1
|
Augustynowicz D, Lemieszek MK, Strawa JW, Wiater A, Tomczyk M. Phytochemical Profiling of Extracts from Rare Potentilla Species and Evaluation of Their Anticancer Potential. Int J Mol Sci 2023; 24:ijms24054836. [PMID: 36902263 PMCID: PMC10002591 DOI: 10.3390/ijms24054836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/23/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Despite the common use of Potentilla L. species (Rosaceae) as herbal medicines, a number of species still remain unexplored. Thus, the present study is a continuation of a study evaluating the phytochemical and biological profiles of aqueous acetone extracts from selected Potentilla species. Altogether, 10 aqueous acetone extracts were obtained from the aerial parts of P. aurea (PAU7), P. erecta (PER7), P. hyparctica (PHY7), P. megalantha (PME7), P. nepalensis (PNE7), P. pensylvanica (PPE7), P. pulcherrima (PPU7), P. rigoi (PRI7), and P. thuringiaca (PTH7), leaves of P. fruticosa (PFR7), as well as from the underground parts of P. alba (PAL7r) and P. erecta (PER7r). The phytochemical evaluation consisted of selected colourimetric methods, including total phenolic (TPC), tannin (TTC), proanthocyanidin (TPrC), phenolic acid (TPAC), and flavonoid (TFC) contents, as well as determination of the qualitative secondary metabolite composition by the employment of LC-HRMS (liquid chromatography-high-resolution mass spectrometry) analysis. The biological assessment included an evaluation of the cytotoxicity and antiproliferative properties of the extracts against human colon epithelial cell line CCD841 CoN and human colon adenocarcinoma cell line LS180. The highest TPC, TTC, and TPAC were found in PER7r (326.28 and 269.79 mg gallic acid equivalents (GAE)/g extract and 263.54 mg caffeic acid equivalents (CAE)/g extract, respectively). The highest TPrC was found in PAL7r (72.63 mg catechin equivalents (CE)/g extract), and the highest TFC was found in PHY7 (113.29 mg rutin equivalents (RE)/g extract). The LC-HRMS analysis showed the presence of a total of 198 compounds, including agrimoniin, pedunculagin, astragalin, ellagic acid, and tiliroside. An examination of the anticancer properties revealed the highest decrease in colon cancer cell viability in response to PAL7r (IC50 = 82 µg/mL), while the strongest antiproliferative effect was observed in LS180 treated with PFR7 (IC50 = 50 µg/mL) and PAL7r (IC50 = 52 µg/mL). An LDH (lactate dehydrogenase) assay revealed that most of the extracts were not cytotoxic against colon epithelial cells. At the same time, the tested extracts for the whole range of concentrations damaged the membranes of colon cancer cells. The highest cytotoxicity was observed for PAL7r, which in concentrations from 25 to 250 µg/mL increased LDH levels by 145.7% and 479.0%, respectively. The previously and currently obtained results indicated that some aqueous acetone extracts from Potentilla species have anticancer potential and thus encourage further studies in order to develop a new efficient and safe therapeutic strategy for people who have been threatened by or suffered from colon cancer.
Collapse
Affiliation(s)
- Daniel Augustynowicz
- Department of Pharmacognosy, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Białystok, ul. Mickiewicza 2a, 15-230 Białystok, Poland
| | - Marta Kinga Lemieszek
- Department of Medical Biology, Institute of Rural Health, ul. Jaczewskiego 2, 20-090 Lublin, Poland
| | - Jakub Władysław Strawa
- Department of Pharmacognosy, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Białystok, ul. Mickiewicza 2a, 15-230 Białystok, Poland
| | - Adrian Wiater
- Department of Industrial and Environmental Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, ul. Akademicka 19, 20-033 Lublin, Poland
| | - Michał Tomczyk
- Department of Pharmacognosy, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Białystok, ul. Mickiewicza 2a, 15-230 Białystok, Poland
- Correspondence: ; Tel.: +48-85-748-56-94
| |
Collapse
|
2
|
Li M, Hu Z, Guo T, Xie T, Tang Y, Wu X, Luo F. Targeting mTOR Signaling by Dietary Polysaccharides in Cancer Prevention: Advances and Challenges. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:96-109. [PMID: 36541706 DOI: 10.1021/acs.jafc.2c06780] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Cancer is the most serious problem for public health. Traditional treatments often come with unavoidable side effects. Therefore, the therapeutic effects of natural products with wide sources and low toxicity are attracting more and more attention. Polysaccharides have been shown to have cancer-fighting potential, but the molecular mechanisms remain unclear. The mammalian target of rapamycin (mTOR) pathway has become an attractive target of antitumor therapy research in recent years. The regulation of mTOR pathway not only affects cell proliferation and growth but also has an important effect in tumor metabolism. Recent studies indicate that dietary polysaccharides play a vital role in cancer prevention and treatment by regulating mTOR pathway. Here, the progress in targeting mTOR signaling by dietary polysaccharides in cancer prevention and their molecular mechanisms are systemically summarized. It will promote the understanding of the anticancer effects of polysaccharides and provide reference to investigators of this cutting edge field.
Collapse
Affiliation(s)
- Mengyuan Li
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
- Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Zuomin Hu
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Tianyi Guo
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Tiantian Xie
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Yanqin Tang
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Xiuxiu Wu
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Feijun Luo
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
- Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| |
Collapse
|
3
|
Rashid G, Khan NA, Elsori D, Rehman A, Tanzeelah, Ahmad H, Maryam H, Rais A, Usmani MS, Babker AM, Kamal MA, Hafez W. Non-steroidal anti-inflammatory drugs and biomarkers: A new paradigm in colorectal cancer. Front Med (Lausanne) 2023; 10:1130710. [PMID: 36950511 PMCID: PMC10025514 DOI: 10.3389/fmed.2023.1130710] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/08/2023] [Indexed: 03/08/2023] Open
Abstract
Colorectal cancer is a sporadic, hereditary, or familial based disease in its origin, caused due to diverse set of mutations in large intestinal epithelial cells. Colorectal cancer (CRC) is a common and deadly disease that accounts for the 4th worldwide highly variable malignancy. For the early detection of CRC, the most common predictive biomarker found endogenously are KRAS and ctDNA/cfDNA along with SEPT9 methylated DNA. Early detection and screening for CRC are necessary and multiple methods can be employed to screen and perform early diagnosis of CRC. Colonoscopy, an invasive method is most prevalent for diagnosing CRC or confirming the positive result as compared to other screening methods whereas several non-invasive techniques such as molecular analysis of breath, urine, blood, and stool can also be performed for early detection. Interestingly, widely used medicines known as non-steroidal anti-inflammatory drugs (NSAIDs) to reduce pain and inflammation have reported chemopreventive impact on gastrointestinal malignancies, especially CRC in several epidemiological and preclinical types of research. NSAID acts by inhibiting two cyclooxygenase enzymes, thereby preventing the synthesis of prostaglandins (PGs) and causing NSAID-induced apoptosis and growth inhibition in CRC cells. This review paper majorly focuses on the diversity of natural and synthetic biomarkers and various techniques for the early detection of CRC. An approach toward current advancement in CRC detection techniques and the role of NSAIDs in CRC chemoprevention has been explored systematically. Several prominent governing mechanisms of the anti-cancer effects of NSAIDs and their synergistic effect with statins for an effective chemopreventive measure have also been discussed in this review paper.
Collapse
Affiliation(s)
- Gowhar Rashid
- Department of Amity Medical School, Amity University, Gurugram, India
- *Correspondence: Gowhar Rashid,
| | - Nihad Ashraf Khan
- Department of Biosciences, Jamia Millia Islamia, Central University, New Delhi, India
| | - Deena Elsori
- Faculty of Resillience, Deans Office Rabdan Academy, Abu Dhabi, United Arab Emirates
| | - Andleeb Rehman
- Department of Biotechnology, Shri Mata Vaishno Devi University, Katra, India
| | - Tanzeelah
- Department of Biochemistry, University of Kashmir, Srinagar, India
| | - Haleema Ahmad
- Department of Biochemistry, Faculty of Life Sciences, AMU, Aligarh, India
| | - Humaira Maryam
- Department of Biochemistry, Faculty of Life Sciences, AMU, Aligarh, India
| | - Amaan Rais
- Department of Biochemistry, Faculty of Life Sciences, AMU, Aligarh, India
| | - Mohd Salik Usmani
- The Department of Surgery, Faculty of Medicine, JNMCH, AMU, Uttar Pradesh, India
| | - Asaad Ma Babker
- Department of Medical Laboratory Sciences, Gulf Medical University, Ajman, United Arab Emirates
| | - Mohammad Azhar Kamal
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Wael Hafez
- Department of Internal Medicine, NMC Royal Hospital, Abu Dhabi, United Arab Emirates
- The Medical Research Division, Department of Internal Medicine, The National Research Center, Ad Doqi, Egypt
| |
Collapse
|
4
|
Kadariya Y, Sementino E, Shrestha U, Gorman G, White JM, Ross EA, Clapper ML, Neamati N, Miller MS, Testa JR. Inflammation as a chemoprevention target in asbestos-induced malignant mesothelioma. Carcinogenesis 2022; 43:1137-1148. [PMID: 36355620 PMCID: PMC10122428 DOI: 10.1093/carcin/bgac089] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/11/2022] [Accepted: 11/07/2022] [Indexed: 11/12/2022] Open
Abstract
Malignant mesothelioma (MM) is an incurable cancer of the serosal lining that is often caused by exposure to asbestos. Therefore, novel agents for the prevention and treatment of this disease are urgently needed. Asbestos induces the release of pro-inflammatory cytokines such as IL-1β and IL-6, which play a role in MM development. IL-6 is a component of the JAK-STAT3 pathway that contributes to inflammation-associated tumorigenesis. Glycoprotein 130 (gp130), the signal transducer of this signaling axis, is an attractive drug target because of its role in promoting neoplasia via the activation of downstream STAT3 signaling. The anticancer drug, SC144, inhibits the interaction of gp130 with the IL-6 receptor (IL6R), effectively blunting signaling from this inflammatory axis. To test whether the inflammation-related release of IL-6 plays a role in the formation of MM, we evaluated the ability of SC144 to inhibit asbestos-induced carcinogenesis in a mouse model. The ability of sulindac and anakinra, an IL6R antagonist/positive control, to inhibit MM formation in this model was tested in parallel. Asbestos-exposed Nf2+/-;Cdkn2a+/- mice treated with SC144, sulindac or anakinra showed significantly prolonged survival compared to asbestos-exposed vehicle-treated mice. STAT3 activity was markedly decreased in MM specimens from SC144-treated mice. Furthermore, SC144 inhibited STAT3 activation by IL-6 in cultured normal mesothelial cells, and in vitro treatment of MM cells with SC144 markedly decreased the expression of STAT3 target genes. The emerging availability of newer, more potent SC144 analogs showing improved pharmacokinetic properties holds promise for future trials, benefitting individuals at high risk of this disease.
Collapse
Affiliation(s)
- Yuwaraj Kadariya
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Eleonora Sementino
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Ujjawal Shrestha
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Greg Gorman
- Department of Pharmaceutical, Social and Administrative Sciences, Samford University McWhorter School of Pharmacy, Birmingham, AL, 35229, USA
| | - Jonathan M White
- Division of Pharmaceutical Sciences, MRIGlobal, Kansas City, MO, 64110, USA
| | - Eric A Ross
- Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Margie L Clapper
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Nouri Neamati
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Mark Steven Miller
- Division of Cancer Prevention, National Cancer Institute, 9606 Medical Center Drive, Rockville, MD, 20850, USA
| | - Joseph R Testa
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| |
Collapse
|
5
|
Bowers LW, Glenny EM, Punjala A, Lanman NA, Goldbaum A, Himbert C, Montgomery SA, Yang P, Roper J, Ulrich CM, Dannenberg AJ, Coleman MF, Hursting SD. Weight Loss and/or Sulindac Mitigate Obesity-associated Transcriptome, Microbiome, and Protumor Effects in a Murine Model of Colon Cancer. Cancer Prev Res (Phila) 2022; 15:481-495. [PMID: 35653548 PMCID: PMC9357192 DOI: 10.1158/1940-6207.capr-21-0531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 04/05/2022] [Accepted: 05/23/2022] [Indexed: 02/03/2023]
Abstract
Obesity is associated with an increased risk of colon cancer. Our current study examines whether weight loss and/or treatment with the NSAID sulindac suppresses the protumor effects of obesity in a mouse model of colon cancer. Azoxymethane-treated male FVB/N mice were fed a low-fat diet (LFD) or high-fat diet (HFD) for 15 weeks, then HFD mice were randomized to remain on HFD (obese) or switch to LFD [formerly obese (FOb-LFD)]. Within the control (LFD), obese, and FOb-LFD groups, half the mice started sulindac treatment (140 ppm in the diet). All mice were euthanized 7 weeks later. FOb-LFD mice had intermediate body weight levels, lower than obese but higher than control (P < 0.05). Sulindac did not affect body weight. Obese mice had greater tumor multiplicity and burden than all other groups (P < 0.05). Transcriptomic profiling indicated that weight loss and sulindac each modulate the expression of tumor genes related to invasion and may promote a more antitumor immune landscape. Furthermore, the fecal microbes Coprobacillus, Prevotella, and Akkermansia muciniphila were positively correlated with tumor multiplicity and reduced by sulindac in obese mice. Coprobacillus abundance was also decreased in FOb-LFD mice. In sum, weight loss and sulindac treatment, alone and in combination, reversed the effects of chronic obesity on colon tumor multiplicity and burden. Our findings suggest that an investigation regarding the effects of NSAID treatment on colon cancer risk and/or progression in obese individuals is warranted, particularly for those unable to achieve moderate weight loss. PREVENTION RELEVANCE Obesity is a colon cancer risk and/or progression factor, but the underlying mechanisms are incompletely understood. Herein we demonstrate that obesity enhances murine colon carcinogenesis and expression of numerous tumoral procancer and immunosuppressive pathways. Moreover, we establish that weight loss via LFD and/or the NSAID sulindac mitigate procancer effects of obesity.
Collapse
Affiliation(s)
- Laura W. Bowers
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Elaine M. Glenny
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Arunima Punjala
- School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nadia A. Lanman
- Center for Cancer Research, Purdue University, West Lafayette, IN, USA
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA
| | - Audrey Goldbaum
- Department of Nutrition Science, Purdue University, West Lafayette, IN, USA
| | - Caroline Himbert
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT, USA
| | - Stephanie A. Montgomery
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Peiying Yang
- Department of Palliative, Rehabilitation, and Integrative Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jatin Roper
- Department of Medicine, Duke University, Durham, NC, USA
| | - Cornelia M. Ulrich
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT, USA
| | - Andrew J. Dannenberg
- Department of Medicine (retired), Weill Cornell Medical College, New York, NY, USA
| | - Michael F. Coleman
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Stephen D. Hursting
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, USA
| |
Collapse
|
6
|
Si X, Wang Y, Song BN, Zhang Y, Yang QX, Li Z, Luo YP, Duan YQ, Ma X, Zhang YY. Potential Chemoprevention of Paeoniflorin in Colitis-associated Colorectal Cancer by Network Pharmacology, Molecular Docking, and In Vivo Experiment. Chem Biodivers 2022; 19:e202200295. [PMID: 35841592 DOI: 10.1002/cbdv.202200295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/14/2022] [Indexed: 11/10/2022]
Abstract
Chronic inflammation plays a positive role in the development and progression of colitis-associated colorectal cancer (CAC). Medicinal plants and their extracts with anti-inflammatory and immunoregulatory properties may be an effective treatment and prevention strategy for CAC. This research aimed to explore the potential chemoprevention of paeoniflorin (PF) for CAC by network pharmacology, molecular docking technology, and in vivo experiments. The results showed that interleukin-6 (IL-6) is a key target of PF against CAC. In the CAC mouse model, PF increased the survival rate of mice and decreased the number and size of colon tumors. Moreover, reduced histological score of colitis and expression of Ki-67 and PCNA were observed in PF-treated mice. In addition, the chemoprevention mechanisms of PF in CAC may be associated with suppression of the IL-6/STAT3 signaling pathway and the IL-17 level. This research provides experimental evidence of potential chemoprevention strategies for CAC treatment.
Collapse
Affiliation(s)
- Xiaoli Si
- Lanzhou University, Department of Immunology, 199 West Donggang Road, 730000, lanzhou, CHINA
| | - Yan Wang
- Gansu University of Chinese Medicine, School of Basic Medical Sciences, 35 East Dingxi Road, lanzhou, CHINA
| | - Bo-Ni Song
- Lanzhou University of Technology, School of Life Science and Engineering, 287 LanGongPing Road, lanzhou, CHINA
| | - Yan Zhang
- Lanzhou University, Department of Immunology, 199 West Donggang Road, lanzhou, CHINA
| | - Qing-Xia Yang
- Lanzhou University, Department of Immunology, 199 West Donggang Road, lanzhou, CHINA
| | - Zhi Li
- Lanzhou University, Department of Immunology, 199 West Donggang Road, lanzhou, CHINA
| | - Yan-Ping Luo
- Lanzhou University, Department of Immunology, 199 West Donggang Road, lanzhou, CHINA
| | - Yong-Qiang Duan
- Gansu University of Chinese Medicine, School of Basic Medical Sciences, 35 East Dingxi Road, lanzhou, CHINA
| | - Xingming Ma
- Lanzhou University, Department of Immunology, 199 West Donggang Road, Lanzhou 730030, P. R. China, 730000, lanzhou, CHINA
| | - Yan-Ying Zhang
- Gansu University of Chinese Medicine, Scientific Research and Experimental Center, 35 East Dingxi Road, lanzhou, CHINA
| |
Collapse
|
7
|
Alorda-Clara M, Torrens-Mas M, Morla-Barcelo PM, Roca P, Sastre-Serra J, Pons DG, Oliver J. High Concentrations of Genistein Decrease Cell Viability Depending on Oxidative Stress and Inflammation in Colon Cancer Cell Lines. Int J Mol Sci 2022; 23:ijms23147526. [PMID: 35886874 PMCID: PMC9323408 DOI: 10.3390/ijms23147526] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/01/2022] [Accepted: 07/06/2022] [Indexed: 12/24/2022] Open
Abstract
Genistein could play a crucial role in modulating three closely linked physiological processes altered during cancer: oxidative stress, mitochondrial biogenesis, and inflammation. However, genistein’s role in colorectal cancer remains unclear. We aimed to determine genistein’s effects in two colon cancer cells: HT29 and SW620, primary and metastatic cancer cells, respectively. After genistein treatment for 48 h, cell viability and hydrogen peroxide (H2O2) production were studied. The cell cycle was studied by flow cytometry, mRNA and protein levels were analyzed by RT-qPCR and Western blot, respectively, and finally, cytoskeleton remodeling and NF-κB translocation were determined by confocal microscopy. Genistein 100 µM decreased cell viability and produced G2/M arrest, increased H2O2, and produced filopodia in SW620 cells. In HT29 cells, genistein produced an increase of cell death, H2O2 production, and in the number of stress fibers. In HT29 cells, mitochondrial biogenesis was increased, however, in SW620 cells, it was decreased. Finally, the expression of inflammation-related genes increased in both cell lines, being greater in SW620 cells, where NF-κB translocation to the nucleus was higher. These results indicate that high concentrations of genistein could increase oxidative stress and inflammation in colon cancer cells and, ultimately, decrease cell viability.
Collapse
Affiliation(s)
- Marina Alorda-Clara
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, E-07122 Palma de Mallorca, Illes Balears, Spain; (M.A.-C.); (M.T.-M.); (P.M.M.-B.); (P.R.); (J.S.-S.); (J.O.)
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), Hospital Universitario Son Espases, Edificio S, E-07120 Palma de Mallorca, Illes Balears, Spain
| | - Margalida Torrens-Mas
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, E-07122 Palma de Mallorca, Illes Balears, Spain; (M.A.-C.); (M.T.-M.); (P.M.M.-B.); (P.R.); (J.S.-S.); (J.O.)
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), Hospital Universitario Son Espases, Edificio S, E-07120 Palma de Mallorca, Illes Balears, Spain
- Translational Research in Aging and Longevity (TRIAL) Group, Instituto de Investigación Sanitaria Illes Balears (IdISBa), E-07120 Palma de Mallorca, Illes Balears, Spain
| | - Pere Miquel Morla-Barcelo
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, E-07122 Palma de Mallorca, Illes Balears, Spain; (M.A.-C.); (M.T.-M.); (P.M.M.-B.); (P.R.); (J.S.-S.); (J.O.)
| | - Pilar Roca
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, E-07122 Palma de Mallorca, Illes Balears, Spain; (M.A.-C.); (M.T.-M.); (P.M.M.-B.); (P.R.); (J.S.-S.); (J.O.)
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), Hospital Universitario Son Espases, Edificio S, E-07120 Palma de Mallorca, Illes Balears, Spain
- Ciber Fisiopatología Obesidad y Nutrición (CB06/03), Instituto Salud Carlos III, E-28029 Madrid, Madrid, Spain
| | - Jorge Sastre-Serra
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, E-07122 Palma de Mallorca, Illes Balears, Spain; (M.A.-C.); (M.T.-M.); (P.M.M.-B.); (P.R.); (J.S.-S.); (J.O.)
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), Hospital Universitario Son Espases, Edificio S, E-07120 Palma de Mallorca, Illes Balears, Spain
- Ciber Fisiopatología Obesidad y Nutrición (CB06/03), Instituto Salud Carlos III, E-28029 Madrid, Madrid, Spain
| | - Daniel Gabriel Pons
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, E-07122 Palma de Mallorca, Illes Balears, Spain; (M.A.-C.); (M.T.-M.); (P.M.M.-B.); (P.R.); (J.S.-S.); (J.O.)
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), Hospital Universitario Son Espases, Edificio S, E-07120 Palma de Mallorca, Illes Balears, Spain
- Correspondence: ; Tel.: +34-971173149
| | - Jordi Oliver
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, E-07122 Palma de Mallorca, Illes Balears, Spain; (M.A.-C.); (M.T.-M.); (P.M.M.-B.); (P.R.); (J.S.-S.); (J.O.)
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), Hospital Universitario Son Espases, Edificio S, E-07120 Palma de Mallorca, Illes Balears, Spain
- Ciber Fisiopatología Obesidad y Nutrición (CB06/03), Instituto Salud Carlos III, E-28029 Madrid, Madrid, Spain
| |
Collapse
|
8
|
Jaromy M, Miller JD. Pharmacologic mechanisms underlying antidiabetic drug metformin's chemopreventive effect against colorectal cancer. Eur J Pharmacol 2021; 897:173956. [PMID: 33617821 DOI: 10.1016/j.ejphar.2021.173956] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 02/12/2021] [Accepted: 02/15/2021] [Indexed: 12/12/2022]
Abstract
In this review, current data was used to elucidate the mechanisms by which metformin hydrochloride exerts chemopreventive effects on colorectal cancer (CRC). The first-line agent for the treatment of type 2 diabetes mellitus (T2DM), metformin, has recently been cited in a number of studies, in-vitro and in-vivo, for its potential anticancer capabilities in a variety of malignancies. While generally known to target AMP-activated protein kinase (AMPK), as an antidiabetic agent, the mechanisms by which metformin confers anticancer properties, particularly in CRC, are far less understood. This review aims to comprehensively integrate novel pharmacologic findings, especially more recent insights, to explain metformin's anti-CRC mechanisms. Among these include metformin-mediated alterations to a number of key signaling pathways involving CRC cell growth and stemness, anti-EMT (epithelial-mesenchymal transition) regulatory actions, as well as altered pro-cancer cellular energetic states and survival. These findings may prove particularly meaningful in the fields of experimental and clinical oncotherapy.
Collapse
Affiliation(s)
- Michelle Jaromy
- Department of Pharmacological Sciences, Stony Brook University, 100 Nicolls Rd, Stony Brook, NY, 11794, USA.
| | - Joshua D Miller
- Division of Endocrinology and Metabolism, Department of Medicine, Renaissance School of Medicine at Stony Brook University, 100 Nicolls Rd, Stony Brook, NY, 11794, USA
| |
Collapse
|
9
|
Simon TG, Chan AT. Lifestyle and Environmental Approaches for the Primary Prevention of Hepatocellular Carcinoma. Clin Liver Dis 2020; 24:549-576. [PMID: 33012445 PMCID: PMC7536356 DOI: 10.1016/j.cld.2020.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Patients with chronic liver disease are at increased risk of developing hepatocellular carcinoma (HCC). Most patients diagnosed with HCC have limited treatment options and a poor overall prognosis, with a 5-year survival less than 15%. Preventing the development of HCC represents the most important strategy. However, current guidelines lack specific recommendations for primary prevention. Lifestyle factors may be central in the pathogenesis of HCC, and primary prevention strategies focused on lifestyle modification could represent an important approach to the prevention of HCC. Both experimental and epidemiologic studies have identified promising chemopreventive agents for the primary prevention of HCC.
Collapse
Affiliation(s)
- Tracey G. Simon
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA,Harvard Medical School, Boston, MA,Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston, MA
| | - Andrew T. Chan
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA,Harvard Medical School, Boston, MA,Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston, MA,Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston MA,Broad Institute, Boston MA,Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston MA
| |
Collapse
|
10
|
Huang X, Chen Z, Li M, Zhang Y, Xu S, Huang H, Wu X, Zheng X. Herbal pair Huangqin-Baishao: mechanisms underlying inflammatory bowel disease by combined system pharmacology and cell experiment approach. BMC Complement Med Ther 2020; 20:292. [PMID: 32988394 PMCID: PMC7523401 DOI: 10.1186/s12906-020-03068-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 09/01/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is a severe digestive system condition, characterized by chronic and relapsing inflammation of the gastrointestinal tract. Scutellaria baicalensis Georgi (Huangqin, HQ) and Paeonia lactiflora Pall (Baishao, BS) from a typical herbal synergic pair in traditional Chinese medicine (TCM) for IBD treatments. However, the mechanisms of action for the synergy are still unclear. Therefore, this paper aimed to predict the anti-IBD targets and the main active ingredients of the HQ-BS herbal pair. METHODS A systems pharmacology approach was used to identify the bioactive compounds and to delineate the molecular targets and potential pathways of HQ-BS herbal pair. Then, the characteristics of the candidates were analyzed according to their oral bioavailability and drug-likeness indices. Finally, gene enrichment analysis with DAVID Bioinformatics Resources was performed to identify the potential pathways associated with the candidate targets. RESULTS The results showed that, a total of 38 active compounds were obtained from HQ-BS herbal pair, and 54 targets associated with IBD were identified. Gene Ontology and pathway enrichment analysis yielded the top 20 significant results with 54 targets. Furthermore, the integrated IBD pathway revealed that the HQ-BS herbal pair probably acted in patients with IBD through multiple mechanisms of regulation of the nitric oxide biosynthetic process and anti-inflammatory effects. In addition, cell experiments were carried out to verify that the HQ-BS herbal pair and their Q-markers could attenuate the levels of nitric oxide (NO), prostaglandin E2 (PGE2), inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in lipopolysaccharide (LPS)-stimulated THP-1-derived macrophage inflammation. In particular, the crude materials exerted a much better anti-inflammatory effect than their Q-markers, which might be due to their synergistic effect. CONCLUSION This study provides novel insight into the molecular pathways involved in the mechanisms of the HQ-BS herbal pair acting on IBD.
Collapse
Affiliation(s)
- Xiaoqi Huang
- Mathematical Engineering Academy of Chinese Medicine, Guangdong Provincial Key Laboratory of New Chinese Medicinal Development and Research, Guangzhou University of Chinese Medicine, 232# Wai Huan East Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
- Dongguan Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Dongguan, 523808, China
| | - Zhiwei Chen
- Dongguan Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Dongguan, 523808, China
| | - Minyao Li
- Mathematical Engineering Academy of Chinese Medicine, Guangdong Provincial Key Laboratory of New Chinese Medicinal Development and Research, Guangzhou University of Chinese Medicine, 232# Wai Huan East Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Yaomin Zhang
- Mathematical Engineering Academy of Chinese Medicine, Guangdong Provincial Key Laboratory of New Chinese Medicinal Development and Research, Guangzhou University of Chinese Medicine, 232# Wai Huan East Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
- Dongguan Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Dongguan, 523808, China
| | - Shijie Xu
- Mathematical Engineering Academy of Chinese Medicine, Guangdong Provincial Key Laboratory of New Chinese Medicinal Development and Research, Guangzhou University of Chinese Medicine, 232# Wai Huan East Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Haiyang Huang
- Dongguan Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Dongguan, 523808, China
| | - Xiaoli Wu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, 100# Wai Huan West Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China.
| | - Xuebao Zheng
- Mathematical Engineering Academy of Chinese Medicine, Guangdong Provincial Key Laboratory of New Chinese Medicinal Development and Research, Guangzhou University of Chinese Medicine, 232# Wai Huan East Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China.
- Dongguan Songshan Lake Yi Dao TCM Clinic, Dongguan, 523808, China.
| |
Collapse
|
11
|
Jackson DN, Alula KM, Delgado-Deida Y, Tabti R, Turner K, Wang X, Venuprasad K, Souza RF, Désaubry L, Theiss AL. The Synthetic Small Molecule FL3 Combats Intestinal Tumorigenesis via Axin1-Mediated Inhibition of Wnt/β-Catenin Signaling. Cancer Res 2020; 80:3519-3529. [PMID: 32665357 DOI: 10.1158/0008-5472.can-20-0216] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/23/2020] [Accepted: 07/09/2020] [Indexed: 12/17/2022]
Abstract
Colorectal cancer exhibits aberrant activation of Wnt/β-catenin signaling. Many inhibitors of the Wnt/β-catenin pathway have been tested for Wnt-dependent cancers including colorectal cancer, but are unsuccessful due to severe adverse reactions. FL3 is a synthetic derivative of natural products called flavaglines, which exhibit anti-inflammatory and cytoprotective properties in intestinal epithelial cells, but has not been previously tested in cell or preclinical models of intestinal tumorigenesis. In vitro studies suggest that flavaglines target prohibitin 1 (PHB1) as a ligand, but this has not been established in the intestine. PHB1 is a highly conserved protein with diverse functions that depend on its posttranslational modifications and subcellular localization. Here, we demonstrate that FL3 combats intestinal tumorigenesis in the azoxymethane-dextran sodium sulfate and ApcMin/+ mouse models and in human colorectal cancer tumor organoids (tumoroids) by inhibiting Wnt/β-catenin signaling via induction of Axin1 expression. FL3 exhibited no change in cell viability in normal intestinal epithelial cells or human matched-normal colonoids. FL3 response was diminished in colorectal cancer cell lines and human colorectal cancer tumoroids harboring a mutation at S45 of β-catenin. PHB1 deficiency in mice or in human colorectal cancer tumoroids abolished FL3-induced expression of Axin1 and drove tumoroid death. In colorectal cancer cells, FL3 treatment blocked phosphorylation of PHB1 at Thr258, resulting in its nuclear translocation and binding to the Axin1 promoter. These results suggest that FL3 inhibits Wnt/β-catenin signaling via PHB1-dependent activation of Axin1. FL3, therefore, represents a novel compound that combats Wnt pathway-dependent cancers, such as colorectal cancer. SIGNIFICANCE: Targeting of PHB1 by FL3 provides a novel mechanism to combat Wnt-driven cancers, with limited intestinal toxicity. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/17/3519/F1.large.jpg.
Collapse
Affiliation(s)
- Dakota N Jackson
- Division of Gastroenterology, Department of Internal Medicine, Baylor Scott & White Research Institute, Baylor University Medical Center, Dallas, Texas
| | - Kibrom M Alula
- Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Aurora, Colorado
| | - Yaritza Delgado-Deida
- Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Aurora, Colorado
| | - Redouane Tabti
- Laboratory of Regenerative Nanomedicine (UMR 1260), INSERM-University of Strasbourg, Strasbourg, France
| | - Kevin Turner
- University of Texas Southwestern Medical Center, College of Medicine, Dallas, Texas
| | - Xuan Wang
- Division of Gastroenterology, Department of Internal Medicine, Baylor Scott & White Research Institute, Baylor University Medical Center, Dallas, Texas
| | - K Venuprasad
- University of Texas Southwestern Medical Center, College of Medicine, Dallas, Texas
| | - Rhonda F Souza
- Division of Gastroenterology, Department of Internal Medicine, Baylor Scott & White Research Institute, Baylor University Medical Center, Dallas, Texas
| | - Laurent Désaubry
- Laboratory of Regenerative Nanomedicine (UMR 1260), INSERM-University of Strasbourg, Strasbourg, France
| | - Arianne L Theiss
- Division of Gastroenterology, Department of Internal Medicine, Baylor Scott & White Research Institute, Baylor University Medical Center, Dallas, Texas. .,Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
12
|
Abstract
Objective: The objective of this review was to systematically review and synthesize evidence regarding benefits of using nonsteroidal anti-inflammatory drugs (NSAIDs) for the treatment of colorectal cancer (CRC). Data Sources: The data sources were MEDLINE, PubMed, NEJM, Google Scholar, and Google searches of references from relevant and eligible trials. Review Methods: We screened abstracts and full-text articles of identified references for eligibility and reviewed randomized controlled trials, cohort studies, and meta-analysis for evidence on benefits of using NSAIDs in CRC treatments. For all extracted data, completeness and relevance were checked. Results: The risk of any adenoma among frequent NSAID users was 26.8% vs 39.9% among placebo subjects who later used NSAIDs sporadically (adjusted relative risk = 0.62, 95% confidence interval [CI] = 0.39-0.98; P trend with NSAID use frequency = .03). Long-term use of aspirin reduces the risk of CRC. Aspirin also reduces the incidence of colon adenomas and mortality, especially when used for >10 years. Rofecoxib is associated with the reduction of CRC; however, it was associated with cardiovascular risk (with an overall unadjusted relative risk of 1.50 [95% CI = 0.76-2.94; P = .24]). Adenoma Prevention with Celecoxib trial shows that, for patients of all genotypes, the estimated cumulative incidence of one or more adenomas by year 3 was 59.8% for those randomized to placebo as compared with 43.3% for those randomized to low-dose (200 mg, twice daily) celecoxib (relative risk [RR] = 0.68; 95% CI = 0.59-0.79; P < .001) and 36.8% for those randomized to high-dose (400 mg, twice daily) celecoxib and 60.7% in placebo group (RR = 0.54; 95% CI = 0.46-0.64; P < .001). Conclusions: The use of COX-2 inhibitors both prior to and after diagnosis of CRC seemed to be mildly associated with the reduction in mortality of patients with CRC. Some literatures state that COX-2 inhibitors might play a synergistic role in adjuvant chemotherapy of FOLFOX regimen. Celecoxib was found to increase the radiosensitization of colon cancer cells.
Collapse
Affiliation(s)
| | | | | | - Mensur Shafi
- St. Paul’s Hospital Millennium Medical College, Addis Ababa, Ethiopia
| |
Collapse
|
13
|
Peng M, Lee SH, Rahaman SO, Biswas D. Dietary probiotic and metabolites improve intestinal homeostasis and prevent colorectal cancer. Food Funct 2020; 11:10724-10735. [DOI: 10.1039/d0fo02652b] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Metabolites from Lactobacillus casei display substantial antioxidant and anti-inflammatory activities, inhibit colorectal cancer cell proliferation and growth, and modulate gut microfloral composition, specifically reducing sulfidogenic bacteria.
Collapse
Affiliation(s)
- Mengfei Peng
- Department of Animal and Avian Sciences
- University of Maryland
- College Park
- USA
- Biological Sciences Program
| | - Seong-Ho Lee
- Department of Nutrition and Food Science
- University of Maryland
- College Park
- USA
| | - Shaik O. Rahaman
- Department of Nutrition and Food Science
- University of Maryland
- College Park
- USA
| | - Debabrata Biswas
- Department of Animal and Avian Sciences
- University of Maryland
- College Park
- USA
- Biological Sciences Program
| |
Collapse
|
14
|
Honari M, Shafabakhsh R, Reiter RJ, Mirzaei H, Asemi Z. Resveratrol is a promising agent for colorectal cancer prevention and treatment: focus on molecular mechanisms. Cancer Cell Int 2019; 19:180. [PMID: 31341423 PMCID: PMC6631492 DOI: 10.1186/s12935-019-0906-y] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 07/10/2019] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer and one of the main causes of cancer death entire the world. Environmental, dietary, and lifestyle factors including red meat consumption, cigarette smoking, alcohol intake and family history are the most important risk factors of CRC. Multiple pathways including inflammation, oxidative stress, and apoptosis are involved in its incidence and progression. Resveratrol, a polyphenolic compound, has different pharmacologic functions including anti-inflammation, cancer prevention, lipid-lowering effect, and hypoglycemic effect. Many studies have proved that resveratrol might also represent a chemo preventive effect on CRC. Thus, the aim of the current review is to depict the role of resveratrol in treatment of CRC in a molecular manner.
Collapse
Affiliation(s)
- Mohadese Honari
- 1Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - Rana Shafabakhsh
- 1Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - Russel J Reiter
- 2Department of Cellular and Structural Biology, University of Texas Health Science, Center, San Antonio, TX USA
| | - Hamed Mirzaei
- 1Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - Zatollah Asemi
- 1Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| |
Collapse
|
15
|
Sharma M, Chandel D, Shukla G. Antigenotoxicity and Cytotoxic Potentials of Metabiotics Extracted from Isolated Probiotic, Lactobacillus rhamnosus MD 14 on Caco-2 and HT-29 Human Colon Cancer Cells. Nutr Cancer 2019; 72:110-119. [PMID: 31266374 DOI: 10.1080/01635581.2019.1615514] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Probiotics, the beneficial bacteria produce active metabolites which could probably mimic their anticancer effect and prevent the risk associated with live bacteria. Thus, the study was designed to isolate effective lactic acid bacteria (LAB) and monitor anticancerous potential of their metabiotic extracts. Probiotics were isolated from different sources and their cell free supernatants (CFS) were screened for antigenotoxic and cytotoxic potentials using SOS Chromo Test and MTT assay on Caco-2 and HT-29 cells. Organic extracts of CFS were prepared and dissolved in different solvents. The isolate with most effective metabiotic extract in terms of cytotoxicity was classified for probiotic and phylogenetic characters and the metabiotic extract was characterized physiochemically. Among 60 isolated LAB, CFS of only 10 isolates showed antigenotoxicity more than 30% and four exhibited 70-80% cytotoxicity. Further, organic extracts of these four CFS dissolved in carboxymethyl cellulose showed 80-90% cytotoxicity. Interestingly, the most effective isolate was found to possess probiotic attributes and phylogenetic characterization revealed it to be Lactobacillus rhamnosus MD 14. Physiochemical characterization of its metabiotic extract indicated the presence of heat sensitive organic acids and proteins. To conclude, metabiotics produced by isolated probiotic L. rhamnosus MD 14 exhibited both antigenotoxic and cytotoxic potential against colon cancer.
Collapse
Affiliation(s)
- Mridul Sharma
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Deepika Chandel
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Geeta Shukla
- Department of Microbiology, Panjab University, Chandigarh, India
| |
Collapse
|
16
|
De Silva SF, Alcorn J. Flaxseed Lignans as Important Dietary Polyphenols for Cancer Prevention and Treatment: Chemistry, Pharmacokinetics, and Molecular Targets. Pharmaceuticals (Basel) 2019; 12:E68. [PMID: 31060335 PMCID: PMC6630319 DOI: 10.3390/ph12020068] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/26/2019] [Accepted: 04/30/2019] [Indexed: 02/07/2023] Open
Abstract
Cancer causes considerable morbidity and mortality across the world. Socioeconomic, environmental, and lifestyle factors contribute to the increasing cancer prevalence, bespeaking a need for effective prevention and treatment strategies. Phytochemicals like plant polyphenols are generally considered to have anticancer, anti-inflammatory, antiviral, antimicrobial, and immunomodulatory effects, which explain their promotion for human health. The past several decades have contributed to a growing evidence base in the literature that demonstrate ability of polyphenols to modulate multiple targets of carcinogenesis linking models of cancer characteristics (i.e., hallmarks and nutraceutical-based targeting of cancer) via direct or indirect interaction or modulation of cellular and molecular targets. This evidence is particularly relevant for the lignans, an ubiquitous, important class of dietary polyphenols present in high levels in food sources such as flaxseed. Literature evidence on lignans suggests potential benefit in cancer prevention and treatment. This review summarizes the relevant chemical and pharmacokinetic properties of dietary polyphenols and specifically focuses on the biological targets of flaxseed lignans. The consolidation of the considerable body of data on the diverse targets of the lignans will aid continued research into their potential for use in combination with other cancer chemotherapies, utilizing flaxseed lignan-enriched natural products.
Collapse
Affiliation(s)
- S Franklyn De Silva
- Drug Discovery & Development Research Group, College of Pharmacy and Nutrition, 104 Clinic Place, Health Sciences Building, University of Saskatchewan, Saskatoon, Saskatchewan (SK), S7N 2Z4, Canada.
| | - Jane Alcorn
- Drug Discovery & Development Research Group, College of Pharmacy and Nutrition, 104 Clinic Place, Health Sciences Building, University of Saskatchewan, Saskatoon, Saskatchewan (SK), S7N 2Z4, Canada.
| |
Collapse
|
17
|
Epigenetic silencing of the synthesis of immunosuppressive Siglec ligand glycans by NF-κB/EZH2/YY1 axis in early-stage colon cancers. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:173-183. [PMID: 30716533 DOI: 10.1016/j.bbagrm.2019.01.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 12/07/2018] [Accepted: 01/07/2019] [Indexed: 12/12/2022]
Abstract
Normal colonic epithelial cells express sialyl 6-sulfo Lewisx and disialyl Lewisa on their cell surface, which are ligands for the immunosuppressive molecule Siglec-7. Expression of these normal glycans is frequently lost upon malignant transformation by silencing DTDST and ST6GalNAc6 at the early stage of colorectal carcinogenesis, and leads to production of inflammatory mediators that facilitate carcinogenesis. Indeed, by querying The Cancer Genome Atlas datasets, we confirmed that the level of DTDST or ST6GalNAc6 mRNA is substantially decreased at the early stage of colorectal carcinogenesis. Cultured colon cancer cell lines were used in this study including DLD-1, HT-29, LS174T and SW620. Their promoter regions were strongly marked by repressive mark H3K27me3, catalyzed by EZH2 that was markedly upregulated in early stage of colorectal carcinogenesis. Suppression of EZH2 substantially downregulated H3K27me3 mark and upregulated DTDST and ST6GalNAc6 as well as expression of normal glycans and Siglec-binding activities. Transcription factor YY1 was vital for the recruitment of PRC2-containing EZH2 to both promoters. Inhibition of NF-κB substantially reduced EZH2 transcription and restored their mRNAs as well as the production of normal Siglec ligand glycans in the results obtained from in vitro studies on cultured colon cancer cell lines. These findings provide a putative mechanism for promotion of carcinogenesis by loss of immunosuppressive molecules by epigenetic silencing through NF-κB-mediated EZH2/YY1 axis.
Collapse
|
18
|
Kumar S, Agnihotri N. Piperlongumine, a piper alkaloid targets Ras/PI3K/Akt/mTOR signaling axis to inhibit tumor cell growth and proliferation in DMH/DSS induced experimental colon cancer. Biomed Pharmacother 2019; 109:1462-1477. [PMID: 30551398 DOI: 10.1016/j.biopha.2018.10.182] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 10/29/2018] [Accepted: 10/31/2018] [Indexed: 12/17/2022] Open
Abstract
Colorectal cancer (CRC) is the most common carcinoma of the digestive tract. The slow growing nature of CRC offers a great opportunity for prevention strategies. The concept of chemoprevention of colorectal cancer using plant derived natural products is gaining substantial attention because it is an inherently safe and cost-effective alternative to conventional cancer therapies. Piperlongumine (PL), a natural alkaloid present in Piper longum Linn has been reported to exhibit notable anticancer effects in various in vitro studies. Nonetheless, the chemopreventive potential of PL has not been studied in experimentally induced colon cancer yet. Ras/PI3K/Akt/mTOR signaling axis plays a central role in promoting tumor cell growth, proliferation and survival by inhibiting apoptosis. In the present study, we demonstrated, for the first time, the chemopreventive effects of PL in DMH + DSS induced colon carcinogenesis animal model. We showed that PL displayed potent antineoplastic activity against colon cancer cell growth by targeting Ras proteins and PI3K/Akt signaling cascade. PL mediated inhibition of tumor cell growth was associated with inhibition of Ras protein levels and its preferred companion protein PI3K levels that led to suppressed activity of Akt/NF-κB, c-Myc and cyclin D1. It was also found that PL arrested the cell cycle progression at G2/M phase and induced mitochondrial apoptotic pathway by downregulating Bcl-2 levels. Furthermore, the results of liver and kidney toxicity suggested that PL exhibit no toxicity in animals. Our results suggest that PL may be an effective chemopreventive agent for colon cancer.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Biochemistry Basic Medical Science Block-II Sector-25, South Campus, Panjab University, Chandigarh 160014, India.
| | - Navneet Agnihotri
- Department of Biochemistry Basic Medical Science Block-II Sector-25, South Campus, Panjab University, Chandigarh 160014, India.
| |
Collapse
|
19
|
Non-aspirin non-steroidal anti-inflammatory drugs in prevention of colorectal cancer in people aged 40 or older: A systematic review and meta-analysis. Cancer Epidemiol 2018; 58:52-62. [PMID: 30472477 DOI: 10.1016/j.canep.2018.11.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/13/2018] [Accepted: 11/08/2018] [Indexed: 02/07/2023]
Abstract
There is still insufficient data about the risk-benefit profile about recommending non-aspirin, non-steroidal anti-inflammatory drugs (NA-NSAIDs) for colorectal cancer (CRC) prevention, especially in people aged 40 years or older. This study specifically addressed the association between regular NA-NSAIDs use and CRC risk in the population aged 40 years or older, performing a comprehensive systematic review and meta-analysis of all published studies on this topic until April 2018, by a search of PubMed, Scopus and Web of science databases and clinical trial registries. Two reviewers independently selected studies based on predefined inclusion criteria and assessed study quality using the Newcastle-Otawa scale. The data was combined with the random effects model. Potential heterogeneity was calculated as Q statistic and I2 value. A total of 23 studies involving more than 1 million subjects contributed to the analysis. Pooled odds ratio (OR) of NA-NSAIDs effects on CRC risk was 0.74 (0.67-0.81), I2 = 75.9%, p < 0.001. Heterogeneity was explained by a number of variables including the quality of the studies. Significant protective effects of NA-NSAIDs use were found for women (risk reduction of 19%), higher doses (risk reduction of 18%), distal colon cancer (risk reduction of 22%) and white people (risk reduction from 31% to 41%). From the results NA-NSAIDs use appears to be CRC chemopreventive for a specific subgroup of the population.
Collapse
|
20
|
Xie C, Xu X, Wang X, Wei S, Shao L, Chen J, Cai J, Jia L. Cyclooxygenase-2 induces angiogenesis in pancreatic cancer mediated by prostaglandin E 2. Oncol Lett 2018; 16:940-948. [PMID: 29963167 PMCID: PMC6019925 DOI: 10.3892/ol.2018.8786] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 03/26/2018] [Indexed: 12/29/2022] Open
Abstract
The purpose of the present study was to elucidate the effects of cyclooxygenase 2 (COX-2) on the expression of vascular endothelial growth factor (VEGF) and prostaglandin E2 (PGE2) in pancreatic cancer in vitro and in vivo, and to clarify the potential mechanism of COX-2-induced angiogenesis of pancreatic cancer. The study analysis was conducted in the pancreatic cancer PC-3 cell line. The expression of COX-2 and VEGF in human pancreatic cancer tissue was analyzed by immunohistochemistry. Angiogenesis was detected using immunohistochemistry with anti-collagen IV antibodies, and was calculated according to the microvascular density (MVD). In vitro analysis was performed using ELISA or radioimmunoassay (RIA). The effect of exogenous PGE2 on the downregulation of VEGF by Celebrex was also assessed. In vivo analysis was performed using western blotting or RIA. Concurrently, MVD was also investigated in nude mice using immunohistochemistry with anti-collagen IV antibodies. COX-2 was overexpressed in pancreatic cancer tissues, with an overall positive rate of 87.5%. There was a positive association between the expression of COX-2 and MVD. The in vitro study indicated that Celebrex suppressed the expression of VEGF and PGE2 in PC-3 cells in a dose- and time-dependent manner, while exogenous PGE2 rescued the expression of VEGF, which was suppressed by Celebrex, in a dose-dependent manner. The in vivo study revealed that the administration of Celebrex to xenograft nude mice significantly inhibited the expression of VEGF and PGE2. These data provide evidence that PGE2 may be an important mediator between COX-2 and VEGF expression in the process of angiogenesis in pancreatic cancer.
Collapse
Affiliation(s)
- Chuangao Xie
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Xuanfu Xu
- Department of Gastroenterology, The Tenth People's Hospital of Tongji University, Shanghai 200072, P.R. China
| | - Xingpeng Wang
- Department of Gastroenterology, The First Affiliated Hospital of Shanghai Jiaotong University, Shanghai 201620, P.R. China
| | - Shumei Wei
- Department of Pathology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Liming Shao
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Jiamin Chen
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Jianting Cai
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Litao Jia
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| |
Collapse
|
21
|
Lee SR, Jin H, Kim WT, Kim WJ, Kim SZ, Leem SH, Kim SM. Tristetraprolin activation by resveratrol inhibits the proliferation and metastasis of colorectal cancer cells. Int J Oncol 2018; 53:1269-1278. [PMID: 29956753 DOI: 10.3892/ijo.2018.4453] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 05/25/2018] [Indexed: 12/22/2022] Open
Abstract
Resveratrol (RSV) is a polyphenolic compound that naturally occurs in grapes, peanuts and berries. Considerable research has been conducted to determine the benefits of RSV against various human cancer types. Tristetraprolin (TTP) is an AU-rich element-binding protein that regulates mRNA stability and has decreased expression in human cancer. The present study investigated the biological effect of RSV on TTP gene regulation in colon cancer cells. RSV inhibited the proliferation and invasion/metastasis of HCT116 and SNU81 colon cancer cells. Furthermore, RSV induced a dose-dependent increase in TTP expression in HCT116 and SNU81 cells. The microarray experiment revealed that RSV significantly increased TTP expression by downregulating E2F transcription factor 1 (E2F1), a downstream target gene of TTP and regulated genes associated with inflammation, cell proliferation, cell death, angiogenesis and metastasis. Although TTP silencing inhibited TTP mRNA expression, the expression was subsequently restored by RSV. Small interfering RNA-induced TTP inhibition attenuated the effects of RSV on cell growth. In addition, RSV induced the mRNA-decaying activity of TTP and inhibited the relative luciferase activity of baculoviral IAP repeat containing 3 (cIAP2), large tumor suppressor kinase 2 (LATS2), E2F1, and lin‑28 homolog A (Lin28) in HCT116 and SNU81 cells. Therefore, RSV enhanced the inhibitory activity of TTP in HCT116 and SNU81 cells by negatively regulating cIAP2, E2F1, LATS2, and Lin28 expression. In conclusion, RSV suppressed the proliferation and invasion/metastasis of colon cancer cells by activating TTP.
Collapse
Affiliation(s)
- Se-Ra Lee
- Department of Biological Science, Dong-A University, Busan 49315, Republic of Korea
| | - Hua Jin
- Department of Physiology, Institute of Medical Science, Chonbuk National University Medical School, Jeonju, Jeonbuk 54907, Republic of Korea
| | - Won-Tae Kim
- Department of Biological Science, Dong-A University, Busan 49315, Republic of Korea
| | - Won-Jung Kim
- Department of Biological Science, Dong-A University, Busan 49315, Republic of Korea
| | - Sung Zoo Kim
- Department of Physiology, Institute of Medical Science, Chonbuk National University Medical School, Jeonju, Jeonbuk 54907, Republic of Korea
| | - Sun-Hee Leem
- Department of Biological Science, Dong-A University, Busan 49315, Republic of Korea
| | - Soo Mi Kim
- Department of Physiology, Institute of Medical Science, Chonbuk National University Medical School, Jeonju, Jeonbuk 54907, Republic of Korea
| |
Collapse
|
22
|
Desai SJ, Prickril B, Rasooly A. Mechanisms of Phytonutrient Modulation of Cyclooxygenase-2 (COX-2) and Inflammation Related to Cancer. Nutr Cancer 2018; 70:350-375. [PMID: 29578814 DOI: 10.1080/01635581.2018.1446091] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The link between chronic inflammation and cancer involves cytokines and mediators of inflammatory pathways. Cyclooxygenase-2 (COX-2), a key enzyme in fatty acid metabolism, is upregulated during both inflammation and cancer. COX-2 is induced by pro-inflammatory cytokines at the site of inflammation and enhanced COX-2-induced synthesis of prostaglandins stimulates cancer cell proliferation, promotes angiogenesis, inhibits apoptosis, and increases metastatic potential. As a result, COX-2 inhibitors are a subject of intense research interest toward potential clinical applications. Epidemiological studies highlight the potential benefits of diets rich in phytonutrients for cancer prevention. Plants contain numerous phytonutrient secondary metabolites shown to modulate COX-2. Studies have shown that these metabolites, some of which are used in traditional medicine, can reduce inflammation and carcinogenesis. This review describes the molecular mechanisms by which phytonutrients modulate inflammation, including studies of carotenoids, phenolic compounds, and fatty acids targeting various inflammation-related molecules and pathways associated with cancer. Examples of pathways include those of COX-2, mitogen-activated protein kinase kinase kinase, mitogen-activated protein kinase, pro-inflammatory cytokines, and transcription factors like nuclear factor kappa B. Such phytonutrient modulation of COX-2 and inflammation continue to be explored for applications in the prevention and treatment of cancer.
Collapse
Affiliation(s)
- Shreena J Desai
- a Office of Cancer Complementary and Alternative Medicine , National Cancer Institute , Rockville , Maryland , USA
| | - Ben Prickril
- a Office of Cancer Complementary and Alternative Medicine , National Cancer Institute , Rockville , Maryland , USA
| | - Avraham Rasooly
- a Office of Cancer Complementary and Alternative Medicine , National Cancer Institute , Rockville , Maryland , USA
| |
Collapse
|
23
|
Lichtenberger LM, Phan T, Fang D, Dial EJ. Chemoprevention with phosphatidylcholine non-steroidal anti-inflammatory drugs in vivo and in vitro. Oncol Lett 2018; 15:6688-6694. [PMID: 29616131 DOI: 10.3892/ol.2018.8098] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 02/13/2018] [Indexed: 12/17/2022] Open
Abstract
The chemopreventive activity of non-steroidal anti-inflammatory drugs (NSAIDs), particularly aspirin, has been well demonstrated in preclinical and clinical studies. However, the primary side effect from this class of drug is gastrointestinal (GI) bleeding, which has limited the widespread use of NSAIDs for the prevention of cancer. The development of GI-safer NSAIDs, which are associated with phosphatidylcholine (PC) may provide a solution to this therapeutic problem. In the present study, the efficacy of two NSAIDs, aspirin and indomethacin, were compared using murine colon cancer cell line MC-26. Each NSAID was assessed alone and in combination with PC, using in vitro and in vivo systems. The results reveal that the PC-associated NSAIDs had a significantly higher degree of protection against cancer cell growth compared with the unmodified NSAIDs. It was also observed that Aspirin-PC and Indomethacin-PC prevented the metastatic spread of cancer cells in a syngeneic mouse model. These results support the potential use of PC-NSAIDs for the chemoprevention of colorectal cancer.
Collapse
Affiliation(s)
- Lenard M Lichtenberger
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX 77030, USA
| | - Tri Phan
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX 77030, USA
| | - Dexing Fang
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX 77030, USA
| | - Elizabeth J Dial
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX 77030, USA
| |
Collapse
|
24
|
In-vitro and in-vivo inhibition of melanoma growth and metastasis by the drug combination of celecoxib and dacarbazine. Melanoma Res 2018; 26:572-579. [PMID: 27540834 DOI: 10.1097/cmr.0000000000000291] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Celecoxib has been found to be effective in cancer prevention and treatment. Its combination with other chemotherapeutic agents was reported to produce synergistic/additive effects on various cancers. Dacarbazine (DTIC) is one of the most commonly used drugs in the treatment of metastatic melanoma. This investigation aimed to determine the in-vitro and in-vivo effects of the drug combination of celecoxib and DTIC on melanoma growth and metastasis. Melanoma cells B16-F10 and SK-MEL-28, and female C57BL/6 mice were used for the study. Our in-vitro data showed that significant synergistic effects were obtained when celecoxib was used together with various concentrations of DTIC. A study with B16-F10 cells using flow cytometry analysis showed that the drug combination induced significantly more apoptosis than each drug used individually. Our in-vivo results showed that the drug combination was much more effective than each drug used alone for the inhibition of both melanoma growth and metastasis in the B16-F10+C57BL/6 mouse models. For melanoma growth, the median survival rates for phosphate-buffered saline (PBS) (control), celecoxib (30 mg/kg), DTIC-1 (10 mg/kg), DTIC-2 (positive control, 50 mg/kg), and the drug combination (DTIC 10 mg/kg+celecoxib 30 mg/kg) were 6, 6.5, 7.5, 7.5, and 9 days, respectively. For melanoma metastasis, the average number of metastatic tumors in murine lungs was 53.7±10.7, 31.8±18.6, 21.2±21.7, 7.0±9.0, and 0.8±2.0 for PBS, DTIC-1, celecoxib, the drug combination, and DTIC-2. Our results warrant further investigation of the combination as an effective treatment for melanoma patients.
Collapse
|
25
|
Pan P, Huang YW, Oshima K, Yearsley M, Zhang J, Yu J, Arnold M, Wang LS. Could Aspirin and Diets High in Fiber Act Synergistically to Reduce the Risk of Colon Cancer in Humans? Int J Mol Sci 2018; 19:ijms19010166. [PMID: 29316620 PMCID: PMC5796115 DOI: 10.3390/ijms19010166] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 12/30/2017] [Accepted: 01/04/2018] [Indexed: 12/19/2022] Open
Abstract
Early inhibition of inflammation suppresses the carcinogenic process. Aspirin is the most commonly used non-steroid anti-inflammatory drugs (NSAIDs), and it irreversibly inhibits cyclooxygenase-1 and -2 (COX1, COX2). Multiple randomized clinical trials have demonstrated that aspirin offers substantial protection from colon cancer mortality. The lower aspirin doses causing only minimal gastrointestinal disturbance, ideal for long-term use, can achieve only partial and transitory inhibition of COX2. Aspirin’s principal metabolite, salicylic acid, is also found in fruits and vegetables that inhibit COX2. Other phytochemicals such as curcumin, resveratrol, and anthocyanins also inhibit COX2. Such dietary components are good candidates for combination with aspirin because they have little or no toxicity. However, obstacles to using phytochemicals for chemoprevention, including bioavailability and translational potential, must be resolved. The bell/U-shaped dose–response curves seen with vitamin D and resveratrol might apply to other phytochemicals, shedding doubt on ‘more is better’. Solutions include: (1) using special delivery systems (e.g., nanoparticles) to retain phytochemicals; (2) developing robust pharmacodynamic biomarkers to determine efficacy in humans; and (3) selecting pharmacokinetic doses relevant to humans when performing preclinical experiments. The combination of aspirin and phytochemicals is an attractive low-cost and low-toxicity approach to colon cancer prevention that warrants testing, particularly in high-risk individuals.
Collapse
Affiliation(s)
- Pan Pan
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI 53226, USA.
| | - Yi-Wen Huang
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | - Kiyoko Oshima
- Department of Pathology, John Hopkins University, Baltimore, MD 21218, USA.
| | - Martha Yearsley
- Department of Pathology, The Ohio State University, Columbus, Ohio 43210, USA.
| | - Jianying Zhang
- Center for Biostatistics, The Ohio State University, Columbus, Ohio 43210, USA.
| | - Jianhua Yu
- Division of Hematology, Department of Internal Medicine, College of Medicine, Comprehensive Cancer Center and The James Cancer Hospital, The Ohio State University, Columbus, OH 43210, USA.
| | - Mark Arnold
- Department of Surgery, The Ohio State University, Columbus, OH 43210, USA.
| | - Li-Shu Wang
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI 53226, USA.
| |
Collapse
|
26
|
Tao Y, Li Y, Liu X, Deng Q, Yu Y, Yang Z. Nonsteroidal anti-inflammatory drugs, especially aspirin, are linked to lower risk and better survival of hepatocellular carcinoma: a meta-analysis. Cancer Manag Res 2018; 10:2695-2709. [PMID: 30147368 PMCID: PMC6101020 DOI: 10.2147/cmar.s167560] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE The roles of nonsteroidal anti-inflammatory drugs (NSAIDs) in the occurrence and prognosis of hepatocellular carcinoma (HCC) remain controversial. This analysis aimed to summarize the relationships between NSAIDs and HCC development. METHODS Studies published prior to October 1, 2017, in the PubMed, Embase, Ovid, Web of Science, and Cochrane Library databases were systematically searched and analyzed. RESULTS Eleven studies were included in this analysis. A meta-analysis of five studies revealed that aspirin use could significantly decrease the risk of HCC occurrence (hazards ratio [HR] = 0.64, 95% confidence interval [CI] = 0.45-0.91, P = 0.014). No significant difference was found for the use of NSAIDs (six studies) and non-aspirin NSAIDs (three studies) in HCC occurrence (HR = 0.74, 95%CI = 0.53-1.02, P = 0.064 and HR = 0.98, 95%CI = 0.87-1.12, P = 0.81, respectively). However, subgroup analysis of cohort studies demonstrated that NSAIDs significantly decreased the risk of HCC occurrence (HR = 0.58, 95%CI = 0.43-0.78, P < 0.001). HCC patients who received NSAIDs achieved better disease-free survival and overall survival compared with the non-NSAID users (HR = 0.79, 95%CI = 0.74-0.84, P<0.001 and HR = 0.60, 95%CI = 0.50-0.72, P<0.001, respectively). Additionally, a meta-analysis of two studies showed that aspirin treatment in HCC patients could significantly decrease the 2-year and 4-year mortalities (rate ratio [RR] = 0.50, 95%CI = 0.36-0.69, P < 0.001 and RR = 0.67, 95%CI = 0.45-0.998, P = 0.049, respectively). A meta-analysis of two studies showed that aspirin use was not associated with a higher risk of bleeding in HCC patients (HR = 0.71, 95%CI = 0.41-1.23, P = 0.223). CONCLUSION The use of NSAIDs, especially aspirin, is linked to a lower risk of HCC development and better survival in HCC populations. High-quality, well-designed trials should be conducted to reevaluate the relationships between NSAIDs and HCC.
Collapse
Affiliation(s)
- Yuquan Tao
- Department of Central Laboratory Medicine, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China, ,
| | - Yesheng Li
- Department of Hepatobiliary Surgery, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Xing Liu
- Department of Central Laboratory Medicine, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China, ,
| | - Qing Deng
- Department of Central Laboratory Medicine, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China, ,
| | - Yongchun Yu
- Department of Central Laboratory Medicine, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China, ,
| | - Zongguo Yang
- Department of Central Laboratory Medicine, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China, ,
- Department of Integrative Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China,
| |
Collapse
|
27
|
Li HY, Li M, Luo CC, Wang JQ, Zheng N. Lactoferrin Exerts Antitumor Effects by Inhibiting Angiogenesis in a HT29 Human Colon Tumor Model. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:10464-10472. [PMID: 29112400 DOI: 10.1021/acs.jafc.7b03390] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
To investigate the effect and potential mechanisms of lactoferrin on colon cancer cells and tumors, HT29 and HCT8 cells were exposed to varying concentrations of lactoferrin, and the impacts on cell proliferation, migration, and invasion were observed. Cell proliferation test showed that high dosage of lactoferrin (5-100 mg/mL) inhibited cell viability in a dose-dependent manner, with the 50% concentration of inhibition at 81.3 ± 16.7 mg/mL and 101 ± 23.8 mg/mL for HT29 and HCT8 cells, respectively. Interestingly, migration and invasion of the cells were inhibited dramatically by 20 mg/mL lactoferrin, consistent with the significant down regulation of VEGFR2, VEGFA, pPI3K, pAkt, and pErk1/2 proteins. HT29 was chosen as the sensitive cell line to construct a tumor-bearing nude mice model. Notably, HT29 tumor weight was greatly reduced in both the lactoferrin group (26.5 ± 6.7 mg) and the lactoferrin/5-Fu group (14.5 ± 5.1 mg), compared with the control one (39.3 ± 6.5 mg), indicating that lactoferrin functioned as a tumor growth inhibitor. Considering lactoferrin also reduced the growth of blood vessels and the degree of malignancy, we concluded that HT29 tumors were effectively suppressed by lactoferrin, which might be achieved by regulation of phosphorylation from various kinases and activation of the VEGFR2-PI3K/Akt-Erk1/2 pathway.
Collapse
Affiliation(s)
- Hui-Ying Li
- Institute of Animal Sciences of Chinese Academy of Agricultural Sciences , Beijing 100193, People's Republic of China
| | - Ming Li
- Institute of Animal Sciences of Chinese Academy of Agricultural Sciences , Beijing 100193, People's Republic of China
| | - Chao-Chao Luo
- Institute of Animal Sciences of Chinese Academy of Agricultural Sciences , Beijing 100193, People's Republic of China
| | - Jia-Qi Wang
- Institute of Animal Sciences of Chinese Academy of Agricultural Sciences , Beijing 100193, People's Republic of China
| | - Nan Zheng
- Institute of Animal Sciences of Chinese Academy of Agricultural Sciences , Beijing 100193, People's Republic of China
| |
Collapse
|
28
|
Baicalein ameliorates TNBS-induced colitis by suppressing TLR4/MyD88 signaling cascade and NLRP3 inflammasome activation in mice. Sci Rep 2017; 7:16374. [PMID: 29180692 PMCID: PMC5703971 DOI: 10.1038/s41598-017-12562-6] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 09/12/2017] [Indexed: 12/27/2022] Open
Abstract
Baicalein (5,6,7-trihydroxyflavone), a predominant bioactive component isolated from the root of Scutellaria baicalensis Georgi, has established potent anti-inflammatory activity via multi-targeted mechanisms. However, little is known about the effect of baicalein on 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis, which shares pathology related to human Crohn’s disease (CD). The present study demonstrated that baicalein alleviated the severity of TNBS-induced colitis in mice by decreasing the activity of myeloperoxidase (MPO) and the expression of pro-inflammatory mediators. The decline in the activation of nuclear factor-kappa B (NF-κB) and p38 mitogen-activated protein kinase (MAPK) correlated with a decrease in the expression of mucosal toll-like receptor 4 (TLR4) and its adaptor myeloid differentiation factor 88 (MyD88). In vitro, baicalein down-regulated the TLR4/MyD88 signaling cascades (NF-κB and MAPKs) in lipopolysaccharide (LPS)-stimulated macrophages. At the upstream level, baicalein bound to the hydrophobic region of the myeloid differentiation protein-2 (MD-2) pocket and inhibited the formation of the LPS-induced MD-2/TLR4 complex. Furthermore, baicalein reduced NOD-like receptor 3 (NLRP3) inflammasome activation and downstream interleukin-1β expression in a dose-dependent manner. Our study provided evidence for the first time that baicalein attenuated TNBS-induced colitis, at least in part, via inhibition of TLR4/MyD88 signaling cascade as well as inactivation of NLRP3 inflammasome.
Collapse
|
29
|
Fortin O, Aguilar-Uscanga B, Vu KD, Salmieri S, Lacroix M. Cancer Chemopreventive, Antiproliferative, and Superoxide Anion Scavenging Properties ofKluyveromyces marxianusandSaccharomyces cerevisiae var. boulardiiCell Wall Components. Nutr Cancer 2017; 70:83-96. [DOI: 10.1080/01635581.2018.1380204] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Olivier Fortin
- INRS-Institut Armand-Frappier, Research Laboratories in Sciences Applied to Food, Institute of Nutraceutical and Functional Foods, INRS, Laval, Québec, Canada
| | - Blanca Aguilar-Uscanga
- Department of Pharmacobiology, Laboratorio de Microbiología Industrial, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara (UdG), Jalisco, Mexico
| | - Khanh Dang Vu
- INRS-Institut Armand-Frappier, Research Laboratories in Sciences Applied to Food, Institute of Nutraceutical and Functional Foods, INRS, Laval, Québec, Canada
| | - Stephane Salmieri
- INRS-Institut Armand-Frappier, Research Laboratories in Sciences Applied to Food, Institute of Nutraceutical and Functional Foods, INRS, Laval, Québec, Canada
| | - Monique Lacroix
- INRS-Institut Armand-Frappier, Research Laboratories in Sciences Applied to Food, Institute of Nutraceutical and Functional Foods, INRS, Laval, Québec, Canada
| |
Collapse
|
30
|
Combination curcumin and (-)-epigallocatechin-3-gallate inhibits colorectal carcinoma microenvironment-induced angiogenesis by JAK/STAT3/IL-8 pathway. Oncogenesis 2017; 6:e384. [PMID: 28967875 PMCID: PMC5668882 DOI: 10.1038/oncsis.2017.84] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/31/2017] [Accepted: 08/19/2017] [Indexed: 12/15/2022] Open
Abstract
Tumor microenvironment has a crucial role in cancer development and progression, whereas the mechanism of how it regulates angiogenesis is unclear. In this study, we simulated the colorectal carcinoma microenvironment by conditioned medium (CM) of colorectal carcinoma cell lines (SW620, HT-29, HCT116) supernatant or colorectal carcinoma tissue homogenate supernatant to induce normal endothelial cells (NECs). We found that colorectal carcinoma CM promoted tumor angiogenesis by coercing NECs toward tumor endothelial cells (TECs) with the activation of the JAK/STAT3 signaling pathway. Antibody array analysis showed HT-29 supernatant contained numerous angiogenesis-related proteins, especially IL-8. Interestingly, the production of IL-8 in NECs induced by HT-29 CM was also increased. We also verified the crucial role of IL-8 in promoting the CM-induced angiogenesis, as IL-8 repression by neutralizing antibody abolished the transition of NECs toward TECs. Curcumin and (-)-epigallocatechin-3-gallate (EGCG) are broadly investigated in cancer chemoprevention. However, poor bioavailability hurdles their application alone, and the mechanism of their anti-angiogenesis still need to be illuminated. Here, we found that curcumin combination with EGCG attenuated the tumor CM-induced transition of NECs toward TECs by inhibiting JAK/STAT3 signaling pathway. Furthermore, the combination of curcumin and EGCG markedly reduced tumor growth and angiogenesis in the colorectal carcinoma PDX mouse model, and the combined anti-angiogenic effect was better than that of curcumin or EGCG alone. Taken together, our findings provide a new mechanism of tumor angiogenesis, and the combination of curcumin and EGCG represents a potential anti-angiogenic therapeutic method for colorectal carcinoma.
Collapse
|
31
|
Bimonte S, Cascella M, Schiavone V, Mehrabi-Kermani F, Cuomo A. The roles of epigallocatechin-3-gallate in the treatment of neuropathic pain: an update on preclinical in vivo studies and future perspectives. DRUG DESIGN DEVELOPMENT AND THERAPY 2017; 11:2737-2742. [PMID: 29066865 PMCID: PMC5604557 DOI: 10.2147/dddt.s142475] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Neuropathic pain (NP) is a complex and chronic disease caused by lesions or defects of the somatosensory nervous system. The treatments normally used for managing NP usually lack efficacy. Several animal models of NP have been engineered in order to understand the molecular mechanisms underlying NP and to find alternative molecules to use as new therapeutic agents. Preclinical in vivo studies identified the epigallocatechin-3-gallate (EGCG), a main active component of green tea (Camellia sinensis), as a possible therapeutic molecule for NP treatment due to its anti-inflammatory and antioxidant properties. Interestingly, it has been shown that EGCG reduced bone cancer pain. The purpose of this article is to discuss the potential use of EGCG for control and treatment of NP, by reviewing the preclinical studies reported in the literature and by shedding light on the potential schemes based on EGCG’s application in clinical practices.
Collapse
Affiliation(s)
- Sabrina Bimonte
- Division of Anesthesia and Pain Medicine, Istituto Nazionale Tumori - IRCCS - "Fondazione G. Pascale", Naples, Italy
| | - Marco Cascella
- Division of Anesthesia and Pain Medicine, Istituto Nazionale Tumori - IRCCS - "Fondazione G. Pascale", Naples, Italy
| | - Vincenzo Schiavone
- Division of Anesthesia and Intensive Care, Hospital "Pineta Grande", Castel Volturno, Caserta, Italy
| | | | - Arturo Cuomo
- Division of Anesthesia and Pain Medicine, Istituto Nazionale Tumori - IRCCS - "Fondazione G. Pascale", Naples, Italy
| |
Collapse
|
32
|
Bombardo M, Malagola E, Chen R, Rudnicka A, Graf R, Sonda S. Ibuprofen and diclofenac treatments reduce proliferation of pancreatic acinar cells upon inflammatory injury and mitogenic stimulation. Br J Pharmacol 2017; 175:335-347. [PMID: 28542719 DOI: 10.1111/bph.13867] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 05/03/2017] [Accepted: 05/11/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND PURPOSE Nonsteroidal anti-inflammatory drugs (NSAIDs) are administered to manage the pain typically found in patients suffering from pancreatitis. NSAIDs also display anti-proliferative activity against cancer cells; however, their effects on normal, untransformed cells are poorly understood. Here, we evaluated whether NSAIDs inhibit the proliferation of pancreatic acinar cells during the development of acute pancreatitis. EXPERIMENTAL APPROACH The NSAIDs ibuprofen and diclofenac were administered to C57BL/6 mice after induction of pancreatitis with serial injections of cerulein. In addition, ibuprofen was administered concomitantly with 3,5,3-L-tri-iodothyronine (T3), which induces acinar cell proliferation in the absence of tissue inflammation. The development of pancreatic inflammation, acinar de-differentiation into metaplastic lesions and acinar proliferation were quantified by histochemical, biochemical and RT-PCR approaches. KEY RESULTS Therapeutic ibuprofen treatment selectively reduced pancreatic infiltration of activated macrophages in vivo, and M1 macrophage polarization and pro-inflammatory cytokine expression both in vivo and in vitro. Reduced macrophage activation was accompanied by reduced acinar de-differentiation into acinar-to-ductal metaplasia. Acinar proliferation was significantly impaired in the presence of ibuprofen and diclofenac, as demonstrated at both the level of proliferation markers and expression of cell cycle regulators. Ibuprofen also reduced acinar cell proliferation induced by mitogenic stimulation with T3, a treatment that does not elicit pancreatic inflammation. CONCLUSIONS AND IMPLICATIONS Our study provides evidence that the NSAIDs ibuprofen and diclofenac inhibit pancreatic acinar cell division. This suggests that prolonged treatment with these NSAIDs may negatively affect the regeneration of the pancreas and further studies are needed to confirm these findings in a clinical setting. LINKED ARTICLES This article is part of a themed section on Inventing New Therapies Without Reinventing the Wheel: The Power of Drug Repurposing. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.2/issuetoc.
Collapse
Affiliation(s)
- Marta Bombardo
- Swiss Hepato-Pancreato-Biliary Center, Department of Visceral and Transplantation Surgery, University Hospital of Zurich, Zurich, Switzerland
| | - Ermanno Malagola
- Swiss Hepato-Pancreato-Biliary Center, Department of Visceral and Transplantation Surgery, University Hospital of Zurich, Zurich, Switzerland
| | - Rong Chen
- Swiss Hepato-Pancreato-Biliary Center, Department of Visceral and Transplantation Surgery, University Hospital of Zurich, Zurich, Switzerland
| | - Alina Rudnicka
- Swiss Hepato-Pancreato-Biliary Center, Department of Visceral and Transplantation Surgery, University Hospital of Zurich, Zurich, Switzerland
| | - Rolf Graf
- Swiss Hepato-Pancreato-Biliary Center, Department of Visceral and Transplantation Surgery, University Hospital of Zurich, Zurich, Switzerland.,Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Sabrina Sonda
- Swiss Hepato-Pancreato-Biliary Center, Department of Visceral and Transplantation Surgery, University Hospital of Zurich, Zurich, Switzerland.,Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland.,Biomedical Science, School of Health Sciences, Faculty of Health, University of Tasmania, Newnham Campus, Launceston, TAS, Australia
| |
Collapse
|
33
|
Setiawan A, Yin L, Auer G, Czene K, Smedby KE, Pawitan Y. Patterns of acute inflammatory symptoms prior to cancer diagnosis. Sci Rep 2017; 7:67. [PMID: 28250427 PMCID: PMC5427907 DOI: 10.1038/s41598-017-00133-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 02/09/2017] [Indexed: 02/06/2023] Open
Abstract
Although many studies have examined the role of chronic inflammation in cancer development, few studies discuss the patterns of acute inflammation prior to cancer diagnosis. Patients with lung, colorectal, prostate, or breast cancer between 1 July 2006 and 31 December 2009 and their metastatic status at diagnosis were determined through the Swedish Cancer Register. Non-steroidal anti-inflammatory drugs (NSAIDs) use in the year prior to cancer diagnosis was assessed through the Swedish Prescribed Drug Register. There were 13,945 patients identified with breast cancer, 6501 with prostate cancer, 5508 with lung cancer, and 12,723 with colon cancer. For metastatic patients, there is strong evidence of higher NSAIDs use 1–3 months compared to 10–12 months prior to diagnosis (breast odds ratio (OR) = 3.54, 95% CI 2.26–5.54; prostate OR = 3.90, 95% CI 3.10–4.90; lung OR = 2.90 95% CI 2.44–3.44; colorectal OR = 1.67, 95% CI 1.36–2.05). For non-metastatic patients, increased NSAIDs use 1–3 months prior to diagnosis was also observed, but only to a smaller extent for lung and prostate cancer (prostate OR = 1.48, 95% CI 1.27–1.72; lung 1.41, 95% CI 1.19–1.67). In conclusion, if NSAIDs use reflects underlying inflammatory symptoms, there is support for the hypothesis that advanced cancer was associated with an acute inflammatory process.
Collapse
Affiliation(s)
- Andrea Setiawan
- School of Pharmacy, University of California, San Francisco, USA
| | - Li Yin
- Department of Medical Epidemiology and Biostatistics, Karolinska Insitutet, Stockholm, Sweden
| | - Gert Auer
- Department of Oncology and Pathology, Karolinska Insitutet, Stockholm, Sweden
| | - Kamila Czene
- Department of Medical Epidemiology and Biostatistics, Karolinska Insitutet, Stockholm, Sweden
| | - Karin E Smedby
- Unit of Clinical Epidemiology, Department of Medicine Solna, Karolinska Insitutet, Stockholm, Sweden
| | - Yudi Pawitan
- Department of Medical Epidemiology and Biostatistics, Karolinska Insitutet, Stockholm, Sweden.
| |
Collapse
|
34
|
Johnstone M, Bennett N, Standifer C, Smith A, Han A, Bettaieb A, Whelan J, Donohoe DR. Characterization of the Pro-Inflammatory Cytokine IL-1β on Butyrate Oxidation in Colorectal Cancer Cells. J Cell Biochem 2017; 118:1614-1621. [PMID: 27922186 DOI: 10.1002/jcb.25824] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 11/30/2016] [Indexed: 12/12/2022]
Abstract
Cancer, in part, is driven, by alterations in cellular metabolism that promote cell survival and cell proliferation. Identifying factors that influence this shift in cellular metabolism in cancer cells is important. Interleukin-1β (IL-1β) is a pro-inflammatory cytokine that has been reported to be elevated in colorectal cancer patients. While much is known toward the effect of dietary nutrients on regulating inflammation and the inflammatory response, which includes cytokines such as IL-1β, far less is understood how cytokines impact nutrient fate to alter cancer cell metabolism. Butyrate, a nutrient derived from the fermentation of dietary fiber in the colon, is the preferential exogenous energetic substrate used by non-cancerous colonocytes, but is used less efficiently by colorectal cancer cells. To test whether IL-1β alters colonocyte energy metabolism, we measured butyrate oxidation in HCT116 colorectal cancer cells with and without IL-1β. We hypothesize that IL-1β will push cancerous colonocytes away from the utilization and oxidation of butyrate. In this study, we demonstrate that pretreatment of colorectal cancer cells with IL-1β diminished butyrate oxidation and NADH levels. This effect was blocked with the interleukin receptor antagonist A (IL-1RA). Moreover, IL-1β suppressed basal mitochondrial respiration and lowered the mitochondrial spare capacity. By using inhibitors to block downstream targets of the interleukin-1 receptor pathway, we show that p38 is required for the IL-1β-mediated decrease in butyrate oxidation. These data provide insight into the metabolic effects induced by IL-1β in colorectal cancer, and identify relevant targets that may be exploited to block the effects of this cytokine. J. Cell. Biochem. 118: 1614-1621, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Megan Johnstone
- Department of Nutrition, University of Tennessee, Knoxville, Tennessee, 37996
| | - Natalie Bennett
- Department of Nutrition, University of Tennessee, Knoxville, Tennessee, 37996
| | - Cynthia Standifer
- Department of Nutrition, University of Tennessee, Knoxville, Tennessee, 37996
| | - Alexis Smith
- Department of Nutrition, University of Tennessee, Knoxville, Tennessee, 37996
| | - Anna Han
- Department of Nutrition, University of Tennessee, Knoxville, Tennessee, 37996
| | - Ahmed Bettaieb
- Department of Nutrition, University of Tennessee, Knoxville, Tennessee, 37996
| | - Jay Whelan
- Department of Nutrition, University of Tennessee, Knoxville, Tennessee, 37996
| | - Dallas R Donohoe
- Department of Nutrition, University of Tennessee, Knoxville, Tennessee, 37996
| |
Collapse
|
35
|
Moreno JJ. Eicosanoid receptors: Targets for the treatment of disrupted intestinal epithelial homeostasis. Eur J Pharmacol 2016; 796:7-19. [PMID: 27940058 DOI: 10.1016/j.ejphar.2016.12.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 11/30/2016] [Accepted: 12/05/2016] [Indexed: 12/25/2022]
Abstract
The importance of cyclooxygenase and lipoxygenase pathways and the consequent eicosanoid synthesis in the physiology and pathophysiology of the intestinal epithelium is currently being established. Each eicosanoid (prostanoid, leukotriene, hydroxyeicosatetraenoic acid) preferentially recognizes one or more receptors coupled to one or more signal-transduction processes. This overview focuses on the role of eicosanoid receptors in the maintenance of intestinal epithelium physiology through the control of proliferation/differentiation/apoptosis processes. Furthermore, it is reported that the role of these receptors on the regulation of the barrier function of the intestinal epithelium have arisen through the regulation of absorption/secretion processes, tight-junction state and the control of the intestinal immune response. Also, this review considers the implication of AA cascade in the disruption of epithelial homeostasis during inflammatory bowel diseases and colorectal cancer as well as the therapeutic values and potential of the eicosanoid receptors as novel targets for the treatments of the pathologies above mentioned.
Collapse
Affiliation(s)
- Juan J Moreno
- Department of Nutrition, Food Sciences and Gastronomy, Faculty of Pharmacy and Food Sciences, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, Avda. Prat de la Riba 171, E-08921 Santa Coloma de Gramenet, Spain.
| |
Collapse
|
36
|
Kim HS, Kacew S, Lee BM. Genetic and epigenetic cancer chemoprevention on molecular targets during multistage carcinogenesis. Arch Toxicol 2016; 90:2389-2404. [PMID: 27538406 DOI: 10.1007/s00204-016-1813-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 08/04/2016] [Indexed: 12/16/2022]
Abstract
The main goal of cancer chemoprevention is to prevent or halt the progression of carcinogenesis with the administration of synthetic or natural compounds. Fundamental chemopreventive strategies include inhibition of genetic damage, anti-proliferation/cell cycle regulation, and induction of apoptosis and anti-inflammatory processes, which may be critical for carcinogenesis intervention. Recently, a new paradigm for identifying chemopreventive agents has been implemented. It focuses on defining new biomarkers that can be used to evaluate chemopreventive efficacy based on multistage carcinogenesis. The functional roles of chemopreventive agents are associated with the modulation of nuclear factor kappa B, nuclear factor erythroid 2-related factor, p53, AMPK/mTOR, phosphatidylinositol 3-kinase, epidermal growth factor receptor, cyclooxygenase-2, chemokine (C-X-C motif) receptor 2, and sphingosine-1-phosphate. This paper summarizes the genetic and epigenetic effects of chemopreventive agents on the expression of cancer-related target genes mediated by epigenetic alterations, such as DNA methylation and histone modifications. This review will provide unique and effective strategies for reducing cancer and aging-related diseases in humans.
Collapse
Affiliation(s)
- Hyung Sik Kim
- Division of Toxicology, College of Pharmacy, Sungkyunkwan University, Seoburo 2066, Suwon, Gyeonggi-Do, 440-746, Republic of Korea
| | - Sam Kacew
- McLaughlin Centre for Population Health Risk Assessment, University of Ottawa, Ottawa, ON, Canada
| | - Byung Mu Lee
- Division of Toxicology, College of Pharmacy, Sungkyunkwan University, Seoburo 2066, Suwon, Gyeonggi-Do, 440-746, Republic of Korea.
| |
Collapse
|
37
|
Abstract
Cancer is fundamentally a genetic disease caused by mutational or epigenetic alterations in DNA. There has been a remarkable expansion of the molecular understanding of colonic carcinogenesis in the last 30 years and that understanding is changing many aspects of colorectal cancer care. It is becoming increasingly clear that there are genetic subsets of colorectal cancer that have different risk factors, prognosis, and response to treatment. This article provides a general update on colorectal cancer and highlights the ways that genetics is changing clinical care.
Collapse
Affiliation(s)
- Joshua C Obuch
- Division of Gastroenterology & Hepatology, Department of Medicine, University of Colorado, School of Medicine, 12631 E. 17th Avenue, MS B-158, Aurora, CO 80045, USA
| | - Dennis J Ahnen
- University of Colorado, School of Medicine, 12631 E. 17th Avenue, MS B-158, Aurora, CO 80045, USA.
| |
Collapse
|
38
|
Takahashi S. Editorial Comment to Novel strategy for cystitis glandularis: Oral treatment with cyclooxygenase-2 inhibitor. Int J Urol 2016; 23:709. [DOI: 10.1111/iju.13130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Satoshi Takahashi
- Department of Infection Control and Laboratory Medicine; Sapporo Medical University School of Medicine; Sapporo Hokkaido Japan
| |
Collapse
|
39
|
Ismail T, Calcabrini C, Diaz AR, Fimognari C, Turrini E, Catanzaro E, Akhtar S, Sestili P. Ellagitannins in Cancer Chemoprevention and Therapy. Toxins (Basel) 2016; 8:toxins8050151. [PMID: 27187472 PMCID: PMC4885066 DOI: 10.3390/toxins8050151] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 04/28/2016] [Accepted: 05/09/2016] [Indexed: 12/30/2022] Open
Abstract
It is universally accepted that diets rich in fruit and vegetables lead to reduction in the risk of common forms of cancer and are useful in cancer prevention. Indeed edible vegetables and fruits contain a wide variety of phytochemicals with proven antioxidant, anti-carcinogenic, and chemopreventive activity; moreover, some of these phytochemicals also display direct antiproliferative activity towards tumor cells, with the additional advantage of high tolerability and low toxicity. The most important dietary phytochemicals are isothiocyanates, ellagitannins (ET), polyphenols, indoles, flavonoids, retinoids, tocopherols. Among this very wide panel of compounds, ET represent an important class of phytochemicals which are being increasingly investigated for their chemopreventive and anticancer activities. This article reviews the chemistry, the dietary sources, the pharmacokinetics, the evidence on chemopreventive efficacy and the anticancer activity of ET with regard to the most sensitive tumors, as well as the mechanisms underlying their clinically-valuable properties.
Collapse
Affiliation(s)
- Tariq Ismail
- Institute of Food Science & Nutrition, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Bosan Road, Multan 60800, Punjab, Pakistan; (T.I.); (S.A.)
| | - Cinzia Calcabrini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via I Maggetti 26, 61029 Urbino (PU), Italy;
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso d'Augusto 237, 47921 Rimini (RN), Italy; (C.C.); (C.F.); (E.T.); (E.C.)
| | - Anna Rita Diaz
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via I Maggetti 26, 61029 Urbino (PU), Italy;
| | - Carmela Fimognari
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso d'Augusto 237, 47921 Rimini (RN), Italy; (C.C.); (C.F.); (E.T.); (E.C.)
| | - Eleonora Turrini
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso d'Augusto 237, 47921 Rimini (RN), Italy; (C.C.); (C.F.); (E.T.); (E.C.)
| | - Elena Catanzaro
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso d'Augusto 237, 47921 Rimini (RN), Italy; (C.C.); (C.F.); (E.T.); (E.C.)
| | - Saeed Akhtar
- Institute of Food Science & Nutrition, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Bosan Road, Multan 60800, Punjab, Pakistan; (T.I.); (S.A.)
| | - Piero Sestili
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via I Maggetti 26, 61029 Urbino (PU), Italy;
- Correspondence: ; Tel.: +39-(0)-722-303-414
| |
Collapse
|
40
|
Varoni EM, Lo Faro AF, Sharifi-Rad J, Iriti M. Anticancer Molecular Mechanisms of Resveratrol. Front Nutr 2016; 3:8. [PMID: 27148534 PMCID: PMC4828556 DOI: 10.3389/fnut.2016.00008] [Citation(s) in RCA: 248] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 03/23/2016] [Indexed: 01/07/2023] Open
Abstract
Resveratrol is a pleiotropic phytochemical belonging to the stilbene family. Though it is only significantly present in grape products, a huge amount of preclinical studies investigated its anticancer properties in a plethora of cellular and animal models. Molecular mechanisms of resveratrol involved signaling pathways related to extracellular growth factors and receptor tyrosine kinases; formation of multiprotein complexes and cell metabolism; cell proliferation and genome instability; cytoplasmic tyrosine kinase signaling (cytokine, integrin, and developmental pathways); signal transduction by the transforming growth factor-β super-family; apoptosis and inflammation; and immune surveillance and hormone signaling. Resveratrol also showed a promising role to counteract multidrug resistance: in adjuvant therapy, associated with 5-fluoruracyl and cisplatin, resveratrol had additive and/or synergistic effects increasing the chemosensitization of cancer cells. Resveratrol, by acting on diverse mechanisms simultaneously, has been emphasized as a promising, multi-target, anticancer agent, relevant in both cancer prevention and treatment.
Collapse
Affiliation(s)
- Elena M Varoni
- Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche, Università degli Studi di Milano , Milan , Italy
| | - Alfredo Fabrizio Lo Faro
- Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche, Università degli Studi di Milano , Milan , Italy
| | - Javad Sharifi-Rad
- Zabol Medicinal Plants Research Center, Zabol University of Medical Sciences, Zabol, Iran; Department of Pharmacognosy, Faculty of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran
| | - Marcello Iriti
- Dipartimento di Scienze Agrarie e Ambientali, Università degli Studi di Milano , Milan , Italy
| |
Collapse
|
41
|
Repositioning of drugs for intervention in tumor progression and metastasis: Old drugs for new targets. Drug Resist Updat 2016; 26:10-27. [PMID: 27180307 DOI: 10.1016/j.drup.2016.03.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 03/14/2016] [Accepted: 03/18/2016] [Indexed: 02/07/2023]
Abstract
The increasing unraveling of the molecular basis of cancer offers manifold novel options for intervention strategies. However, the discovery and development of new drugs for potential clinical applications is a tremendously time-consuming and costly process. Translating a novel lead candidate compound into an approved clinical drug takes often more than a decade, and the success rate is very low due to versatile efforts including defining its pharmacokinetics, pharmacodynamics, side effects as well as lack of sufficient efficacy. Thus, strategies are needed to minimize time and costs, while maximizing success rates. A very attractive strategy for novel cancer therapeutic options is the repositioning of already approved drugs. These medicines, approved for the treatment of non-malignant disorders, have already passed some early costs and time, have been tested in humans and are ready for clinical trials as anti-cancer drugs. Here we discuss the repositioning of nonsteroidal anti-inflammatory drugs (NSAID), statins, anti-psychotic drugs, anti-helminthic drugs and vitamin D as anti-tumor agents. We focus on their novel actions and potential for inhibition of cancer growth and metastasis by interfering with target molecules and pathways, which drive these malignant processes. Furthermore, important pre-clinical and clinical data are reviewed herein, which elucidate their therapeutic mechanisms which enable their repositioning for cancer therapy and disruption of metastasis.
Collapse
|
42
|
Owusu-Agyemang P, Cata JP, Fournier KF, Zavala AM, Soliz J, Hernandez M, Hayes-Jordan A, Gottumukkala V. Evaluating the Impact of Total Intravenous Anesthesia on the Clinical Outcomes and Perioperative NLR and PLR Profiles of Patients Undergoing Cytoreductive Surgery with Hyperthermic Intraperitoneal Chemotherapy. Ann Surg Oncol 2016; 23:2419-29. [DOI: 10.1245/s10434-016-5176-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Indexed: 01/28/2023]
|
43
|
Mattaveewong T, Wongkrasant P, Chanchai S, Pichyangkura R, Chatsudthipong V, Muanprasat C. Chitosan oligosaccharide suppresses tumor progression in a mouse model of colitis-associated colorectal cancer through AMPK activation and suppression of NF-κB and mTOR signaling. Carbohydr Polym 2016; 145:30-6. [PMID: 27106148 DOI: 10.1016/j.carbpol.2016.02.077] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 01/28/2016] [Accepted: 02/29/2016] [Indexed: 12/20/2022]
Abstract
Novel, effective and safe agents are needed for the chemoprevention of colorectal cancer (CRC). This study investigated the effects of chitosan oligosaccharides (COS) on CRC progression and their underlying mechanisms and safety profiles in mice. Using a mouse model of colitis-associated CRC, we found that oral administration of COS (500mg/kg/day) resulted in a ∼60% reduction of tumor size and tumor numbers/sectioning. In addition, COS treatment increased AMPK activity, suppressed the NF-κB-mediated inflammatory response and reduced the expressions of cyclin D1, phosphorylated ribosomal protein S6, and MMP-9 in the colon tissues of these mice. Importantly, administration of COS (500mg/kg/day; 50 days) had no adverse effects on renal or liver functions. Our results indicate that COS suppressed CRC progression via AMPK activation and the suppression of NF-κB and mTOR signaling. COS may be of potential utility in the chemoprevention of CRC.
Collapse
Affiliation(s)
- Tharinee Mattaveewong
- Department of Physiology, Faculty of Science, Mahidol University, Ratchathewi, Bangkok 10400, Thailand
| | - Preedajit Wongkrasant
- Department of Physiology, Faculty of Science, Mahidol University, Ratchathewi, Bangkok 10400, Thailand
| | - Sumalee Chanchai
- Department of Anatomy, Faculty of Science, Mahidol University, Ratchathewi, Bangkok 10400, Thailand
| | - Rath Pichyangkura
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phyathai, Bangkok 10330, Thailand
| | - Varanuj Chatsudthipong
- Department of Physiology, Faculty of Science, Mahidol University, Ratchathewi, Bangkok 10400, Thailand; Excellent Center for Drug Discovery (ECDD), Thailand Center of Excellence for Life Sciences (TCELS), Bangkok 10400, Thailand; Center of Excellence on Medical Biotechnology, Ministry of Education, Bangkok 10400, Thailand
| | - Chatchai Muanprasat
- Department of Physiology, Faculty of Science, Mahidol University, Ratchathewi, Bangkok 10400, Thailand; Excellent Center for Drug Discovery (ECDD), Thailand Center of Excellence for Life Sciences (TCELS), Bangkok 10400, Thailand; Center of Excellence on Medical Biotechnology, Ministry of Education, Bangkok 10400, Thailand.
| |
Collapse
|
44
|
Xu B, Wang Y, Yang J, Zhang Z, Zhang Y, Du H. Celecoxib induces apoptosis but up-regulates VEGF via endoplasmic reticulum stress in human colorectal cancer in vitro and in vivo. Cancer Chemother Pharmacol 2016; 77:797-806. [PMID: 26931344 DOI: 10.1007/s00280-016-2996-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 02/17/2016] [Indexed: 02/06/2023]
Abstract
PURPOSE In our previous study, we found that celecoxib, a kind of COX-2 inhibitor, led to cell apoptosis while up-regulating the expression of vascular endothelial growth factor (VEGF) in colorectal cancer HCT116 cells (COX-2 deficient), and endoplasmic reticulum (ER) stress was involved in the mechanism. Thus, we would like to explore whether these results are universal for other colorectal cancer cells, especially for COX-2-expressing ones, and whether the results in vitro and in vivo are matched. METHODS HT29 cells (COX-2 expressing) were treated with celecoxib under different conditions to evaluate cell apoptosis, VEGF expression and the activation of ER stress. HT29 and HCT116 xenograft tumor models were established to evaluate anti-tumor effects and verify the experiment results we obtained in vitro. RESULTS Celecoxib (≥60 µM) up-regulated the expression of ER stress markers (GRP78 and CHOP) and induced cell apoptosis accompanying with a correlated increased expression of VEGF in HT29 cells. Celecoxib-induced gene expression and cell apoptosis were inhibited by an ER stress inhibitor, PBA. In xenograft models, celecoxib treatment inhibited tumor growth with increased GRP78 and VEGF, which was consistent with the results in vitro. CONCLUSIONS Celecoxib, both in vitro and in vivo, induced apoptosis of colorectal cancer cells but increased the VEGF levels at the same time in a COX-2-independent manner, namely by activating ER stress. The increased VEGF would impair the effect of celecoxib and bring drug resistant; hence, the optimal schedule of the combination of celecoxib with anti-VEGF drugs needs to be explored.
Collapse
Affiliation(s)
- Bingfei Xu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Yu Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Jing Yang
- Department of Infectious Disease, Renmin Hospital, Hubei University of Medicine, Shiyan, People's Republic of China
| | - Zhengfeng Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Ying Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Hansong Du
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
45
|
Huang WK, Hsu HC, Liu JR, Yang TS, Chen JS, Chang JWC, Lin YC, Yu KH, Kuo CF, See LC. The Association of Ursodeoxycholic Acid Use With Colorectal Cancer Risk: A Nationwide Cohort Study. Medicine (Baltimore) 2016; 95:e2980. [PMID: 26986110 PMCID: PMC4839891 DOI: 10.1097/md.0000000000002980] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Data from preclinical studies suggest that ursodeoxycholic acid (UDCA) has a chemopreventive effect on colorectal cancer (CRC) development, but no large observational study has examined this possibility. The aim of this study was to investigate the association of UDCA use with CRC risk in a nationwide population-based cohort. This nationwide population-based cohort study used data from the Taiwan National Health Insurance Research Database for the period from 2000 through 2010. This study included data from 7119 Taiwanese adults who received ≥28 cumulative defined daily doses (cDDDs) of UDCA and 14,238 patients who did not receive UDCA (<28 cDDDs). UDCA nonusers were matched 1:2 for age, sex, enrollment date, and presence of chronic liver disease, viral hepatitis, cholelithiasis, and alcoholic liver disease. The 2 cohorts were followed until December 31, 2010 or occurrence of CRC. Cox proportional hazards regression with robust Sandwich variance estimator, which can cooperate with matching design, was used to examine the association between UDCA use and CRC risk. During 109,312 person-years of follow-up (median, 5 years), 121 patients had newly diagnosed CRC: 28 UDCA users (76.7 per 100,000 person-years) and 93 nonusers (127.7 per 100,000 person-years) (log-rank test, P = 0.0169). After multivariate adjustment for age, UDCA use was associated with a reduced risk of CRC (hazard ratio, 0.60; 95% confidence interval [CI], 0.39-0.92). The adjusted hazard ratios were 0.55 (95% CI, 0.35-0.89), 0.89 (95% CI, 0.36-2.20), and 0.63 (95% CI, 0.16-2.53) for patients with 28 to 180, 181 to 365, and >365 cDDDs, respectively, relative to nonusers. UDCA use was associated with reduced risk of CRC in a cohort mainly comprising patients with chronic liver diseases. However, further studies are needed to determine the optimal dosage of UDCA.
Collapse
Affiliation(s)
- Wen-Kuan Huang
- From the Department of Internal Medicine, Division of Hematology/Oncology, Chang Gung Memorial Hospital at Linkou, Chang Gung University, College of Medicine (W-KH, H-CH, T-SY, J-SC, JW-CC, Y-CL); Department of Public Health, College of Medicine, Chang Gung University (J-RL, L-CS); Division of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Chang Gung University, College of Medicine (K-HY, C-FK, L-CS); and Biostatistics Core Laboratory, Molecular Medicine Research Center, Chang Gung University (L-CS), Taoyuan, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Gan Y, Zheng S, Baak JP, Zhao S, Zheng Y, Luo N, Liao W, Fu C. Prediction of the anti-inflammatory mechanisms of curcumin by module-based protein interaction network analysis. Acta Pharm Sin B 2015; 5:590-5. [PMID: 26713275 PMCID: PMC4675814 DOI: 10.1016/j.apsb.2015.09.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 08/14/2015] [Accepted: 09/11/2015] [Indexed: 12/16/2022] Open
Abstract
Curcumin, the medically active component from Curcuma longa (Turmeric), is widely used to treat inflammatory diseases. Protein interaction network (PIN) analysis was used to predict its mechanisms of molecular action. Targets of curcumin were obtained based on ChEMBL and STITCH databases. Protein–protein interactions (PPIs) were extracted from the String database. The PIN of curcumin was constructed by Cytoscape and the function modules identified by gene ontology (GO) enrichment analysis based on molecular complex detection (MCODE). A PIN of curcumin with 482 nodes and 1688 interactions was constructed, which has scale-free, small world and modular properties. Based on analysis of these function modules, the mechanism of curcumin is proposed. Two modules were found to be intimately associated with inflammation. With function modules analysis, the anti-inflammatory effects of curcumin were related to SMAD, ERG and mediation by the TLR family. TLR9 may be a potential target of curcumin to treat inflammation.
Collapse
Key Words
- Anti-inflammatory
- Curcumin
- Cytoscape
- ETS, erythroblast transformation-specific
- GO, gene ontology
- Gene ontology enrichment analysis
- IFNs, interferons
- IL, interleukin
- JAK-STAT, Janus kinase-STAT
- MAPK, mitogen-activated protein kinase
- MCODE, molecular complex detection
- Module
- Molecular complex detection
- Molecular mechanism
- NF-κB, nuclear factor kappa B
- PIN, protein interaction network
- PPIs, protein–protein interactions
- Protein interaction network
- STATs, signal transducer and activator of transcription complexes
- TLR, toll-like receptor
Collapse
|