier Permeability in vivo and Exaggerates the Severity of Experimental Colitis. Front Cell Dev Biol 2020; 8:588836. [PMID: 33195251 PMCID: PMC7644907 DOI: 10.3389/fcell.2020.588836] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/06/2020] [Indexed: 12/21/2022] Open
Abstract
Intestinal epithelial barrier is critical for the maintenance of normal gut homeostasis and disruption of this barrier may trigger or exaggerate mucosal inflammation. The actin cytoskeleton is a key regulator of barrier structure and function, controlling the assembly and permeability of epithelial adherens and tight junctions. Epithelial cells express two actin isoforms: a β-cytoplasmic actin and γ-cytoplasmic actin. Our previous in vitro studies demonstrated that these actin isoforms play distinctive roles in establishing the intestinal epithelial barrier, by controlling the organization of different junctional complexes. It remains unknown, whether β-actin and γ-actin have unique or redundant functions in regulating the gut barrier in vivo. To address this question, we selectively knocked out β-actin expression in mouse intestinal epithelium. Mice with intestinal epithelial knockout of β-actin do not display gastrointestinal abnormalities or gross alterations of colonic mucosal architecture. This could be due to compensatory upregulation of γ-actin expression. Despite such compensation, β-actin knockout mice demonstrate increased intestinal permeability. Furthermore, these animals show more severe clinical symptoms during dextran sodium sulfate induced colitis, compared to control littermates. Such exaggerated colitis is associated with the higher expression of inflammatory cytokines, increased macrophage infiltration in the gut, and accelerated mucosal cell death. Consistently, intestinal organoids generated from β-actin knockout mice are more sensitive to tumor necrosis factor induced cell death, ex vivo. Overall, our data suggests that β-actin functions as an essential regulator of gut barrier integrity in vivo, and plays a tissue protective role during mucosal injury and inflammation.
Collapse
Affiliation(s)
- Susana Lechuga
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Nayden G Naydenov
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Alex Feygin
- School of Nursing, Virginia Commonwealth University School of Nursing, Richmond, VA, United States
| | - Michael Cruise
- Department of Pathology, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - James M Ervasti
- Department of Biochemistry and Molecular Biology, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Andrei I Ivanov
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| |
Collapse
|
5
|
Barrier integrity and chronic inflammation mediated by HIF-1 impact on intestinal tumorigenesis. Cancer Lett 2020; 490:186-192. [PMID: 32711098 DOI: 10.1016/j.canlet.2020.07.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/12/2020] [Accepted: 07/04/2020] [Indexed: 02/07/2023]
Abstract
Colorectal cancer ranks among the top three most frequent malignancies in the world. While overall incidence and mortality of colorectal cancer has substantially decreased in recent years, tumor subtypes with poor response rates to standard antiproliferative therapies remain particularly challenging. Hypoxia in the microenvironment of solid tumors is associated with malignant progression, e.g. local invasion, systemic spread and therapy resistance. A detailed molecular understanding of hypoxia's role for the pathobiology of colorectal cancer is a prerequisite to design and evaluate the consequences of interference with hypoxic signaling for the progression of this cancer type. Here, we summarize the current knowledge about the role of hypoxia-inducible factor 1, an essential molecular mediator of the hypoxic response, for colorectal cancer pathogenesis. Special attention is given to intestinal microbiota, gut barrier integrity and chronic inflammation as these are of pivotal importance for intestinal tumorigenesis and noticeably associated with hypoxic signaling.
Collapse
|
6
|
Martens A, van Loo G. A20 at the Crossroads of Cell Death, Inflammation, and Autoimmunity. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a036418. [PMID: 31427375 DOI: 10.1101/cshperspect.a036418] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A20 is a potent anti-inflammatory protein, acting by inhibiting nuclear factor κB (NF-κB) signaling and inflammatory gene expression and/or by preventing cell death. Mutations in the A20/TNFAIP3 gene have been associated with a plethora of inflammatory and autoimmune pathologies in humans and in mice. Although the anti-inflammatory role of A20 is well accepted, fundamental mechanistic questions regarding its mode of action remain unclear. Here, we review new findings that further clarify the molecular and cellular mechanisms by which A20 controls inflammatory signaling and cell death, and discuss new evidence for its involvement in inflammatory and autoimmune disease development.
Collapse
Affiliation(s)
- Arne Martens
- VIB Center for Inflammation Research, 9052 Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Geert van Loo
- VIB Center for Inflammation Research, 9052 Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| |
Collapse
|
7
|
Functional analysis of deubiquitylating enzymes in tumorigenesis and development. Biochim Biophys Acta Rev Cancer 2019; 1872:188312. [DOI: 10.1016/j.bbcan.2019.188312] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/16/2019] [Accepted: 08/16/2019] [Indexed: 02/06/2023]
|
8
|
Luo W, Shen Z, Deng M, Li X, Tan B, Xiao M, Wu S, Yang Z, Zhu C, Tian L, Wu X, Meng X, Quan Y, Wang X. Roseburia intestinalis supernatant ameliorates colitis induced in mice by regulating the immune response. Mol Med Rep 2019; 20:1007-1016. [PMID: 31173202 PMCID: PMC6625378 DOI: 10.3892/mmr.2019.10327] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 04/15/2019] [Indexed: 12/13/2022] Open
Abstract
Inflammatory bowel disease (IBD), which includes ulcerative colitis (UC) and Crohn's disease (CD), has a complex etiology that may be associated with dysbiosis of the microbiota. Previously, our study revealed significant loss of Roseburia intestinalis from the gut of untreated patients with CD, and that R. intestinalis exerted anti-inflammatory functions in TNBS-induced colitis; however, the function of R. intestinalis supernatant is unknown. Therefore, LPS-induced macrophages, including RAW264.7 macrophages and bone marrow-derived macrophages were treated with R. intestinalis supernatant. The results indicated that R. intestinalis supernatant suppressed expression of interleukin (IL)-6 and signal transducer and activator of transcription 3 (STAT3) by macrophages. Additionally, these findings were further verified in vivo in DSS- and TNBS-induced mouse models of colitis. It was observed that R. intestinalis supernatant ameliorated IBD colitis by reducing the number of inflammatory macrophages and Th17 cells in the colon, and by downregulating the expression of IL-6 and STAT3. Finally, the non-protein components of R. intestinalis supernatant were examined using gas chromatography-mass spectrometry analysis and identified the presence of short-chain fatty acids. In conclusion, the results of the present study indicated that R. intestinalis supernatant may regulate immune responses and ameliorate colitis.
Collapse
Affiliation(s)
- Weiwei Luo
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Zhaohua Shen
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Minzi Deng
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Xiayu Li
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Bei Tan
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Mengwei Xiao
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Shuai Wu
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Zhenyu Yang
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Changxin Zhu
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Li Tian
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Xing Wu
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Xiangrui Meng
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Yongsheng Quan
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Xiaoyan Wang
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
9
|
Hu T, Hu W, Ma L, Zeng X, Liu J, Cheng B, Yang P, Qiu S, Yang G, Chen D, Liu Z. pVAX1-A20 alleviates colitis in mice by promoting regulatory T cells. Dig Liver Dis 2019; 51:790-797. [PMID: 30528569 DOI: 10.1016/j.dld.2018.11.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/02/2018] [Accepted: 11/04/2018] [Indexed: 12/11/2022]
Abstract
AIM To investigate whether the intrarectal administration of the ubiquitin E3 ligase A20 (A20) attenuates intestinal inflammation and influences regulatory T cells in experimental colitis. METHODS A dextran sulfate sodium induced chronic colitis mouse model was established. The symptoms and manifestations of colitis and the severity of colonic mucosal inflammation were evaluated. The protective role of A20 expression in the intestine was analyzed after the administration of a pVAX1-A20 recombinant eukaryotic vector, which was encapsulated into poly(L-lactide-co-glycolide) as a nanoparticle. RESULTS pVAX1-A20 administration markedly ameliorated colonic tissue damage and reduced intestinal inflammation via the suppression of the mucosal mitogen-activated protein kinase and nuclear factor (NF)-κB signaling cascade. Furthermore, pVAX1-A20 promoted the splenic regulatory T cell population and forkhead box P3 expression in colonic tissue. CONCLUSION A20 plays a key role in the regulation of intestinal inflammation and that the overexpression of A20 in the intestine protects mice from dextran sulfate sodium induced chronic colitis.
Collapse
Affiliation(s)
- Tianyong Hu
- Longgang ENT Hospital, Institute of ENT and Shenzhen Key Laboratory of ENT, Shenzhen, China
| | | | - Li Ma
- Longgang ENT Hospital, Institute of ENT and Shenzhen Key Laboratory of ENT, Shenzhen, China
| | - Xianhai Zeng
- Longgang ENT Hospital, Institute of ENT and Shenzhen Key Laboratory of ENT, Shenzhen, China
| | - Jiangqi Liu
- Longgang ENT Hospital, Institute of ENT and Shenzhen Key Laboratory of ENT, Shenzhen, China
| | - Baohui Cheng
- Longgang ENT Hospital, Institute of ENT and Shenzhen Key Laboratory of ENT, Shenzhen, China
| | - Pingchang Yang
- Shenzhen University School of Medicine and State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen, China
| | - Shuqi Qiu
- Longgang ENT Hospital, Institute of ENT and Shenzhen Key Laboratory of ENT, Shenzhen, China
| | - Gui Yang
- Longgang ENT Hospital, Institute of ENT and Shenzhen Key Laboratory of ENT, Shenzhen, China
| | - Donghui Chen
- Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China.
| | - Zhiqiang Liu
- Longgang ENT Hospital, Institute of ENT and Shenzhen Key Laboratory of ENT, Shenzhen, China.
| |
Collapse
|
10
|
Garcia-Carbonell R, Yao SJ, Das S, Guma M. Dysregulation of Intestinal Epithelial Cell RIPK Pathways Promotes Chronic Inflammation in the IBD Gut. Front Immunol 2019; 10:1094. [PMID: 31164887 PMCID: PMC6536010 DOI: 10.3389/fimmu.2019.01094] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/29/2019] [Indexed: 12/22/2022] Open
Abstract
Crohn's disease (CD) and ulcerative colitis (UC) are common intestinal bowel diseases (IBD) characterized by intestinal epithelial injury including extensive epithelial cell death, mucosal erosion, ulceration, and crypt abscess formation. Several factors including activated signaling pathways, microbial dysbiosis, and immune deregulation contribute to disease progression. Although most research efforts to date have focused on immune cells, it is becoming increasingly clear that intestinal epithelial cells (IEC) are important players in IBD pathogenesis. Aberrant or exacerbated responses to how IEC sense IBD-associated microbes, respond to TNF stimulation, and regenerate and heal the injured mucosa are critical to the integrity of the intestinal barrier. The role of several genes and pathways in which single nucleotide polymorphisms (SNP) showed strong association with IBD has recently been studied in the context of IEC. In patients with IBD, it has been shown that the expression of specific dysregulated genes in IECs plays an important role in TNF-induced cell death and microbial sensing. Among them, the NF-κB pathway and its target gene TNFAIP3 promote TNF-induced and receptor interacting protein kinase (RIPK1)-dependent intestinal epithelial cell death. On the other hand, RIPK2 functions as a key signaling protein in host defense responses induced by activation of the cytosolic microbial sensors nucleotide-binding oligomerization domain-containing proteins 1 and 2 (NOD1 and NOD2). The RIPK2-mediated signaling pathway leads to the activation of NF-κB and MAP kinases that induce autophagy following infection. This article will review these dysregulated RIPK pathways in IEC and their role in promoting chronic inflammation. It will also highlight future research directions and therapeutic approaches involving RIPKs in IBD.
Collapse
Affiliation(s)
| | - Shih-Jing Yao
- Department of Pathology, University of California, San Diego, San Diego, CA, United States
| | - Soumita Das
- Department of Pathology, University of California, San Diego, San Diego, CA, United States
| | - Monica Guma
- Medicine, School of Medicine, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
11
|
Elevated A20 promotes TNF-induced and RIPK1-dependent intestinal epithelial cell death. Proc Natl Acad Sci U S A 2018; 115:E9192-E9200. [PMID: 30209212 DOI: 10.1073/pnas.1810584115] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Intestinal epithelial cell (IEC) death is a common feature of inflammatory bowel disease (IBD) that triggers inflammation by compromising barrier integrity. In many patients with IBD, epithelial damage and inflammation are TNF-dependent. Elevated TNF production in IBD is accompanied by increased expression of the TNFAIP3 gene, which encodes A20, a negative feedback regulator of NF-κB. A20 in intestinal epithelium from patients with IBD coincided with the presence of cleaved caspase-3, and A20 transgenic (Tg) mice, in which A20 is expressed from an IEC-specific promoter, were highly susceptible to TNF-induced IEC death, intestinal damage, and shock. A20-expressing intestinal organoids were also susceptible to TNF-induced death, demonstrating that enhanced TNF-induced apoptosis was a cell-autonomous property of A20. This effect was dependent on Receptor Interacting Protein Kinase 1 (RIPK1) activity, and A20 was found to associate with the Ripoptosome complex, potentiating its ability to activate caspase-8. A20-potentiated RIPK1-dependent apoptosis did not require the A20 deubiquitinase (DUB) domain and zinc finger 4 (ZnF4), which mediate NF-κB inhibition in fibroblasts, but was strictly dependent on ZnF7 and A20 dimerization. We suggest that A20 dimers bind linear ubiquitin to stabilize the Ripoptosome and potentiate its apoptosis-inducing activity.
Collapse
|
12
|
Overstreet A, LaTorre D, Abernathy-Close L, Murphy S, Rhee L, Boger A, Adlaka K, Iverson A, Bakke D, Weber C, Boone D. The JAK inhibitor ruxolitinib reduces inflammation in an ILC3-independent model of innate immune colitis. Mucosal Immunol 2018; 11:1454-1465. [PMID: 29988117 PMCID: PMC6162142 DOI: 10.1038/s41385-018-0051-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 05/23/2018] [Accepted: 05/31/2018] [Indexed: 02/06/2023]
Abstract
Innate immunity contributes to the pathogenesis of inflammatory bowel disease (IBD). However, the mechanisms of IBD mediated by innate immunity are incompletely understood and there are limited models of spontaneous innate immune colitis to address this question. Here we describe a new robust model of colitis occurring in the absence of adaptive immunity. RAG1-deficient mice expressing TNFAIP3 in intestinal epithelial cells (TRAG mice) spontaneously developed 100% penetrant, early-onset colitis that was limited to the colon and dependent on intestinal microbes but was not transmissible to co-housed littermates. TRAG colitis was associated with increased mucosal numbers of innate lymphoid cells (ILCs) and depletion of ILC prevented colitis in TRAG mice. ILC depletion also therapeutically reversed established colitis in TRAG mice. The colitis in TRAG mice was not prevented by interbreeding to mice lacking group 3 ILC nor by depletion of TNF. Treatment with the JAK inhibitor ruxolitinib ameliorated colitis in TRAG mice. This new model of colitis, with its predictable onset and colon-specific inflammation, will have direct utility in developing a more complete understanding of innate immune mechanisms that can contribute to colitis and in pre-clinical studies for effects of therapeutic agents on innate immune-mediated IBD.
Collapse
Affiliation(s)
- A.M. Overstreet
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indiana, USA
| | - D.L. LaTorre
- Department of Biological Sciences, University of Notre Dame, South Bend, Indiana, USA
| | - L. Abernathy-Close
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indiana, USA
| | - S.F. Murphy
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - L. Rhee
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - A.M. Boger
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indiana, USA
| | - K.R. Adlaka
- Department of Biological Sciences, University of Notre Dame, South Bend, Indiana, USA
| | - A.M. Iverson
- Department of Biological Sciences, University of Notre Dame, South Bend, Indiana, USA
| | - D.S. Bakke
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - C.R. Weber
- Department of Pathology, University of Chicago, Chicago, Illinois, USA
| | - D.L. Boone
- Department of Biological Sciences, University of Notre Dame, South Bend, Indiana, USA,Department of Microbiology and Immunology, Indiana University School of Medicine, Indiana, USA
| |
Collapse
|
13
|
Abstract
The intestinal tract is a site of intense immune cell activity that is poised to mount an effective response against a pathogen and yet maintain tolerance toward commensal bacteria and innocuous dietary antigens. The role of cell death in gut pathologies is particularly important as the intestinal epithelium undergoes self-renewal every 4-7 days through a continuous process of cell death and cell division. Cell death is also required for removal of infected, damaged, and cancerous cells. Certain forms of cell death trigger inflammation through release of damage-associated molecular patterns. Further, molecules involved in cell death decisions also moonlight as critical nodes in immune signaling. The manner of cell death is, therefore, highly instructive of the immunological consequences that ensue. Perturbations in cell death pathways can impact the regulation of the immune system with deleterious consequences. In this review, we discuss the various forms of cell death with a special emphasis on lytic cell death pathways of pyroptosis and necroptosis and their implications in inflammation and cancer in the gut. Understanding the implications of distinct cell death pathways will help in the development of therapeutic interventions in intestinal pathologies.
Collapse
Affiliation(s)
- Deepika Sharma
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | |
Collapse
|
14
|
Kumar V, Mansfield J, Fan R, MacLean A, Li J, Mohan M. miR-130a and miR-212 Disrupt the Intestinal Epithelial Barrier through Modulation of PPARγ and Occludin Expression in Chronic Simian Immunodeficiency Virus-Infected Rhesus Macaques. THE JOURNAL OF IMMUNOLOGY 2018. [PMID: 29514950 DOI: 10.4049/jimmunol.1701148] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Intestinal epithelial barrier dysfunction is a well-known sequela of HIV/SIV infection that persists despite antiretroviral therapy. Although inflammation is a triggering factor, the underlying molecular mechanisms remain unknown. Emerging evidence suggests that epithelial barrier function is epigenetically regulated by inflammation-induced microRNAs (miRNAs). Accordingly, we profiled and characterized miRNA/mRNA expression exclusively in colonic epithelium and identified 46 differentially expressed miRNAs (20 upregulated and 26 downregulated) in chronically SIV-infected rhesus macaques (Macaca mulatta). We bioinformatically crossed the predicted miRNA targets to transcriptomic data and characterized miR-130a and miR-212 as both were predicted to interact with critical epithelial barrier-associated genes. Next, we characterized peroxisome proliferator-activated receptor γ (PPARγ) and occludin (OCLN), predicted targets of miR-130a and miR-212, respectively, as their downregulation has been strongly linked to epithelial barrier disruption and dysbiosis. Immunofluorescence, luciferase reporter, and overexpression studies confirmed the ability of miR-130a and miR-212 to decrease protein expression of PPARγ and OCLN, respectively, and reduce transepithelial electrical resistance. Because Δ-9-tetrahydrocannabinol exerted protective effects in the intestine in our previous studies, we successfully used it to reverse miR-130a- and miR-212-mediated reduction in transepithelial electrical resistance. Finally, ex vivo Δ-9-tetrahydrocannabinol treatment of colon tissue from chronically SIV-infected rhesus macaques significantly increased PPARγ expression. Our findings suggest that dysregulated miR-130a and miR-212 expression in colonic epithelium during chronic HIV/SIV infection can facilitate epithelial barrier disruption by downregulating OCLN and PPARγ expression. Most importantly, our results highlight the beneficial effects of cannabinoids on epithelial barrier function in not just HIV/SIV but potentially other chronic intestinal inflammatory diseases.
Collapse
Affiliation(s)
- Vinay Kumar
- Eurofins Bioanalytics USA, Saint Charles, MO 63304
| | - Joshua Mansfield
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA 70433; and
| | - Rong Fan
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA 70433; and
| | - Andrew MacLean
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA 70433; and
| | - Jian Li
- Department of Global Biostatistics and Data Science, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112
| | - Mahesh Mohan
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA 70433; and
| |
Collapse
|
15
|
Fujimoto K, Kinoshita M, Tanaka H, Okuzaki D, Shimada Y, Kayama H, Okumura R, Furuta Y, Narazaki M, Tamura A, Hatakeyama S, Ikawa M, Tsuchiya K, Watanabe M, Kumanogoh A, Tsukita S, Takeda K. Regulation of intestinal homeostasis by the ulcerative colitis-associated gene RNF186. Mucosal Immunol 2017; 10:446-459. [PMID: 27381925 DOI: 10.1038/mi.2016.58] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 06/02/2016] [Indexed: 02/04/2023]
Abstract
Genome-wide association studies and subsequent deep sequencing analysis have identified susceptible loci for inflammatory bowel diseases (IBDs) including ulcerative colitis (UC). A gene encoding RING finger protein 186 (RNF186) is located within UC-susceptible loci. However, it is unclear whether RNF186 is involved in IBD pathogenesis. Here, we show that RNF186 controls protein homeostasis in colonic epithelia and regulates intestinal inflammation. RNF186, which was highly expressed in colonic epithelia, acted as an E3 ligase mediating polyubiquitination of its substrates. Permeability of small organic molecules was augmented in the intestine of Rnf186-/- mice. Increased expression of several RNF186 substrates, such as occludin, was found in Rnf186-/- colonic epithelia. The disturbed protein homeostasis in Rnf186-/- mice correlated with enhanced endoplasmic reticulum (ER) stress in colonic epithelia and increased sensitivity to intestinal inflammation after dextran sulfate sodium (DSS) treatment. Introduction of an UC-associated Rnf186 mutation led to impaired E3 ligase activity and increased sensitivity to DSS-induced intestinal inflammation in mice. Thus, RNF186 maintains gut homeostasis by controlling ER stress in colonic epithelia.
Collapse
Affiliation(s)
- Kosuke Fujimoto
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan.,Core Research for Evolutional Science and Technology, Japan Agency for Medical Research and Development, Tokyo, Japan.,Department of Respiratory Medicine, Allergy and Rheumatic Diseases, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Makoto Kinoshita
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan.,Core Research for Evolutional Science and Technology, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Hiroo Tanaka
- Laboratory of Biological Science, Graduate School of Frontier Biosciences and Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Daisuke Okuzaki
- DNA-Chip Development Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Yosuke Shimada
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan.,Core Research for Evolutional Science and Technology, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Hisako Kayama
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan.,Core Research for Evolutional Science and Technology, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Ryu Okumura
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan.,Core Research for Evolutional Science and Technology, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Yoki Furuta
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan.,Core Research for Evolutional Science and Technology, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Masashi Narazaki
- Department of Respiratory Medicine, Allergy and Rheumatic Diseases, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Atsushi Tamura
- Laboratory of Biological Science, Graduate School of Frontier Biosciences and Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Shigetsugu Hatakeyama
- Department of Biochemistry, Graduate School of Medicine, Hokkaido University, Hokkaido, Japan
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Kiichiro Tsuchiya
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mamoru Watanabe
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Atsushi Kumanogoh
- Core Research for Evolutional Science and Technology, Japan Agency for Medical Research and Development, Tokyo, Japan.,Department of Respiratory Medicine, Allergy and Rheumatic Diseases, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Sachiko Tsukita
- Core Research for Evolutional Science and Technology, Japan Agency for Medical Research and Development, Tokyo, Japan.,Laboratory of Biological Science, Graduate School of Frontier Biosciences and Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Kiyoshi Takeda
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan.,Core Research for Evolutional Science and Technology, Japan Agency for Medical Research and Development, Tokyo, Japan
| |
Collapse
|
16
|
Abstract
Innate immune responses are key to maintain adequate host-microbial interactions. However, those signals are needed to efficiently trigger rapid and targeted antimicrobial responses in case of pathogen encounter. Several molecules have evolved to regulate intensity and coordinate signaling to avoid detrimental consequences to the host. Regulation can occur at the cell surface, within the cytoplasm, and at the transcriptional level. Innate immune regulation seems to be equally important than stimulation, as disruption of immunoregulatory molecules modulates the risk for several diseases. This is the case for colitis and inflammatory bowel disease but also colorectal cancer and intestinal infections. In this review, we recapitulate the molecular mechanisms underlying regulation of innate immune signals and mention their implications in several disease states including inflammatory bowel disease.
Collapse
|
17
|
Naydenov NG, Feygin A, Wang D, Kuemmerle JF, Harris G, Conti MA, Adelstein RS, Ivanov AI. Nonmuscle Myosin IIA Regulates Intestinal Epithelial Barrier in vivo and Plays a Protective Role During Experimental Colitis. Sci Rep 2016; 6:24161. [PMID: 27063635 PMCID: PMC4827066 DOI: 10.1038/srep24161] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 03/21/2016] [Indexed: 02/07/2023] Open
Abstract
The actin cytoskeleton is a critical regulator of intestinal mucosal barrier permeability, and the integrity of epithelial adherens junctions (AJ) and tight junctions (TJ). Non muscle myosin II (NM II) is a key cytoskeletal motor that controls actin filament architecture and dynamics. While NM II has been implicated in the regulation of epithelial junctions in vitro, little is known about its roles in the intestinal mucosa in vivo. In this study, we generated a mouse model with an intestinal epithelial-specific knockout of NM IIA heavy chain (NM IIA cKO) and examined the structure and function of normal gut barrier, and the development of experimental colitis in these animals. Unchallenged NM IIA cKO mice showed increased intestinal permeability and altered expression/localization of several AJ/TJ proteins. They did not develop spontaneous colitis, but demonstrated signs of a low-scale mucosal inflammation manifested by prolapses, lymphoid aggregates, increased cytokine expression, and neutrophil infiltration in the gut. NM IIA cKO animals were characterized by a more severe disruption of the gut barrier and exaggerated mucosal injury during experimentally-induced colitis. Our study provides the first evidence that NM IIA plays important roles in establishing normal intestinal barrier, and protection from mucosal inflammation in vivo.
Collapse
Affiliation(s)
- Nayden G Naydenov
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA23298
| | - Alex Feygin
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA23298
| | - Dongdong Wang
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA23298
| | - John F Kuemmerle
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298
| | - Gianni Harris
- Department of Medicine, University of Rochester School of Medicine, Rochester, NY
| | - Mary Anne Conti
- Laboratory of Molecular Cardiology, NHLBI, National Institutes of Health, Bethesda, Maryland 20892
| | - Robert S Adelstein
- Laboratory of Molecular Cardiology, NHLBI, National Institutes of Health, Bethesda, Maryland 20892
| | - Andrei I Ivanov
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA23298.,VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298.,Virginia Institute of Molecular Medicine, Richmond, VA 23298
| |
Collapse
|
18
|
Tanaka K, Fujiya M, Konishi H, Ueno N, Kashima S, Sasajima J, Moriichi K, Ikuta K, Tanabe H, Kohgo Y. Probiotic-derived polyphosphate improves the intestinal barrier function through the caveolin-dependent endocytic pathway. Biochem Biophys Res Commun 2015; 467:541-8. [PMID: 26459590 DOI: 10.1016/j.bbrc.2015.09.159] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 09/30/2015] [Indexed: 12/15/2022]
Abstract
Probiotics exhibit beneficial functions for host homeostasis maintenance. We herein investigated the mechanism by which Lactobacillus brevis-derived poly P exhibited a beneficial function. Immunostaining indicated that poly P was captured in the plasma membrane via integrin β1 in Caco2/bbe cells. The uptake of poly P was reduced by the inhibition of integrin β1 as well as caveolin-1, a major component of lipid rafts. The function of poly P, including the induction of HSP27 and enhancement of the intestinal barrier function, was suppressed by the inhibition of caveolin-1, illustrating that the function of poly P was mediated by the endocytic pathway. High-throughput sequencing revealed that poly P induced tumor necrosis factor alpha-induced protein 3, which contributes to cytoprotection, including upregulation of the intestinal barrier function. The present study demonstrates a novel host-probiotic interaction through the uptake of bacterial substance into host cells, which is distinct from pattern recognition receptor pathways.
Collapse
Affiliation(s)
- Kazuyuki Tanaka
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Japan
| | - Mikihiro Fujiya
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Japan.
| | - Hiroaki Konishi
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Japan
| | - Nobuhiro Ueno
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Japan
| | - Shin Kashima
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Japan
| | - Junpei Sasajima
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Japan
| | - Kentaro Moriichi
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Japan
| | - Katsuya Ikuta
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Japan
| | - Hiroki Tanabe
- Department of Gastroenterology, International Health and Science University Hospital, Japan
| | - Yutaka Kohgo
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Japan; Department of Gastroenterology, International Health and Science University Hospital, Japan
| |
Collapse
|
19
|
Bruno MEC, Rogier EW, Arsenescu RI, Flomenhoft DR, Kurkjian CJ, Ellis GI, Kaetzel CS. Correlation of Biomarker Expression in Colonic Mucosa with Disease Phenotype in Crohn's Disease and Ulcerative Colitis. Dig Dis Sci 2015; 60:2976-84. [PMID: 25956706 PMCID: PMC4575253 DOI: 10.1007/s10620-015-3700-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 05/02/2015] [Indexed: 12/12/2022]
Abstract
BACKGROUND Inflammatory bowel diseases (IBD), including Crohn's disease (CD) and ulcerative colitis (UC), are characterized by chronic intestinal inflammation due to immunological, microbial, and environmental factors in genetically predisposed individuals. Advances in the diagnosis, prognosis, and treatment of IBD require the identification of robust biomarkers that can be used for molecular classification of diverse disease presentations. We previously identified five genes, RELA, TNFAIP3 (A20), PIGR, TNF, and IL8, whose mRNA levels in colonic mucosal biopsies could be used in a multivariate analysis to classify patients with CD based on disease behavior and responses to therapy. AIM We compared expression of these five biomarkers in IBD patients classified as having CD or UC, and in healthy controls. RESULTS Patients with CD were characterized as having decreased median expression of TNFAIP3, PIGR, and TNF in non-inflamed colonic mucosa as compared to healthy controls. By contrast, UC patients exhibited decreased expression of PIGR and elevated expression of IL8 in colonic mucosa compared to healthy controls. A multivariate analysis combining mRNA levels for all five genes resulted in segregation of individuals based on disease presentation (CD vs. UC) as well as severity, i.e., patients in remission versus those with acute colitis at the time of biopsy. CONCLUSION We propose that this approach could be used as a model for molecular classification of IBD patients, which could further be enhanced by the inclusion of additional genes that are identified by functional studies, global gene expression analyses, and genome-wide association studies.
Collapse
Affiliation(s)
- Maria E. C. Bruno
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, Kentucky 40536. Current address: Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40536
| | - Eric W. Rogier
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, Kentucky 40536. Current address: Centers for Disease Control and Prevention, Division of Parasitic Diseases and Malaria, Atlanta, GA 30333
| | - Razvan I. Arsenescu
- Department of Internal Medicine, University of Kentucky, Lexington, Kentucky 40536. Current address: Department of Internal Medicine, The Ohio State University, Columbus, Ohio
| | | | - Cathryn J. Kurkjian
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, Kentucky 40536. Current address: Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 450 West Drive, Chapel Hill, NC 27599
| | - Gavin I. Ellis
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, Kentucky 40536. Current Address: Department of Microbiology, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA 19104
| | - Charlotte S. Kaetzel
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, Kentucky 40536
| |
Collapse
|
20
|
Ren T, Tian T, Feng X, Ye S, Wang H, Wu W, Qiu Y, Yu C, He Y, Zeng J, Cen J, Zhou Y. An adenosine A3 receptor agonist inhibits DSS-induced colitis in mice through modulation of the NF-κB signaling pathway. Sci Rep 2015; 5:9047. [PMID: 25762375 PMCID: PMC4357005 DOI: 10.1038/srep09047] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 02/13/2015] [Indexed: 12/13/2022] Open
Abstract
The role of the adenosine A3 receptor (A3AR) in experimental colitis is controversial. The A3AR agonist N6-(3-iodobenzyl)adenosine-5'-N-methyluronamide (IB-MECA) has been shown to have a clinical benefit, although studies in A3AR-deficient mice suggest a pro-inflammatory role. However, there are no studies on the effect of 2-Cl-IB-MECA and the molecular mechanism of action of A3AR in murine colitis models in vivo. Is it the same as that observed in vitro? The interaction between 2-CL-IB-MECA and A3AR in a murine colitis model and the signaling pathways associated with this interaction remain unclear. Here we demonstrate a role for the NF-κB signaling pathway and its effect on modifying the activity of proinflammatory factors in A3AR-mediated biological processes. Our results demonstrated that A3AR activation possessed marked effects on experimental colitis through the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Tianhua Ren
- Department of Gastroenterology, The Affiliated Hospital of Guangdong Medical College, No. 57 South Renmin Avenue, Zhanjiang 524001, China
| | - Ting Tian
- Department of Gastroenterology, The Affiliated Hospital of Guangdong Medical College, No. 57 South Renmin Avenue, Zhanjiang 524001, China
| | - Xiao Feng
- Department of Gastroenterology, The Affiliated Hospital of Guangdong Medical College, No. 57 South Renmin Avenue, Zhanjiang 524001, China
| | - Shicai Ye
- Department of Gastroenterology, The Affiliated Hospital of Guangdong Medical College, No. 57 South Renmin Avenue, Zhanjiang 524001, China
| | - Hao Wang
- Department of Gastroenterology, The Affiliated Hospital of Guangdong Medical College, No. 57 South Renmin Avenue, Zhanjiang 524001, China
| | - Weiyun Wu
- Department of Gastroenterology, The Affiliated Hospital of Guangdong Medical College, No. 57 South Renmin Avenue, Zhanjiang 524001, China
| | - Yumei Qiu
- Department of Gastroenterology, The Affiliated Hospital of Guangdong Medical College, No. 57 South Renmin Avenue, Zhanjiang 524001, China
| | - Caiyuan Yu
- Department of Gastroenterology, The Affiliated Hospital of Guangdong Medical College, No. 57 South Renmin Avenue, Zhanjiang 524001, China
| | - Yanting He
- Department of Gastroenterology, The Affiliated Hospital of Guangdong Medical College, No. 57 South Renmin Avenue, Zhanjiang 524001, China
| | - Juncheng Zeng
- Department of Gastroenterology, The Affiliated Hospital of Guangdong Medical College, No. 57 South Renmin Avenue, Zhanjiang 524001, China
| | - Junwei Cen
- Department of Gastroenterology, The Affiliated Hospital of Guangdong Medical College, No. 57 South Renmin Avenue, Zhanjiang 524001, China
| | - Yu Zhou
- Department of Gastroenterology, The Affiliated Hospital of Guangdong Medical College, No. 57 South Renmin Avenue, Zhanjiang 524001, China
| |
Collapse
|
21
|
Rescigno M. Microbial Sensing and Regulation of Mucosal Immune Responses by Intestinal Epithelial Cells. Mucosal Immunol 2015. [DOI: 10.1016/b978-0-12-415847-4.00028-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
22
|
Murphy SF, Rhee L, Grimm WA, Weber CR, Messer JS, Lodolce JP, Chang JE, Bartulis SJ, Nero T, Kukla RA, MacDougall G, Binghay C, Kolodziej LE, Boone DL. Intestinal epithelial expression of TNFAIP3 results in microbial invasion of the inner mucus layer and induces colitis in IL-10-deficient mice. Am J Physiol Gastrointest Liver Physiol 2014; 307:G871-82. [PMID: 25234043 PMCID: PMC4216993 DOI: 10.1152/ajpgi.00020.2014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Tumor necrosis factor-induced protein 3 (TNFAIP3; also known as A20) negatively regulates NF-κB and MAPK signals to control inflammatory responses. TNFAIP3 also protects against TNF-induced cell death. Intestinal epithelial cell (IEC) expression of TNFAIP3 improves barrier function and tight junction integrity and prevents dextran sulfate sodium (DSS)-induced IEC death and colitis. We therefore investigated the effects of TNFAIP3 expression in IEC on immune homeostasis in the intestines of immune-compromised mice. Villin-TNFAIP3 (v-TNFAIP3) transgenic mice were interbred with IL-10(-/-) mice (v-TNFAIP3 × IL-10(-/-)) and incidence, onset, and severity of colitis was assessed. v-TNFAIP3 × IL-10(-/-) mice displayed severe, early onset, and highly penetrant colitis that was not observed in IL-10(-/-) or v-TNFAIP3 mice. V-TNFAIP3 mice displayed altered expression of mucosal cytokines, increased numbers of mucosal regulatory T cells, and altered expression of mucosal antimicrobial peptides (AMPs). Microbial colonization of the inner mucus layer of v-TNFAIP3 mice was observed, along with alterations in the microbiome, but this was not sufficient to induce colitis in v-TNFAIP3 mice. The relative sterility of the inner mucus layer observed in wild-type and IL-10(-/-) mice was lost in v-TNFAIP3 × IL-10(-/-) mice. Thus IEC-derived factors, induced by signals that are inhibited by TNFAIP3, suppress the onset of inflammatory bowel disease in IL-10(-/-) mice. Our results indicate that IEC expression of TNFAIP3 alters AMP expression and allows microbial colonization of the inner mucus layer, which activates an IL-10-dependent anti-inflammatory process that is necessary to prevent colitis.
Collapse
Affiliation(s)
| | - Lesley Rhee
- 1Department of Medicine, University of Chicago, Chicago, Illinois;
| | - Wesley A. Grimm
- 1Department of Medicine, University of Chicago, Chicago, Illinois;
| | | | | | - James P. Lodolce
- 1Department of Medicine, University of Chicago, Chicago, Illinois;
| | | | | | - Thomas Nero
- 1Department of Medicine, University of Chicago, Chicago, Illinois;
| | - Renata A. Kukla
- 1Department of Medicine, University of Chicago, Chicago, Illinois;
| | | | | | | | - David L. Boone
- 3Indiana University School of Medicine, South Bend, Indiana
| |
Collapse
|
23
|
Shao L, Oshima S, Duong B, Advincula R, Barrera J, Malynn BA, Ma A. A20 restricts wnt signaling in intestinal epithelial cells and suppresses colon carcinogenesis. PLoS One 2013; 8:e62223. [PMID: 23671587 PMCID: PMC3645994 DOI: 10.1371/journal.pone.0062223] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 03/19/2013] [Indexed: 12/04/2022] Open
Abstract
Colon carcinogenesis consists of a multistep process during which a series of genetic and epigenetic adaptations occur that lead to malignant transformation. Here, we have studied the role of A20 (also known as TNFAIP3), a ubiquitin-editing enzyme that restricts NFκB and cell death signaling, in intestinal homeostasis and tumorigenesis. We have found that A20 expression is consistently reduced in human colonic adenomas than in normal colonic tissues. To further investigate A20’s potential roles in regulating colon carcinogenesis, we have generated mice lacking A20 specifically in intestinal epithelial cells and interbred these with mice harboring a mutation in the adenomatous polyposis coli gene (APCmin). While A20FL/FL villin-Cre mice exhibit uninflamed intestines without polyps, A20FL/FL villin-Cre APCmin/+ mice contain far greater numbers and larger colonic polyps than control APCmin mice. We find that A20 binds to the β-catenin destruction complex and restricts canonical wnt signaling by supporting ubiquitination and degradation of β-catenin in intestinal epithelial cells. Moreover, acute deletion of A20 from intestinal epithelial cells in vivo leads to enhanced expression of the β-catenin dependent genes cyclinD1 and c-myc, known promoters of colon cancer. Taken together, these findings demonstrate new roles for A20 in restricting β-catenin signaling and preventing colon tumorigenesis.
Collapse
Affiliation(s)
- Ling Shao
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Shigeru Oshima
- Department of Advanced Therapeutics in Gastrointestinal Disease, Tokyo Medical and Dental University, Tokyo, Japan
| | - Bao Duong
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Rommel Advincula
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Julio Barrera
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Barbara A. Malynn
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Averil Ma
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
24
|
Pott J, Hornef M. Innate immune signalling at the intestinal epithelium in homeostasis and disease. EMBO Rep 2012; 13:684-98. [PMID: 22801555 DOI: 10.1038/embor.2012.96] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 06/07/2012] [Indexed: 02/06/2023] Open
Abstract
The intestinal epithelium--which constitutes the interface between the enteric microbiota and host tissues--actively contributes to the maintenance of mucosal homeostasis and defends against pathogenic microbes. The recognition of conserved microbial products by cytosolic or transmembrane pattern recognition receptors in epithelial cells initiates signal transduction and influences effector cell function. However, the signalling pathways, effector molecules and regulatory mechanisms involved are not yet fully understood, and the functional outcome is poorly defined. This review analyses the complex and dynamic role of intestinal epithelial innate immune recognition and signalling, on the basis of results in intestinal epithelial cell-specific transgene or gene-deficient animals. This approach identifies specific epithelial cell functions within the diverse cellular composition of the mucosal tissue, in the presence of the complex and dynamic gut microbiota. These insights have thus provided a more comprehensive understanding of the role of the intestinal epithelium in innate immunity during homeostasis and disease.
Collapse
Affiliation(s)
- Johanna Pott
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | | |
Collapse
|