1
|
Guignard S, Saifeddine M, Mihara K, Motahhary M, Savignac M, Guiraud L, Sagnat D, Sebbag M, Khou S, Rolland C, Edir A, Bournet B, Buscail L, Buscail E, Alric L, Camare C, Ambli M, Vergnolle N, Hollenberg MD, Deraison C, Bonnart C. Chymotrypsin activity signals to intestinal epithelium by protease-activated receptor-dependent mechanisms. Br J Pharmacol 2024; 181:2725-2749. [PMID: 38637276 DOI: 10.1111/bph.16341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 01/04/2024] [Accepted: 01/30/2024] [Indexed: 04/20/2024] Open
Abstract
BACKGROUND AND PURPOSE Chymotrypsin is a pancreatic protease secreted into the lumen of the small intestine to digest food proteins. We hypothesized that chymotrypsin activity may be found close to epithelial cells and that chymotrypsin signals to them via protease-activated receptors (PARs). We deciphered molecular pharmacological mechanisms and gene expression regulation for chymotrypsin signalling in intestinal epithelial cells. EXPERIMENTAL APPROACH The presence and activity of chymotrypsin were evaluated by Western blot and enzymatic activity tests in the luminal and mucosal compartments of murine and human gut samples. The ability of chymotrypsin to cleave the extracellular domain of PAR1 or PAR2 was assessed using cell lines expressing N-terminally tagged receptors. The cleavage site of chymotrypsin on PAR1 and PAR2 was determined by HPLC-MS analysis. The chymotrypsin signalling mechanism was investigated in CMT93 intestinal epithelial cells by calcium mobilization assays and Western blot analyses of (ERK1/2) phosphorylation. The transcriptional consequences of chymotrypsin signalling were analysed on colonic organoids. KEY RESULTS We found that chymotrypsin was present and active in the vicinity of the colonic epithelium. Molecular pharmacological studies have shown that chymotrypsin cleaves both PAR1 and PAR2 receptors. Chymotrypsin activated calcium and ERK1/2 signalling pathways through PAR2, and this pathway promoted interleukin-10 (IL-10) up-regulation in colonic organoids. In contrast, chymotrypsin disarmed PAR1, preventing further activation by its canonical agonist, thrombin. CONCLUSION AND IMPLICATIONS Our results highlight the ability of chymotrypsin to signal to intestinal epithelial cells via PARs, which may have important physiological consequences in gut homeostasis.
Collapse
Affiliation(s)
- Simon Guignard
- IRSD, University of Toulouse, INSERM, INRAE, ENVT, Université Toulouse III-Paul Sabatier (UPS), Toulouse, France
| | - Mahmoud Saifeddine
- Department of Physiology and Pharmacology, University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada
- Department of Medicine, University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada
| | - Koichiro Mihara
- Department of Physiology and Pharmacology, University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada
- Department of Medicine, University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada
| | - Majid Motahhary
- Department of Physiology and Pharmacology, University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada
- Department of Medicine, University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada
| | - Magali Savignac
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) INSERM UMR1291-Centre National de la Recherche Scientifique UMR5051, Université Toulouse III-Paul Sabatier (UPS), Toulouse, France
| | - Laura Guiraud
- IRSD, University of Toulouse, INSERM, INRAE, ENVT, Université Toulouse III-Paul Sabatier (UPS), Toulouse, France
| | - David Sagnat
- IRSD, University of Toulouse, INSERM, INRAE, ENVT, Université Toulouse III-Paul Sabatier (UPS), Toulouse, France
| | - Mireille Sebbag
- IRSD, University of Toulouse, INSERM, INRAE, ENVT, Université Toulouse III-Paul Sabatier (UPS), Toulouse, France
| | - Sokchea Khou
- IRSD, University of Toulouse, INSERM, INRAE, ENVT, Université Toulouse III-Paul Sabatier (UPS), Toulouse, France
| | - Corinne Rolland
- IRSD, University of Toulouse, INSERM, INRAE, ENVT, Université Toulouse III-Paul Sabatier (UPS), Toulouse, France
| | - Anissa Edir
- IRSD, University of Toulouse, INSERM, INRAE, ENVT, Université Toulouse III-Paul Sabatier (UPS), Toulouse, France
| | - Barbara Bournet
- Department of Gastroenterology, Toulouse University Hospital, Toulouse, France
| | - Louis Buscail
- Department of Gastroenterology, Toulouse University Hospital, Toulouse, France
| | - Etienne Buscail
- IRSD, University of Toulouse, INSERM, INRAE, ENVT, Université Toulouse III-Paul Sabatier (UPS), Toulouse, France
- Department of Digestive Surgery, Toulouse University Hospital, Toulouse, France
| | - Laurent Alric
- Department of Internal Medicine and Digestive Diseases, Rangueil, Toulouse III University Hospital, University of Toulouse, Toulouse, France
| | - Caroline Camare
- Department of Clinical Biochemistry, Toulouse University Hospital, Toulouse, France
- University of Toulouse, UMR1297, INSERM/Université Toulouse III-Paul Sabatier (UPS), Toulouse, France
| | - Mouna Ambli
- IRSD, University of Toulouse, INSERM, INRAE, ENVT, Université Toulouse III-Paul Sabatier (UPS), Toulouse, France
| | - Nathalie Vergnolle
- IRSD, University of Toulouse, INSERM, INRAE, ENVT, Université Toulouse III-Paul Sabatier (UPS), Toulouse, France
- Department of Physiology and Pharmacology, University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada
| | - Morley D Hollenberg
- Department of Physiology and Pharmacology, University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada
- Department of Medicine, University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada
| | - Céline Deraison
- IRSD, University of Toulouse, INSERM, INRAE, ENVT, Université Toulouse III-Paul Sabatier (UPS), Toulouse, France
| | - Chrystelle Bonnart
- IRSD, University of Toulouse, INSERM, INRAE, ENVT, Université Toulouse III-Paul Sabatier (UPS), Toulouse, France
| |
Collapse
|
2
|
Hou JJ, Ding L, Yang T, Yang YF, Jin YP, Zhang XP, Ma AH, Qin YH. The proteolytic activity in inflammatory bowel disease: insight from gut microbiota. Microb Pathog 2024; 188:106560. [PMID: 38272327 DOI: 10.1016/j.micpath.2024.106560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/20/2024] [Accepted: 01/22/2024] [Indexed: 01/27/2024]
Abstract
Inflammatory bowel disease (IBD) is a chronic, recurrent inflammatory disease caused by the destruction of the intestinal mucosal epithelium that affects a growing number of people worldwide. Although the etiology of IBD is complex and still elucidated, the role of dysbiosis and dysregulated proteolysis is well recognized. Various studies observed altered composition and diversity of gut microbiota, as well as increased proteolytic activity (PA) in serum, plasma, colonic mucosa, and fecal supernatant of IBD compared to healthy individuals. The imbalance of intestinal microecology and intestinal protein hydrolysis were gradually considered to be closely related to IBD. Notably, the pivotal role of intestinal microbiota in maintaining proteolytic balance received increasing attention. In summary, we have speculated a mesmerizing story, regarding the hidden role of PA and microbiota-derived PA hidden in IBD. Most importantly, we provided the diagnosis and therapeutic targets for IBD as well as the formulation of new treatment strategies for other digestive diseases and protease-related diseases.
Collapse
Affiliation(s)
- Jun-Jie Hou
- Department of Gastroenterology, Shaoxing People's Hospital, Shaoxing, PR China
| | - Liang Ding
- Department of Gastroenterology, Shaoxing People's Hospital, Shaoxing, PR China
| | - Tao Yang
- Department of Gastroenterology, Shaoxing People's Hospital, Shaoxing, PR China
| | - Yan-Fei Yang
- Department of Gastroenterology, Shaoxing People's Hospital, Shaoxing, PR China
| | - Yue-Ping Jin
- Department of Gastroenterology, Shaoxing People's Hospital, Shaoxing, PR China
| | - Xiao-Ping Zhang
- Department of Gastroenterology, Shaoxing People's Hospital, Shaoxing, PR China
| | - A-Huo Ma
- Department of Gastroenterology, Shaoxing People's Hospital, Shaoxing, PR China
| | - Yue-Hua Qin
- Department of Gastroenterology, Shaoxing People's Hospital, Shaoxing, PR China.
| |
Collapse
|
3
|
Crifo B, MacNaughton WK. Cells and mediators of inflammation as effectors of epithelial repair in the inflamed intestine. Am J Physiol Gastrointest Liver Physiol 2022; 322:G169-G182. [PMID: 34878937 DOI: 10.1152/ajpgi.00194.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Mucosal and histological healing have become the gold standards for assessing the efficacy of therapy in patients living with inflammatory bowel diseases (IBD). Despite these being the accepted goals in therapy, the mechanisms that underlie the healing of the mucosa after an inflammatory insult are not well understood, and many patients fail to meet this therapeutic endpoint. Here we review the emerging evidence that mediators (e.g., prostaglandins, cytokines, proteases, reactive oxygen, and nitrogen species) and innate immune cells (e.g., neutrophils and monocytes/macrophages), that are involved in the initiation of the inflammatory response, are also key players in the mechanisms underlying mucosal healing to resolve chronic inflammation in the colon. The dual function mediators comprise an inflammation/repair program that returns damaged tissue to homeostasis. Understanding details of the dual mechanisms of these mediators and cells may provide the basis for the development of drugs that can help to stimulate epithelial repair in patients affected by IBD.
Collapse
Affiliation(s)
- Bianca Crifo
- Department of Physiology and Pharmacology, Inflammation Research Network and Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Wallace K MacNaughton
- Department of Physiology and Pharmacology, Inflammation Research Network and Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
4
|
Baggio CH, Shang J, Gordon MH, Stephens M, von der Weid PY, Nascimento AM, Román Y, Cipriani TR, MacNaughton WK. The dietary fibre rhamnogalacturonan improves intestinal epithelial barrier function in a microbiota-independent manner. Br J Pharmacol 2021; 179:337-352. [PMID: 34784647 DOI: 10.1111/bph.15739] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 09/23/2021] [Accepted: 10/01/2021] [Indexed: 10/19/2022] Open
Abstract
BACKGROUND AND PURPOSE Dietary fibre comprises a complex group of polysaccharides that are indigestible but are fermented by gut microbiota, promoting beneficial effects to the intestinal mucosa indirectly through the production of short chain fatty acids. We found that a polysaccharide, rhamnogalacturonan (RGal), from the plant Acmella oleracea, has direct effects on intestinal epithelial barrier function. Our objective was to determine the mechanism whereby RGal enhances epithelial barrier function. EXPERIMENTAL APPROACH Monolayers of colonic epithelial cell lines (Caco-2, T84) and of human primary cells from organoids were mounted in Ussing chambers to assess barrier function. The cellular mechanism of RGal effects on barrier function was determined using inhibitors of TLR-4 and PKC isoforms. KEY RESULTS Apically applied RGal (1000 μg/ml) significantly enhanced barrier function as shown by increased transepithelial electrical resistance (TER) and reduced fluorescein isothiocyanate (FITC)-dextran flux in Caco-2, T84 and human primary cell monolayers, and accelerated tight junction reassembly in Caco-2 cells in a calcium switch assay. RGal also reversed the barrier-damaging effects of inflammatory cytokines on FITC-dextran flux and preserved the tight junction distribution of occludin. RGal activated TLR4 in TLR4-expressing HEK reporter cells, an effect that was significantly inhibited by the TLR4 inhibitor, C34. The effect of RGal was also dependent on PKC, specifically the isoforms PKCd and PKCζ. CONCLUSION AND IMPLICATIONS RGal enhances intestinal epithelial barrier function through activation of TLR4 and PKC signaling pathways. Elucidation of RGal mechanisms of action could lead to new, dietary approaches to enhance mucosal healing in inflammatory bowel diseases.
Collapse
Affiliation(s)
- Cristiane H Baggio
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Judie Shang
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Marilyn H Gordon
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Matthew Stephens
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | | | - Adamara M Nascimento
- Department of Biochemistry, Universidade Federal do Acre, Rio Branco, AC, Brazil.,Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Yony Román
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Thales R Cipriani
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Wallace K MacNaughton
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
5
|
Van Spaendonk H, Ceuleers H, Smet A, Berg M, Joossens J, Van der Veken P, Francque SM, Lambeir AM, De Man JG, De Meester I, Augustyns K, De Winter BY. The Effect of a Novel Serine Protease Inhibitor on Inflammation and Intestinal Permeability in a Murine Colitis Transfer Model. Front Pharmacol 2021; 12:682065. [PMID: 34248633 PMCID: PMC8264366 DOI: 10.3389/fphar.2021.682065] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/14/2021] [Indexed: 12/17/2022] Open
Abstract
Background: A protease/antiprotease disbalance is observed in inflammatory bowel diseases (IBD). We therefore studied the effect of the novel serine protease inhibitor UAMC-00050 on intestinal inflammation and permeability in a chronic colitis T cell transfer mouse model to get further insight into the regulation of T cell-mediated immunopathology. Methods: Colitis was induced in severe combined immunodeficient (SCID) mice, by the adoptive transfer of CD4+CD25-CD62L+ T cells. Animals were treated intraperitoneally (i.p.) 2x/day with vehicle or UAMC-00050 (5 mg/kg) from week 2 onwards. Colonic inflammation was assessed by clinical parameters, colonoscopy, macroscopy, microscopy, myeloperoxidase activity and cytokine expression levels. At week 4, 4 kDa FITC-dextran intestinal permeability was evaluated and T helper transcription factors, protease-activated receptors and junctional proteins were quantified by RT-qPCR. Results: Adoptive transfer of CD4+CD25-CD62L+ T cells resulted in colonic inflammation and an altered intestinal permeability. The serine protease inhibitor UAMC-00050 ameliorated both the inflammatory parameters and the intestinal barrier function. Furthermore, a decrease in colonic mRNA expression of Tbet and PAR4 was observed in colitis mice after UAMC-00050 treatment. Conclusion: The beneficial effect of UAMC-00050 on inflammation was apparent via a reduction of Tbet, IFN-γ, TNF-α, IL-1β and IL-6. Based on these results, we hypothesize a pivotal effect of serine protease inhibition on the Th1 inflammatory profile potentially mediated via PAR4.
Collapse
Affiliation(s)
- Hanne Van Spaendonk
- Laboratory of Experimental Medicine and Pediatrics, University of Antwerp, Antwerp, Belgium.,Infla-Med, Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Hannah Ceuleers
- Laboratory of Experimental Medicine and Pediatrics, University of Antwerp, Antwerp, Belgium.,Infla-Med, Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Annemieke Smet
- Laboratory of Experimental Medicine and Pediatrics, University of Antwerp, Antwerp, Belgium.,Infla-Med, Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Maya Berg
- Infla-Med, Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Jurgen Joossens
- Laboratory of Medicinal Chemistry, University of Antwerp, Antwerp, Belgium
| | - Pieter Van der Veken
- Infla-Med, Centre of Excellence, University of Antwerp, Antwerp, Belgium.,Laboratory of Medicinal Chemistry, University of Antwerp, Antwerp, Belgium
| | - Sven M Francque
- Laboratory of Experimental Medicine and Pediatrics, University of Antwerp, Antwerp, Belgium.,Infla-Med, Centre of Excellence, University of Antwerp, Antwerp, Belgium.,Division of Gastroenterology and Hepatology, Antwerp University Hospital, Antwerp, Belgium
| | - Anne-Marie Lambeir
- Infla-Med, Centre of Excellence, University of Antwerp, Antwerp, Belgium.,Laboratory of Medical Biochemistry, University of Antwerp, Antwerp, Belgium
| | - Joris G De Man
- Laboratory of Experimental Medicine and Pediatrics, University of Antwerp, Antwerp, Belgium.,Infla-Med, Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Ingrid De Meester
- Infla-Med, Centre of Excellence, University of Antwerp, Antwerp, Belgium.,Laboratory of Medical Biochemistry, University of Antwerp, Antwerp, Belgium
| | - Koen Augustyns
- Infla-Med, Centre of Excellence, University of Antwerp, Antwerp, Belgium.,Laboratory of Medicinal Chemistry, University of Antwerp, Antwerp, Belgium
| | - Benedicte Y De Winter
- Laboratory of Experimental Medicine and Pediatrics, University of Antwerp, Antwerp, Belgium.,Infla-Med, Centre of Excellence, University of Antwerp, Antwerp, Belgium.,Division of Gastroenterology and Hepatology, Antwerp University Hospital, Antwerp, Belgium
| |
Collapse
|
6
|
Pászti-Gere E, Pomothy J, Jerzsele Á, Pilgram O, Steinmetzer T. Exposure of human intestinal epithelial cells and primary human hepatocytes to trypsin-like serine protease inhibitors with potential antiviral effect. J Enzyme Inhib Med Chem 2021; 36:659-668. [PMID: 33641565 PMCID: PMC7928042 DOI: 10.1080/14756366.2021.1886093] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Human intestinal epithelial cell line-6 (HIEC-6) cells and primary human hepatocytes (PHHs) were treated with 3-amidinophenylalanine-derived inhibitors of trypsin-like serine proteases for 24 hours. It was proven that treatment with MI-1900 and MI-1907 was tolerated up to 50 μM in HIEC-6. These inhibitors did not cause elevations in extracellular H2O2 levels and in the concentrations of interleukin (IL)-6 and IL-8 and did not alter occludin distribution in HIEC-6. It was also found that MI-1900 and MI-1907 up to 50 μM did not affect cell viability, IL-6 and IL-8 and occludin levels of PHH. Based on our findings, these inhibitors could be safely applicable at 50 μM in HIEC-6 and in PHH; however, redox status was disturbed in case of PHH. Moreover, it has recently been demonstrated that MI-1900 prevents the replication and spread of the new SARS-CoV-2 in infected Calu-3 cells, most-likely via an inhibition of the membrane-bound host protease TMPRSS2.
Collapse
Affiliation(s)
- Erzsébet Pászti-Gere
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, Budapest, Hungary
| | - Judit Pomothy
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, Budapest, Hungary
| | - Ákos Jerzsele
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, Budapest, Hungary
| | - Oliver Pilgram
- Faculty of Pharmacy, Institute of Pharmaceutical Chemistry, Philipps University Marburg, Marburg, Germany
| | - Torsten Steinmetzer
- Faculty of Pharmacy, Institute of Pharmaceutical Chemistry, Philipps University Marburg, Marburg, Germany
| |
Collapse
|
7
|
Solà-Tapias N, Vergnolle N, Denadai-Souza A, Barreau F. The Interplay Between Genetic Risk Factors and Proteolytic Dysregulation in the Pathophysiology of Inflammatory Bowel Disease. J Crohns Colitis 2020; 14:1149-1161. [PMID: 32090263 DOI: 10.1093/ecco-jcc/jjaa033] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Crohn's disease [CD] and ulcerative colitis [UC] are the two main forms of inflammatory bowel disease [IBD]. Previous studies reported increased levels of proteolytic activity in stool and tissue samples from IBD patients, whereas the re-establishment of the proteolytic balance abrogates the development of experimental colitis. Furthermore, recent data suggest that IBD occurs in genetically predisposed individuals who develop an abnormal immune response to intestinal microbes once exposed to environmental triggers. In this review, we highlight the role of proteases in IBD pathophysiology, and we showcase how the main cellular pathways associated with IBD influence proteolytic unbalance and how functional proteomics are allowing the unambiguous identification of dysregulated proteases in IBD, paving the way to the development of new protease inhibitors as a new potential treatment.
Collapse
Affiliation(s)
- Núria Solà-Tapias
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | - Nathalie Vergnolle
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France.,Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Alexandre Denadai-Souza
- Department of Chronic Diseases, Metabolism and Ageing, University of Leuven, Leuven, Belgium
| | - Frédérick Barreau
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| |
Collapse
|
8
|
Kriaa A, Jablaoui A, Mkaouar H, Akermi N, Maguin E, Rhimi M. Serine proteases at the cutting edge of IBD: Focus on gastrointestinal inflammation. FASEB J 2020; 34:7270-7282. [PMID: 32307770 DOI: 10.1096/fj.202000031rr] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/27/2020] [Accepted: 03/28/2020] [Indexed: 12/15/2022]
Abstract
Serine proteases have been long recognized to coordinate many physiological processes and play key roles in regulating the inflammatory response. Accordingly, their dysregulation has been regularly associated with several inflammatory disorders and suggested as a central mechanism in the pathophysiology of digestive inflammation. So far, studies addressing the proteolytic homeostasis in the gut have mainly focused on host serine proteases as candidates of interest, while largely ignoring the potential contribution of their bacterial counterparts. The human gut microbiota comprises a complex ecosystem that contributes to host health and disease. Yet, our understanding of microbially produced serine proteases and investigation of whether they are causally linked to IBD is still in its infancy. In this review, we highlight recent advances in the emerging roles of host and bacterial serine proteases in digestive inflammation. We also discuss the application of available tools in the gut to monitor disease-related serine proteases. An exhaustive representation and understanding of such functional potential would help in closing existing gaps in mechanistic knowledge.
Collapse
Affiliation(s)
- Aicha Kriaa
- Microbiota Interaction with Human and Animal Team (MIHA), Micalis Institute, AgroParisTech, Université Paris-Saclay, INRAE, Jouy-en-Josas, France
| | - Amin Jablaoui
- Microbiota Interaction with Human and Animal Team (MIHA), Micalis Institute, AgroParisTech, Université Paris-Saclay, INRAE, Jouy-en-Josas, France
| | - Héla Mkaouar
- Microbiota Interaction with Human and Animal Team (MIHA), Micalis Institute, AgroParisTech, Université Paris-Saclay, INRAE, Jouy-en-Josas, France
| | - Nizar Akermi
- Microbiota Interaction with Human and Animal Team (MIHA), Micalis Institute, AgroParisTech, Université Paris-Saclay, INRAE, Jouy-en-Josas, France
| | - Emmanuelle Maguin
- Microbiota Interaction with Human and Animal Team (MIHA), Micalis Institute, AgroParisTech, Université Paris-Saclay, INRAE, Jouy-en-Josas, France
| | - Moez Rhimi
- Microbiota Interaction with Human and Animal Team (MIHA), Micalis Institute, AgroParisTech, Université Paris-Saclay, INRAE, Jouy-en-Josas, France
| |
Collapse
|
9
|
Assessment of Ocriplasmin Effects on the Vitreoretinal Compartment in Porcine and Human Model Systems. J Ophthalmol 2017; 2017:2060765. [PMID: 29214073 PMCID: PMC5682056 DOI: 10.1155/2017/2060765] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 09/17/2017] [Indexed: 11/17/2022] Open
Abstract
Ocriplasmin (Jetrea®) is a recombinant protease used to treat vitreomacular traction. To gain insight into vitreoretinal observations reported after ocriplasmin treatment, we have developed an in vivo porcine ocriplasmin-induced posterior vitreous detachment (PVD) model in which we investigated vitreoretinal tissues by optical coherence tomography, histology, and cytokine profiling. Eight weeks postinjection, ocriplasmin yielded PVD in 82% of eyes. Subretinal fluid (85%) and vitreous hyperreflective spots (45%) were resolved by week 3. Histological analysis of extracellular matrix (ECM) proteins such as laminin, fibronectin, and collagen IV indicated no retinal ocriplasmin-induced ECM distribution changes. Retinal morphology was unaffected in all eyes. Cytokine profiles of ocriplasmin-treated eyes were not different from vehicle. In cell-based electrical resistance assays, blood-retinal barrier permeability was altered by ocriplasmin concentrations of 6 μg/mL and higher, with all effects being nontoxic, cell-type specific, and reversible. Ocriplasmin was actively taken up by RPE and Müller cells, and our data suggest both lysosomal and transcellular clearance routes for ocriplasmin. In conclusion, transient hyperreflective spots and fluid in a porcine ocriplasmin-induced PVD model did not correlate with retinal ECM rearrangement nor inflammation. Reversible in vitro effects on blood-retinal barrier permeability provide grounds for a hypothesis on the mechanisms behind transient subretinal fluid observed in ocriplasmin-treated patients.
Collapse
|
10
|
Lahey KA, Ronaghan NJ, Shang J, Dion SP, Désilets A, Leduc R, MacNaughton WK. Signaling pathways induced by serine proteases to increase intestinal epithelial barrier function. PLoS One 2017; 12:e0180259. [PMID: 28671992 PMCID: PMC5495298 DOI: 10.1371/journal.pone.0180259] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 06/13/2017] [Indexed: 12/30/2022] Open
Abstract
Changes in barrier function of the gastrointestinal tract are thought to contribute to the inflammatory bowel diseases Crohn's disease and ulcerative colitis. Previous work in our lab demonstrated that apical exposure of intestinal epithelial cell lines to serine proteases results in an increase in transepithelial electrical resistance (TER). However, the underlying mechanisms governing this response are unclear. We aimed to determine the requirement for proteolytic activity, epidermal growth factor receptor (EGFR) activation, and downstream intracellular signaling in initiating and maintaining enhanced barrier function following protease treatment using a canine intestinal epithelial cell line (SCBN). We also examined the role of phosphorylation of myosin regulatory light chain on the serine protease-induced increase in TER through. It was found that proteolytic activity of the serine proteases trypsin and matriptase is required to initiate and maintain the protease-mediated increase in TER. We also show that MMP-independent EGFR activation is essential to the sustained phase of the protease response, and that Src kinases may mediate EGFR transactivation. PI3-K and ERK1/2 signaling were important in reaching a maximal increase in TER following protease stimulation; however, their upstream activators are yet to be determined. CK2 inhibition prevented the increase in TER induced by serine proteases. The bradykinin B(2) receptor was not involved in the change in TER in response to serine proteases, and no change in phosphorylation of MLC was observed after trypsin or matriptase treatment. Taken together, our data show a requirement for ongoing proteolytic activity, EGFR transactivation, as well as downstream PI3-K, ERK1/2, and CK2 signaling in protease-mediated barrier enhancement of intestinal epithelial cells. The pathways mediating enhanced barrier function by proteases may be novel therapeutic targets for intestinal disorders characterized by disrupted epithelial barrier function.
Collapse
Affiliation(s)
- Kelcie A. Lahey
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Natalie J. Ronaghan
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Judie Shang
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Sébastien P. Dion
- Département de Pharmacologie, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Antoine Désilets
- Département de Pharmacologie, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Richard Leduc
- Département de Pharmacologie, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Wallace K. MacNaughton
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
11
|
Ronaghan NJ, Shang J, Iablokov V, Zaheer R, Colarusso P, Dion S, Désilets A, Leduc R, Turner JR, MacNaughton WK. The serine protease-mediated increase in intestinal epithelial barrier function is dependent on occludin and requires an intact tight junction. Am J Physiol Gastrointest Liver Physiol 2016; 311:G466-79. [PMID: 27492333 PMCID: PMC5076006 DOI: 10.1152/ajpgi.00441.2015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 07/28/2016] [Indexed: 01/31/2023]
Abstract
Barrier dysfunction is a characteristic of the inflammatory bowel diseases (IBD), Crohn's disease and ulcerative colitis. Understanding how the tight junction is modified to maintain barrier function may provide avenues for treatment of IBD. We have previously shown that the apical addition of serine proteases to intestinal epithelial cell lines causes a rapid and sustained increase in transepithelial electrical resistance (TER), but the mechanisms are unknown. We hypothesized that serine proteases increase barrier function through trafficking and insertion of tight junction proteins into the membrane, and this could enhance recovery of a disrupted monolayer after calcium switch or cytokine treatment. In the canine epithelial cell line, SCBN, we showed that matriptase, an endogenous serine protease, could potently increase TER. Using detergent solubility-based cell fractionation, we found that neither trypsin nor matriptase treatment changed levels of tight junction proteins at the membrane. In a fast calcium switch assay, serine proteases did not enhance the rate of recovery of the junction. In addition, serine proteases could not reverse barrier disruption induced by IFNγ and TNFα. We knocked down occludin in our cells using siRNA and found this prevented the serine protease-induced increase in TER. Using fluorescence recovery after photobleaching (FRAP), we found serine proteases induce a greater mobile fraction of occludin in the membrane. These data suggest that a functional tight junction is needed for serine proteases to have an effect on TER, and that occludin is a crucial tight junction protein in this mechanism.
Collapse
Affiliation(s)
- Natalie J. Ronaghan
- 1Department of Physiology and Pharmacology and Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada;
| | - Judie Shang
- 1Department of Physiology and Pharmacology and Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada;
| | - Vadim Iablokov
- 1Department of Physiology and Pharmacology and Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada;
| | - Raza Zaheer
- 1Department of Physiology and Pharmacology and Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada;
| | - Pina Colarusso
- 1Department of Physiology and Pharmacology and Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada;
| | - Sébastien Dion
- 2Département de Pharmacologie-Physiologie, Université de Sherbrooke, Sherbrooke, Quebec, Canada; and
| | - Antoine Désilets
- 2Département de Pharmacologie-Physiologie, Université de Sherbrooke, Sherbrooke, Quebec, Canada; and
| | - Richard Leduc
- 2Département de Pharmacologie-Physiologie, Université de Sherbrooke, Sherbrooke, Quebec, Canada; and
| | - Jerrold R. Turner
- 3Departments of Pathology and Medicine (GI), Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Wallace K. MacNaughton
- 1Department of Physiology and Pharmacology and Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada;
| |
Collapse
|
12
|
Abstract
The GI tract is the most exposed organ to proteases, both in physiological and pathophysiological conditions. For digestive purposes, the lumen of the upper GI tract contains large amounts of pancreatic proteases, but studies have also demonstrated increased proteolytic activity into mucosal tissues (both in the upper and lower GI tract), associated with pathological conditions. This review aims at outlining the evidences for dysregulated proteolytic homeostasis in GI diseases and the pathogenic mechanisms of increased proteolytic activity. The therapeutic potential of protease inhibition in GI diseases is discussed, with a particular focus on IBDs, functional GI disorders and colorectal cancer.
Collapse
Affiliation(s)
- Nathalie Vergnolle
- Inserm, U1220, Toulouse, France,Université de Toulouse, Université Paul Sabatier, Institut de Recherche en Santé Digestive (IRSD), Toulouse, France,Inra, U1416, Toulouse, France,Ecole Nationale Vétérinaire de Toulouse (ENVT), France,Department of Pharmacology and Physiology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
13
|
Brégeon J, Coron E, Da Silva ACC, Jaulin J, Aubert P, Chevalier J, Vergnolle N, Meurette G, Neunlist M. Sacral nerve stimulation enhances early intestinal mucosal repair following mucosal injury in a pig model. J Physiol 2016; 594:4309-23. [PMID: 26939757 DOI: 10.1113/jp271783] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 02/19/2016] [Indexed: 12/12/2022] Open
Abstract
KEY POINTS Reducing intestinal epithelial barrier (IEB) dysfunctions is recognized as being of major therapeutic interest for various intestinal disorders. Sacral nerve stimulation (SNS) is known to reduce IEB permeability. Here, we report in a pig model that SNS enhances morphological and functional recovery of IEB following mucosal injury induced via 2,4,6-trinitrobenzenesulfonic acid. These effects are associated with an increased expression of tight junction proteins such as ZO-1 and FAK. These results establish that SNS enhances intestinal barrier repair in acute mucosal injury. They further set the scientific basis for future use of SNS as a complementary or alternative therapeutic option for the treatment of gut disorders with IEB dysfunctions such as inflammatory bowel diseases or irritable bowel syndrome. ABSTRACT Intestinal epithelial barrier (IEB) dysfunctions, such as increased permeability or altered healing, are central to intestinal disorders. Sacral nerve stimulation (SNS) is known to reduce IEB permeability, but its ability to modulate IEB repair remains unknown. This study aimed to characterize the impact of SNS on mucosal repair following 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced lesions. Six pigs were stimulated by SNS 3 h prior to and 3 h after TNBS enema, while sham animals (n = 8) were not stimulated. The impact of SNS on mucosal changes was evaluated by combining in vivo imaging, histological and functional methods. Biochemical and transcriptomic approaches were used to analyse the IEB and mucosal inflammatory response. We observed that SNS enhanced the recovery from TNBS-induced increase in transcellular permeability. At 24 h, TNBS-induced alterations of mucosal morphology were significantly less in SNS compared with sham animals. SNS reduced TNBS-induced changes in ZO-1 expression and its epithelial pericellular distribution, and also increased pFAK/FAK expression compared with sham. Interestingly, SNS increased the mucosal density of neutrophils, which was correlated with an increase in trypsin and TGF-β1 levels compared with sham. Finally, SNS prevented the TNBS-induced increases in IL-1β and IL-4 over time that were observed with sham treatment. In conclusion, our results show that SNS enhances mucosal repair following injury. This study highlights novel mechanisms of action of SNS and identifies SNS as a new therapy for diseases with IEB repair disorders.
Collapse
Affiliation(s)
- Jérémy Brégeon
- INSERM, U913, Nantes, F-44093, France.,Université Nantes, Nantes, F-44093, France.,CHU Nantes, Hôtel Dieu, Institut des Maladies de l'Appareil Digestif, F-44093, France
| | - Emmanuel Coron
- INSERM, U913, Nantes, F-44093, France.,Université Nantes, Nantes, F-44093, France.,CHU Nantes, Hôtel Dieu, Institut des Maladies de l'Appareil Digestif, F-44093, France
| | - Anna Christina Cordeiro Da Silva
- INSERM, U913, Nantes, F-44093, France.,Université Nantes, Nantes, F-44093, France.,CHU Nantes, Hôtel Dieu, Institut des Maladies de l'Appareil Digestif, F-44093, France
| | - Julie Jaulin
- INSERM, U913, Nantes, F-44093, France.,Université Nantes, Nantes, F-44093, France.,CHU Nantes, Hôtel Dieu, Institut des Maladies de l'Appareil Digestif, F-44093, France
| | - Philippe Aubert
- INSERM, U913, Nantes, F-44093, France.,Université Nantes, Nantes, F-44093, France.,CHU Nantes, Hôtel Dieu, Institut des Maladies de l'Appareil Digestif, F-44093, France
| | - Julien Chevalier
- INSERM, U913, Nantes, F-44093, France.,Université Nantes, Nantes, F-44093, France.,CHU Nantes, Hôtel Dieu, Institut des Maladies de l'Appareil Digestif, F-44093, France
| | | | - Guillaume Meurette
- INSERM, U913, Nantes, F-44093, France.,Université Nantes, Nantes, F-44093, France.,CHU Nantes, Hôtel Dieu, Institut des Maladies de l'Appareil Digestif, F-44093, France
| | - Michel Neunlist
- INSERM, U913, Nantes, F-44093, France.,Université Nantes, Nantes, F-44093, France.,CHU Nantes, Hôtel Dieu, Institut des Maladies de l'Appareil Digestif, F-44093, France
| |
Collapse
|
14
|
Hou J, Baker LA, Zhou L, Klein RS. Viral interactions with the blood-brain barrier: old dog, new tricks. Tissue Barriers 2016; 4:e1142492. [PMID: 27141421 DOI: 10.1080/21688370.2016.1142492] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 01/05/2016] [Accepted: 01/07/2016] [Indexed: 02/07/2023] Open
Abstract
Brain endothelial cells form a unique cellular structure known as the tight junction to regulate the exchanges between the blood and the parenchyma by limiting the paracellular diffusion of blood-borne substance. Together with the restricted pathway of transcytosis, the tight junction in the brain endothelial cells provides the central nervous system (CNS) with effective protection against both the foreign pathogens and the host immune cells, which is also termed the "blood-brain barrier." The blood-brain barrier is particularly important for defending against neurotropic viral infections that have become a major source of diseases worldwide. Many neurotropic viruses are able to cross the BBB and infect the CNS through very poorly understood processes. This review focuses upon the structural and functional changes of the brain endothelial tight junction in response to viral infections in the CNS and how the tight junction changes may be studied with advanced imaging and recording approaches to reveal novel processes used by the viruses to cross the barrier system. Additional emphasis is placed upon new countermeasures that can act directly upon the tight junction to improve the pathogen clearance and minimize the inflammatory damage.
Collapse
Affiliation(s)
- Jianghui Hou
- Internal Medicine, Washington University in St Louis; St. Louis, MO USA; Center for Investigation of Membrane Excitability Diseases, Washington University in St Louis; St. Louis, MO USA
| | - Lane A Baker
- Department of Chemistry; Indiana University ; Bloomington, IN USA
| | - Lushan Zhou
- Department of Chemistry; Indiana University ; Bloomington, IN USA
| | - Robyn S Klein
- Internal Medicine, Washington University in St Louis; St. Louis, MO USA; Anatomy and Neurobiology, Washington University in St Louis; St. Louis, MO USA; Pathology and Immunology, Washington University in St Louis; St. Louis, MO USA
| |
Collapse
|
15
|
Kiwifruit cysteine protease actinidin compromises the intestinal barrier by disrupting tight junctions. Biochim Biophys Acta Gen Subj 2015; 1860:516-26. [PMID: 26701113 DOI: 10.1016/j.bbagen.2015.12.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 11/07/2015] [Accepted: 12/11/2015] [Indexed: 12/21/2022]
Abstract
BACKGROUND The intestinal epithelium forms a barrier that food allergens must cross in order to induce sensitization. The aim of this study was to evaluate the impact of the plant-derived food cysteine protease--actinidin (Act d1) on the integrity of intestinal epithelium tight junctions (TJs). METHODS Effects of Act d1 on the intestinal epithelium were evaluated in Caco-2 monolayers and in a mouse model by measuring transepithelial resistance and in vivo permeability. Integrity of the tight junctions was analyzed by confocal microscopy. Proteolysis of TJ protein occludin was evaluated by mass spectrometry. RESULTS Actinidin (1 mg/mL) reduced the transepithelial resistance of the cell monolayer by 18.1% (after 1 h) and 25.6% (after 4 h). This loss of barrier function was associated with Act d 1 disruption of the occludin and zonula occludens (ZO)-1 network. The effect on intestinal permeability in vivo was demonstrated by the significantly higher concentration of 40 kDa FITC-dextran (2.33 μg/mL) that passed from the intestine into the serum of Act d1 treated mice in comparison to the control group (0.5 μg/mL). Human occludin was fragmented, and putative Act d1 cleavage sites were identified in extracellular loops of human occludin. CONCLUSION Act d1 caused protease-dependent disruption of tight junctions in confluent Caco-2 cells and increased intestinal permeability in mice. GENERAL SIGNIFICANCE In line with the observed effects of food cysteine proteases in occupational allergy, these results suggest that disruption of tight junctions by food cysteine proteases may contribute to the process of sensitization in food allergy.
Collapse
|
16
|
Tudpor K, van der Eerden BCJ, Jongwattanapisan P, Roelofs JJTH, van Leeuwen JPTM, Bindels RJM, Hoenderop JGJ. Thrombin receptor deficiency leads to a high bone mass phenotype by decreasing the RANKL/OPG ratio. Bone 2015; 72:14-22. [PMID: 25460576 DOI: 10.1016/j.bone.2014.11.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 10/26/2014] [Accepted: 11/10/2014] [Indexed: 12/25/2022]
Abstract
Thrombin and its receptor (TR) are, respectively, expressed in osteoclasts and osteoblasts. However, their physiological roles on bone metabolism have not been fully elucidated. Here we investigated the bone microarchitecture by micro-computed tomography (μCT) and demonstrated increased trabecular and cortical bone mass in femurs of TR KO mice compared to WT littermates. Trabecular thickness and connectivity were significantly enhanced. The physiological role of TR on both inorganic and organic phases of bone is illustrated by a significant increase in BMD and a decrease in urinary deoxypyridinoline (DPD) crosslink concentration in TR KO mice. Moreover, TR KO cortical bone expanded and had a higher polar moment of inertia (J), implying stronger bone. Bone histomorphometry illustrated unaltered osteoblast and osteoclast number and surface in femoral metaphyses, indicating that thrombin/TR regulates osteoblasts and osteoclasts at functional levels. Serum analysis showed a decrease in RANKL and an increase in osteoprotegerin (OPG) levels and reflected a reduced RANKL/OPG ratio in the TR KO group. In vitro experiments using MC3T3 pre-osteoblasts demonstrated a TR-dependent stimulatory effect of thrombin on the RANKL/OPG ratio. This effect was blocked by TR antagonist and p42/p44-ERK inhibitor. In addition, thrombin also intensified p42/p44-ERK expression and phosphorylation. In conclusion, the thrombin/TR system maintains normal bone remodeling by activating RANKL and limiting OPG synthesis by osteoblasts through the p42/44-ERK signaling pathway. Consequently, TR deficiency inhibits osteoclastogenesis, resulting in a high bone mass phenotype.
Collapse
Affiliation(s)
- Kukiat Tudpor
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, The Netherlands
| | | | - Prapaporn Jongwattanapisan
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, The Netherlands
| | - Joris J T H Roelofs
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | - René J M Bindels
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, The Netherlands
| | - Joost G J Hoenderop
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, The Netherlands.
| |
Collapse
|
17
|
The Cap1-claudin-4 regulatory pathway is important for renal chloride reabsorption and blood pressure regulation. Proc Natl Acad Sci U S A 2014; 111:E3766-74. [PMID: 25157135 DOI: 10.1073/pnas.1406741111] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The paracellular pathway through the tight junction provides an important route for transepithelial chloride reabsorption in the kidney, which regulates extracellular salt content and blood pressure. Defects in paracellular chloride reabsorption may in theory cause deregulation of blood pressure. However, there is no evidence to prove this theory or to demonstrate the in vivo role of the paracellular pathway in renal chloride handling. Here, using a tissue-specific KO approach, we have revealed a chloride transport pathway in the kidney that requires the tight junction molecule claudin-4. The collecting duct-specific claudin-4 KO animals developed hypotension, hypochloremia, and metabolic alkalosis due to profound renal wasting of chloride. The claudin-4-mediated chloride conductance can be regulated endogenously by a protease-channel-activating protease 1 (cap1). Mechanistically, cap1 regulates claudin-4 intercellular interaction and membrane stability. A putative cap1 cleavage site has been identified in the second extracellular loop of claudin-4, mutation of which abolished its regulation by cap1. The cap1 effects on paracellular chloride permeation can be extended to other proteases such as trypsin, suggesting a general mechanism may also exist for proteases to regulate the tight junction permeabilities. Together, we have discovered a theory that paracellular chloride permeability is physiologically regulated and essential to renal salt homeostasis and blood pressure control.
Collapse
|
18
|
Ikehara O, Hayashi H, Waguri T, Kaji I, Karaki SI, Kuwahara A, Suzuki Y. Luminal trypsin induces enteric nerve-mediated anion secretion in the mouse cecum. J Physiol Sci 2014; 64:119-28. [PMID: 24421180 PMCID: PMC10717537 DOI: 10.1007/s12576-013-0302-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 12/10/2013] [Indexed: 02/08/2023]
Abstract
Proteases play a diverse role in health and disease. An excessive concentration of proteases has been found in the feces of patients with inflammatory bowel disease or irritable bowel syndrome and been implicated in the pathogenesis of such disorders. This study examined the effect of the serine protease, trypsin, on intestinal epithelial anion secretion when added to the luminal side. A mucosal-submucosal sheet of the mouse cecum was mounted in Ussing chambers, and the short-circuit current (I sc) was measured. Trypsin added to the mucosal (luminal) side increased I sc with an ED50 value of approximately 10 μM. This I sc increase was suppressed by removing Cl(-) from the bathing solution. The I sc increase induced by 10-100 μM trypsin was substantially suppressed by tetrodotoxin, and partially inhibited by a neurokinin-1 receptor antagonist, but not by a muscarinic or nicotinic ACh-receptor antagonist. The trypsin-induced I sc increase was also significantly inhibited by a 5-hydroxytryptamine-3 receptor (5-HT3) antagonist and substantially suppressed by the simultaneous addition of both 5-HT3 and 5-HT4 receptor antagonists. We conclude that luminal trypsin activates the enteric reflex to induce anion secretion, 5-HT and substance P playing important mediating roles in this secreto-motor reflex. Luminal proteases may contribute to the cause of diarrhea occurring with some intestinal disorders.
Collapse
Affiliation(s)
- Osamu Ikehara
- Laboratory of Physiology, Department of Food and Nutritional Sciences, University of Shizuoka, Yada 52-1, Surugaku, Shizuoka, 422-8526 Japan
| | - Hisayoshi Hayashi
- Laboratory of Physiology, Department of Food and Nutritional Sciences, University of Shizuoka, Yada 52-1, Surugaku, Shizuoka, 422-8526 Japan
| | - Toshiharu Waguri
- Laboratory of Physiology, Department of Food and Nutritional Sciences, University of Shizuoka, Yada 52-1, Surugaku, Shizuoka, 422-8526 Japan
| | - Izumi Kaji
- Laboratory of Physiology, Department of Environmental Health Sciences, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Yada 52-1, Surugaku, Shizuoka, 422-8526 Japan
| | - Shin-ichiro Karaki
- Laboratory of Physiology, Department of Environmental Health Sciences, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Yada 52-1, Surugaku, Shizuoka, 422-8526 Japan
| | - Atsukazu Kuwahara
- Laboratory of Physiology, Department of Environmental Health Sciences, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Yada 52-1, Surugaku, Shizuoka, 422-8526 Japan
| | - Yuichi Suzuki
- Laboratory of Physiology, Department of Food and Nutritional Sciences, University of Shizuoka, Yada 52-1, Surugaku, Shizuoka, 422-8526 Japan
- Laboratory of Anatomy and Physiology, Department of Health and Nutrition, Sendai Shirayuri Women’s College, Hondacho 6-1, Izumi-ku, Sendai, 981-3107 Japan
| |
Collapse
|
19
|
Patrick Schenck L, Hirota SA, Hirota CL, Boasquevisque P, Tulk SE, Li Y, Wadhwani A, Doktorchik CTA, MacNaughton WK, Beck PL, MacDonald JA, MacDonald JA. Attenuation of Clostridium difficile toxin-induced damage to epithelial barrier by ecto-5'-nucleotidase (CD73) and adenosine receptor signaling. Neurogastroenterol Motil 2013; 25:e441-53. [PMID: 23600886 DOI: 10.1111/nmo.12139] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 03/25/2013] [Indexed: 12/13/2022]
Abstract
BACKGROUND Clostridium difficile (Cdf) releases toxins (TcdA and TcdB) that damage the intestinal epithelial barrier. Ecto-5'-nucleotidase (CD73) is expressed on intestinal epithelial cells, and it is hypothesized to protect against toxin-induced epithelial damage through the cleavage of 5'-AMP to adenosine (Ado) and subsequent activation of adenosine receptors (AdoRs). Herein, we sought to assess the potential protective effects of CD73 and AdoR signaling on the injurious effects of Cdf toxins. METHODS Barrier function was assessed with T84 colonocytes. Transepithelial electrical resistance (TEER), paracellular fluorescein isothiocyanate (FITC)-dextran flux, and tight junction protein (ZO-1) integrity were monitored. Intrarectal installation of Cdf toxin was used to assess epithelial damage in vivo. KEY RESULTS TcdA/B caused reduced TEER and increased paracellular flux in vitro. Concurrent treatment with 5'-AMP attenuated these responses to Cdf toxin; an effect that was blocked with ZM241385 (AdoRA2 antagonist). APCP, a CD73 inhibitor, also suppressed the protective effects of 5'-AMP on paracellular flux. 5'-AMP reduced toxin-induced disruption of ZO-1, an effect that was abolished by APCP and ZM241385. Inhibition of CD73 with APCP during Cdf toxin exposure led to increased intestinal barrier permeability and epithelial damage in vivo. Intrarectal instillation of 5'-AMP had no effect on toxin-induced intestinal injury. CONCLUSIONS & INFERENCES Our data suggest that CD73 has a protective role against TcdA/B-induced damage. 5'-AMP treatment attenuated the damaging effects of Cdf toxin in vitro, and inhibitors of CD73 (APCP) and AdoRs (ZM241385) revealed that the cleavage of 5'-AMP to Ado was necessary for the protective effects. Inhibition of CD73 in vivo increases colonic tissue damage and epithelial permeability during Cdf toxin exposure.
Collapse
Affiliation(s)
| | | | - C. L. Hirota
- Department of Physiology & Pharmacology; University of Calgary; Calgary; AB; Canada; T2N 4Z6
| | | | - S. E. Tulk
- Department of Biochemistry & Molecular Biology; University of Calgary; Calgary; AB; Canada; T2N 4Z6
| | - Y. Li
- Department of Medicine; University of Calgary; Calgary; AB; Canada; T2N 4Z6
| | - A. Wadhwani
- Department of Physiology & Pharmacology; University of Calgary; Calgary; AB; Canada; T2N 4Z6
| | - C. T. A. Doktorchik
- Department of Biochemistry & Molecular Biology; University of Calgary; Calgary; AB; Canada; T2N 4Z6
| | - W. K. MacNaughton
- Department of Physiology & Pharmacology; University of Calgary; Calgary; AB; Canada; T2N 4Z6
| | - P. L. Beck
- Department of Medicine; University of Calgary; Calgary; AB; Canada; T2N 4Z6
| | - J. A. MacDonald
- Department of Biochemistry & Molecular Biology; University of Calgary; Calgary; AB; Canada; T2N 4Z6
| | | |
Collapse
|
20
|
Groschwitz KR, Wu D, Osterfeld H, Ahrens R, Hogan SP. Chymase-mediated intestinal epithelial permeability is regulated by a protease-activating receptor/matrix metalloproteinase-2-dependent mechanism. Am J Physiol Gastrointest Liver Physiol 2013; 304:G479-89. [PMID: 23306080 PMCID: PMC3602679 DOI: 10.1152/ajpgi.00186.2012] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Mast cells regulate intestinal barrier function during disease and homeostasis. Secretion of the mast cell-specific serine protease chymase regulates homeostasis. In the present study, we employ in vitro model systems to delineate the molecular pathways involved in chymase-mediated intestinal epithelial barrier dysfunction. Chymase stimulation of intestinal epithelial (Caco-2 BBe) cell monolayers induced a significant reduction in transepithelial resistance, indicating decreased intestinal epithelial barrier function. The chymase-induced intestinal epithelial barrier dysfunction was characterized by chymase-induced protease-activated receptor (PAR)-2 activation and matrix metalloproteinase (MMP)-2 expression and activation. Consistent with this observation, in vitro analysis revealed chymase-induced PAR-2 activation and increased MAPK activity and MMP-2 expression. Pharmacological and small interfering RNA-mediated antagonism of PAR-2 and MMP-2 significantly attenuated chymase-stimulated barrier dysfunction. Additionally, the chymase/MMP-2-mediated intestinal epithelial dysfunction was associated with a significant reduction in the tight junction protein claudin-5, which was partially restored by MMP-2 inhibition. Finally, incubation of Caco-2 BBe cells with chymase-sufficient, but not chymase-deficient, bone marrow-derived mast cells decreased barrier function, which was attenuated by the chymase inhibitor chymostatin. Collectively, these results suggest that mast cell/chymase-mediated intestinal epithelial barrier function is mediated by PAR-2/MMP-2-dependent pathways.
Collapse
Affiliation(s)
- Katherine R. Groschwitz
- 1Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio; and ,2Division of Immunobiology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - David Wu
- 1Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio; and
| | - Heather Osterfeld
- 1Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio; and
| | - Richard Ahrens
- 1Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio; and
| | - Simon P. Hogan
- 1Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio; and
| |
Collapse
|
21
|
Buzza MS, Martin EW, Driesbaugh KH, Désilets A, Leduc R, Antalis TM. Prostasin is required for matriptase activation in intestinal epithelial cells to regulate closure of the paracellular pathway. J Biol Chem 2013; 288:10328-37. [PMID: 23443662 DOI: 10.1074/jbc.m112.443432] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The type II transmembrane serine protease matriptase is a key regulator of epithelial barriers in skin and intestine. In skin, matriptase acts upstream of the glycosylphosphatidylinositol-anchored serine protease, prostasin, to activate the prostasin zymogen and initiate a proteolytic cascade that is required for stratum corneum barrier functionality. Here, we have investigated the relationship between prostasin and matriptase in intestinal epithelial barrier function. We find that similar to skin, matriptase and prostasin are components of a common intestinal epithelial barrier-forming pathway. Depletion of prostasin by siRNA silencing in Caco-2 intestinal epithelium inhibits barrier development similar to loss of matriptase, and the addition of recombinant prostasin to the basal side of polarized Caco-2 epithelium stimulates barrier forming changes similar to the addition of recombinant matriptase. However, in contrast to the proteolytic cascade in skin, prostasin functions upstream of matriptase to activate the endogenous matriptase zymogen. Prostasin is unable to proteolytically activate the matriptase zymogen directly but induces matriptase activation indirectly. Prostasin requires expression of endogenous matriptase to stimulate barrier formation since matriptase depletion by siRNA silencing abrogates prostasin barrier-forming activity. Active recombinant matriptase, however, does not require the expression of endogenous prostasin for barrier-forming activity. Together, these data show that matriptase and not prostasin is the primary effector protease of tight junction assembly in simple columnar epithelia and further highlight a spatial and tissue-specific aspect of cell surface proteolytic cascades.
Collapse
Affiliation(s)
- Marguerite S Buzza
- Center for Vascular and Inflammatory Diseases and Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | | | | | | | |
Collapse
|
22
|
Fernández-Blanco JA, Hollenberg MD, Martínez V, Vergara P, Vergara P. PAR-2-mediated control of barrier function and motility differs between early and late phases of postinfectious gut dysfunction in the rat. Am J Physiol Gastrointest Liver Physiol 2013; 304:G390-400. [PMID: 23238933 DOI: 10.1152/ajpgi.00387.2012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Proteinase-activated receptor-2 (PAR-2) and mast cell (MC) mediators contribute to inflammatory and functional gastrointestinal disorders. We aimed to characterize jejunal PAR-2-mediated responses and the potential MC involvement in the early and late phases of a rat model of postinfectious gut dysfunction. Jejunal tissues of control and Trichinella spiralis-infected (14 and 30 days postinfection) rats, treated or not with the MC stabilizer, ketotifen, were used. Histopathology and immunostaining were used to characterize inflammation, PAR-2 expression, and mucosal and connective tissue MCs. Epithelial barrier function (hydroelectrolytic transport and permeability) and motility were assessed in vitro in basal conditions and after PAR-2 activation. Intestinal inflammation on day 14 postinfection (early phase) was significantly resolved by day 30 (late phase) although MC counts and epithelial permeability remained increased. PAR-2-mediated ion transport (Ussing chambers, in vitro) and epithelial surface PAR-2 expression were reduced in the early phase, with a trend toward normalization during the late phase. In control conditions, PAR-2 activation (organ bath) induced biphasic motor responses (relaxation followed by excitation). At 14 days postinfection, spontaneous contractility and PAR-2-mediated relaxations were enhanced; motor responses were normalized on day 30. Postinfectious changes in PAR-2 functions were not affected by ketotifen treatment. We concluded that, in the rat model of Trichinella spiralis infection, alterations of intestinal PAR-2 function and expression depend on the inflammatory phase considered. A lack of a ketotifen effect suggests no interplay between MCs and PAR-2-mediated motility and ion transport alterations. These observations question the role of MC mediators in PAR-2-modulating postinfectious gut dysfunction.
Collapse
Affiliation(s)
- Joan Antoni Fernández-Blanco
- Department of Cell Biology, Physiology and Immunology, Veterinary School, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | | | | | | |
Collapse
|
23
|
Ikehara O, Hayashi H, Waguri T, Kaji I, Karaki SI, Kuwahara A, Suzuki Y. Subepithelial trypsin induces enteric nerve-mediated anion secretion by activating proteinase-activated receptor 1 in the mouse cecum. J Physiol Sci 2012; 62:211-9. [PMID: 22389134 PMCID: PMC10717934 DOI: 10.1007/s12576-012-0198-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2011] [Accepted: 02/07/2012] [Indexed: 12/19/2022]
Abstract
Serine proteases are versatile signaling molecules and often exert this function by activating the proteinase-activated receptors (PAR(1)-PAR(4)). Our previous study on the mouse cecum has shown that the PAR(1)-activating peptide (AP) and PAR(2)-AP both induced electrogenic anion secretion. This secretion mediated by PAR(1) probably occurred by activating the receptor on the submucosal secretomotor neurons, while PAR(2)-mediated anion secretion probably occurred by activating the receptor on the epithelial cells. This present study was aimed at using trypsin to further elucidate the roles of serine proteases and PARs in regulating intestinal anion secretion. A mucosal-submucosal sheet of the mouse cecum was mounted in Ussing chambers, and the short-circuit current (I(sc)) was measured. Trypsin added to the serosal side increased I(sc) with an ED(50) value of approximately 100 nM. This I(sc) increase was suppressed by removing Cl(-) from the bathing solution. The I(sc) increase induced by 100 nM trypsin was substantially suppressed by tetrodotoxin, and partially inhibited by an NK(1) receptor antagonist, by a muscarinic Ach-receptor antagonist, and by 5-hydroxytryptamine-3 (5-HT(3)) and 5-HT(4) receptor antagonists. The I(sc) increase induced by trypsin was partially suppressed when the tissue had been pretreated with PAR(1)-AP, but not by a pretreatment with PAR(2)-AP. These results suggest that the serine protease, trypsin, induced anion secretion by activating the enteric secretomotor nerves. This response was initiated in part by activating PAR(1) on the enteric nerves. Serine proteases and PARs are likely to be responsible for the diarrhea occurring under intestinal inflammatory conditions.
Collapse
Affiliation(s)
- Osamu Ikehara
- Laboratory of Physiology, School of Food and Nutritional Sciences, University of Shizuoka, Yada 52-1, Surugaku, Shizuoka 422-8526 Japan
| | - Hisayoshi Hayashi
- Laboratory of Physiology, School of Food and Nutritional Sciences, University of Shizuoka, Yada 52-1, Surugaku, Shizuoka 422-8526 Japan
| | - Toshiharu Waguri
- Laboratory of Physiology, School of Food and Nutritional Sciences, University of Shizuoka, Yada 52-1, Surugaku, Shizuoka 422-8526 Japan
| | - Izumi Kaji
- Laboratory of Physiology, Department of Environmental Health Sciences, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Yada 52-1, Surugaku, Shizuoka 422-8526 Japan
| | - Shin-ichiro Karaki
- Laboratory of Physiology, Department of Environmental Health Sciences, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Yada 52-1, Surugaku, Shizuoka 422-8526 Japan
| | - Atsukazu Kuwahara
- Laboratory of Physiology, Department of Environmental Health Sciences, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Yada 52-1, Surugaku, Shizuoka 422-8526 Japan
| | - Yuichi Suzuki
- Laboratory of Physiology, School of Food and Nutritional Sciences, University of Shizuoka, Yada 52-1, Surugaku, Shizuoka 422-8526 Japan
| |
Collapse
|
24
|
Nighot PK, Moeser A, Ali RA, Blikslager AT, Koci MD. Astrovirus infection induces sodium malabsorption and redistributes sodium hydrogen exchanger expression. Virology 2010; 401:146-54. [PMID: 20219227 DOI: 10.1016/j.virol.2010.02.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Revised: 11/03/2009] [Accepted: 02/03/2010] [Indexed: 01/04/2023]
Abstract
Astroviruses are known to be a leading cause of diarrhea in infants and the immunocompromised; however, our understanding of this endemic pathogen is limited. Histological analyses of astrovirus pathogenesis demonstrate clinical disease is not associated with changes to intestinal architecture, inflammation, or cell death. Recent studies in vitro have suggested that astroviruses induce actin rearrangement leading to loss of barrier function. The current study used the type-2 turkey astrovirus (TAstV-2) and turkey poult model of astrovirus disease to examine how astrovirus infection affects the ultrastructure and electrophysiology of the intestinal epithelium. These data demonstrate that infection results in changes to the epithelial ultrastructure, rearrangement of F-actin, decreased absorption of sodium, as well as redistribution of the sodium/hydrogen exchanger 3 (NHE3) from the membrane to the cytoplasm. Collectively, these data suggest astrovirus infection induces sodium malabsorption, possibly through redistribution of specific sodium transporters, which results in the development of an osmotic diarrhea.
Collapse
Affiliation(s)
- Prashant K Nighot
- Department of Clinical Sciences, North Carolina State University, Raleigh, NC, USA
| | | | | | | | | |
Collapse
|
25
|
Membrane-anchored serine protease matriptase regulates epithelial barrier formation and permeability in the intestine. Proc Natl Acad Sci U S A 2010; 107:4200-5. [PMID: 20142489 DOI: 10.1073/pnas.0903923107] [Citation(s) in RCA: 134] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The intestinal epithelium serves as a major protective barrier between the mammalian host and the external environment. Here we show that the transmembrane serine protease matriptase plays a pivotol role in the formation and integrity of the intestinal epithelial barrier. St14 hypomorphic mice, which have a 100-fold reduction in intestinal matriptase mRNA levels, display a 35% reduction in intestinal transepithelial electrical resistance (TEER). Matriptase is expressed during intestinal epithelial differentiation and colocalizes with E-cadherin to apical junctional complexes (AJC) in differentiated polarized Caco-2 monolayers. Inhibition of matriptase activity using a specific peptide inhibitor or by knockdown of matriptase by siRNA disrupts the development of TEER in barrier-forming Caco-2 monolayers and increases paracellular permeability to macromolecular FITC-dextran. Loss of matriptase was associated with enhanced expression and incorporation of the permeability-associated, "leaky" tight junction protein claudin-2 at intercellular junctions. Knockdown of claudin-2 enhanced the development of TEER in matriptase-silenced Caco-2 monolayers, suggesting that the reduced barrier integrity was caused, at least in part, by an inability to regulate claudin-2 expression and incorporation into junctions. We find that matriptase enhances the rate of claudin-2 protein turnover, and that this is mediated indirectly through an atypical PKCzeta-dependent signaling pathway. These results support a key role for matriptase in regulating intestinal epithelial barrier competence, and suggest an intriguing link between pericellular serine protease activity and tight junction assembly in polarized epithelia.
Collapse
|