1
|
Tang X, Zhou B, Su Z, Wu R, Qiu X, Liu L. A cyanine based fluorescent probe for detecting hypochlorite in vitro and in vivo. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 322:124826. [PMID: 39029199 DOI: 10.1016/j.saa.2024.124826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/11/2024] [Accepted: 07/13/2024] [Indexed: 07/21/2024]
Abstract
Hypochlorite (ClO-) is recognized as a bioactive substance that plays a crucial role in various physiological and pathological processes. The increase of ClO- content in cells is a key factor in the early atherosclerosis lesions, which are closely linked to cardiovascular and cerebrovascular diseases. Therefore, the development of an efficient and sensitive method for detecting hypochlorite in tap water, serum, and living cells, including animal model in vivo is of paramount importance. In this study, a novel fluorescent probe (Cy-F) based on the cyanine group was designed for the specific detection of ClO-, demonstrating exceptional selectivity, high sensitivity, and rapid response. The probe successfully detected ClO- in tap water and serum with a limit of detection (LOD) of 2.93 × 10-7 M, showcasing excellent anti-interference capabilities. Notably, the probe exhibited good biocompatibility, low biological toxicity, and proved effective for detecting and analyzing ClO- in live cells and zebrafish. This newly developed probe offers a promising approach and valuable tool for detecting ClO- with biosafety considerations, paving the way for the design of functional probes tailored for future biomedical applications.
Collapse
Affiliation(s)
- Xu Tang
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Boxin Zhou
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Zhen Su
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Rongrong Wu
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xuchun Qiu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Lei Liu
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
2
|
Maiti A, Manna SK, Halder S, Ganguly R, Karak A, Ghosh P, Jana K, Mahapatra AK. Near-Infrared Fluorescent Turn-On Probe for Selective Detection of Hypochlorite in Aqueous Medium and Live Cell Imaging. Chem Res Toxicol 2024; 37:1682-1690. [PMID: 39287930 DOI: 10.1021/acs.chemrestox.4c00222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Hypochlorite, as an important reactive oxygen species (ROS), plays a vital role in many physiological and pathological processes, but an excess concentration of hypochlorite (ClO-) may become toxic to humans and cause disease. Hence, the selective and rapid detection of hypochlorite (ClO-) is necessary for human safety. Here, we report a novel near-infrared (NIR) fluorescence "turn-on" and highly selective benzophenoxazinium chloride-based fluorescent probe, BPH (benzophenoxazinium dihydroxy benzaldehyde), for hypochlorite detection. Due to hypochlorite-induced vicinal diol oxidation to the corresponding ortho benzoquinone derivative, the photoinduced electron transfer (PET) process, which was operating from vicinal diol to the benzophenoxazinium chloride receptor moiety, was suddenly inhibited, as a result of which strong NIR fluorescence "turn-on" emission was observed. The detection limit of BPH was found to be 2.39 × 10-10 M, or 0.23 nM. BPH was successfully applied for exogenous and endogenous hypochlorite detection in live MDA-MB 231 cells.
Collapse
Affiliation(s)
- Anwesha Maiti
- Molecular Sensor and Supramolecular Chemistry Laboratory, Department of Chemistry, Indian Institute of Engineering Science and Technology, Howrah, Shibpur, West Bengal 711103, India
| | - Saikat Kumar Manna
- Department of Chemistry, Haldia Government College, Haldia, Purba Medinipur, Debhog, West Bengal 721657, India
| | - Satyajit Halder
- Division of Molecular Medicine, Bose Institute, P 1/12, CIT Scheme VIIM, Kolkata 700054, India
| | - Rajdeep Ganguly
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur 711103, India
| | - Anirban Karak
- Molecular Sensor and Supramolecular Chemistry Laboratory, Department of Chemistry, Indian Institute of Engineering Science and Technology, Howrah, Shibpur, West Bengal 711103, India
| | - Pintu Ghosh
- Molecular Sensor and Supramolecular Chemistry Laboratory, Department of Chemistry, Indian Institute of Engineering Science and Technology, Howrah, Shibpur, West Bengal 711103, India
| | - Kuladip Jana
- Division of Molecular Medicine, Bose Institute, P 1/12, CIT Scheme VIIM, Kolkata 700054, India
| | - Ajit Kumar Mahapatra
- Molecular Sensor and Supramolecular Chemistry Laboratory, Department of Chemistry, Indian Institute of Engineering Science and Technology, Howrah, Shibpur, West Bengal 711103, India
| |
Collapse
|
3
|
Zhang LL, Jia BW, Zhuo ZP, Wang HY, Yang Q, Gao W, Ju YN. Ac2-26 Reduced Lung Injury After Cardiopulmonary Bypass via the AKT1/GSK3β/eNOS Pathway. J Surg Res 2024; 301:324-335. [PMID: 39013279 DOI: 10.1016/j.jss.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 05/16/2024] [Accepted: 06/16/2024] [Indexed: 07/18/2024]
Abstract
INTRODUCTION Cardiopulmonary bypass (CPB) leads to severe inflammation and lung injury. Our previous study showed that Ac2-26 (an active n-terminal peptide of Annexin A1) can reduce acute lung injury. The aim of this study was to evaluate the effect of Ac2-26 on lung injury in CPB rats. METHODS Forty rats were randomly divided into the sham, CPB, Ac, Ac/serine/threonine kinase 1 (AKT1), and Ac/ glycogen synthase kinase (GSK)-3β groups. The rats in the sham group only received anesthesia, intubation, and cannulation. The rats in the other 4 groups received the standard CPB procedure. The rats in the CPB, Ac, Ac/AKT1, and Ac/GSK3β groups were immediately injected with saline, Ac2-26 (1 mg/kg), Ac2-26 combined with short hairpin RNA (AKT1), or Ac2-26 combined with a GSK3β inhibitor after CPB. At 12 h after the end of CPB, the PaO2/ fraction of inspired oxygen ratio, wet/dry weight ratio and protein content in the bronchoalveolar lavage fluid (BALF) were recorded. The numbers of macrophages and neutrophils in the BALF and blood were determined. Cytokine levels in the blood and BALF were investigated. Lung tissue histology and apoptosis were estimated. The expression of nuclear factor kappa- B, AKT1, GSK3β, endothelial nitric oxide synthase and apoptosis-related proteins was analyzed. The survival of all the rats was recorded. RESULTS Compared with the rats in the sham group, all the parameters examined worsened in the rats that received CPB. Compared with those in the CPB group, Ac2-26 significantly improved pulmonary capillary permeability, reduced cytokine levels, and decreased histological scores and apoptosis. The protective effect of Ac2-26 on lung injury was significantly reversed by AKT1 short hairpin RNA or a GSK3β inhibitor. CONCLUSIONS Ac2-26 significantly reduced lung injury and inflammation after CPB. The protective effect of Ac2-26 mainly depended on the AKT1/GSK3β/endothelial nitric oxide synthase pathway.
Collapse
Affiliation(s)
- Lu-Lu Zhang
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Bao-Wei Jia
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Zi-Peng Zhuo
- Department of Intensive Care Unit, The Third Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Hong-Ying Wang
- Department of Intensive Care Unit, The Third Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Qing Yang
- Department of Intensive Care Unit, The Third Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Wei Gao
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
| | - Ying-Nan Ju
- Department of Intensive Care Unit, The Third Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
| |
Collapse
|
4
|
Ju YN, Zou ZW, Jia BW, Liu ZY, Sun XK, Qiu L, Gao W. Ac2-26 activated the AKT1/GSK3β pathway to reduce cerebral neurons pyroptosis and improve cerebral function in rats after cardiopulmonary bypass. BMC Cardiovasc Disord 2024; 24:266. [PMID: 38773462 PMCID: PMC11106860 DOI: 10.1186/s12872-024-03909-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/29/2024] [Indexed: 05/23/2024] Open
Abstract
BACKGROUND Cardiopulmonary bypass (CPB) results in brain injury, which is primarily caused by inflammation. Ac2-26 protects against ischemic or hemorrhage brain injury. The present study was to explore the effect and mechanism of Ac2-26 on brain injury in CPB rats. METHODS Forty-eight rats were randomized into sham, CPB, Ac, Ac/AKT1, Ac/GSK3βi and Ac/AKT1/GSK3βa groups. Rats in sham group only received anesthesia and in the other groups received standard CPB surgery. Rats in the sham and CPB groups received saline, and rats in the Ac, Ac/AKT1, Ac/GSK3βi and Ac/AKT1/GSK3βa groups received Ac2-26 immediately after CPB. Rats in the Ac/AKT1, Ac/GSK3βi and Ac/AKT1/GSK3βa groups were injected with shRNA, inhibitor and agonist of GSK3β respectively. The neurological function score, brain edema and histological score were evaluated. The neuronal survival and hippocampal pyroptosis were assessed. The cytokines, activity of NF-κB, S100 calcium-binding protein β(S100β) and neuron-specific enolase (NSE), and oxidative were tested. The NLRP3, cleaved-caspase-1 and cleaved-gadermin D (GSDMD) in the brain were also detected. RESULTS Compared to the sham group, all indicators were aggravated in rats that underwent CPB. Compared to the CPB group, Ac2-26 significantly improved neurological scores and brain edema and ameliorated pathological injury. Ac2-26 reduced the local and systemic inflammation, oxidative stress response and promoted neuronal survival. Ac2-26 reduced hippocampal pyroptosis and decreased pyroptotic proteins in brain tissue. The protection of Ac2-26 was notably lessened by shRNA and inhibitor of GSK3β. The agonist of GSK3β recovered the protection of Ac2-26 in presence of shRNA. CONCLUSIONS Ac2-26 significantly improved neurological function, reduced brain injury via regulating inflammation, oxidative stress response and pyroptosis after CPB. The protective effect of Ac2-26 primarily depended on AKT1/ GSK3β pathway.
Collapse
Affiliation(s)
- Ying-Nan Ju
- Department of Intensive Care Unit, Hainan General Hospital (Hainan Affiliated Hosptial of Hainan Medical University), Clinical College, Hainan Medical University, Haikou, 570311, China
| | - Zi-Wei Zou
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150081, China
| | - Bao-Wei Jia
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150081, China
| | - Zi-Ying Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150081, China
| | - Xi-Kun Sun
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150081, China
| | - Lin Qiu
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150081, China
| | - Wei Gao
- Department of Anesthesiology, Hainan General Hospital (Hainan Affiliated Hosptial of Hainan Medical University), Clinical College, Hainan Medical University, Haikou, 570311, China.
| |
Collapse
|
5
|
Tang X, Qi Q, Zhou W, Zhou B, Han Y, Liu L. Cyanine based ratio fluorescent probe and its application in hypochlorite detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 313:124150. [PMID: 38492467 DOI: 10.1016/j.saa.2024.124150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/04/2024] [Accepted: 03/11/2024] [Indexed: 03/18/2024]
Abstract
Hypochlorite (ClO-), a weakly acidic reactive oxygen species, plays a crucial role in antibacterial and anti-inflammatory defense mechanisms. However, elevated levels of ClO- or disruptions in endogenous sites can lead to tissue damage and various diseases including cardiovascular disease, neuronal degeneration, and arthritis. To address this, the development of a specific fluorescent probe with a built-in self-calibration ratio mode for the analysis and biological imaging of ClO- is essential. In this study, a cyanine-based fluorescent probe (Cy-H) was designed for ratiometric fluorescent detection of ClO-, utilizing its aggregation behavior as a novel approach in this field. Upon exposure to ClO-, the phenolic hydroxyl group in probe Cy-H was oxidized into benzoquinone, leading to the formation of cyanine products that displayed a strong tendency to aggregate. As a result, the maximum emission peak of the probe shifted from 700 nm to 485 nm. Notably, a linear relationship was observed between the peak intensity ratio (I485/I700) and the concentration of hypochlorite, with a limit of detection (LOD) of 0.49 μM. Furthermore, this probe was successfully employed for imaging analysis of hypochlorite in living cells and zebrafish.
Collapse
Affiliation(s)
- Xu Tang
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Qi Qi
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Wencheng Zhou
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Boxin Zhou
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yunlong Han
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Lie Liu
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
6
|
Xiong X, Qiu J, Fu S, Gu B, Zhong C, Zhao L, Gao Y. Accurate detection depression cell model with a dual-locked fluorescence probe in response to noradrenaline and HClO. Bioorg Chem 2024; 146:107296. [PMID: 38527389 DOI: 10.1016/j.bioorg.2024.107296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 03/11/2024] [Accepted: 03/15/2024] [Indexed: 03/27/2024]
Abstract
Due to the serious harm of depression to human health and quality of life, an accurate diagnosis of depression is warranted. For the complex etiology of depression, a single biomarker diagnostic method often leads to misdiagnosis. As noradrenaline and HClO are closely related to depression, a "dual-locked" fluorescence probe R-NE-HClO for diagnosing of depression through the simultaneous detection of noradrenaline and HClO was designed and synthesized. Fluorescence of R-NE-HClO can only be restored in the presence of both noradrenaline and HClO. The probe demonstrates excellent selectivity for noradrenaline and HClO and low cytotoxicity in cell imaging experiments. It is to be observed that we successfully applied the probe to accurately detect depressed cells which provides a possible tool for diagnosing depression.
Collapse
Affiliation(s)
- Xinyi Xiong
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350117, China
| | - Jianwen Qiu
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350117, China
| | - Shaofei Fu
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350117, China
| | - Biaofeng Gu
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350117, China
| | - Chunli Zhong
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350117, China
| | - Lan Zhao
- The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou 350003, China
| | - Yong Gao
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350117, China.
| |
Collapse
|
7
|
Hafez NS, Amer WA, Okba EA, Sakr MAS, Alganzory HH, Ebeid EZM. Novel ultra-sensitive and highly selective cyanine sensors based on solvent-free microwave synthesis for the detection of trace hypochlorite ions in drinking water. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 303:123116. [PMID: 37459665 DOI: 10.1016/j.saa.2023.123116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/18/2023] [Accepted: 07/06/2023] [Indexed: 09/20/2023]
Abstract
The adoption of chlorine in drinking water disinfection with the determination of residual chlorine in the form of hypochlorite ion (ClO-) is in widespread demand. Several sensors including colorimetric, fluorometric, and electrochemical methods are currently in use, but detection limits and ease of application remain a challenge. In this work, two new cyanine derivatives-based ClO- sensors, that were prepared by solvent-free microwave synthesis, are reported. The two sensors are highly sensitive and selective to ClO-, exhibiting a noticeable color change visible to the naked eye. Additionally, the sensors can detect ClO- without interference from other potential water pollutants, with low detection limits of 7.43 ppb and 0.917 ppb based on absorption performance. When using fluorometric methods, the sensors' detection limits are pushed down to 0.025 ppb and 0.598 ppb for sensors I and II, respectively. The sensors can be loaded with paper strips for field and domestic detection of ClO- in tap water treatment installations. Using the quartz crystal microbalance (QCM) technique, these sensors showed strong detection sensitivity to ClO-, with detection limits of 0.256 ppm and 0.09 ppm for sensors I and II, respectively. Quantum chemical studies using density functional theory (DFT) calculations, natural bond orbital (NBO) analysis, molecular electrostatic potential (MESP), and time-dependent density functional theory (TD-DFT) supported the findings. The sensing mechanism is rationalized in terms of radical cation formation upon ClO- oxidation of cyanine sensors I and II.
Collapse
Affiliation(s)
- Nermeen S Hafez
- Chemistry Department, Faculty of Science, Tanta University, Tanta 31527, Egypt.
| | - Wael A Amer
- Chemistry Department, Faculty of Science, Tanta University, Tanta 31527, Egypt; Department of Chemistry, College of Science, University of Bahrain, Sakhir 32038, Bahrain
| | - Ehab A Okba
- Chemistry Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Mahmoud A S Sakr
- Center of Basic Science, Misr University for Science and Technology, 6(TH) of October City, Egypt
| | | | - El-Zeiny M Ebeid
- Chemistry Department, Faculty of Science, Tanta University, Tanta 31527, Egypt; Center of Basic Science, Misr University for Science and Technology, 6(TH) of October City, Egypt
| |
Collapse
|
8
|
Mladenović M, Astolfi R, Tomašević N, Matić S, Božović M, Sapienza F, Ragno R. In Vitro Antioxidant and In Vivo Antigenotoxic Features of a Series of 61 Essential Oils and Quantitative Composition-Activity Relationships Modeled through Machine Learning Algorithms. Antioxidants (Basel) 2023; 12:1815. [PMID: 37891894 PMCID: PMC10604248 DOI: 10.3390/antiox12101815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
The antioxidant activity of essential oils (EOs) is an important and frequently studied property, yet it is not sufficiently understood in terms of the contribution of EOs mixtures' constituents and biological properties. In this study, a series of 61 commercial EOs were first evaluated as antioxidants in vitro, following as closely as possible the cellular pathways of reactive oxygen species (ROS) generation. Hence, EOs were assessed for the ability either to chelate metal ions, thus interfering with ROS generation within the respiratory chain, or to neutralize 2,2-diphenyl-1-picrylhydrazyl (DPPH•) and lipid peroxide radicals (LOO•), thereby halting lipid peroxidation, as well as to neutralize 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid cation radicals (ABTS•+) and hydroxyl radicals (OH•), thereby preventing the ROS species from damaging DNA nucleotides. Showing noteworthy potencies to neutralize all of the radicals at the ng/mL level, the active EOs were also characterized as protectors of DNA double strands from damage induced by peroxyl radicals (ROO•), emerging from 2,2'-azobis-2-methyl-propanimidamide (AAPH) as a source, and OH•, indicating some genome protectivity and antigenotoxicity effectiveness in vitro. The chemical compositions of the EOs associated with the obtained activities were then analyzed by means of machine learning (ML) classification algorithms to generate quantitative composition-activity relationships (QCARs) models (models published in the AI4EssOil database available online). The QCARs models enabled us to highlight the key features (EOSs' chemical compounds) for exerting the redox potencies and to define the partial dependencies of the features, viz. percentages in the mixture required to exert a given potency. The ML-based models explained either the positive or negative contribution of the most important chemical components: limonene, linalool, carvacrol, eucalyptol, α-pinene, thymol, caryophyllene, p-cymene, eugenol, and chrysanthone. Finally, the most potent EOs in vitro, Ylang-ylang (Cananga odorata (Lam.)) and Ceylon cinnamon peel (Cinnamomum verum J. Presl), were promptly administered in vivo to evaluate the rescue ability against redox damage caused by CCl4, thereby verifying their antioxidant and antigenotoxic properties either in the liver or in the kidney.
Collapse
Affiliation(s)
- Milan Mladenović
- Kragujevac Center for Computational Biochemistry, Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, P.O. Box 60, 34000 Kragujevac, Serbia;
| | - Roberta Astolfi
- Rome Center for Molecular Design, Department of Drug Chemistry and Technology, Faculty of Pharmacy and Medicine, Rome Sapienza University, P. le A. Moro 5, 00185 Rome, Italy; (R.A.); (F.S.)
| | - Nevena Tomašević
- Kragujevac Center for Computational Biochemistry, Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, P.O. Box 60, 34000 Kragujevac, Serbia;
| | - Sanja Matić
- Department of Science, Institute for Information Technologies Kragujevac, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia;
| | - Mijat Božović
- Faculty of Science and Mathematics, University of Montenegro, Džordža Vašingtona bb, 81000 Podgorica, Montenegro;
| | - Filippo Sapienza
- Rome Center for Molecular Design, Department of Drug Chemistry and Technology, Faculty of Pharmacy and Medicine, Rome Sapienza University, P. le A. Moro 5, 00185 Rome, Italy; (R.A.); (F.S.)
| | - Rino Ragno
- Rome Center for Molecular Design, Department of Drug Chemistry and Technology, Faculty of Pharmacy and Medicine, Rome Sapienza University, P. le A. Moro 5, 00185 Rome, Italy; (R.A.); (F.S.)
| |
Collapse
|
9
|
Nguyen NT, Umbaugh DS, Smith S, Adelusi OB, Sanchez-Guerrero G, Ramachandran A, Jaeschke H. Dose-dependent pleiotropic role of neutrophils during acetaminophen-induced liver injury in male and female mice. Arch Toxicol 2023; 97:1397-1412. [PMID: 36928416 PMCID: PMC10680445 DOI: 10.1007/s00204-023-03478-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/02/2023] [Indexed: 03/18/2023]
Abstract
Acetaminophen (APAP) overdose is the leading cause of acute liver failure in western countries. APAP can cause extensive hepatocellular necrosis, which triggers an inflammatory response involving neutrophil and monocyte recruitment. Particularly the role of neutrophils in the injury mechanism of APAP hepatotoxicity has been highly controversial. Thus, the objective of the current study was to assess whether a potential contribution of neutrophils was dependent on the APAP dose and the sex of the animals. Male and female C57BL/6 J mice were treated with 300 or 600 mg/kg APAP and the injury and inflammatory cell recruitment was evaluated between 6 and 48 h. In both male and female mice, ALT plasma levels and the areas of necrosis peaked at 12-24 h after both doses with more severe injury at the higher dose. In addition, Ly6g-positive neutrophils started to accumulate in the liver at 6 h and peaked at 6-12 h after 300 mg/kg and 12-24 h after 600 mg/kg for both sexes; however, the absolute numbers of hepatic neutrophils in the liver were significantly higher after the 600 mg/kg dose. Neutrophil infiltration correlated with mRNA levels of the neutrophil chemoattractant Cxcl2 in the liver. Treating mice with an anti-Cxcl2 antibody at 2 h after APAP significantly reduced neutrophil accumulation at 24 h after both doses and in both sexes. However, the injury was significantly reduced only after the high overdose. Thus, neutrophils, recruited through Cxcl2, have no effect on APAP-induced liver injury after 300 mg/kg but aggravate the injury only after severe overdoses.
Collapse
Affiliation(s)
- Nga T Nguyen
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, MS 1018, Kansas City, Kansas, 66160, USA
| | - David S Umbaugh
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, MS 1018, Kansas City, Kansas, 66160, USA
| | - Sawyer Smith
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, MS 1018, Kansas City, Kansas, 66160, USA
| | - Olamide B Adelusi
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, MS 1018, Kansas City, Kansas, 66160, USA
| | - Giselle Sanchez-Guerrero
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, MS 1018, Kansas City, Kansas, 66160, USA
| | - Anup Ramachandran
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, MS 1018, Kansas City, Kansas, 66160, USA
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, MS 1018, Kansas City, Kansas, 66160, USA.
| |
Collapse
|
10
|
Berezin AA, Obradovic Z, Berezina TA, Boxhammer E, Lichtenauer M, Berezin AE. Cardiac Hepatopathy: New Perspectives on Old Problems through a Prism of Endogenous Metabolic Regulations by Hepatokines. Antioxidants (Basel) 2023; 12:antiox12020516. [PMID: 36830074 PMCID: PMC9951884 DOI: 10.3390/antiox12020516] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/12/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Cardiac hepatopathy refers to acute or chronic liver damage caused by cardiac dysfunction in the absence of any other possible causative reasons of liver injury. There is a large number of evidence of the fact that cardiac hepatopathy is associated with poor clinical outcomes in patients with acute or actually decompensated heart failure (HF). However, the currently dominated pathophysiological background does not explain a role of metabolic regulative proteins secreted by hepatocytes in progression of HF, including adverse cardiac remodeling, kidney injury, skeletal muscle dysfunction, osteopenia, sarcopenia and cardiac cachexia. The aim of this narrative review was to accumulate knowledge of hepatokines (adropin; fetuin-A, selenoprotein P, fibroblast growth factor-21, and alpha-1-microglobulin) as adaptive regulators of metabolic homeostasis in patients with HF. It is suggested that hepatokines play a crucial, causative role in inter-organ interactions and mediate tissue protective effects counteracting oxidative stress, inflammation, mitochondrial dysfunction, apoptosis and necrosis. The discriminative potencies of hepatokines for HF and damage of target organs in patients with known HF is under on-going scientific discussion and requires more investigations in the future.
Collapse
Affiliation(s)
- Alexander A. Berezin
- Internal Medicine Department, Zaporozhye Medical Academy of Postgraduate Education, 69000 Zaporozhye, Ukraine
- Klinik Barmelweid, Department of Psychosomatic Medicine and Psychotherapy, 5017 Barmelweid, Switzerland
| | - Zeljko Obradovic
- Klinik Barmelweid, Department of Psychosomatic Medicine and Psychotherapy, 5017 Barmelweid, Switzerland
| | - Tetiana A. Berezina
- Department of Internal Medicine & Nephrology, VitaCenter, 69000 Zaporozhye, Ukraine
| | - Elke Boxhammer
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
| | - Michael Lichtenauer
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
| | - Alexander E. Berezin
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
- Internal Medicine Department, Zaporozhye State Medical University, 69035 Zaporozhye, Ukraine
- Correspondence:
| |
Collapse
|
11
|
Wang L, Shao J, Su C, Yang J. The application of optical technology in the diagnosis and therapy of oxidative stress-mediated hepatic ischemia-reperfusion injury. Front Bioeng Biotechnol 2023; 11:1133039. [PMID: 36890921 PMCID: PMC9986550 DOI: 10.3389/fbioe.2023.1133039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/09/2023] [Indexed: 02/22/2023] Open
Abstract
Hepatic ischemia-reperfusion injury (HIRI) is defined as liver tissue damage and cell death caused by reperfusion during liver transplantation or hepatectomy. Oxidative stress is one of the important mechanisms of HIRI. Studies have shown that the incidence of HIRI is very high, however, the number of patients who can get timely and efficient treatment is small. The reason is not hard to explain that invasive ways of detection and lack of timely of diagnostic methods. Hence, a new detection method is urgently needed in clinic application. Reactive oxygen species (ROS), which are markers of oxidative stress in the liver, could be detected by optical imaging and offer timely and effective non-invasive diagnosis and monitoring. Optical imaging could become the most potential tool of diagnosis of HIRI in the future. In addition, optical technology can also be used in disease treatment. It found that optical therapy has the function of anti-oxidative stress. Consequently, it has possibility to treat HIRI caused by oxidative stress. In this review, we mainly summarized the application and prospect of optical techniques in oxidative stress-induced by HIRI.
Collapse
Affiliation(s)
- Lijuan Wang
- Department of Medicine, Hengyang Medical School, University of South China, Hengyang, China.,Department of Anesthesiology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Jiali Shao
- Department of Anesthesiology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Chen Su
- Department of Anesthesiology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Jinfeng Yang
- Department of Anesthesiology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| |
Collapse
|
12
|
Chaudhran PA, Sharma A. Progress in the Development of Imidazopyridine-Based Fluorescent Probes for Diverse Applications. Crit Rev Anal Chem 2022; 54:2148-2165. [PMID: 36562726 DOI: 10.1080/10408347.2022.2158720] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Different classes of Imidazopyridine i.e., Imidazo[1,2-a]pyridine, Imidazo[1,5-a] pyridine, Imidazo[4,5-b]pyridine, have shown versatile applications in various fields. In this review, we have concisely presented the usefulness of the fluorescent property of imidazopyridine in different fields such as imaging tools, optoelectronics, metal ion detection, etc. Fluorescence mechanisms such as excited state intramolecular proton transfer, photoinduced electron transfer, fluorescence resonance energy transfer, intramolecular charge transfer, etc. are incorporated in the designed fluorophore to make it for fluorescent applications. It has been widely employed for metal ion detection, where selective metal ion detection is possible with triazole-attached imidazopyridine, β-carboline imidazopyridine hybrid, quinoline conjugated imidazopyridine, and many more. Also, other popular applications involve organic light emitting diodes and cell imaging. This review shed a light on recent development in this area especially focusing on the optical properties of the molecules with their usage which would be helpful in designing application-based new imidazopyridine derivatives.
Collapse
Affiliation(s)
- Preeti AshokKumar Chaudhran
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli, Uttar Pradesh, India
| | - Abha Sharma
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli, Uttar Pradesh, India
| |
Collapse
|
13
|
Ghosh R, Debnath S, Bhattacharya A, Pradhan D, Chatterjee PB. Studies on the interaction between oxido/dioxidovanadium(V) compounds and reactive oxygen species: Synthesis, characterization, and photophysical investigation. J Inorg Biochem 2022; 233:111845. [DOI: 10.1016/j.jinorgbio.2022.111845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/07/2022] [Accepted: 05/01/2022] [Indexed: 11/30/2022]
|
14
|
Arnhold J, Malle E. Halogenation Activity of Mammalian Heme Peroxidases. Antioxidants (Basel) 2022; 11:antiox11050890. [PMID: 35624754 PMCID: PMC9138014 DOI: 10.3390/antiox11050890] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 12/10/2022] Open
Abstract
Mammalian heme peroxidases are fascinating due to their unique peculiarity of oxidizing (pseudo)halides under physiologically relevant conditions. These proteins are able either to incorporate oxidized halides into substrates adjacent to the active site or to generate different oxidized (pseudo)halogenated species, which can take part in multiple (pseudo)halogenation and oxidation reactions with cell and tissue constituents. The present article reviews basic biochemical and redox mechanisms of (pseudo)halogenation activity as well as the physiological role of heme peroxidases. Thyroid peroxidase and peroxidasin are key enzymes for thyroid hormone synthesis and the formation of functional cross-links in collagen IV during basement membrane formation. Special attention is directed to the properties, enzymatic mechanisms, and resulting (pseudo)halogenated products of the immunologically relevant proteins such as myeloperoxidase, eosinophil peroxidase, and lactoperoxidase. The potential role of the (pseudo)halogenated products (hypochlorous acid, hypobromous acid, hypothiocyanite, and cyanate) of these three heme peroxidases is further discussed.
Collapse
Affiliation(s)
- Jürgen Arnhold
- Medical Faculty, Institute of Medical Physics and Biophysics, Leipzig University, 04107 Leipzig, Germany
- Correspondence: (J.A.); or (E.M.)
| | - Ernst Malle
- Gottfried Schatz Research Center, Division of Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
- Correspondence: (J.A.); or (E.M.)
| |
Collapse
|
15
|
|
16
|
Liu L, Guo C, Zhang Q, Xu P, Cui Y, Zhu W, Fang M, Li C. A hydrazone dual-functional fluorescent probe based on carbazole and coumarin groups for the detection of Cu2+ and ClO−: Application in live cell imaging and actual water samples. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2021.113593] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
17
|
Hao Y, Zhang Y, Sun Q, Chen S, Tang Z, Zeng R, Xu M. Phenothiazine-coumarin-pyridine hybrid as an efficient fluorescent probe for ratiometric sensing hypochlorous acid. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106851] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
18
|
A novel aggregation induced emission probe based on coumarin scaffold for imaging hypochlorite in cells and zebrafish. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
19
|
Deng J, Jiang Y, Wang M, Shao L, Deng C. Activation of vagovagal reflex prevents hepatic ischaemia-reperfusion-induced lung injury via anti-inflammatory and antioxidant effects. Exp Physiol 2021; 106:2210-2222. [PMID: 34533881 DOI: 10.1113/ep089865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/13/2021] [Indexed: 12/27/2022]
Abstract
NEW FINDINGS What is the central question of this study? Does vagus nerve stimulation have protective effects against both direct liver damage and distant lung injury in a rat model of hepatic ischaemia-reperfusion? What is the main finding and its importance? Vagus nerve stimulation provides protection through anti-inflammatory and anti-oxidative stress effects, possibly achieved by the vagovagal reflex. ABSTRACT Hepatic ischaemia-reperfusion (I/R) is not an isolated event; instead, it can result in remote organ dysfunction. The aim of this study was to investigate whether vagus nerve stimulation (VNS) can alleviate hepatic I/R-induced lung injury and to explore the underlying mechanism. Thirty male Sprague-Dawley rats were randomly allocated into five groups (n = 6 each): the sham group (without I/R or VNS), the I/R group (hepatic I/R) and three different VNS treatment groups (hepatic I/R plus VNS). The hepatic I/R group was subjected to occlusion of the portal vein and hepatic artery for 1 h, followed by 6 h of reperfusion. The intact afferent and efferent cervical vagus nerves were stimulated throughout the I/R process. During VNS, cervical neural activity was recorded. At the end of the experiment, liver function, the wet-to-dry lung weight ratio, histology of the liver and lung and inflammatory/oxidative indices were evaluated. We found that VNS significantly mitigated lung injury, as demonstrated by alleviation of pulmonary oedema and pathological alterations, by limiting inflammatory cytokine infiltration and increasing antioxidant capability. This proof-of-concept study suggested that VNS might protect patients from lung injury induced by hepatic I/R related to various circumstances.
Collapse
Affiliation(s)
- Jielin Deng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yunqiu Jiang
- Department of Internal Medicine, Cardiovascular Section, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Meng Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Ling Shao
- Department of Cardiology, The First People's Hospital of Jingmen, Jingmen, China
| | - Changjin Deng
- Department of Cardiology, The First People's Hospital of Jingmen, Jingmen, China
| |
Collapse
|
20
|
Jia X, Wei C, Li Z, Liu L, Wang M, Zhang P, Li X. Selective Imaging of HClO in the Liver Tissue In Vivo Using a Near-infrared Hepatocyte-specific Fluorescent Probe. Chem Asian J 2021; 16:1967-1972. [PMID: 34036742 DOI: 10.1002/asia.202100476] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/22/2021] [Indexed: 12/16/2022]
Abstract
Liver injury is typified by an inflammatory response. Hypochlorous acid (HClO), an important endogenous reactive oxygen species, is regarded as a biomarker associated with liver injury. Near-infrared (NIR) fluorescent probes with the advantage of deep tissue penetrating and low auto-fluorescence interference are more suitable for bioimaging in vivo. Thus, in this work, we designed and synthesized a novel NIR hepatocyte-specific fluorescent probe named NHF. The probe NHF showed fast response (<3 s), large spectral variation, and good selectivity to trace HClO in buffer solution. By employing N-acetylgalactosamine (GalNAc) as the targeting ligand, probe NHF can be actively delivered to the liver tissue of zebrafish and mice. It is important that probe NHF is the first NIR hepatocyte-specific fluorescent probe, which successfully visualized the up-regulation of endogenous HClO in the oxygen-glucose deprivation/reperfusion (OGD/R) model HepG2 cells and dynamically monitored APAP-induced endogenous HClO in the liver tissue of zebrafish and mice.
Collapse
Affiliation(s)
- Xu Jia
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education), Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Wusi Dong Road 18, Baoding, 071002, P. R. China
| | - Chao Wei
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education), Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Wusi Dong Road 18, Baoding, 071002, P. R. China
| | - Zimeng Li
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education), Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Wusi Dong Road 18, Baoding, 071002, P. R. China
| | - Liyan Liu
- Medical Comprehensive Experimental Center, Hebei University, East Road Yuhua 342, Baoding, 071000, P. R. China
| | - Mei Wang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education), Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Wusi Dong Road 18, Baoding, 071002, P. R. China
| | - Pingzhu Zhang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education), Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Wusi Dong Road 18, Baoding, 071002, P. R. China
| | - Xiaoliu Li
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education), Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Wusi Dong Road 18, Baoding, 071002, P. R. China
| |
Collapse
|
21
|
Tang J, Yan Z, Feng Q, Yu L, Wang H. The Roles of Neutrophils in the Pathogenesis of Liver Diseases. Front Immunol 2021; 12:625472. [PMID: 33763069 PMCID: PMC7982672 DOI: 10.3389/fimmu.2021.625472] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/25/2021] [Indexed: 01/30/2023] Open
Abstract
Neutrophils are the largest population of circulating leukocytes and the first responder against invading pathogens or other danger signals. Sophisticated machineries help them play critical roles in immunity and inflammation, including phagocytosis, superoxide production, cytokine and chemokine production, degranulation, and formation of neutrophil extracellular traps (NETs). After maturation and release from the bone marrow, neutrophils migrate to inflamed tissues in response to many stimuli. Increasing evidences indicate that neutrophils are critically involved in the pathogenesis of liver diseases, including liver cancer, thus making them promising target for the treatment of liver diseases. Here, we would like to provide the latest finding about the role of neutrophils in liver diseases and discuss the potentiality of neutrophils as target for liver diseases.
Collapse
Affiliation(s)
- Jiaojiao Tang
- Division of Life Sciences and Medicine, Cancer Research Center, The First Affiliated Hospital of University of Science and Technology of China, Hefei, China
- International Cooperation Laboratory on Signal Transduction, Ministry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Shanghai Key Laboratory of Hepato-Biliary Tumor Biology, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Zijun Yan
- International Cooperation Laboratory on Signal Transduction, Ministry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Shanghai Key Laboratory of Hepato-Biliary Tumor Biology, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
- Graduate Management Unit, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Qiyu Feng
- Division of Life Sciences and Medicine, Cancer Research Center, The First Affiliated Hospital of University of Science and Technology of China, Hefei, China
- International Cooperation Laboratory on Signal Transduction, Ministry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Shanghai Key Laboratory of Hepato-Biliary Tumor Biology, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
- National Center for Liver Cancer, Shanghai, China
| | - Lexing Yu
- Division of Life Sciences and Medicine, Cancer Research Center, The First Affiliated Hospital of University of Science and Technology of China, Hefei, China
- International Cooperation Laboratory on Signal Transduction, Ministry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Shanghai Key Laboratory of Hepato-Biliary Tumor Biology, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
- National Center for Liver Cancer, Shanghai, China
| | - Hongyang Wang
- Division of Life Sciences and Medicine, Cancer Research Center, The First Affiliated Hospital of University of Science and Technology of China, Hefei, China
- International Cooperation Laboratory on Signal Transduction, Ministry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Shanghai Key Laboratory of Hepato-Biliary Tumor Biology, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
- National Center for Liver Cancer, Shanghai, China
| |
Collapse
|
22
|
Shi W, Song B, Liu Z, Zhang W, Tan M, Song F, Yuan J. Smart Bimodal Imaging of Hypochlorous Acid In Vivo Using a Heterobimetallic Ruthenium(II)-Gadolinium(III) Complex Probe. Anal Chem 2020; 92:11145-11154. [PMID: 32702968 DOI: 10.1021/acs.analchem.0c01198] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A unique heterobimetallic Ru(II)-Gd(III) complex, Ru-AN-Gd, is reported to serve as an effective probe for bimodal phosphorescence-magnetic resonance (MR) imaging of hypochlorous acid (HClO) in vitro and in vivo. The probe was designed by incorporating a MR contrast agent, Gd-DOTA, into a HClO-responsive bipyridine-Ru(II) complex derivative. The specific reaction between Ru-AN-Gd and HClO triggers the cleavage of an ether bond in the probe molecule, resulting in phosphorescence turn-on and MR turn-off responses to HClO. The integration of MR and phosphorescence detection modes allows the probe to be employed for detecting HClO in a quite wide concentration range (0.6-2000 μM) and for imaging HClO at various resolutions ranging from the subcellular level to the whole body without a depth limit. Its applicability was demonstrated by phosphorescence imaging of lysosomal HClO in live cells, visualization of HClO generation in a mouse arthritis model, and bimodal phosphorescence-MR imaging of HClO in drug-induced acute liver and kidney injury of a mouse. The research achievements suggested the potential of Ru-AN-Gd for diagnosis and treatment monitoring of HClO-related disease.
Collapse
Affiliation(s)
- Wenbo Shi
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Bo Song
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Zhiwei Liu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Wenzhu Zhang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Mingqian Tan
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, P. R. China
| | - Fengling Song
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Jingli Yuan
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| |
Collapse
|
23
|
Long L, Han Y, Liu W, Chen Q, Yin D, Li L, Yuan F, Han Z, Gong A, Wang K. Simultaneous Discrimination of Hypochlorite and Single Oxygen during Sepsis by a Dual-Functional Fluorescent Probe. Anal Chem 2020; 92:6072-6080. [DOI: 10.1021/acs.analchem.0c00492] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Lingliang Long
- School of Chemistry and Chemical Engineering, School of Medicine, School of the Environment and Safety Engineering, Key Laboratory of Modern Agriculture Equipment and Technology, Jiangsu University, Zhenjiang, Jiangsu 212013, P. R. China
| | - Yuanyuan Han
- School of Chemistry and Chemical Engineering, School of Medicine, School of the Environment and Safety Engineering, Key Laboratory of Modern Agriculture Equipment and Technology, Jiangsu University, Zhenjiang, Jiangsu 212013, P. R. China
| | - Weiguo Liu
- School of Chemistry and Chemical Engineering, School of Medicine, School of the Environment and Safety Engineering, Key Laboratory of Modern Agriculture Equipment and Technology, Jiangsu University, Zhenjiang, Jiangsu 212013, P. R. China
| | - Qian Chen
- School of Chemistry and Chemical Engineering, School of Medicine, School of the Environment and Safety Engineering, Key Laboratory of Modern Agriculture Equipment and Technology, Jiangsu University, Zhenjiang, Jiangsu 212013, P. R. China
| | - Dandan Yin
- School of Chemistry and Chemical Engineering, School of Medicine, School of the Environment and Safety Engineering, Key Laboratory of Modern Agriculture Equipment and Technology, Jiangsu University, Zhenjiang, Jiangsu 212013, P. R. China
| | - LuLu Li
- School of Chemistry and Chemical Engineering, School of Medicine, School of the Environment and Safety Engineering, Key Laboratory of Modern Agriculture Equipment and Technology, Jiangsu University, Zhenjiang, Jiangsu 212013, P. R. China
| | - Fang Yuan
- School of Chemistry and Chemical Engineering, School of Medicine, School of the Environment and Safety Engineering, Key Laboratory of Modern Agriculture Equipment and Technology, Jiangsu University, Zhenjiang, Jiangsu 212013, P. R. China
| | - Zhixiang Han
- School of Chemistry and Chemical Engineering, School of Medicine, School of the Environment and Safety Engineering, Key Laboratory of Modern Agriculture Equipment and Technology, Jiangsu University, Zhenjiang, Jiangsu 212013, P. R. China
| | - Aihua Gong
- School of Chemistry and Chemical Engineering, School of Medicine, School of the Environment and Safety Engineering, Key Laboratory of Modern Agriculture Equipment and Technology, Jiangsu University, Zhenjiang, Jiangsu 212013, P. R. China
| | - Kun Wang
- School of Chemistry and Chemical Engineering, School of Medicine, School of the Environment and Safety Engineering, Key Laboratory of Modern Agriculture Equipment and Technology, Jiangsu University, Zhenjiang, Jiangsu 212013, P. R. China
| |
Collapse
|
24
|
Peptide-capped functionalized Ag/Au bimetal nanoclusters with enhanced red fluorescence for lysosome-targeted imaging of hypochlorite in living cells. Talanta 2020; 216:120926. [PMID: 32456892 DOI: 10.1016/j.talanta.2020.120926] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 03/09/2020] [Accepted: 03/11/2020] [Indexed: 01/05/2023]
Abstract
Bioimaging probes for monitoring intracellular reactive oxygen species have important implications for cell biology research. Herein, we developed peptide-capped silver/gold nanoclusters (peptide@Ag/Au NCs) for lysosome-targeted imaging of hypochlorite (ClO-). The peptide@Ag/Au NCs were synthesized via a one-pot method using peptide as both a template and a reducing agent. The fluorescence intensity and absolute quantum yield of peptide@Ag/Au NCs were much higher than those of peptide-capped gold nanoclusters and silver nanoclusters. In the presence of ClO-, the fluorescence of peptide@Ag/Au NCs was quenched, accompanied by a redshift due to ClO--induced oxidation of the peptide ligand and decreased Ag content in Ag/Au NCs. The relative fluorescence intensity F0/F had favourable linearity for ClO- concentrations in the range 0.1-100 μmol/L (R2 = 0.9954), with a detection limit (LOD) of 80 nmol/L. The lysosome-targeted peptide@Ag/Au NCs were applied to detect ClO- in lysosomes in living cells via fluorescence imaging.
Collapse
|
25
|
Jaeschke H, Ramachandran A. Mechanisms and pathophysiological significance of sterile inflammation during acetaminophen hepatotoxicity. Food Chem Toxicol 2020; 138:111240. [PMID: 32145352 DOI: 10.1016/j.fct.2020.111240] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/26/2020] [Accepted: 02/28/2020] [Indexed: 02/07/2023]
Abstract
Acetaminophen (APAP) is a widely used analgesic drug, which can cause severe liver injury after an overdose. The intracellular signaling mechanisms of APAP-induced cell death such as reactive metabolite formation, mitochondrial dysfunction and nuclear DNA fragmentation have been extensively studied. Hepatocyte necrosis releases damage-associated molecular patterns (DAMPs) which activate cytokine and chemokine formation in macrophages. These signals activate and recruit neutrophils, monocytes and other leukocytes into the liver. While this sterile inflammatory response removes necrotic cell debris and promotes tissue repair, the capability of leukocytes to also cause tissue injury makes this a controversial topic. This review summarizes the literature on the role of various DAMPs, cytokines and chemokines, and the pathophysiological function of Kupffer cells, neutrophils, monocytes and monocyte-derived macrophages, and NK and NKT cells during APAP hepatotoxicity. Careful evaluation of results and experimental designs of studies dealing with the inflammatory response after APAP toxicity provide very limited evidence for aggravation of liver injury but support of the hypothesis that these leukocytes promote tissue repair. In addition, many cytokines and chemokines modulate tissue injury by affecting the intracellular signaling events of cell death rather than toxicity of leukocytes. Reasons for the controversial results in this area are also discussed.
Collapse
Affiliation(s)
- Hartmut Jaeschke
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| | - Anup Ramachandran
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| |
Collapse
|
26
|
Catz SD, McLeish KR. Therapeutic targeting of neutrophil exocytosis. J Leukoc Biol 2020; 107:393-408. [PMID: 31990103 PMCID: PMC7044074 DOI: 10.1002/jlb.3ri0120-645r] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/10/2020] [Accepted: 01/11/2020] [Indexed: 12/11/2022] Open
Abstract
Dysregulation of neutrophil activation causes disease in humans. Neither global inhibition of neutrophil functions nor neutrophil depletion provides safe and/or effective therapeutic approaches. The role of neutrophil granule exocytosis in multiple steps leading to recruitment and cell injury led each of our laboratories to develop molecular inhibitors that interfere with specific molecular regulators of secretion. This review summarizes neutrophil granule formation and contents, the role granule cargo plays in neutrophil functional responses and neutrophil-mediated diseases, and the mechanisms of granule release that provide the rationale for development of our exocytosis inhibitors. We present evidence for the inhibition of granule exocytosis in vitro and in vivo by those inhibitors and summarize animal data indicating that inhibition of neutrophil exocytosis is a viable therapeutic strategy.
Collapse
Affiliation(s)
- Sergio D. Catz
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA
| | - Kenneth R. McLeish
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY
| |
Collapse
|
27
|
A carbazole-based fluorescent probe for ultra-fast detection of ClO− and its application to live cell imaging. CHEMICAL PAPERS 2019. [DOI: 10.1007/s11696-019-00958-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
28
|
A ratiometric fluorescence probe based on a novel recognition mechanism for monitoring endogenous hypochlorite in living cells. Anal Chim Acta 2019; 1064:87-93. [DOI: 10.1016/j.aca.2019.03.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/01/2019] [Accepted: 03/05/2019] [Indexed: 11/22/2022]
|
29
|
A new FRET-based ratiometric fluorescence probe for hypochlorous acid and its imaging in living cells. Talanta 2019; 201:330-334. [DOI: 10.1016/j.talanta.2019.04.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 03/29/2019] [Accepted: 04/09/2019] [Indexed: 11/19/2022]
|
30
|
Wang W, Jin L, Shen Z, Li Z, Zhang X, Wang Q. A Fluorescent Probe with a Significant Selective Turn‐On Response for HClO Detection and Bioimaging in Living Cells. ChemistrySelect 2019. [DOI: 10.1002/slct.201901587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Wenling Wang
- School of PharmacyJiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental ProtectionYancheng Teachers' University, Yancheng Jiangsu 224051, People's Republic of China
| | - Lei Jin
- School of PharmacyJiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental ProtectionYancheng Teachers' University, Yancheng Jiangsu 224051, People's Republic of China
| | - Zheyu Shen
- School of PharmacyJiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental ProtectionYancheng Teachers' University, Yancheng Jiangsu 224051, People's Republic of China
| | - Zonghao Li
- School of PharmacyJiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental ProtectionYancheng Teachers' University, Yancheng Jiangsu 224051, People's Republic of China
| | - Xinya Zhang
- School of PharmacyJiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental ProtectionYancheng Teachers' University, Yancheng Jiangsu 224051, People's Republic of China
| | - Qingming Wang
- School of PharmacyJiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental ProtectionYancheng Teachers' University, Yancheng Jiangsu 224051, People's Republic of China
| |
Collapse
|
31
|
Ma Z, Wang X, Wang C, Chen X, Lv Q. A sensitive and selective fluorescence probe for detection of hypochlorite (OCl -) and its bioimaging in live cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 213:370-374. [PMID: 30721852 DOI: 10.1016/j.saa.2019.01.083] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/24/2019] [Accepted: 01/28/2019] [Indexed: 06/09/2023]
Abstract
A novel indolium-based fluorescent probe (probe 1) for the recognition and detection of hypochlorite (OCl-) has been explored via a double oxidation reaction mechanism. Probe 1 exhibited excellent selectivity and sensitivity for OCl- over other analytes, and with a detection limit of 0.11 μM. Meanwhile, probe 1 showed fast response toward OCl- in less than 3 min with obvious changes in color, which could be observed by naked eye. Moreover, fluorescence imaging experiments by using Eca109 cells were performed utilizing the new probe, demonstrating its practical applications in living cells.
Collapse
Affiliation(s)
- Zhiwei Ma
- Faculty of Science, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China.
| | - Xiao Wang
- Department of Pharmacy, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen 518020, China
| | - Chuanchuan Wang
- Faculty of Science, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
| | - Xiaopei Chen
- Faculty of Science, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
| | - Quanjian Lv
- Faculty of Science, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China.
| |
Collapse
|
32
|
Ma J, Yan C, Li Y, Duo H, Li Q, Lu X, Guo Y. Unusual Hypochlorous Acid (HClO) Recognition Mechanism Based on Chlorine–Oxygen Bond (Cl−O) Formation. Chemistry 2019; 25:7168-7176. [DOI: 10.1002/chem.201806264] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Jianlong Ma
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu ProvinceLanzhou Institute of Chemical PhysicsChinese Academy of Sciences Lanzhou 730000 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Chaoxian Yan
- State Key Laboratory of Applied Organic ChemistryLanzhou University Lanzhou 730000 P. R. China
| | - Yijing Li
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu ProvinceLanzhou Institute of Chemical PhysicsChinese Academy of Sciences Lanzhou 730000 P. R. China
| | - Huixiao Duo
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu ProvinceLanzhou Institute of Chemical PhysicsChinese Academy of Sciences Lanzhou 730000 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Qiang Li
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of, Chinese Academy of SciencesInstitute of Modern Physics Lanzhou 730000 P. R. China
| | - Xiaofeng Lu
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu ProvinceLanzhou Institute of Chemical PhysicsChinese Academy of Sciences Lanzhou 730000 P. R. China
| | - Yong Guo
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu ProvinceLanzhou Institute of Chemical PhysicsChinese Academy of Sciences Lanzhou 730000 P. R. China
| |
Collapse
|
33
|
Cai K, Zeng M, Wang L, Song Y, Chen L. Ratiometric Fluorescent Detection of ClO
−
Based on Dual‐Emission F1‐Rubpy@Nanoscale Metal‐Organic Frameworks. ChemistrySelect 2019. [DOI: 10.1002/slct.201803414] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Keying Cai
- Key Laboratory of Functional Small Organic Molecule Ministry of Education College of Chemistry and Chemical EngineeringJiangxi Normal University 99 Ziyang Road Nanchang 330022 China
| | - Mulan Zeng
- Key Laboratory of Functional Small Organic Molecule Ministry of Education College of Chemistry and Chemical EngineeringJiangxi Normal University 99 Ziyang Road Nanchang 330022 China
| | - Li Wang
- Key Laboratory of Functional Small Organic Molecule Ministry of Education College of Chemistry and Chemical EngineeringJiangxi Normal University 99 Ziyang Road Nanchang 330022 China
| | - Yonghai Song
- Key Laboratory of Functional Small Organic Molecule Ministry of Education College of Chemistry and Chemical EngineeringJiangxi Normal University 99 Ziyang Road Nanchang 330022 China
| | - Lili Chen
- Key Laboratory of Functional Small Organic Molecule Ministry of Education College of Chemistry and Chemical EngineeringJiangxi Normal University 99 Ziyang Road Nanchang 330022 China
| |
Collapse
|
34
|
Kageyama S, Hirao H, Nakamura K, Ke B, Zhang M, Ito T, Aziz A, Oncel D, Kaldas FM, Busuttil RW, Sosa RA, Reed EF, Araujo JA, Kupiec-Weglinski JW. Recipient HO-1 inducibility is essential for posttransplant hepatic HO-1 expression and graft protection: From bench-to-bedside. Am J Transplant 2019; 19:356-367. [PMID: 30059195 PMCID: PMC6349504 DOI: 10.1111/ajt.15043] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 07/10/2018] [Accepted: 07/18/2018] [Indexed: 01/25/2023]
Abstract
By documenting potent antioxidative and anti-inflammatory functions, preclinical studies encourage heme oxygenase-1 (HO-1)-inducing regimens in clinical orthotopic liver transplantation (OLT). We aimed to determine the importance of recipient-derived HO-1 in murine and human OLTs. Hepatic biopsies from 51 OLT patients were screened for HO-1 expression (Western blots) prior to put-in (basal) and post reperfusion (stressed) and correlated with the hepatocellular function. In parallel, livers from HO-1 proficient mice (WT; C57/BL6), subjected to ex vivo cold storage (18 hour), were transplanted to syngeneic myeloid HO-1 deficient (mHO-1 KO) or FLOX (control) hosts, and sampled postreperfusion (6 hour). In human OLT, posttransplant but not pretransplant HO-1 expression correlated negatively with ALT levels (P = .0178). High posttransplant but not pretransplant HO-1 expression trended with improved OLT survival. Compared with controls, livers transplanted into mHO-1 KO recipient mice had decreased HO-1 levels, exacerbated hepatic damage/frequency of TUNEL+ cells, increased mRNA levels coding for TNFα/CXCL1/CXCL2/CXCL10, higher frequency of Ly6G+/4HN+ neutrophils; and enhanced MPO activity. Peritoneal neutrophils from mHO-1 KO mice exhibited higher CellRox+ ratio and increased TNFα/CXCL1/CXCL2/CXCL10 expression. By demonstrating the importance of posttransplant recipient HO-1 phenotype in hepatic macrophage/neutrophil regulation and function, this translational study identifies recipient HO-1 inducibility as a novel biomarker of ischemic stress resistance in OLT.
Collapse
Affiliation(s)
- Shoichi Kageyama
- The Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at University of California, Los Angeles, CA 90095
| | - Hirofumi Hirao
- The Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at University of California, Los Angeles, CA 90095
| | - Kojiro Nakamura
- The Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at University of California, Los Angeles, CA 90095
| | - Bibo Ke
- The Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at University of California, Los Angeles, CA 90095
| | - Min Zhang
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine at University of California, Los Angeles, CA 90095
| | - Takahiro Ito
- The Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at University of California, Los Angeles, CA 90095
| | - Antony Aziz
- The Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at University of California, Los Angeles, CA 90095
| | - Damla Oncel
- The Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at University of California, Los Angeles, CA 90095
| | - Fady M. Kaldas
- The Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at University of California, Los Angeles, CA 90095
| | - Ronald W. Busuttil
- The Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at University of California, Los Angeles, CA 90095
| | - Rebecca A. Sosa
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA 90095
| | - Elaine F. Reed
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA 90095
| | - Jesus A. Araujo
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine at University of California, Los Angeles, CA 90095
| | - Jerzy W. Kupiec-Weglinski
- The Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at University of California, Los Angeles, CA 90095
| |
Collapse
|
35
|
Gong YJ, Lv MK, Zhang ML, Kong ZZ, Mao GJ. A novel two-photon fluorescent probe with long-wavelength emission for monitoring HClO in living cells and tissues. Talanta 2019; 192:128-134. [DOI: 10.1016/j.talanta.2018.08.089] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/27/2018] [Accepted: 08/31/2018] [Indexed: 01/25/2023]
|
36
|
Sain D, Manna A, Kumari C, Das Mukhopadhyay C, Goswami S. A Nontoxic, Bio‐friendly, Fluorescent Chemodosimeter for Hypochlorite Detection in Living Cells through the Oxidation of Hypochlorite on a Hydrazide System. ChemistrySelect 2018. [DOI: 10.1002/slct.201802315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Dibyendu Sain
- Department of ChemistryIndian Institute of Engineering Science and Technology(Formerly Bengal Engineering & Science University) Shibpur Howrah 711103, West Bengal India
| | - Abhishek Manna
- Department of ChemistryIndian Institute of Engineering Science and Technology(Formerly Bengal Engineering & Science University) Shibpur Howrah 711103, West Bengal India
- Department of ChemistryUniversity of Calcutta, 92, A.P.C. Road Kolkata-700009 India
| | - Chanda Kumari
- Department of Applied ChemistryIndian Institute of Technology (ISM), Dhanbad 826004 India
| | - Chitrangada Das Mukhopadhyay
- Department of Centre for Healthcare Science & TechnologyIndian Institute of Engineering Science and Technology, Shibpur Howrah-711 103 India
| | - Shyamaprosad Goswami
- Department of ChemistryIndian Institute of Engineering Science and Technology(Formerly Bengal Engineering & Science University) Shibpur Howrah 711103, West Bengal India
| |
Collapse
|
37
|
Halle M, Yudhistira T, Lee KJ, Choi JH, Kim Y, Park HS, Churchill DG. Overriding Phthalate Decomposition When Exploring Mycophenolic Acid Intermediates as Selenium-Based ROS Biological Probes. ACS OMEGA 2018; 3:13474-13483. [PMID: 30411040 PMCID: PMC6217640 DOI: 10.1021/acsomega.8b01571] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 10/05/2018] [Indexed: 05/28/2023]
Abstract
Hypochlorous (OCl-) acid is the most well-known bacterial oxidant to be produced by neutrophils. Excess amounts of OCl- can cause various disorders in living systems. Herein, we have designed, synthesized, and characterized two novel organoselenium-based target molecules (Probe-1 and Probe-OCl) based on a synthetic intermediate of mycophenolic acid for the aqueous detection of OCl-. Probe 1 has been recently reported (Org. Lett. 2018, 20, 3557-3561); both probes show immediate "turn-on" fluorescence (<1 s) upon the addition of OCl-, display an increase in the fluorescence quantum yield (3.7-fold in Probe-1 and 11.6-fold in Probe-OCl), and are completely soluble in aqueous media without the help of any cosolvent. However, a decrease in the "turn-on" intensity with the oxidized version of Probe-1 in cell assays due to the anhydride/phthalate functionality suggests that probe degradation occurs based on hydrolytic action (a probe degradation half-life of ∼1500 s at 15 μM Probe-1 and 150 μM OCl). Thus, the change of "anhydride" to "methylamide" begets Probe-OCl, which possesses more stability without sacrificing its water solubility properties and responses at short times. Further studies suggest that Probe-OCl is highly stable within physiological pH (pH = 7.4). Surprisingly, in live cell experiments involving U-2 OS cells and HeLa cells, Probe-OCl accumulated and aggregated in lipid droplets and gives a "turn-on" fluorescence response. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays confirmed that Probe-OCl is not toxic. Cuvette aggregation studies were also performed (tetrahydrofuran/H2O) to demonstrate aggregation-induced fluorescence at longer times. Our current hypothesis is that the "turn-on" fluorescence effect is caused by the aggregation-induced emission mechanism available for Probe-OCl. In this case, in tandem, we reanalyzed the Mes-BOD-SePh derivative to compare and contrast cell localization as imaged by confocal microscopy; fluorescence emission occurs in the absence of, or prior to, Se oxidation.
Collapse
Affiliation(s)
- Mahesh
B. Halle
- Department
of Chemistry, Molecular Logic Gate Laboratory, and Department of
Chemistry, Molecular Synthetic Biology Laboratory, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
| | - Tesla Yudhistira
- Department
of Chemistry, Molecular Logic Gate Laboratory, and Department of
Chemistry, Molecular Synthetic Biology Laboratory, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
| | - Kyung Jin Lee
- Department
of Chemistry, Molecular Logic Gate Laboratory, and Department of
Chemistry, Molecular Synthetic Biology Laboratory, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
| | - Jae Hyuck Choi
- Department
of Chemistry, Molecular Logic Gate Laboratory, and Department of
Chemistry, Molecular Synthetic Biology Laboratory, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
- Center
for Catalytic Hydrocarbon Functionalization, Institute for Basic Science (IBS), Daejeon 305-701, Republic
of Korea
| | - Youngsam Kim
- Department
of Chemistry, Molecular Logic Gate Laboratory, and Department of
Chemistry, Molecular Synthetic Biology Laboratory, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
| | - Hee-Sung Park
- Department
of Chemistry, Molecular Logic Gate Laboratory, and Department of
Chemistry, Molecular Synthetic Biology Laboratory, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
| | - David G. Churchill
- Department
of Chemistry, Molecular Logic Gate Laboratory, and Department of
Chemistry, Molecular Synthetic Biology Laboratory, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
- Center
for Catalytic Hydrocarbon Functionalization, Institute for Basic Science (IBS), Daejeon 305-701, Republic
of Korea
| |
Collapse
|
38
|
Woolbright BL, Jaeschke H. Mechanisms of Inflammatory Liver Injury and Drug-Induced Hepatotoxicity. CURRENT PHARMACOLOGY REPORTS 2018; 4:346-357. [PMID: 30560047 PMCID: PMC6294466 DOI: 10.1007/s40495-018-0147-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE OF REVIEW This article provides a brief overview of mechanisms of inflammatory liver injury and how this applies to drug hepatotoxicity with a particular emphasis on the role of inflammation in acetaminophen-induced liver injury. RECENT FINDINGS Significant progress has been made in the last decade in our understanding of the initiation of sterile inflammation after necrotic cell death by the release of damage-associated molecular patterns and their recognition by toll-like receptors and others on macrophages. These events trigger the formation of cytokines and chemokines directly or with assistance of inflammasome activation thereby activating and recruiting leukocytes including neutrophils and monocyte-derived macrophages into the necrotic areas. Although this sterile inflammatory response is mainly geared towards the removal of necrotic cell debris and preparation of regeneration, there are conditions where these innate immune cells can aggravate the initial injury. The mechanisms and controversial findings of the innate immunity are being discussed in detail. In contrast, drug metabolism and formation of a reactive metabolite that binds to proteins in the absence of extensive cell death, can induce an adaptive immune response, which eventually also results in severe liver injury. However, the initiating event appears to be the formation of protein adducts, which act as haptens to activate an adaptive immune response. Overall, these mechanisms are less well understood. SUMMARY The past decade has revolutionized our understanding of the mechanisms that control the interplay between cell death and innate or adaptive immune responses. This report provides an update on these mechanisms.
Collapse
Affiliation(s)
| | - Hartmut Jaeschke
- Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
39
|
Jaeschke H, Ramachandran A. Oxidant Stress and Lipid Peroxidation in Acetaminophen Hepatotoxicity. REACTIVE OXYGEN SPECIES (APEX, N.C.) 2018; 5:145-158. [PMID: 29682614 PMCID: PMC5903282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Acetaminophen (APAP) overdose is the most frequent cause of liver injury and acute liver failure in many western countries. The mechanism of APAP-induced hepatocyte necrosis has been investigated extensively. The formation of a reactive metabolite and its binding to cellular proteins was initially thought to be responsible for cell death. A competing hypothesis was introduced that questioned the relevance of protein binding and instead suggested that P450-derived oxidant stress and lipid peroxidation causes APAP-induced liver injury. However, work over the last 15 years has reconciled some of these apparent contradictory hypotheses. This review summarizes the present state of knowledge on the role of reactive oxygen species (ROS) in APAP hepatotoxicity. Detailed investigations into the sources and relevance of the oxidant stress have clearly shown the critical role of the electron transport chain of mitochondria as main source of the oxidant stress. Other potential sources of ROS such as cytochrome P450 enzymes or NADPH oxidase on phagocytes are of limited relevance. The mitochondria-derived superoxide and peroxynitrite formation is initiated by the binding of the reactive metabolite to mitochondrial proteins and the amplification by mitogen activated protein kinases. The consequences of this oxidant stress are the opening of the mitochondrial membrane permeability transition pore with cessation of ATP synthesis, nuclear DNA fragmentation and ultimately cell necrosis. Lipid peroxidation is not a relevant mechanism of cell death but can be a marker of ROS formation. These mechanistic insights suggest that targeting mitochondrial oxidant stress is a promising therapeutic option for APAP hepatotoxicity.
Collapse
Affiliation(s)
- Hartmut Jaeschke
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Anup Ramachandran
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
40
|
Yang Y, Zhang D, Xu M, Wang J, Chen J, Wang L. An NBD–NH2 fluorescent probe for bioimaging: existence of a specific detection of ClO−. MONATSHEFTE FUR CHEMIE 2018. [DOI: 10.1007/s00706-018-2143-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
41
|
Abstract
Reactive oxygen species have long been implicated in the pathophysiology of acute liver injury. However, the translation of these findings to the clinic and the development of therapeutic agents have been slow mainly due to the poor mechanistic understanding of the pathophysiology and the many indirect approaches used to characterize the role of oxidant stress in liver injury. The current review discusses in depth the sources of reactive oxygen, the oxidants involved and the impact of this oxidant stress in the mechanism of cell death in 3 different clinically relevant acute liver injury models.
Collapse
Affiliation(s)
- Anup Ramachandran
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
42
|
Neutrophils: a cornerstone of liver ischemia and reperfusion injury. J Transl Med 2018; 98:51-62. [PMID: 28920945 DOI: 10.1038/labinvest.2017.90] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 07/05/2017] [Accepted: 07/09/2017] [Indexed: 12/12/2022] Open
Abstract
Ischemia-reperfusion injury (IRI) is the main cause of morbidity and mortality due to graft rejection after liver transplantation. During IRI, an intense inflammatory process occurs in the liver. This hepatic inflammation is initiated by the ischemic period but occurs mainly during the reperfusion phase, and is characterized by a large neutrophil recruitment to the liver. Production of cytokines, chemokines, and danger signals results in activation of resident hepatocytes, leukocytes, and Kupffer cells. The role of neutrophils as the main amplifiers of liver injury in IRI has been recognized in many publications. Several studies have shown that elimination of excessive neutrophils or inhibition of their function leads to reduction of liver injury and inflammation. However, the mechanisms involved in neutrophil recruitment during liver IRI are not well known. In addition, the molecules necessary for this type of migration are poorly defined, as the liver presents an atypical sinusoidal vasculature in which the classical leukocyte migration paradigm only partially applies. This review summarizes recent advances in neutrophil-mediated liver damage, and its application to liver IRI. Basic mechanisms of activation of neutrophils and their unique mechanisms of recruitment into the liver vasculature are discussed. In particular, the role of danger signals, adhesion molecules, chemokines, glycosaminoglycans (GAGs), and metalloproteinases is explored. The precise definition of the molecular events that govern the recruitment of neutrophils and their movement into inflamed tissue may offer new therapeutic alternatives for hepatic injury by IRI and other inflammatory diseases of the liver.
Collapse
|
43
|
Gao W, Meng QM, Cui XG. Budesonide instillation immediately after reperfusion ameliorates ischemia/reperfusion-induced injury in the transplanted lung of rat. Exp Lung Res 2017; 43:439-446. [PMID: 29236548 DOI: 10.1080/01902148.2017.1405103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
PURPOSE Lung ischemia-reperfusion injury (LIRI) after lung transplantation can lead to primary graft dysfunction. Budesonide can improve endothelial function to reduce lung injury. This study was aimed to examine the effects of budesonide on LIRI and potential mechanisms. METHODS Wistar rats were randomized and transplanted with syngeneic left lung or received the sham surgery. The recipients were instilled with saline or budesonide immediately after reperfusion. The mean arterial pressure (MAP), blood gas, and lung histology were analyzed. The ratios of wet to dry lung weights, the levels of total proteins, tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, and IL-10, and neutrophil elastase in bronchoalveolar lavage fluid (BALF) were measured. The levels of malondialdehyde (MDA), myeloperoxidase (MPO), and xanthine oxidase (XO) in the lung, and the levels of plasma lymphocyte function-associated antigen (LFA)-1 and P-selectin were determined. RESULTS Compared with the saline group, treatment with budesonide significantly increased blood PaO2, but reduced PaCO2, and mitigated lung damages after reperfusion, the levels of BALF proteins, and the ratios of wet to dry lung weights in rats. Furthermore, treatment with budesonide significantly decreased the levels of MDA, MPO, and XO in the lung and the levels of TNF-α, IL-1β, IL-6, and neutrophil elastase, but increased IL-10 in the BALF, accompanied by significantly reduced levels of serum P-selectin and LFA-1 in rats. CONCLUSIONS Budesonide effectively mitigated LIRI and ameliorated the lung function by attenuating oxidative stress and inflammation following syngeneic lung transplantation.
Collapse
Affiliation(s)
- Wei Gao
- a Department of Anesthesiology , The Second Affiliated Hospital of the Harbin Medical University , Harbin , Heilongjiang Province , China
| | - Qiu-Ming Meng
- a Department of Anesthesiology , The Second Affiliated Hospital of the Harbin Medical University , Harbin , Heilongjiang Province , China
| | - Xiao-Guang Cui
- a Department of Anesthesiology , The Second Affiliated Hospital of the Harbin Medical University , Harbin , Heilongjiang Province , China
| |
Collapse
|
44
|
Abstract
Hepatic ischemia/reperfusion (I/R) injury is a major complication of liver surgery, including liver resection, liver transplantation, and trauma surgery. Much has been learned about the inflammatory injury response induced by I/R, including the cascade of proinflammatory mediators and recruitment of activated leukocytes. In this review, we discuss the complex network of events that culminate in liver injury after I/R, including cellular, protein, and molecular mechanisms. In addition, we address the known endogenous regulatory mediators that function to maintain homeostasis and resolve injury. Finally, we cover more recent insights into how the liver repairs and regenerates after I/R injury, a setting in which physical mass remains unchanged, but functional liver mass is greatly reduced. In this regard, we focus on recent work highlighting a novel role of CXC chemokines as important regulators of hepatocyte proliferation and liver regeneration after I/R injury.
Collapse
Affiliation(s)
- Takanori Konishi
- Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Alex B. Lentsch
- Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
45
|
Li YA, Yang S, Li QY, Ma JP, Zhang S, Dong YB. UiO-68-ol NMOF-Based Fluorescent Sensor for Selective Detection of HClO and Its Application in Bioimaging. Inorg Chem 2017; 56:13241-13248. [DOI: 10.1021/acs.inorgchem.7b02012] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Yan-An Li
- College of Chemistry,
Chemical Engineering and Materials Science, Collaborative Innovation
Center of Functionalized Probes for Chemical Imaging in Universities
of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry
of Education, Shandong Normal University, Jinan 250014, People’s Republic of China
| | - Song Yang
- College of Chemistry,
Chemical Engineering and Materials Science, Collaborative Innovation
Center of Functionalized Probes for Chemical Imaging in Universities
of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry
of Education, Shandong Normal University, Jinan 250014, People’s Republic of China
| | - Qian-Ying Li
- College of Chemistry,
Chemical Engineering and Materials Science, Collaborative Innovation
Center of Functionalized Probes for Chemical Imaging in Universities
of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry
of Education, Shandong Normal University, Jinan 250014, People’s Republic of China
| | - Jian-Ping Ma
- College of Chemistry,
Chemical Engineering and Materials Science, Collaborative Innovation
Center of Functionalized Probes for Chemical Imaging in Universities
of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry
of Education, Shandong Normal University, Jinan 250014, People’s Republic of China
| | - Shaojun Zhang
- Shandong Qianfoshan Hospital, Jinan 250014, People’s Republic of China
| | - Yu-Bin Dong
- College of Chemistry,
Chemical Engineering and Materials Science, Collaborative Innovation
Center of Functionalized Probes for Chemical Imaging in Universities
of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry
of Education, Shandong Normal University, Jinan 250014, People’s Republic of China
| |
Collapse
|
46
|
Zhan Z, Liu R, Chai L, Li Q, Zhang K, Lv Y. Turn-on Fluorescent Probe for Exogenous and Endogenous Imaging of Hypochlorous Acid in Living Cells and Quantitative Application in Flow Cytometry. Anal Chem 2017; 89:9544-9551. [PMID: 28759997 DOI: 10.1021/acs.analchem.7b02613] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Zixuan Zhan
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Rui Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Li Chai
- Core
Facility of West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qiuyan Li
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Kexin Zhang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Yi Lv
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| |
Collapse
|
47
|
Cruz-Baquero A, Cárdenas Jaramillo LM, Gutiérrez-Meza M, Jarillo-Luna RA, Campos-Rodríguez R, Rivera-Aguilar V, Miliar-García A, Pacheco-Yepez J. Different behavior of myeloperoxidase in two rodent amoebic liver abscess models. PLoS One 2017; 12:e0182480. [PMID: 28796788 PMCID: PMC5552100 DOI: 10.1371/journal.pone.0182480] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 07/19/2017] [Indexed: 12/11/2022] Open
Abstract
The protozoan Entamoeba histolytica is the etiological agent of amoebiasis, which can spread to the liver and form amoebic liver abscesses. Histological studies conducted with resistant and susceptible models of amoebic liver abscesses (ALAs) have established that neutrophils are the first cells to contact invasive amoebae at the lesion site. Myeloperoxidase is the most abundant enzyme secreted by neutrophils. It uses hydrogen peroxide secreted by the same cells to oxidize chloride ions and produce hypochlorous acid, which is the most efficient microbicidal system of neutrophils. In a previous report, our group demonstrated that myeloperoxidase presents amoebicidal activity in vitro. The aim of the current contribution was to analyze in vivo the role of myeloperoxidase in a susceptible (hamsters) and resistant (Balb/c mice) animal models of ALAs. In liver samples of hamsters and mice inoculated intraportally with Entamoeba histolytica trophozoites, the number of neutrophils in ALAs was determined by enzymatic activity. The presence of myeloperoxidase was observed by staining, and its expression and activity were quantified in situ. A significant difference existed between the two animal models in the number of neutrophils and the expression and activity of myeloperoxidase, which may explain the distinct evolution of amoebic liver abscesses. Hamsters and mice were treated with an MPO inhibitor (4-aminobenzoic acid hydrazide). Hamsters treated with ABAH showed no significant differences in the percentage of lesions or in the percentage of amoebae damaged compared with the untreated hamsters. ABAH treated mice versus untreated mice showed larger abscesses and a decreased percentage of damaged amoebae in these lesion at all stages of evolution. Further studies are needed to elucidate the host and amoebic mechanisms involved in the adequate or inadequate activation and modulation of myeloperoxidase.
Collapse
Affiliation(s)
- Andrea Cruz-Baquero
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luís y Díaz Mirón, CP, Ciudad de México, México
| | - Luz María Cárdenas Jaramillo
- Coordinación de Ciencias Morfológicas, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luís y Díaz Mirón, CP, Ciudad de México, México
| | - Manuel Gutiérrez-Meza
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luís y Díaz Mirón, CP, Ciudad de México, México
- Coordinación de Ciencias Morfológicas, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luís y Díaz Mirón, CP, Ciudad de México, México
| | - Rosa Adriana Jarillo-Luna
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luís y Díaz Mirón, CP, Ciudad de México, México
- Coordinación de Ciencias Morfológicas, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luís y Díaz Mirón, CP, Ciudad de México, México
| | - Rafael Campos-Rodríguez
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luís y Díaz Mirón, CP, Ciudad de México, México
| | - Víctor Rivera-Aguilar
- Departamento de Microbiología, UBIPRO, FES-Iztacala, UNAM, CP, Tlanepantla, Estado de México, México
| | - Angel Miliar-García
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luís y Díaz Mirón, CP, Ciudad de México, México
| | - Judith Pacheco-Yepez
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luís y Díaz Mirón, CP, Ciudad de México, México
- * E-mail:
| |
Collapse
|
48
|
Mahmoud MF, Gamal S, Shaheen MA, El-Fayoumi HM. The effects of tramadol on hepatic ischemia/reperfusion injury in rats. Indian J Pharmacol 2017; 48:275-80. [PMID: 27298497 PMCID: PMC4900000 DOI: 10.4103/0253-7613.182882] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Objectives: Tramadol is a centrally acting synthetic analgesic. It has a cardioprotective effect against myocardial ischemia-reperfusion (I/R) injury in isolated rat heart. We hypothesized that tramadol may exert a similar protective effect on hepatic I/R injury. Hence, the current investigation was designed to study the possible protective effects of tramadol on experimentally-induced hepatic I/R injury in rats. Materials and Methods: Tramadol was administered 30 min before ischemia following which the rats were subjected to 45 min of ischemia followed by 1 h of reperfusion. Results: Tramadol attenuated hepatic injury induced by I/R as evidenced by the reduction of transaminases, structural changes, and apoptotic cell death. It decreased the level of inflammatory markers such as tumor necrosis factor-alpha (TNF-α), TNF-α/interleukin-10 (IL-10) ratio, and nuclear factor-κB gene expression. It also increased the anti-inflammatory cytokine, IL-10 levels in hepatic tissues. Furthermore, it reduced oxidative stress parameters except manganese superoxide dismutase activity. Conclusion: The results suggest that tramadol has hepatoprotective effects against hepatic I/R injury via anti-inflammatory, antiapoptotic, and antioxidant effects.
Collapse
Affiliation(s)
- Mona F Mahmoud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Samar Gamal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Mohamed A Shaheen
- Department of Histology and Cell Biology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Hassan M El-Fayoumi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| |
Collapse
|
49
|
Bystrom P, Foley N, Toledo-Pereyra L, Quesnelle K. Ischemic preconditioning modulates ROS to confer protection in liver ischemia and reperfusion. EXCLI JOURNAL 2017; 16:483-496. [PMID: 28694752 PMCID: PMC5491905 DOI: 10.17179/excli2017-166] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 03/20/2017] [Indexed: 12/24/2022]
Abstract
Ischemia reperfusion (IR) injury is a significant cause of morbidity and mortality in liver transplantation. When oxygen is reintroduced to the liver graft it initiates a cascade of molecular reactions leading to the release of reactive oxygen species (ROS) and pro-inflammatory cytokines. These soluble mediators propagate a sterile immune response to cause significant tissue damage. Ischemic preconditioning (IPC) is one method that reduces hepatocellular injury by altering the immune response and inhibiting the production of ROS. Studies quantifying the effects of IPC in humans have demonstrated an improved liver enzyme panel in patients receiving grafts pretreated with IPC as compared to patients receiving the standard of care. In our review, we explore current literature in the field in order to describe the mechanism through which IPC regulates the production of ROS and improves IR injury.
Collapse
Affiliation(s)
- Phillip Bystrom
- Western Michigan University, Homer Stryker M.D. School of Medicine Department of Biomedical Sciences
| | - Nicole Foley
- Western Michigan University, Homer Stryker M.D. School of Medicine Department of Biomedical Sciences
| | - Luis Toledo-Pereyra
- Western Michigan University, Homer Stryker M.D. School of Medicine Department of Surgery
| | - Kelly Quesnelle
- Western Michigan University, Homer Stryker M.D. School of Medicine Department of Biomedical Sciences
| |
Collapse
|
50
|
Woolbright BL, Jaeschke H. Role of the inflammasome in acetaminophen-induced liver injury and acute liver failure. J Hepatol 2017; 66:836-848. [PMID: 27913221 PMCID: PMC5362341 DOI: 10.1016/j.jhep.2016.11.017] [Citation(s) in RCA: 270] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 10/31/2016] [Accepted: 11/21/2016] [Indexed: 12/19/2022]
Abstract
Drug-induced acute liver failure carries a high morbidity and mortality rate. Acetaminophen overdose is the number one cause of acute liver failure and remains a major problem in Western medicine. Administration of N-acetyl cysteine is an effective antidote when given before the initial rise in toxicity; however, many patients present to the hospital after this stage occurs. As such, treatments which can alleviate late-stage acetaminophen-induced acute liver failure are imperative. While the initial mechanisms of toxicity are well described, a debate has recently occurred in the literature over whether there is a second phase of injury, mediated by inflammatory processes. Critical to this potential inflammatory process is the activation of caspase-1 and interleukin-1β by a molecular complex known as the inflammasome. Several different stimuli for the formation of multiple different inflammasome complexes have been identified. Formation of the NACHT, leucine-rich repeat (LRR) and pyrin (PYD) domains-containing protein 3 (Nalp3) inflammasome in particular, has directly been attributed to late-stage acetaminophen toxicity. In this review, we will discuss the mechanisms of acetaminophen-induced liver injury in mice and man with a particular focus on the role of inflammation and the inflammasome.
Collapse
Affiliation(s)
- Benjamin L Woolbright
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|