1
|
Neural signalling of gut mechanosensation in ingestive and digestive processes. Nat Rev Neurosci 2022; 23:135-156. [PMID: 34983992 DOI: 10.1038/s41583-021-00544-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2021] [Indexed: 12/29/2022]
Abstract
Eating and drinking generate sequential mechanosensory signals along the digestive tract. These signals are communicated to the brain for the timely initiation and regulation of diverse ingestive and digestive processes - ranging from appetite control and tactile perception to gut motility, digestive fluid secretion and defecation - that are vital for the proper intake, breakdown and absorption of nutrients and water. Gut mechanosensation has been investigated for over a century as a common pillar of energy, fluid and gastrointestinal homeostasis, and recent discoveries of specific mechanoreceptors, contributing ion channels and the well-defined circuits underlying gut mechanosensation signalling and function have further expanded our understanding of ingestive and digestive processes at the molecular and cellular levels. In this Review, we discuss our current understanding of the generation of mechanosensory signals from the digestive periphery, the neural afferent pathways that relay these signals to the brain and the neural circuit mechanisms that control ingestive and digestive processes, focusing on the four major digestive tract parts: the oral and pharyngeal cavities, oesophagus, stomach and intestines. We also discuss the clinical implications of gut mechanosensation in ingestive and digestive disorders.
Collapse
|
2
|
Welle EJ, Woods JE, Jiman AA, Richie JM, Bottorff EC, Ouyang Z, Seymour JP, Patel PR, Bruns TM, Chestek CA. Sharpened and Mechanically Durable Carbon Fiber Electrode Arrays for Neural Recording. IEEE Trans Neural Syst Rehabil Eng 2021; 29:993-1003. [PMID: 34014825 PMCID: PMC8459724 DOI: 10.1109/tnsre.2021.3082056] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Bioelectric medicine treatments target disorders of the nervous system unresponsive to pharmacological methods. While current stimulation paradigms effectively treat many disorders, the underlying mechanisms are relatively unknown, and current neuroscience recording electrodes are often limited in their specificity to gross averages across many neurons or axons. Here, we develop a novel, durable carbon fiber electrode array adaptable to many neural structures for precise neural recording. Carbon fibers ( [Formula: see text] diameter) were sharpened using a reproducible blowtorchmethod that uses the reflection of fibers against the surface of a water bath. The arrays were developed by partially embedding carbon fibers in medical-grade silicone to improve durability. We recorded acute spontaneous electrophysiology from the rat cervical vagus nerve (CVN), feline dorsal root ganglia (DRG), and rat brain. Blowtorching resulted in fibers of 72.3 ± 33.5-degree tip angle with [Formula: see text] exposed carbon. Observable neural clusters were recorded using sharpened carbon fiber electrodes fromrat CVN ( [Formula: see text]), feline DRG ( [Formula: see text]), and rat brain ( [Formula: see text]). Recordings from the feline DRG included physiologically relevant signals from increased bladder pressure and cutaneous brushing. These results suggest that this carbon fiber array is a uniquely durable and adaptable neural recordingdevice. In the future, this device may be useful as a bioelectric medicine tool for diagnosis and closed-loop neural control of therapeutic treatments and monitoring systems.
Collapse
|
3
|
Bian Z, Guo T, Jiang S, Chen L, Liu J, Zheng G, Feng B. High-Throughput Functional Characterization of Visceral Afferents by Optical Recordings From Thoracolumbar and Lumbosacral Dorsal Root Ganglia. Front Neurosci 2021; 15:657361. [PMID: 33776645 PMCID: PMC7991386 DOI: 10.3389/fnins.2021.657361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 02/22/2021] [Indexed: 12/27/2022] Open
Abstract
Functional understanding of visceral afferents is important for developing the new treatment to visceral hypersensitivity and pain. The sparse distribution of visceral afferents in dorsal root ganglia (DRGs) has challenged conventional electrophysiological recordings. Alternatively, Ca2+ indicators like GCaMP6f allow functional characterization by optical recordings. Here we report a turnkey microscopy system that enables simultaneous Ca2+ imaging at two parallel focal planes from intact DRG. By using consumer-grade optical components, the microscopy system is cost-effective and can be made broadly available without loss of capacity. It records low-intensity fluorescent signals at a wide field of view (1.9 × 1.3 mm) to cover a whole mouse DRG, with a high pixel resolution of 0.7 micron/pixel, a fast frame rate of 50 frames/sec, and the capability of remote focusing without perturbing the sample. The wide scanning range (100 mm) of the motorized sample stage allows convenient recordings of multiple DRGs in thoracic, lumbar, and sacral vertebrae. As a demonstration, we characterized mechanical neural encoding of visceral afferents innervating distal colon and rectum (colorectum) in GCaMP6f mice driven by VGLUT2 promotor. A post-processing routine is developed for conducting unsupervised detection of visceral afferent responses from GCaMP6f recordings, which also compensates the motion artifacts caused by mechanical stimulation of the colorectum. The reported system offers a cost-effective solution for high-throughput recordings of visceral afferent activities from a large volume of DRG tissues. We anticipate a wide application of this microscopy system to expedite our functional understanding of visceral innervations.
Collapse
Affiliation(s)
- Zichao Bian
- Department of Biomedical Engineering, University of Connecticut, Mansfield, CT, United States
| | - Tiantian Guo
- Department of Biomedical Engineering, University of Connecticut, Mansfield, CT, United States
| | - Shaowei Jiang
- Department of Biomedical Engineering, University of Connecticut, Mansfield, CT, United States
| | - Longtu Chen
- Department of Biomedical Engineering, University of Connecticut, Mansfield, CT, United States
| | - Jia Liu
- Department of Biomedical Engineering, University of Connecticut, Mansfield, CT, United States
| | - Guoan Zheng
- Department of Biomedical Engineering, University of Connecticut, Mansfield, CT, United States
| | - Bin Feng
- Department of Biomedical Engineering, University of Connecticut, Mansfield, CT, United States
| |
Collapse
|
4
|
Ru F, Pavelkova N, Krajewski JL, McDermott JS, Undem BJ, Kollarik M. Stimulus intensity-dependent recruitment of Na V1 subunits in action potential initiation in nerve terminals of vagal C-fibers innervating the esophagus. Am J Physiol Gastrointest Liver Physiol 2020; 319:G443-G453. [PMID: 32726130 PMCID: PMC7654645 DOI: 10.1152/ajpgi.00122.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We investigated voltage-gated sodium channel (NaV1) subunits that regulate action potential initiation in the nerve terminals of vagal nodose C-fibers innervating the esophagus. Extracellular single fiber recordings were made from the nodose C-fibers, with mechanically sensitive nerve terminals in the isolated innervated guinea pig esophagus. NaV1 inhibitors were selectively delivered to the tissue-containing nerve terminals. Graded esophageal distention was used for mechanical stimulation. The NaV1.7 inhibitor PF-05089771 nearly abolished action potential initiation in response to low levels of esophageal distention but only partially inhibited the response to higher levels of esophageal distention. The PF-05089771-insensitive component of the response progressively increased (up to ≈50%) with increasing esophageal distention and was abolished by tetrodotoxin (TTX). In addition to NaV1.7, nodose C-fiber [transient receptor potential channel-vanilloid subfamily member 1 (TRPV1)-positive] neurons retrogradely labeled from the esophagus expressed mRNA for multiple TTX-sensitive NaV1s. The group NaV1.1, NaV1.2, and NaV1.3 inhibitor ICA-121431 inhibited but did not abolish the PF-05089771-insensitive component of the response to high level of esophageal distention. However, combination of ICA-121431 with compound 801, which also inhibits NaV1.7 and NaV1.6, nearly abolished the response to the high level of esophageal distention. Our data indicate that the action potential initiation in esophageal nodose C-fibers evoked by low (innocuous) levels of esophageal distention is mediated by NaV1.7. However, the response evoked by higher (noxious) levels of esophageal distention has a progressively increasing NaV1.7-independent component that involves multiple TTX-sensitive NaV1s. The stimulus intensity-dependent recruitment of NaV1s may offer novel opportunities for strategic targeting of NaV1 subunits for inhibition of nociceptive signaling in visceral C-fibers.NEW & NOTEWORTHY We report that pharmacologically distinguishable voltage-gated sodium channels (NaV1) mediate action potential initiation at low (innocuous) versus high (noxious) intensity of esophageal distention in nerve terminals of vagal nodose C-fibers. Action potential initiation at low intensity is entirely dependent on NaV1.7; however, additional tetrodotoxin (TTX)-sensitive NaV1s are recruited at higher intensity of distention. This is the first demonstration that NaV1s underlying action potential initiation in visceral C-fibers depend on the intensity of the stimulus.
Collapse
Affiliation(s)
- Fei Ru
- 1Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Nikoleta Pavelkova
- 2University of South Florida, Morsani College of Medicine, Tampa, Florida
| | | | | | - Bradley J. Undem
- 1Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Marian Kollarik
- 2University of South Florida, Morsani College of Medicine, Tampa, Florida
| |
Collapse
|
5
|
Meerschaert KA, Adelman PC, Friedman RL, Albers KM, Koerber HR, Davis BM. Unique Molecular Characteristics of Visceral Afferents Arising from Different Levels of the Neuraxis: Location of Afferent Somata Predicts Function and Stimulus Detection Modalities. J Neurosci 2020; 40:7216-7228. [PMID: 32817244 PMCID: PMC7534907 DOI: 10.1523/jneurosci.1426-20.2020] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/30/2020] [Accepted: 08/07/2020] [Indexed: 02/07/2023] Open
Abstract
Viscera receive innervation from sensory ganglia located adjacent to multiple levels of the brainstem and spinal cord. Here we examined whether molecular profiling could be used to identify functional clusters of colon afferents from thoracolumbar (TL), lumbosacral (LS), and nodose ganglia (NG) in male and female mice. Profiling of TL and LS bladder afferents was also performed. Visceral afferents were back-labeled using retrograde tracers injected into proximal and distal regions of colon or bladder, followed by single-cell qRT-PCR and analysis via an automated hierarchical clustering method. Genes were chosen for assay (32 for bladder; 48 for colon) based on their established role in stimulus detection, regulation of sensitivity/function, or neuroimmune interaction. A total of 132 colon afferents (from NG, TL, and LS ganglia) and 128 bladder afferents (from TL and LS ganglia) were analyzed. Retrograde labeling from the colon showed that NG and TL afferents innervate proximal and distal regions of the colon, whereas 98% of LS afferents only project to distal regions. There were clusters of colon and bladder afferents, defined by mRNA profiling, that localized to either TL or LS ganglia. Mixed TL/LS clustering also was found. In addition, transcriptionally, NG colon afferents were almost completely segregated from colon TL and LS neurons. Furthermore, colon and bladder afferents expressed genes at similar levels, although different gene combinations defined the clusters. These results indicate that genes implicated in both homeostatic regulation and conscious sensations are found at all anatomic levels, suggesting that afferents from different portions of the neuraxis have overlapping functions.SIGNIFICANCE STATEMENT Visceral organs are innervated by sensory neurons whose cell bodies are located in multiple ganglia associated with the brainstem and spinal cord. For the colon, this overlapping innervation is proposed to facilitate visceral sensation and homeostasis, where sensation and pain are mediated by spinal afferents and fear and anxiety (the affective aspects of visceral pain) are the domain of nodose afferents. The transcriptomic analysis performed here reveals that genes implicated in both homeostatic regulation and pain are found in afferents across all ganglia types, suggesting that conscious sensation and homeostatic regulation are the result of convergence, and not segregation, of sensory input.
Collapse
Affiliation(s)
- Kimberly A Meerschaert
- Department of Neurobiology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
- Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | | | - Robert L Friedman
- Department of Neurobiology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
- Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Kathryn M Albers
- Department of Neurobiology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
- Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - H Richard Koerber
- Department of Neurobiology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
- Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Brian M Davis
- Department of Neurobiology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
- Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| |
Collapse
|
6
|
Besecker EM, Blanke EN, Deiter GM, Holmes GM. Gastric vagal afferent neuropathy following experimental spinal cord injury. Exp Neurol 2019; 323:113092. [PMID: 31697943 DOI: 10.1016/j.expneurol.2019.113092] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/11/2019] [Accepted: 10/23/2019] [Indexed: 01/01/2023]
Abstract
Dramatic impairment of gastrointestinal (GI) function accompanies high-thoracic spinal cord injury (T3-SCI). The vagus nerve contains mechano- and chemosensory fibers as well as the motor fibers necessary for the central nervous system (CNS) control of GI reflexes. Cell bodies for the vagal afferent fibers are located within the nodose gangla (NG) and the majority of vagal afferent axons are unmyelinated C fibers that are sensitive to capsaicin through activation of transient receptor potential vanilloid-1 (TRPV1) channels. Vagal afferent fibers also express receptors for GI hormones, including cholecystokinin (CCK). Previously, T3-SCI provokes a transient GI inflammatory response as well as a reduction of both gastric emptying and centrally-mediated vagal responses to GI peptides, including CCK. TRPV1 channels and CCK-A receptors (CCKar) expressed in vagal afferents are upregulated in models of visceral inflammation. The present study investigated whether T3-SCI attenuates peripheral vagal afferent sensitivity through plasticity of TRPV1 and CCK receptors. Vagal afferent response to graded mechanical stimulation of the stomach was significantly attenuated by T3-SCI at 3-day and 3-week recovery. Immunocytochemical labeling for CCKar and TRPV1 demonstrated expression on dissociated gastric-projecting NG neurons. Quantitative assessment of mRNA expression by qRT-PCR revealed significant elevation of CCKar and TRPV1 in the whole NG following T3-SCI in 3-day recovery, but levels returned to normal after 3-weeks. Three days after injury, systemic administration of CCK-8 s showed a significantly diminished gastric vagal afferent response in T3-SCI rats compared to control rats while systemic capsaicin infusion revealed a significant elevation of vagal response in T3-SCI vs control rats. These findings demonstrate that T3-SCI provokes peripheral remodeling and prolonged alterations in the response of vagal afferent fibers to the physiological signals associated with digestion.
Collapse
Affiliation(s)
- Emily M Besecker
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, PA 17033, United States of America; Department of Health Sciences, Gettysburg College, Gettysburg, PA 17325, United States of America
| | - Emily N Blanke
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, PA 17033, United States of America
| | - Gina M Deiter
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, PA 17033, United States of America
| | - Gregory M Holmes
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, PA 17033, United States of America.
| |
Collapse
|
7
|
Fernández-Fernández D, Cadaveira-Mosquera A, Rueda-Ruzafa L, Herrera-Pérez S, Veale EL, Reboreda A, Mathie A, Lamas JA. Activation of TREK currents by riluzole in three subgroups of cultured mouse nodose ganglion neurons. PLoS One 2018; 13:e0199282. [PMID: 29928032 PMCID: PMC6013220 DOI: 10.1371/journal.pone.0199282] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 06/05/2018] [Indexed: 01/12/2023] Open
Abstract
Two-pore domain potassium channels (K2P) constitute major candidates for the regulation of background potassium currents in mammalian cells. Channels of the TREK subfamily are also well positioned to play an important role in sensory transduction due to their sensitivity to a large number of physiological and physical stimuli (pH, mechanical, temperature). Following our previous report describing the molecular expression of different K2P channels in the vagal sensory system, here we confirm that TREK channels are functionally expressed in neurons from the mouse nodose ganglion (mNG). Neurons were subdivided into three groups (A, Ah and C) based on their response to tetrodotoxin and capsaicin. Application of the TREK subfamily activator riluzole to isolated mNG neurons evoked a concentration-dependent outward current in the majority of cells from all the three subtypes studied. Riluzole increased membrane conductance and hyperpolarized the membrane potential by approximately 10 mV when applied to resting neurons. The resting potential was similar in all three groups, but C cells were clearly less excitable and showed smaller hyperpolarization-activated currents at -100 mV and smaller sustained currents at -30 mV. Our results indicate that the TREK subfamily of K2P channels might play an important role in the maintenance of the resting membrane potential in sensory neurons of the autonomic nervous system, suggesting its participation in the modulation of vagal reflexes.
Collapse
Affiliation(s)
- Diego Fernández-Fernández
- Department of Functional Biology and Health Sciences, Faculty of Biology–CINBIO, University of Vigo, Vigo, Galicia, Spain
- * E-mail: (DFF); (JAL)
| | - Alba Cadaveira-Mosquera
- Department of Functional Biology and Health Sciences, Faculty of Biology–CINBIO, University of Vigo, Vigo, Galicia, Spain
| | - Lola Rueda-Ruzafa
- Department of Functional Biology and Health Sciences, Faculty of Biology–CINBIO, University of Vigo, Vigo, Galicia, Spain
| | - Salvador Herrera-Pérez
- Department of Functional Biology and Health Sciences, Faculty of Biology–CINBIO, University of Vigo, Vigo, Galicia, Spain
| | - Emma L. Veale
- Medway School of Pharmacy, University of Kent, Chatham Maritime, Kent, United Kingdom
| | - Antonio Reboreda
- Department of Functional Biology and Health Sciences, Faculty of Biology–CINBIO, University of Vigo, Vigo, Galicia, Spain
| | - Alistair Mathie
- Medway School of Pharmacy, University of Kent, Chatham Maritime, Kent, United Kingdom
| | - J. Antonio Lamas
- Department of Functional Biology and Health Sciences, Faculty of Biology–CINBIO, University of Vigo, Vigo, Galicia, Spain
- * E-mail: (DFF); (JAL)
| |
Collapse
|
8
|
Optogenetic Activation of Colon Epithelium of the Mouse Produces High-Frequency Bursting in Extrinsic Colon Afferents and Engages Visceromotor Responses. J Neurosci 2018; 38:5788-5798. [PMID: 29789376 DOI: 10.1523/jneurosci.0837-18.2018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 05/14/2018] [Accepted: 05/16/2018] [Indexed: 12/30/2022] Open
Abstract
Epithelial cells of the colon provide a vital interface between the internal environment (lumen of the colon) and colon parenchyma. To examine epithelial-neuronal signaling at this interface, we analyzed mice in which channelrhodopsin (ChR2) was targeted to either TRPV1-positive afferents or to villin-expressing colon epithelial cells. Expression of a ChR2-EYFP fusion protein was directed to either primary sensory neurons or to colon epithelial cells by crossing Ai32 mice with TRPV1-Cre or villin-Cre mice, respectively. An ex vivo preparation of the colon was used for single-fiber analysis of colon sensory afferents of the pelvic nerve. Afferents were characterized using previously described criteria as mucosal, muscular, muscular-mucosal, or serosal and then tested for blue light-induced activation. Light activation of colon epithelial cells produced robust firing of action potentials, similar to that elicited by physiologic stimulation (e.g., circumferential stretch), in 50.5% of colon afferents of mice homozygous for ChR2 expression. Light-induced activity could be reduced or abolished in most fibers using a cocktail of purinergic receptor blockers suggesting ATP release by the epithelium contributed to generation of sensory neuron action potentials. Using electromyographic recording of visceromotor responses we found that light stimulation of the colon epithelium evoked behavioral responses in Vil-ChR2 mice that was similar to that seen with balloon distension of the colon. These ex vivo and in vivo data indicate that light stimulation of colon epithelial cells alone, without added mechanical or chemical stimuli, can directly activate colon afferents and elicit behavioral responses.SIGNIFICANCE STATEMENT Abdominal pain that accompanies inflammatory diseases of the bowel is particularly vexing because it can occur without obvious changes in the structure or inflammatory condition of the colon. Pain reflects abnormal sensory neuron activity that may be controlled in part by release of substances from lining epithelial cells. In support of this mechanism we determined that blue-light stimulation of channelrhodopsin-expressing colon epithelial cells could evoke action potential firing in sensory neurons and produce changes in measures of behavioral sensitivity. Thus, activity of colon epithelial cells alone, without added mechanical or chemical stimuli, is sufficient to activate pain-sensing neurons.
Collapse
|
9
|
De Col R, Messlinger K, Hoffmann T. Differential conduction and CGRP release in visceral versus cutaneous peripheral nerves in the mouse. J Neurosci Res 2018; 96:1398-1405. [DOI: 10.1002/jnr.24255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/23/2018] [Accepted: 04/16/2018] [Indexed: 01/05/2023]
Affiliation(s)
- Roberto De Col
- Institute for Physiology and Pathophysiology; University of Erlangen-Nuremberg; Erlangen Germany
| | - Karl Messlinger
- Institute for Physiology and Pathophysiology; University of Erlangen-Nuremberg; Erlangen Germany
| | - Tali Hoffmann
- Institute for Physiology and Pathophysiology; University of Erlangen-Nuremberg; Erlangen Germany
| |
Collapse
|
10
|
Trancikova A, Kovacova E, Ru F, Varga K, Brozmanova M, Tatar M, Kollarik M. Distinct Expression of Phenotypic Markers in Placodes- and Neural Crest-Derived Afferent Neurons Innervating the Rat Stomach. Dig Dis Sci 2018; 63:383-394. [PMID: 29275446 DOI: 10.1007/s10620-017-4883-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 12/12/2017] [Indexed: 01/10/2023]
Abstract
BACKGROUND Visceral pain is initiated by activation of primary afferent neurons among which the capsaicin-sensitive (TRPV1-positive) neurons play an important role. The stomach is a common source of visceral pain. Similar to other organs, the stomach receives dual spinal and vagal afferent innervation. Developmentally, spinal dorsal root ganglia (DRG) and vagal jugular neurons originate from embryonic neural crest and vagal nodose neurons originate from placodes. In thoracic organs the neural crest- and placodes-derived TRPV1-positive neurons have distinct phenotypes differing in activation profile, neurotrophic regulation and reflex responses. It is unknown to whether such distinction exists in the stomach. AIMS We hypothesized that gastric neural crest- and placodes-derived TRPV1-positive neurons express phenotypic markers indicative of placodes and neural crest phenotypes. METHODS Gastric DRG and vagal neurons were retrogradely traced by DiI injected into the rat stomach wall. Single-cell RT-PCR was performed on traced gastric neurons. RESULTS Retrograde tracing demonstrated that vagal gastric neurons locate exclusively into the nodose portion of the rat jugular/petrosal/nodose complex. Gastric DRG TRPV1-positive neurons preferentially expressed markers PPT-A, TrkA and GFRα3 typical for neural crest-derived TRPV1-positive visceral neurons. In contrast, gastric nodose TRPV1-positive neurons preferentially expressed markers P2X2 and TrkB typical for placodes-derived TRPV1-positive visceral neurons. Differential expression of neural crest and placodes markers was less pronounced in TRPV1-negative DRG and nodose populations. CONCLUSIONS There are phenotypic distinctions between the neural crest-derived DRG and placodes-derived vagal nodose TRPV1-positive neurons innervating the rat stomach that are similar to those described in thoracic organs.
Collapse
Affiliation(s)
- Alzbeta Trancikova
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin (JFM CU), Biomedical Center Martin JFM CU, Malá Hora 4C, 036 01, Martin, Slovakia
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin (JFM CU), Department of Pathophysiology JFM CU, Malá Hora 4C, 036 01, Martin, Slovakia
| | - Eva Kovacova
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin (JFM CU), Biomedical Center Martin JFM CU, Malá Hora 4C, 036 01, Martin, Slovakia
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin (JFM CU), Department of Pathophysiology JFM CU, Malá Hora 4C, 036 01, Martin, Slovakia
| | - Fei Ru
- Department of Medicine, The Johns Hopkins University School of Medicine, Johns Hopkins Asthma Center, RM 1A.2, 5501 Hopkins Bayview Circle, Baltimore, MD, 21224, USA
| | - Kristian Varga
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin (JFM CU), Biomedical Center Martin JFM CU, Malá Hora 4C, 036 01, Martin, Slovakia
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin (JFM CU), Department of Pathophysiology JFM CU, Malá Hora 4C, 036 01, Martin, Slovakia
| | - Mariana Brozmanova
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin (JFM CU), Biomedical Center Martin JFM CU, Malá Hora 4C, 036 01, Martin, Slovakia
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin (JFM CU), Department of Pathophysiology JFM CU, Malá Hora 4C, 036 01, Martin, Slovakia
| | - Milos Tatar
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin (JFM CU), Biomedical Center Martin JFM CU, Malá Hora 4C, 036 01, Martin, Slovakia
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin (JFM CU), Department of Pathophysiology JFM CU, Malá Hora 4C, 036 01, Martin, Slovakia
| | - Marian Kollarik
- Department of Medicine, The Johns Hopkins University School of Medicine, Johns Hopkins Asthma Center, RM 1A.2, 5501 Hopkins Bayview Circle, Baltimore, MD, 21224, USA.
| |
Collapse
|
11
|
Hibberd TJ, Kestell GR, Kyloh MA, Brookes SJH, Wattchow DA, Spencer NJ. Identification of different functional types of spinal afferent neurons innervating the mouse large intestine using a novel CGRPα transgenic reporter mouse. Am J Physiol Gastrointest Liver Physiol 2016; 310:G561-73. [PMID: 26822917 DOI: 10.1152/ajpgi.00462.2015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 01/27/2016] [Indexed: 01/31/2023]
Abstract
Spinal afferent neurons detect noxious and physiological stimuli in visceral organs. Five functional classes of afferent terminals have been extensively characterized in the colorectum, primarily from axonal recordings. Little is known about the corresponding somata of these classes of afferents, including their morphology, neurochemistry, and electrophysiology. To address this, we made intracellular recordings from somata in L6/S1 dorsal root ganglia and applied intraluminal colonic distensions. A transgenic calcitonin gene-related peptide-α (CGRPα)-mCherry reporter mouse, which enabled rapid identification of soma neurochemistry and morphology following electrophysiological recordings, was developed. Three distinct classes of low-threshold distension-sensitive colorectal afferent neurons were characterized; an additional group was distension-insensitive. Two of three low-threshold classes expressed CGRPα. One class expressing CGRPα discharged phasically, with inflections on the rising phase of their action potentials, at low frequencies, to both physiological (<30 mmHg) and noxious (>30 mmHg) distensions. The second class expressed CGRPα and discharged tonically, with smooth, briefer action potentials and significantly greater distension sensitivity than phasically firing neurons. A third class that lacked CGRPα generated the highest-frequency firing to distension and had smaller somata. Thus, CGRPα expression in colorectal afferents was associated with lower distension sensitivity and firing rates and larger somata, while colorectal afferents that generated the highest firing frequencies to distension had the smallest somata and lacked CGRPα. These data fill significant gaps in our understanding of the different classes of colorectal afferent somata that give rise to distinct functional classes of colorectal afferents. In healthy mice, the majority of sensory neurons that respond to colorectal distension are low-threshold, wide-dynamic-range afferents, encoding both physiological and noxious ranges.
Collapse
Affiliation(s)
- Timothy J Hibberd
- Discipline of Human Physiology and Centre for Neuroscience, Flinders University, Adelaide, South Australia, Australia; and
| | - Garreth R Kestell
- Discipline of Human Physiology and Centre for Neuroscience, Flinders University, Adelaide, South Australia, Australia; and
| | - Melinda A Kyloh
- Discipline of Human Physiology and Centre for Neuroscience, Flinders University, Adelaide, South Australia, Australia; and
| | - Simon J H Brookes
- Discipline of Human Physiology and Centre for Neuroscience, Flinders University, Adelaide, South Australia, Australia; and
| | - David A Wattchow
- Discipline of Surgery and Centre for Neuroscience, Flinders University, Adelaide, South Australia, Australia
| | - Nick J Spencer
- Discipline of Human Physiology and Centre for Neuroscience, Flinders University, Adelaide, South Australia, Australia; and
| |
Collapse
|
12
|
Yu X, Yu M, Liu Y, Yu S. TRP channel functions in the gastrointestinal tract. Semin Immunopathol 2015; 38:385-96. [PMID: 26459157 DOI: 10.1007/s00281-015-0528-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 09/07/2015] [Indexed: 12/14/2022]
Abstract
Transient receptor potential (TRP) channels are predominantly distributed in both somatic and visceral sensory nervous systems and play a crucial role in sensory transduction. As the largest visceral organ system, the gastrointestinal (GI) tract frequently accommodates external inputs, which stimulate sensory nerves to initiate and coordinate sensory and motor functions in order to digest and absorb nutrients. Meanwhile, the sensory nerves in the GI tract are also able to detect potential tissue damage by responding to noxious irritants. This nocifensive function is mediated through specific ion channels and receptors expressed in a subpopulation of spinal and vagal afferent nerve called nociceptor. In the last 18 years, our understanding of TRP channel expression and function in GI sensory nervous system has been continuously improved. In this review, we focus on the expressions and functions of TRPV1, TRPA1, and TRPM8 in primary extrinsic afferent nerves innervated in the esophagus, stomach, intestine, and colon and briefly discuss their potential roles in relevant GI disorders.
Collapse
Affiliation(s)
- Xiaoyun Yu
- Division of Gastroenterology & Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Ross Research Building, Room 945, 720 Rutland Ave, Baltimore, MD, 21205, USA
| | - Mingran Yu
- Division of Gastroenterology & Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Ross Research Building, Room 945, 720 Rutland Ave, Baltimore, MD, 21205, USA
| | - Yingzhe Liu
- Division of Gastroenterology & Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Ross Research Building, Room 945, 720 Rutland Ave, Baltimore, MD, 21205, USA
| | - Shaoyong Yu
- Division of Gastroenterology & Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Ross Research Building, Room 945, 720 Rutland Ave, Baltimore, MD, 21205, USA.
| |
Collapse
|
13
|
Kentish SJ, Frisby CL, Kritas S, Li H, Hatzinikolas G, O'Donnell TA, Wittert GA, Page AJ. TRPV1 Channels and Gastric Vagal Afferent Signalling in Lean and High Fat Diet Induced Obese Mice. PLoS One 2015; 10:e0135892. [PMID: 26285043 PMCID: PMC4540489 DOI: 10.1371/journal.pone.0135892] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 07/28/2015] [Indexed: 12/31/2022] Open
Abstract
Aim Within the gastrointestinal tract vagal afferents play a role in control of food intake and satiety signalling. Activation of mechanosensitive gastric vagal afferents induces satiety. However, gastric vagal afferent responses to mechanical stretch are reduced in high fat diet mice. Transient receptor potential vanilloid 1 channels (TRPV1) are expressed in vagal afferents and knockout of TRPV1 reduces gastro-oesophageal vagal afferent responses to stretch. We aimed to determine the role of TRPV1 on gastric vagal afferent mechanosensitivity and food intake in lean and HFD-induced obese mice. Methods TRPV1+/+ and -/- mice were fed either a standard laboratory diet or high fat diet for 20wks. Gastric emptying of a solid meal and gastric vagal afferent mechanosensitivity was determined. Results Gastric emptying was delayed in high fat diet mice but there was no difference between TRPV1+/+ and -/- mice on either diet. TRPV1 mRNA expression in whole nodose ganglia of TRPV1+/+ mice was similar in both dietary groups. The TRPV1 agonist N-oleoyldopamine potentiated the response of tension receptors in standard laboratory diet but not high fat diet mice. Food intake was greater in the standard laboratory diet TRPV1-/- compared to TRPV1+/+ mice. This was associated with reduced response of tension receptors to stretch in standard laboratory diet TRPV1-/- mice. Tension receptor responses to stretch were decreased in high fat diet compared to standard laboratory diet TRPV1+/+ mice; an effect not observed in TRPV1-/- mice. Disruption of TRPV1 had no effect on the response of mucosal receptors to mucosal stroking in mice on either diet. Conclusion TRPV1 channels selectively modulate gastric vagal afferent tension receptor mechanosensitivity and may mediate the reduction in gastric vagal afferent mechanosensitivity in high fat diet-induced obesity.
Collapse
Affiliation(s)
- Stephen J Kentish
- Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, Adelaide, South Australia, Australia; South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| | - Claudine L Frisby
- Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, Adelaide, South Australia, Australia; South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| | - Stamatiki Kritas
- Women's & Children's Hospital, Adelaide, South Australia, Australia
| | - Hui Li
- Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, Adelaide, South Australia, Australia; South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| | - George Hatzinikolas
- Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, Adelaide, South Australia, Australia; South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| | - Tracey A O'Donnell
- Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, Adelaide, South Australia, Australia; South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| | - Gary A Wittert
- Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, Adelaide, South Australia, Australia; South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia; Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Amanda J Page
- Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, Adelaide, South Australia, Australia; South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia; Royal Adelaide Hospital, Adelaide, South Australia, Australia
| |
Collapse
|
14
|
Perez-Burgos A, Wang L, McVey Neufeld KA, Mao YK, Ahmadzai M, Janssen LJ, Stanisz AM, Bienenstock J, Kunze WA. The TRPV1 channel in rodents is a major target for antinociceptive effect of the probiotic Lactobacillus reuteri DSM 17938. J Physiol 2015; 593:3943-57. [PMID: 26084409 DOI: 10.1113/jp270229] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 06/16/2015] [Indexed: 12/17/2022] Open
Abstract
Certain probiotic bacteria have been shown to reduce distension-dependent gut pain, but the mechanisms involved remain obscure. Live luminal Lactobacillus reuteri (DSM 17938) and its conditioned medium dose dependently reduced jejunal spinal nerve firing evoked by distension or capsaicin, and 80% of this response was blocked by a specific TRPV1 channel antagonist or in TRPV1 knockout mice. The specificity of DSM action on TRPV1 was further confirmed by its inhibition of capsaicin-induced intracellular calcium increases in dorsal root ganglion neurons. Another lactobacillus with ability to reduce gut pain did not modify this response. Prior feeding of rats with DSM inhibited the bradycardia induced by painful gastric distension. These results offer a system for the screening of new and improved candidate bacteria that may be useful as novel therapeutic adjuncts in gut pain. Certain bacteria exert visceral antinociceptive activity, but the mechanisms involved are not determined. Lactobacillus reuteri DSM 17938 was examined since it may be antinociceptive in children. Since transient receptor potential vanilloid 1 (TRPV1) channel activity may mediate nociceptive signals, we hypothesized that TRPV1 current is inhibited by DSM. We tested this by examining the effect of DSM on the firing frequency of spinal nerve fibres in murine jejunal mesenteric nerve bundles following serosal application of capsaicin. We also measured the effects of DSM on capsaicin-evoked increase in intracellular Ca(2+) or ionic current in dorsal root ganglion (DRG) neurons. Furthermore, we tested the in vivo antinociceptive effects of oral DSM on gastric distension in rats. Live DSM reduced the response of capsaicin- and distension-evoked firing of spinal nerve action potentials (238 ± 27.5% vs. 129 ± 17%). DSM also reduced the capsaicin-evoked TRPV1 ionic current in DRG neuronal primary culture from 83 ± 11% to 41 ± 8% of the initial response to capsaicin only. Another lactobacillus (Lactobacillus rhamnosus JB-1) with known visceral anti-nociceptive activity did not have these effects. DSM also inhibited capsaicin-evoked Ca(2+) increase in DRG neurons; an increase in Ca(2+) fluorescence intensity ratio of 2.36 ± 0.31 evoked by capsaicin was reduced to 1.25 ± 0.04. DSM releasable products (conditioned medium) mimicked DSM inhibition of capsaicin-evoked excitability. The TRPV1 antagonist 6-iodonordihydrocapsaicin or the use of TRPV1 knock-out mice revealed that TRPV1 channels mediate about 80% of the inhibitory effect of DSM on mesenteric nerve response to high intensity gut distension. Finally, feeding with DSM inhibited perception in rats of painful gastric distension. Our results identify a specific target channel for a probiotic with potential therapeutic properties.
Collapse
Affiliation(s)
- Azucena Perez-Burgos
- McMaster Brain-Body Institute, St Joseph's Healthcare, Hamilton, 50 Charlton Avenue East, Hamilton, Ontario, Canada, L8N 4A6
| | - Lu Wang
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Karen-Anne McVey Neufeld
- McMaster Brain-Body Institute, St Joseph's Healthcare, Hamilton, 50 Charlton Avenue East, Hamilton, Ontario, Canada, L8N 4A6
| | - Yu-Kang Mao
- McMaster Brain-Body Institute, St Joseph's Healthcare, Hamilton, 50 Charlton Avenue East, Hamilton, Ontario, Canada, L8N 4A6
| | - Mustafa Ahmadzai
- Firestone Institute for Respiratory Health, St Joseph's Hospital, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Luke J Janssen
- Firestone Institute for Respiratory Health, St Joseph's Hospital, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Andrew M Stanisz
- McMaster Brain-Body Institute, St Joseph's Healthcare, Hamilton, 50 Charlton Avenue East, Hamilton, Ontario, Canada, L8N 4A6
| | - John Bienenstock
- McMaster Brain-Body Institute, St Joseph's Healthcare, Hamilton, 50 Charlton Avenue East, Hamilton, Ontario, Canada, L8N 4A6.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Wolfgang A Kunze
- McMaster Brain-Body Institute, St Joseph's Healthcare, Hamilton, 50 Charlton Avenue East, Hamilton, Ontario, Canada, L8N 4A6
| |
Collapse
|
15
|
Deberry JJ, Bielefeldt K, Davis BM, Szigethy EM, Hartman DJ, Coates MD. Abdominal pain and the neurotrophic system in ulcerative colitis. Inflamm Bowel Dis 2014; 20:2330-9. [PMID: 25358061 PMCID: PMC8524787 DOI: 10.1097/mib.0000000000000207] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND We undertook a study to test the hypothesis that inflammation alters peripheral sensory mechanisms, thereby contributing to chronic abdominal pain in ulcerative colitis (UC). METHODS Patients with UC and healthy individuals rated abdominal pain using a visual analog scale and completed surveys describing anxiety or depression (Hospital Anxiety and Depression Score) and gastrointestinal symptoms (Rome III questionnaire). Patient age, sex, and severity of inflammation were determined. Rectal biopsies were processed using immunohistochemical techniques to assess nerve fiber density and real-time PCR to determine transcript expression of neurotrophins (nerve growth factor, glial cell-derived neurotrophic factor, artemin, neurturin), ion channels (transient receptor potential vanilloid type 1, transient receptor potential ankyrin 1) and inflammatory mediators (tumor necrosis factor-α, interleukin [IL]-1β, IL-6, IL-10, IL-17). RESULTS A total of 77 patients with UC (27 female, 50 male) and 21 controls (10 female, 11 male) were enrolled. Patients with UC with pain had significantly higher depression scores than controls and patients with UC without pain (P < 0.05). There was no correlation between any of the inflammatory markers and pain scores. Visual analog scale pain scores significantly correlated with younger age, higher depression scores, increased expression of neurturin and decreased expression of transient receptor potential ankyrin 1 in the mucosa. Mucosal nerve fiber density did not correlate with any measures of inflammation or pain. Only higher depression scores independently predicted pain in UC (r > 0.5). CONCLUSIONS We did not observe changes in mucosal innervation and did not see a significant relationship between nerve fiber density, inflammatory mediators, neurotrophic factors, or mucosal ion channel expression and pain. In contrast, the importance of depression as the only independent predictor of pain ratings mirrors functional disorders, where central processes significantly contribute to symptom development and/or perpetuation.
Collapse
Affiliation(s)
- Jennifer J. Deberry
- Department of Psychology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Klaus Bielefeldt
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Brian M. Davis
- Department of Neurosciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Eva M. Szigethy
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Douglas J. Hartman
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Matthew D. Coates
- Department of Medicine, Division of Gastroenterology, VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania
| |
Collapse
|
16
|
Bae JY, Kim JH, Cho YS, Mah W, Bae YC. Quantitative analysis of afferents expressing substance P, calcitonin gene-related peptide, isolectin B4, neurofilament 200, and Peripherin in the sensory root of the rat trigeminal ganglion. J Comp Neurol 2014; 523:126-38. [DOI: 10.1002/cne.23672] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 08/21/2014] [Accepted: 08/25/2014] [Indexed: 12/19/2022]
Affiliation(s)
- Jin Young Bae
- Department of Anatomy and Neurobiology; School of Dentistry, Kyungpook National University; Daegu 700-412 South Korea
| | - Jae Hyun Kim
- Department of Anatomy and Neurobiology; School of Dentistry, Kyungpook National University; Daegu 700-412 South Korea
| | - Yi Sul Cho
- Department of Anatomy and Neurobiology; School of Dentistry, Kyungpook National University; Daegu 700-412 South Korea
| | - Won Mah
- Department of Anatomy and Neurobiology; School of Dentistry, Kyungpook National University; Daegu 700-412 South Korea
| | - Yong Chul Bae
- Department of Anatomy and Neurobiology; School of Dentistry, Kyungpook National University; Daegu 700-412 South Korea
| |
Collapse
|
17
|
Yu X, Hu Y, Yu S. Effects of acid on vagal nociceptive afferent subtypes in guinea pig esophagus. Am J Physiol Gastrointest Liver Physiol 2014; 307:G471-8. [PMID: 24994852 PMCID: PMC4137112 DOI: 10.1152/ajpgi.00156.2014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Acid reflux-induced heartburn and noncardiac chest pain are processed peripherally by sensory nerve endings in the wall of the esophagus, but the underlying mechanism is still unclear. This study aims to determine the effects of acid on esophageal vagal nociceptive afferent subtypes. Extracellular single-unit recordings were performed in guinea pig vagal nodose or jugular C fiber neurons by using ex vivo esophageal-vagal preparations with intact nerve endings in the esophagus. We recorded action potentials (AP) of esophageal nodose or jugular C fibers evoked by acid perfusion and compared esophageal distension-evoked AP before and after acid perfusion. Acid perfusion for 30 min (pH range 7.4 to 5.8) did not evoke AP in nodose C fibers but significantly decreased their responses to esophageal distension, which could be recovered after washing out acid for 90 min. In jugular C fibers, acid perfusion not only evoked AP but also inhibited their responses to esophageal distension, which were not recovered after washing out acid for 120 min. Lower concentration of capsaicin perfusion mimicked acid-induced effects in nodose and jugular C fibers. Pretreatment with TRPV1 antagonist AMG9810, but not acid-sensing ion channel (ASIC) inhibitor amiloride, significantly inhibited acid-induced effects in nodose and jugular C fiber. These results demonstrate that esophageal vagal nociceptive afferent nerve subtypes display distinctive responses to acid. Acid activates jugular, but not nodose, C fibers and inhibits both of their responses to esophageal distension. These effects are mediated mainly through TRPV1. This inhibitory effect is a novel finding and may contribute to esophageal sensory/motor dysfunction in acid reflux diseases.
Collapse
Affiliation(s)
| | | | - Shaoyong Yu
- Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
18
|
Herrity AN, Rau KK, Petruska JC, Stirling DP, Hubscher CH. Identification of bladder and colon afferents in the nodose ganglia of male rats. J Comp Neurol 2014; 522:3667-82. [PMID: 24845615 DOI: 10.1002/cne.23629] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 05/19/2014] [Accepted: 05/19/2014] [Indexed: 12/14/2022]
Abstract
The sensory neurons innervating the urinary bladder and distal colon project to similar regions of the central nervous system and often are affected simultaneously by various diseases and disorders, including spinal cord injury. Anatomical and physiological commonalities between the two organs involve the participation of shared spinally derived pathways, allowing mechanisms of communication between the bladder and colon. Prior electrophysiological data from our laboratory suggest that the bladder also may receive sensory innervation from a nonspinal source through the vagus nerve, which innervates the distal colon as well. The present study therefore aimed to determine whether anatomical evidence exists for vagal innervation of the male rat urinary bladder and to assess whether those vagal afferents also innervate the colon. Additionally, the relative contribution to bladder and colon sensory innervation of spinal and vagal sources was determined. By using lipophilic tracers, neurons that innervated the bladder and colon in both the nodose ganglia (NG) and L6/S1 and L1/L2 dorsal root ganglia (DRG) were quantified. Some single vagal and spinal neurons provided dual innervation to both organs. The proportions of NG afferents labeled from the bladder did not differ from spinal afferents labeled from the bladder when considering the collective population of total neurons from either group. Our results demonstrate evidence for vagal innervation of the bladder and colon and suggest that dichotomizing vagal afferents may provide a neural mechanism for cross-talk between the organs.
Collapse
Affiliation(s)
- April N Herrity
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky, 40202; Kentucky Spinal Cord Injury Research Center University of Louisville, Louisville, Kentucky, 40202
| | | | | | | | | |
Collapse
|
19
|
Gautron L, Lee CE, Lee S, Elmquist JK. Melanocortin-4 receptor expression in different classes of spinal and vagal primary afferent neurons in the mouse. J Comp Neurol 2013; 520:3933-48. [PMID: 22592759 DOI: 10.1002/cne.23137] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Melanocortin-4 receptor (MC4R) ligands are known to modulate nociception, but the site of action of MC4R signaling on nociception remains to be elucidated. The current study investigated MC4R expression in dorsal root ganglia (DRG) of the MC4R-GFP reporter mouse. Because MC4R is known to be expressed in vagal afferent neurons in the nodose ganglion (NG), we also systematically compared MC4R-expressing vagal and spinal afferent neurons. Abundant green fluorescent protein (GFP) immunoreactivity was found in about 45% of DRG neuronal profiles (at the mid-thoracic level), the majority being small-sized profiles. Immunohistochemistry combined with in situ hybridization confirmed that GFP was genuinely produced in MC4R-expressing neurons in the DRG. While a large number of GFP profiles in the DRG coexpressed Nav1.8 mRNA (84%) and bound isolectin B4 (72%), relatively few GFP profiles were positive for NF200 (16%) or CGRP (13%), suggesting preferential MC4R expression in C-fiber nonpeptidergic neurons. By contrast, GFP in the NG frequently colocalized with Nav1.8 mRNA (64%) and NF200 (29%), but only to a moderate extent with isolectin B4 (16%). Lastly, very few GFP profiles in the NG expressed CGRP (5%) or CART (4%). Together, our findings demonstrate variegated MC4R expression in different classes of vagal and spinal primary afferent neurons, and underscore the role of the melanocortin system in modulating nociceptive and nonnociceptive peripheral sensory modalities.
Collapse
Affiliation(s)
- Laurent Gautron
- Department of Internal Medicine, Division of Hypothalamic Research, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9077, USA.
| | | | | | | |
Collapse
|
20
|
Powley TL, Baronowsky EA, Gilbert JM, Hudson CN, Martin FN, Mason JK, McAdams JL, Phillips RJ. Vagal afferent innervation of the lower esophageal sphincter. Auton Neurosci 2013; 177:129-42. [PMID: 23583280 DOI: 10.1016/j.autneu.2013.03.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 03/18/2013] [Accepted: 03/20/2013] [Indexed: 02/02/2023]
Abstract
To supply a fuller morphological characterization of the vagal afferents innervating the lower esophageal sphincter (LES), specifically to label vagal terminals in the tissues forming the LES in the gastroesophageal junction, the present experiment employed injections of dextran biotin into the nodose ganglia of rats. Four types of vagal afferents innervated the LES. Clasp and sling muscle fibers were directly and prominently innervated by intramuscular arrays (IMAs). Individual IMA terminals subtended about 16° of arc of the esophageal circumference, and, collectively, the terminal fields were distributed within the muscle ring to establish a 360° annulus of mechanoreceptors in the sphincter wall. 3D morphometry of the terminals established that, compared to sling muscle IMAs, clasp muscle IMAs had more extensive arbors and larger receptive fields. In addition, at the cardia, local myenteric ganglia between smooth muscle sheets and striated muscle bundles were innervated by intraganglionic laminar endings (IGLEs), in a pattern similar to the innervation of the myenteric plexus throughout the stomach and esophagus. Finally, as previously described, the principle bundle of sling muscle fibers that links LES sphincter tissue to the antropyloric region of the lesser curvature was innervated by exceptionally long IMAs as well as by unique web ending specializations at the distal attachment of the bundle. Overall, the specialized varieties of densely distributed vagal afferents innervating the LES underscore the conclusion that these sensory projections are critically involved in generating LES reflexes and may be promising targets for managing esophageal dysfunctions.
Collapse
Affiliation(s)
- Terry L Powley
- Purdue University, Department of Psychological Sciences, West Lafayette, IN 47907-2081, United States.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Makimura Y, Ito K, Kuwahara M, Tsubone H. Augmented activity of the pelvic nerve afferent mediated by TRP channels in dextran sulfate sodium (DSS)-induced colitis of rats. J Vet Med Sci 2012; 74:1007-13. [PMID: 22498929 DOI: 10.1292/jvms.11-0547] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Enteritis has been recognized as a major symptom in domestic animals and human patients suffering from feed and food poisonings. The aim of the present study was to clarify the excitatory mechanism of the pelvic nerve afferent which may influence the occurrence of enteritis in response to nociceptive chemical stimuli of the colon in normal and abnormal rats with colitis induced by dextran sulfate sodium (DSS). The pelvic nerve afferent activity was markedly increased by colonic instillation of solution (0.5 ml) of acetic acid (5-25%) and capsaicin (100 μg/ml). The nerve activity was augmented by colonic instillation of capsaicin to a greater extent in rats with DSS-induced colitis than in normal control rats. This augmented activity by capsaicin was more prominent at one day (DSS-1) than at 8 day (DSS-8) after the administration of DSS. The increased nerve activity caused by capsaicin in DSS-1 and DSS-8 was significantly inhibited by pretreatment with ruthenium red, which is a nonselective inhibitor of TRP channels of unmyelinated C-fibers (nociceptors). In conclusion, it was elucidated that the nociceptive function of the pelvic nerve was largely elevated at one day after DSS-induced colitis and such increased function was mostly mediated by TRP channels.
Collapse
Affiliation(s)
- Yukitoshi Makimura
- Department of Comparative Pathophysiology, Division of Veterinary Medical Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Tokyo 113-8657, Japan
| | | | | | | |
Collapse
|
22
|
Brederson JD, Chu KL, Reilly RM, Brown BS, Kym PR, Jarvis MF, McGaraughty S. TRPV1 antagonist, A-889425, inhibits mechanotransmission in a subclass of rat primary afferent neurons following peripheral inflammation. Synapse 2011; 66:187-95. [PMID: 21953601 DOI: 10.1002/syn.20992] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 09/20/2011] [Indexed: 11/09/2022]
Abstract
TRPV1 (transient receptor potential vanilloid family type 1) is a nonselective cation channel that is activated and/or sensitized by noxious heat, protons, and other endogenous molecules released following tissue injury. In addition, a role for TRPV1 in mechanotransmission is emerging. We have recently reported that a selective TRPV1 receptor antagonist, A-889425, reduces mechanical allodynia and spinal neuron responses to mechanical stimulation of complete Freund's adjuvant (CFA)-inflamed rat hind paws. The population of peripheral nerve fibers through which TRPV1 antagonists mediate their effect on mechanotransmission have not yet been described. The objective of this study was to characterize TRPV1-mediated modulation of mechanically evoked activity in sensory axons innervating rat hind paws. We used an in vitro skin-nerve preparation to record neural activity from single axons isolated from rat tibial nerve. Single fibers were classified by conduction velocity, mechanical threshold, and stimulus-response relationships. We used A-889425 to investigate uninjured and inflamed skin afferent neuron populations to evoked mechanical stimulation. Application of A-889425 had no effect on the mechanical responsiveness of Aδ and C-fiber units innervating uninjured skin. In contrast, A-889425 inhibited responses of slowly conducting Aδ fiber units to noxious mechanical stimulation in a population of axons innervating CFA-inflamed hind paws. These data support a role for TRPV1 in mechanotransmission following peripheral inflammation, and highlight the importance of a distinct subclass of primary afferent neurons in mediating this effect.
Collapse
Affiliation(s)
- Jill-Desiree Brederson
- Neuroscience Research, Global Pharmaceutical Research and Development, Abbott Laboratories, Abbott Park, Illinois 60064-6123, USA.
| | | | | | | | | | | | | |
Collapse
|
23
|
Powley TL, Phillips RJ. Vagal intramuscular array afferents form complexes with interstitial cells of Cajal in gastrointestinal smooth muscle: analogues of muscle spindle organs? Neuroscience 2011; 186:188-200. [PMID: 21530617 PMCID: PMC3110524 DOI: 10.1016/j.neuroscience.2011.04.036] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2011] [Revised: 04/12/2011] [Accepted: 04/14/2011] [Indexed: 01/11/2023]
Abstract
Intramuscular arrays (IMAs), vagal mechanoreceptors that innervate gastrointestinal smooth muscle, have not been completely described structurally or functionally. To delineate more fully the architecture of IMAs and to consider the structure-function implications of the observations, the present experiment examined the organization of the IMA terminal arbors and the accessory tissue elements of those arbors. IMA terminal fields, labeled by injection of biotinylated dextran into the nodose ganglia, were examined in whole mounts of rat gastric smooth muscle double-labeled with immunohistochemistry for interstitial cells of Cajal (ICCs; c-Kit) and/or inputs of different neuronal efferent transmitter (markers: tyrosine hydroxylase (TH), vesicular acetylcholine transporter (VAChT), and nitric oxide synthase (NOS)) or afferent neuropeptidergic (calcitonin gene-related peptide (CGRP)) phenotypes. IMAs make extensive varicose and lamellar contacts with ICCs. In addition, axons of the multiple efferent and afferent phenotypes examined converge and articulate with IMA terminal arbors innervating ICCs. This architecture is consistent with the hypothesis that IMAs, or the multiply innervated IMA-ICC complexes they form, can function as stretch receptors. The tissue organization is also consonant with the proposal that those units can operate as functional analogues of muscle spindle organs. For electrophysiological assessments of IMA functions, experiments will need protocols that preserve both the complex architecture and the dynamic operations of IMA-ICC complexes.
Collapse
Affiliation(s)
- T L Powley
- Purdue University, West Lafayette, IN 47906, USA.
| | | |
Collapse
|
24
|
Liu LS, Shenoy M, Pasricha PJ. The analgesic effects of the GABAB receptor agonist, baclofen, in a rodent model of functional dyspepsia. Neurogastroenterol Motil 2011; 23:356-61, e160-1. [PMID: 21199535 DOI: 10.1111/j.1365-2982.2010.01649.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND The amino acid γ-aminobutyric acid (GABA) is an important modulator of pain but its role in visceral pain syndromes is just beginning to be studied. Our aims were to investigate the effect and mechanism of action of the GABA(B) receptor agonist, baclofen, on gastric hypersensitivity in a validated rat model of functional dyspepsia (FD). METHODS 10-day-old male rats received 0.2 mL of 0.1% iodoacetamide in 2% sucrose daily by oral gavages for 6 days. Control group received 2% sucrose. At 8-10 weeks rats treated with baclofen (0.3, 1, and 3 mg kg(-1) bw) or saline were tested for behavioral and electromyographic (EMG) visceromotor responses; gastric spinal afferent nerve activity to graded gastric distention and Fos protein expression in dorsal horn of spinal cord segments T8-T10 to noxious gastric distention. KEY RESULTS Baclofen administration was associated with a significant attenuation of the behavioral and EMG responses (at 1 and 3 mg kg(-1)) and expression of Fos in T8 and T9 segments in neonatal iodoacetamide sensitized rats. However, baclofen administration did not significantly affect splanchnic nerve activity to gastric distention. Baclofen (3 mg kg(-1)) also significantly reduced the expression of spinal Fos in response to gastric distention in control rats to a lesser extent than sensitized rats. CONCLUSIONS & INFERENCES Baclofen is effective in attenuating pain associated responses in an experimental model of FD and appears to act by central mechanisms. These results provide a basis for clinical trials of this drug in FD patients.
Collapse
Affiliation(s)
- L S Liu
- Division of Gastroenterology and Hepatology, Stanford University Medical Center, Stanford, CA 94305-5187, USA
| | | | | |
Collapse
|
25
|
Murphy MC, Fox EA. Mice deficient in brain-derived neurotrophic factor have altered development of gastric vagal sensory innervation. J Comp Neurol 2010; 518:2934-51. [PMID: 20533354 DOI: 10.1002/cne.22372] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Vagal sensory neurons are dependent on neurotrophins for survival during development. Here, the contribution of brain-derived neurotrophic factor (BDNF) to survival and other aspects of gastric vagal afferent development was investigated. Post-mortem anterograde tracing with 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbo-cyanine perchlorate (DiI) was used to label selectively vagal projections to the stomach on postnatal days (P) 0, 3, 4, and 6 in wild types and heterozygous or homozygous BDNF mutants. Sampling sites distributed throughout the ventral stomach wall were scanned with a confocal microscope, and vagal axon bundles, single axons, putative mechanoreceptor precursors (intraganglionic laminar endings, IGLEs; intramuscular arrays, IMAs), and efferent terminals were quantified. Also, myenteric neurons, which are innervated by IGLEs, were stained with cuprolinic blue and counted. Quantitative comparisons across wild-type stomach compartments demonstrated that the adult distribution of IMAs was not present at P0 but began to form by P3-6. Among all the quantified elements, at P0, only IGLE density was significantly different in homozygous mutants compared with wild types, exhibiting a 50% reduction. Also, antrum innervation appeared disorganized, and some putative IMA precursors had truncated telodendria. At P3-6, the effect on IGLEs had recovered, the disorganization of antrum innervation had partially recovered, and some IMA telodendria were still truncated. The present results suggest that gastric IGLEs are among the vagal sensory neurons dependent on BDNF for survival or axon guidance. Alternatively, BDNF deficiency may delay gastric IGLE development. Also, BDNF may contribute to IMA differentiation and patterning of antral vagal innervation.
Collapse
Affiliation(s)
- Michelle C Murphy
- Behavioral Neurogenetics Laboratory, Department of Psychological Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| | | |
Collapse
|
26
|
Immunohistochemical characteristics of neurons in nodose ganglia projecting to the different chambers of the rat heart. Auton Neurosci 2010; 155:33-8. [DOI: 10.1016/j.autneu.2010.01.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Revised: 12/31/2009] [Accepted: 01/06/2010] [Indexed: 12/26/2022]
|
27
|
Vagal afferent nerves with the properties of nociceptors. Auton Neurosci 2009; 153:12-20. [PMID: 19751993 DOI: 10.1016/j.autneu.2009.08.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Revised: 08/05/2009] [Accepted: 08/10/2009] [Indexed: 12/19/2022]
Abstract
Vagal afferent nerves are essential for optimal neural regulation of visceral organs, but are not often considered important for their defense. However, there are well-defined subsets of vagal afferent nerves that have activation properties indicative of specialization to detect potentially harmful stimuli (nociceptors). This is clearly exemplified by the vagal bronchopulmonary C-fibers that are quiescent in healthy lungs but are readily activated by noxious chemicals and inflammatory molecules. Vagal afferent nerves with similar activation properties have been also identified in the esophagus and probably exist in other visceral tissues. In addition, these putative vagal nociceptors often initiate defensive reflexes, can be sensitized, and have the capacity to induce central sensitization. This set of properties is a characteristic of nociceptors in somatic tissues.
Collapse
|
28
|
Romanovsky AA, Almeida MC, Garami A, Steiner AA, Norman MH, Morrison SF, Nakamura K, Burmeister JJ, Nucci TB. The transient receptor potential vanilloid-1 channel in thermoregulation: a thermosensor it is not. Pharmacol Rev 2009; 61:228-61. [PMID: 19749171 PMCID: PMC2763780 DOI: 10.1124/pr.109.001263] [Citation(s) in RCA: 198] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The development of antagonists of the transient receptor potential vanilloid-1 (TRPV1) channel as pain therapeutics has revealed that these compounds cause hyperthermia in humans. This undesirable on-target side effect has triggered a surge of interest in the role of TRPV1 in thermoregulation and revived the hypothesis that TRPV1 channels serve as thermosensors. We review literature data on the distribution of TRPV1 channels in the body and on thermoregulatory responses to TRPV1 agonists and antagonists. We propose that two principal populations of TRPV1-expressing cells have connections with efferent thermoeffector pathways: 1) first-order sensory (polymodal), glutamatergic dorsal-root (and possibly nodose) ganglia neurons that innervate the abdominal viscera and 2) higher-order sensory, glutamatergic neurons presumably located in the median preoptic hypothalamic nucleus. We further hypothesize that all thermoregulatory responses to TRPV1 agonists and antagonists and thermoregulatory manifestations of TRPV1 desensitization stem from primary actions on these two neuronal populations. Agonists act primarily centrally on population 2; antagonists act primarily peripherally on population 1. We analyze what roles TRPV1 might play in thermoregulation and conclude that this channel does not serve as a thermosensor, at least not under physiological conditions. In the hypothalamus, TRPV1 channels are inactive at common brain temperatures. In the abdomen, TRPV1 channels are tonically activated, but not by temperature. However, tonic activation of visceral TRPV1 by nonthermal factors suppresses autonomic cold-defense effectors and, consequently, body temperature. Blockade of this activation by TRPV1 antagonists disinhibits thermoeffectors and causes hyperthermia. Strategies for creating hyperthermia-free TRPV1 antagonists are outlined. The potential physiological and pathological significance of TRPV1-mediated thermoregulatory effects is discussed.
Collapse
Affiliation(s)
- Andrej A Romanovsky
- Systemic Inflammation Laboratory, St. Joseph's Hospital and Medical Center, Phoenix, Arizona 85013, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Tan LL, Bornstein JC, Anderson CR. Neurochemical and morphological phenotypes of vagal afferent neurons innervating the adult mouse jejunum. Neurogastroenterol Motil 2009; 21:994-1001. [PMID: 19413682 DOI: 10.1111/j.1365-2982.2009.01322.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Whilst much is known about the function and influence of vagal afferents on the mammalian upper gastrointestinal tract, the phenotypes of the different types of vagal afferent neurons innervating the jejunum is unknown. We have previously shown that spinal afferents supplying the jejunum are predominantly medium-sized sensory neurons that express specific combinations of transient receptor potential vanilloid type 1 (TRPV1), neuronal nitric oxide synthase (NOS) and calcitonin-gene related peptide (CGRP) and that they lack binding for isolectin B4 (IB4). This study aimed to identify the chemical phenotypes and somal sizes of jejunal afferent neurons in the mouse vagal ganglion. Jejunal vagal afferents were identified by retrograde labelling with sub-serosal injections of cholera toxin B (CTB) into the jejunal wall and assessed for IB4-binding, TRPV1-, NOS- and CGRP-immunoreactivities using fluorescent microscopy. Almost all (99%) of CTB-labelled vagal afferent neurons were small- and medium-sized sensory cells. Most (81%) jejunal vagal afferents bound IB4 but fewer (32%) expressed TRPV1. A quarter (25%) of those that bound IB4 co-expressed TRPV1-immunoreactivity whilst 77% of TRPV1-expressing jejunal vagal afferent neurons bound IB4. NOS (0%) and CGRP (0%) expression was absent from all CTB-labelled cells examined. In conclusion, vagal afferents innervating the jejunum differ in their expression of IB4, TRPV1, CGRP and NOS from their spinal counterparts, suggesting that the peripheral endings for extrinsic sensory neurons terminating within the enteric nervous system can be identified selectively.
Collapse
Affiliation(s)
- L L Tan
- Department of Physiology, University of Melbourne, Parkville, VIC, Australia.
| | | | | |
Collapse
|
30
|
MCILWRATH SL, DAVIS BM, BIELEFELDT K. Deletion of P2X3 receptors blunts gastro-oesophageal sensation in mice. Neurogastroenterol Motil 2009; 21:890-e66. [PMID: 19368663 PMCID: PMC2837463 DOI: 10.1111/j.1365-2982.2009.01292.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Prior studies have demonstrated P2X receptor expression in the majority of nodose neurons. Immunoreactivity for P2X receptors has also been seen in putative gastric mechanoreceptors, the intraganglionic laminar endings. We therefore hypothesized that deletion of P2X3 receptors will blunt responses to gastric distension in vagal sensory neurons. Using wildtype and P2X3(-/-) mice, we examined responses to purinergic agonists in retrogradely labelled gastric sensory neurons with patch-clamp techniques. Activation of gastro-oesophageal neurons by fluid distension was studied with intracellular electrodes. Distension-evoked ATP release into the gastric lumen was determined with the luciferase assay and intake and gastric emptying of a solid meal was assessed. ATP triggered inward currents in 80% of gastric nodose neurons. In P2X3(-/-) mice, the peak current density was lower compared to controls. Ten of 14 controls but none of 30 neurons from P2X3(-/-) mice responded to alpha,beta-metATP. Gastro-oesophageal sensory neurons of P2X3(-/-) mice showed a blunted response to fluid distension of oesophagus and stomach. This difference was not explained by differences in distension-evoked ATP release, which did not differ between knockout mice and controls. Food intake during a 3-h period was lower in P2X3(-/-) mice. Gastric emptying of a solid meal was slightly faster in knockout mice after 1.5 h, but did not differ between groups at 3 h. Our data support a role of purinergic signalling in gastric vagal afferents. Considering the role of vagal input in sensations of fullness or nausea, P2X receptors may be interesting treatment targets for dyspeptic symptoms.
Collapse
Affiliation(s)
- S. L. MCILWRATH
- Department of Anesthesia, University of Pittsburgh, Pittsburgh, PA, USA
| | - B. M. DAVIS
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA, Division of Gastroenterology, University of Pittsburgh, Pittsburgh, PA, USA
| | - K. BIELEFELDT
- Division of Gastroenterology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
31
|
Abstract
Changes in primary sensory neurons are likely to contribute to the emergence of chronic visceral pain. An important step in understanding visceral pain is the development of comprehensive phenotypes that combines functional and anatomical properties for these neurons. We developed a novel ex vivo physiology preparation in mice that allows intracellular recording from colon sensory neurons during colon distension, in the presence and absence of pharmacologic agents. This preparation also allows recovery of functionally characterized afferents for histochemical analysis. Recordings obtained from L6 dorsal root ganglion cells in C57BL/6 mice identified two distinct populations of distension-responsive colon afferents: high-firing frequency (HF) and low-firing frequency (LF) cells. Fluid distension of the colon elicited rapid firing (>20 Hz) in HF cells, whereas LF cells seldom fired >5 Hz. Distension response thresholds were significantly lower in HF cells (LF, 17.5 +/- 1.1 cmH(2)O; HF, 2.6 +/- 1.0 cmH(2)O). Responses of most LF afferents to colon distension were sensitized by luminal application of capsaicin (1 microm; 8 of 9 LF cells), mustard oil (100 microm; 10 of 12 LF cells), and low pH (pH 4.0; 5 of 6 LF cells). In contrast, few HF afferents were sensitized by capsaicin (3 of 9), mustard oil (2 of 7), or low pH (1 of 6) application. Few HF afferents (4 of 23) expressed the capsaicin receptor, TRPV1. In contrast, 87% (25 of 29) of LF afferents expressed TRPV1. TRPV1 has been shown to be required for development of inflammatory hyperalgesia. These results suggest a unique functional role of TRPV1-positive colon afferents that could be exploited to design specific therapies for visceral hypersensitivity.
Collapse
|
32
|
Christianson JA, Bielefeldt K, Altier C, Cenac N, Davis BM, Gebhart GF, High KW, Kollarik M, Randich A, Undem B, Vergnolle N. Development, plasticity and modulation of visceral afferents. ACTA ACUST UNITED AC 2008; 60:171-86. [PMID: 19150371 DOI: 10.1016/j.brainresrev.2008.12.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2008] [Indexed: 12/25/2022]
Abstract
Visceral pain is the most common reason for doctor visits in the US. Like somatic pain, virtually all visceral pain sensations begin with the activation of primary sensory neurons innervating the viscera and/or the blood vessels associated with these structures. Visceral afferents also play a central role in tissue homeostasis. Recent studies show that in addition to monitoring the state of the viscera, they perform efferent functions through the release of small molecules (e.g. peptides like CGRP) that can drive inflammation, thereby contributing to the development of visceral pathologies (e.g. diabetes Razavi, R., Chan, Y., Afifiyan, F.N., Liu, X.J., Wan, X., Yantha, J., Tsui, H., Tang, L., Tsai, S., Santamaria, P., Driver, J.P., Serreze, D., Salter, M.W., Dosch, H.M., 2006. TRPV1+ sensory neurons control beta cell stress and islet inflammation in autoimmune diabetes, Cell 127 1123-1135). Visceral afferents are heterogeneous with respect to their anatomy, neurochemistry and function. They are also highly plastic in that their cellular environment continuously influences their response properties. This plasticity makes them susceptible to long-term changes that may contribute significantly to the development of persistent pain states such as those associated with irritable bowel syndrome, pancreatitis, and visceral cancers. This review examines recent insights into visceral afferent anatomy and neurochemistry and how neonatal insults can affect the function of these neurons in the adult. New approaches to the treatment of visceral pain, which focus on primary afferents, will also be discussed.
Collapse
Affiliation(s)
- Julie A Christianson
- University of Pittsburgh School of Medicine, Pittsburgh Center for Pain Research, 200 Lothrop St., Pittsburgh, PA 16261, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Fasanella KE, Christianson JA, Chanthaphavong RS, Davis BM. Distribution and neurochemical identification of pancreatic afferents in the mouse. J Comp Neurol 2008; 509:42-52. [PMID: 18418900 DOI: 10.1002/cne.21736] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Dysfunction of primary afferents innervating the pancreas has been shown to contribute to the development of painful symptoms during acute and chronic pancreatitis. To investigate the distribution and neurochemical phenotype of pancreatic afferents, Alexa Fluor-conjugated cholera toxin B (CTB) was injected into the pancreatic head (CTB-488) and tail (CTB-555) of adult male mice to label neurons retrogradely in both the dorsal root ganglia (DRG) and nodose ganglia (NG). The NG and DRG (T5-T13) were processed for fluorescent immunohistochemistry and visualized by using confocal microscopy. Spinal pancreatic afferents were observed from T5 to T13, with the greatest contribution coming from T9-T12. The pancreatic afferents were equally distributed between right and left spinal ganglia; however, the innervation from the left NG was significantly greater than from the right. For both spinal and vagal afferents there was significantly greater innervation of the pancreatic head relative to the tail. The total number of retrogradely labeled afferents in the nodose was very similar to the total number of DRG afferents. The neurochemical phenotype of DRG neurons was dominated by transient receptor potential vanilloid 1 (TRPV1)-positive neurons (75%), GDNF family receptor alpha-3 (GFRalpha3)-positive neurons (67%), and calcitonin gene-related peptide (CGRP)-positive neurons(65%) neurons. In the NG, TRPV1-, GFRalpha3-, and CGRP-positive neurons constituted only 35%, 1%, and 15% of labeled afferents, respectively. The disparity in peptide and receptor expression between pancreatic afferents in the NG and DRG suggests that even though they contribute a similar number of primary afferents to the pancreas, these two populations may differ in regard to their nociceptive properties and growth factor dependency.
Collapse
Affiliation(s)
- Kenneth E Fasanella
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | |
Collapse
|
34
|
TRPA1 channels mediate cold temperature sensing in mammalian vagal sensory neurons: pharmacological and genetic evidence. J Neurosci 2008; 28:7863-75. [PMID: 18667618 DOI: 10.1523/jneurosci.1696-08.2008] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Cold thermoreceptors have been described in different territories of the vagus nerve. Application of cold temperature to these visceral afferents can evoke major protective reflexes and thermoregulatory responses. However, virtually nothing is known about the transduction mechanisms underlying cold sensitivity in vagal afferents. Here, we investigated the effects of cold stimulation on intracellular calcium responses and excitability of cultured vagal sensory neurons in the rat nodose ganglion. A large fraction of vagal neurons were activated by cold, with a mean threshold of approximately 24 degrees C. Cooling was accompanied by development of a small inward current and the firing of action potentials. Most cold-sensitive neurons were also activated by heat and capsaicin, suggesting a nociceptive function. The pharmacological response to TRPM8 and TRPA1 agonists and antagonists suggested that, unlike results observed in somatic tissues, TRPA1 is the major mediator of cold-evoked responses in vagal visceral neurons. Thus, most cold-evoked responses were potentiated by cinnamaldehyde, menthol, icilin, and BCTC [4-(3-chloro-pyridin-2-yl)-piperazine-1-carboxylic acid (4-tert-butyl-phenyl)-amide], agonists of TRPA1, and were inhibited by ruthenium red, camphor, and HC03001 [2-(1,3-dimethyl-2,6-dioxo-1,2,3,6-tetrahydro-7H-purin-7-yl)-N-(4-isopropylphenyl)acetamide]. Results in mouse nodose neurons revealed a similar pharmacological profile of cold-evoked responses. Furthermore, experiments in TRPA1 knock-out mice showed a large reduction in the percentage of cold-sensitive neurons compared with wild-type animals. Together, these results support an important role of TRPA1 channels in visceral thermosensation and indicate major differences in the transduction of temperature signals between somatic and visceral sensory neurons.
Collapse
|
35
|
Powley TL, Wang XY, Fox EA, Phillips RJ, Liu LWC, Huizinga JD. Ultrastructural evidence for communication between intramuscular vagal mechanoreceptors and interstitial cells of Cajal in the rat fundus. Neurogastroenterol Motil 2008; 20:69-79. [PMID: 17931338 DOI: 10.1111/j.1365-2982.2007.00990.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
To assess whether afferent vagal intramuscular arrays (IMAs), putative gastrointestinal mechanoreceptors, form contacts with interstitial cells of Cajal of the intramuscular type (ICC-IM) and to describe any such contacts, electron microscopic analyses were performed on the external muscle layers of the fundus containing dextran-labelled diaminobenzidin (DAB)-stained IMAs. Special staining and embedding techniques were developed to preserve ultrastructural features. Within the muscle layers, IMA varicosities were observed in nerve bundles traversing major septa without contact with ICC-IM, contacting unlabelled neurites and glial cells. IMA varicosities were encountered in minor septa in contact with ICC-IM which were not necessarily in close contact with muscle cells. In addition, IMA varicosities were observed within muscle bundles in close contact with ICC-IM which were in gap junction contact with muscle cells. IMAs formed varicosities containing predominantly small agranular vesicles, occasionally large granular vesicles and prejunctional thickenings in apposition to ICC-IM processes, indicating communication between ICC and IMA via synapse-like contacts. Taken together, these different morphological features are consistent with a hypothesized mechanoreceptor role for IMA-ICC complexes. Intraganglionic laminar ending varicosities contacted neuronal somata and dendrites in the myenteric plexus of the fundus, but no contacts with ICC associated with Auerbach's plexus were encountered.
Collapse
Affiliation(s)
- T L Powley
- Department of Psychological Sciences, Purdue University, West Lafayette, IN, USA
| | | | | | | | | | | |
Collapse
|
36
|
Bielefeldt K, Davis BM. Differential effects of ASIC3 and TRPV1 deletion on gastroesophageal sensation in mice. Am J Physiol Gastrointest Liver Physiol 2008; 294:G130-8. [PMID: 17975130 DOI: 10.1152/ajpgi.00388.2007] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Using a recently developed in vitro preparation of vagal afferent pathways, we examined the role of TRPV1 and ASIC3 on the mechano- and chemosensitive properties of gastroesophageal sensory neurons. Esophagus, stomach, and the intact vagus nerves up to the central terminations were carefully dissected from TRPV1 and ASIC3 knockout mice and wild-type controls. The organ preparation was placed in a superfusion chamber to obtain intracellular recordings from the soma of nodose neurons during luminal stimulation of esophagus and stomach. The proximal esophagus and distal stomach were separately intubated to allow perfusion and graded luminal distension. In wild-type mice, mechanosensitive neurons were activated by low distension pressures and encoded stimulus intensity over the entire range tested. Luminal acidification significantly transiently increased the resting frequency but did not alter responses to subsequent mechanical stimulation. ASIC3 and TRPV1 knockout significantly blunted responses to distension compared with wild-type controls, with deletion of TRPV1 having a more significant effect than ASIC3 deletion. Luminal acidification did not activate mechanosensory neurons in ASIC3 and TRPV1 knockout mice. Our data demonstrate a role of TRPV1 in chemo- and mechanosensation of gastroesophageal afferents. ASIC3 may contribute to acid sensation but plays a more subtle role in responses to distending stimuli. Considering the importance of acid in dyspeptic symptoms and gastroesophageal reflux, TRPV1 or ASIC3 may be an attractive target for treatment strategies in patients who do not respond to acid suppressive therapy.
Collapse
Affiliation(s)
- Klaus Bielefeldt
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | | |
Collapse
|
37
|
Zhong F, Christianson JA, Davis BM, Bielefeldt K. Dichotomizing axons in spinal and vagal afferents of the mouse stomach. Dig Dis Sci 2008; 53:194-203. [PMID: 17510799 DOI: 10.1007/s10620-007-9843-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Accepted: 04/05/2007] [Indexed: 12/23/2022]
Abstract
UNLABELLED Visceral sensory input is typically poorly localized. We hypothesized that gastric sensory neurons frequently dichotomize, innervating more than one anatomically distinct region and contributing to the poor spatial discrimination. METHODS The neurochemical phenotype and projections of gastro-duodenal sensory neurons were determined in adult mice. Choleratoxin B (CTB) coupled to different fluorophors was injected into fundus, corpus, antrum, and/or distal duodenum. Immunoreactivity for TRPV1, neurofilament (N52), calcitonin gene-related peptide (CGRP), presence of isolectin B4 (IB4) and labeling for retrograde labels was determined. RESULTS Depending on the distance between injection sites, staining for two retrograde tracers was seen in 6-48% of neurons. Most dorsal root ganglion (DRG) neurons showed immunoreactivity for TRPV1 and CGRP. In contrast, about half of the gastric nodose ganglion (NG) neurons had TRPV1 immunoreactivity or showed IB4 labeling with only 10% CGRP-positive neurons. N52 immunoreactivity was present in one-fourth of gastroduodenal DRG and NG neurons. CONCLUSION Visceral sensory neurons have neurochemical properties and may project to more than one anatomically distinct area. Neurons with such dichotomizing axons may contribute to the poor ability to localize or discriminate visceral stimuli.
Collapse
Affiliation(s)
- Fang Zhong
- Division of Gastroenterology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | | | | |
Collapse
|
38
|
Steiner AA, Turek VF, Almeida MC, Burmeister JJ, Oliveira DL, Roberts JL, Bannon AW, Norman MH, Louis JC, Treanor JJS, Gavva NR, Romanovsky AA. Nonthermal activation of transient receptor potential vanilloid-1 channels in abdominal viscera tonically inhibits autonomic cold-defense effectors. J Neurosci 2007; 27:7459-68. [PMID: 17626206 PMCID: PMC6672610 DOI: 10.1523/jneurosci.1483-07.2007] [Citation(s) in RCA: 181] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
An involvement of the transient receptor potential vanilloid (TRPV) 1 channel in the regulation of body temperature (T(b)) has not been established decisively. To provide decisive evidence for such an involvement and determine its mechanisms were the aims of the present study. We synthesized a new TRPV1 antagonist, AMG0347 [(E)-N-(7-hydroxy-5,6,7,8-tetrahydronaphthalen-1-yl)-3-(2-(piperidin-1-yl)-6-(trifluoromethyl)pyridin-3-yl)acrylamide], and characterized it in vitro. We then found that this drug is the most potent TRPV1 antagonist known to increase T(b) of rats and mice and showed (by using knock-out mice) that the entire hyperthermic effect of AMG0347 is TRPV1 dependent. AMG0347-induced hyperthermia was brought about by one or both of the two major autonomic cold-defense effector mechanisms (tail-skin vasoconstriction and/or thermogenesis), but it did not involve warmth-seeking behavior. The magnitude of the hyperthermic response depended on neither T(b) nor tail-skin temperature at the time of AMG0347 administration, thus indicating that AMG0347-induced hyperthermia results from blockade of tonic TRPV1 activation by nonthermal factors. AMG0347 was no more effective in causing hyperthermia when administered into the brain (intracerebroventricularly) or spinal cord (intrathecally) than when given systemically (intravenously), which indicates a peripheral site of action. We then established that localized intra-abdominal desensitization of TRPV1 channels with intraperitoneal resiniferatoxin blocks the T(b) response to systemic AMG0347; the extent of desensitization was determined by using a comprehensive battery of functional tests. We conclude that tonic activation of TRPV1 channels in the abdominal viscera by yet unidentified nonthermal factors inhibits skin vasoconstriction and thermogenesis, thus having a suppressive effect on T(b).
Collapse
Affiliation(s)
- Alexandre A. Steiner
- Systemic Inflammation Laboratory, Trauma Research, St. Joseph's Hospital, Phoenix, Arizona 85013, and
| | - Victoria F. Turek
- Systemic Inflammation Laboratory, Trauma Research, St. Joseph's Hospital, Phoenix, Arizona 85013, and
| | - Maria C. Almeida
- Systemic Inflammation Laboratory, Trauma Research, St. Joseph's Hospital, Phoenix, Arizona 85013, and
| | - Jeffrey J. Burmeister
- Systemic Inflammation Laboratory, Trauma Research, St. Joseph's Hospital, Phoenix, Arizona 85013, and
| | - Daniela L. Oliveira
- Systemic Inflammation Laboratory, Trauma Research, St. Joseph's Hospital, Phoenix, Arizona 85013, and
| | - Jennifer L. Roberts
- Systemic Inflammation Laboratory, Trauma Research, St. Joseph's Hospital, Phoenix, Arizona 85013, and
| | | | - Mark H. Norman
- Chemistry Research and Discovery, Amgen, Thousand Oaks, California 91320
| | | | | | | | - Andrej A. Romanovsky
- Systemic Inflammation Laboratory, Trauma Research, St. Joseph's Hospital, Phoenix, Arizona 85013, and
| |
Collapse
|