1
|
Song HJ, Kim JE, Roh YJ, Seol A, Kim TR, Park KH, Park ES, Hong JT, Choi SI, Hwang DY. Novel Role of the ALPI Gene Associated with Constipation Caused by Complement Component 3 Deficiency. Int J Mol Sci 2024; 25:9530. [PMID: 39273477 PMCID: PMC11395586 DOI: 10.3390/ijms25179530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 09/15/2024] Open
Abstract
Complement component 3 (C3) deficiency has recently been reported as one of the novel causes of constipation. To identify a unique gene specific to constipation caused by C3 deficiency, the total RNA extracted from the mid colon of C3 knockout (C3 KO) mice was hybridized to oligonucleotide microarrays, and the function of the candidate gene was verified in in vitro and in vivo models. C3 KO mice used for microarrays showed definite phenotypes of constipation. Overall, compared to the wild type (WT), 1237 genes were upregulated, and 1292 genes were downregulated in the C3 KO mice. Of these, the major genes included were lysine (K)-specific demethylase 5D (KDM5D), olfactory receptor 870 (Olfr870), pancreatic lipase (PNLIP), and alkaline phosphatase intestinal (ALPI). Specifically, the ALPI gene was selected as a novel gene candidate based on alterations during loperamide (Lop)-induced constipation and intestinal bowel disease (IBD). The upregulation of ALPI expression treated with acetate recovered the expression level of mucin-related genes in primary epithelial cells of C3 KO mice as well as most phenotypes of constipation in C3 KO mice. These results indicate that ALPI plays an important role as the novel gene associated with C3 deficiency-induced constipation.
Collapse
Affiliation(s)
- Hee Jin Song
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea; (H.J.S.); (J.E.K.); (Y.J.R.); (A.S.); (T.R.K.); (K.H.P.); (E.S.P.)
| | - Ji Eun Kim
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea; (H.J.S.); (J.E.K.); (Y.J.R.); (A.S.); (T.R.K.); (K.H.P.); (E.S.P.)
| | - Yu Jeong Roh
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea; (H.J.S.); (J.E.K.); (Y.J.R.); (A.S.); (T.R.K.); (K.H.P.); (E.S.P.)
| | - Ayun Seol
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea; (H.J.S.); (J.E.K.); (Y.J.R.); (A.S.); (T.R.K.); (K.H.P.); (E.S.P.)
| | - Tae Ryeol Kim
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea; (H.J.S.); (J.E.K.); (Y.J.R.); (A.S.); (T.R.K.); (K.H.P.); (E.S.P.)
| | - Ki Ho Park
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea; (H.J.S.); (J.E.K.); (Y.J.R.); (A.S.); (T.R.K.); (K.H.P.); (E.S.P.)
| | - Eun Seo Park
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea; (H.J.S.); (J.E.K.); (Y.J.R.); (A.S.); (T.R.K.); (K.H.P.); (E.S.P.)
| | - Jin Tae Hong
- College of Pharmacy, Chungbuk National University, Chungju 28644, Republic of Korea;
| | - Sun Il Choi
- Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng 475004, China;
| | - Dae Youn Hwang
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea; (H.J.S.); (J.E.K.); (Y.J.R.); (A.S.); (T.R.K.); (K.H.P.); (E.S.P.)
| |
Collapse
|
2
|
Salm F, Znalesniak EB, Laskou A, Harder S, Schlüter H, Hoffmann W. Expression Profiling along the Murine Intestine: Different Mucosal Protection Systems and Alterations in Tff1-Deficient Animals. Int J Mol Sci 2023; 24:12684. [PMID: 37628863 PMCID: PMC10454331 DOI: 10.3390/ijms241612684] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Tff1 is a typical gastric peptide secreted together with the mucin, Muc5ac. Tff1-deficient (Tff1KO) mice are well known for their prominent gastric phenotype and represent a recognized model for antral tumorigenesis. Notably, intestinal abnormalities have also been reported in the past in these animals. Here, we have compared the expression of selected genes in Tff1KO mice and their corresponding wild-type littermates (RT-PCR analyses), focusing on different mucosal protection systems along the murine intestine. As hallmarks, genes were identified with maximum expression in the proximal colon and/or the duodenum: Agr2, Muc6/A4gnt/Tff2, Tff1, Fut2, Gkn2, Gkn3, Duox2/Lpo, Nox1. This is indicative of different protection systems such as Tff2/Muc6, Tff1-Fcgbp, gastrokines, fucosylation, and reactive oxygen species (ROS) in the proximal colon and/or duodenum. Few significant transcriptional changes were observed in the intestine of Tff1KO mice when compared with wild-type littermates, Clca1 (Gob5), Gkn1, Gkn2, Nox1, Tff2. We also analyzed the expression of Tff1, Tff2, and Tff3 in the pancreas, liver, and lung of Tff1KO and wild-type animals, indicating a cross-regulation of Tff gene expression. Furthermore, on the protein level, heteromeric Tff1-Fcgbp and various monomeric Tff1 forms were identified in the duodenum and a high-molecular-mass Tff2/Muc6 complex was identified in the proximal colon (FPLC, proteomics).
Collapse
Affiliation(s)
- Franz Salm
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Eva B. Znalesniak
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Aikaterini Laskou
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Sönke Harder
- Section Mass Spectrometry and Proteomics, Diagnostic Center, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Hartmut Schlüter
- Section Mass Spectrometry and Proteomics, Diagnostic Center, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Werner Hoffmann
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| |
Collapse
|
3
|
Ghanemi A, Yoshioka M, St-Amand J. Diet Impact on Obesity beyond Calories and Trefoil Factor Family 2 (TFF2) as an Illustration: Metabolic Implications and Potential Applications. Biomolecules 2021; 11:1830. [PMID: 34944474 PMCID: PMC8698828 DOI: 10.3390/biom11121830] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/03/2021] [Accepted: 12/03/2021] [Indexed: 12/13/2022] Open
Abstract
Obesity is a health problem with increasing impacts on public health, economy and even social life. In order to reestablish the energy balance, obesity management focuses mainly on two pillars; exercise and diet. Beyond the contribution to the caloric intake, the diet nutrients and composition govern a variety of properties. This includes the energy balance-independent properties and the indirect metabolic effects. Whereas the energy balance-independent properties are close to "pharmacological" effects and include effects such as antioxidant and anti-inflammatory, the indirect metabolic effects represent the contribution a diet can have on energy metabolism beyond the caloric contribution itself, which include the food intake control and metabolic changes. As an illustration, we also described the metabolic implication and hypothetical pathways of the high-fat diet-induced gene Trefoil Factor Family 2. The properties the diet has can have a variety of applications mainly in pharmacology and nutrition and further explore the "pharmacologically" active food towards potential therapeutic applications.
Collapse
Affiliation(s)
- Abdelaziz Ghanemi
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CHU de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada; (A.G.); (M.Y.)
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec, QC G1V 4G2, Canada
| | - Mayumi Yoshioka
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CHU de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada; (A.G.); (M.Y.)
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec, QC G1V 4G2, Canada
| | - Jonny St-Amand
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CHU de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada; (A.G.); (M.Y.)
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec, QC G1V 4G2, Canada
| |
Collapse
|
4
|
Trefoil Factor Family Member 2 Expression as an Indicator of the Severity of the High-Fat Diet-Induced Obesity. Genes (Basel) 2021; 12:genes12101505. [PMID: 34680900 PMCID: PMC8535368 DOI: 10.3390/genes12101505] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 02/08/2023] Open
Abstract
Trefoil Factor Family Member 2 (TFF2) belongs to TFF family peptides that includes TFF1, TFF2, TFF3. TFF2 is mainly known for its roles in the mucosal protection. In the context of obesity and high fat diet (HFD), Tff2 has been characterized as a HFD-induced gene. The knock-out of Tff2 in mice lead to the protection from HFD-induced obesity with a metabolic profile towards a negative energy balance. Such HFD-specific expression gives Tff2 a pattern worth exploring in biomedical research. Indeed, measuring TFF2/TFF2/Tff2 expression in biological samples following the ingestion of high-fat diet reflects the biological "responsiveness" to the lipids ingestion and would reflect the severity of obesity establishment afterwards. Such property could be explored for instance to screen animal models, evaluate the predisposition to HFD-induced obesity as well as in biomedical and clinical applications. Results might advance obesity research especially in terms of understanding lipid-induced signals, appetite control and adiposity storage.
Collapse
|
5
|
Hoffmann W. Trefoil Factor Family (TFF) Peptides and Their Links to Inflammation: A Re-evaluation and New Medical Perspectives. Int J Mol Sci 2021; 22:ijms22094909. [PMID: 34066339 PMCID: PMC8125380 DOI: 10.3390/ijms22094909] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/21/2021] [Accepted: 04/21/2021] [Indexed: 12/16/2022] Open
Abstract
Trefoil factor family peptides (TFF1, TFF2, TFF3), together with mucins, are typical exocrine products of mucous epithelia. Here, they act as a gastric tumor suppressor (TFF1) or they play different roles in mucosal innate immune defense (TFF2, TFF3). Minute amounts are also secreted as endocrine, e.g., by the immune and central nervous systems. As a hallmark, TFF peptides have different lectin activities, best characterized for TFF2, but also TFF1. Pathologically, ectopic expression occurs during inflammation and in various tumors. In this review, the role of TFF peptides during inflammation is discussed on two levels. On the one hand, the expression of TFF1-3 is regulated by inflammatory signals in different ways (upstream links). On the other hand, TFF peptides influence inflammatory processes (downstream links). The latter are recognized best in various Tff-deficient mice, which have completely different phenotypes. In particular, TFF2 is secreted by myeloid cells (e.g., macrophages) and lymphocytes (e.g., memory T cells), where it modulates immune reactions triggering inflammation. As a new concept, in addition to lectin-triggered activation, a hypothetical lectin-triggered inhibition of glycosylated transmembrane receptors by TFF peptides is discussed. Thus, TFFs are promising players in the field of glycoimmunology, such as galectins and C-type lectins.
Collapse
Affiliation(s)
- Werner Hoffmann
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| |
Collapse
|
6
|
Park SA, Lee GH, Hoang TH, Lee HY, Kang IY, Chung MJ, Jin JS, Chae HJ. Heat-inactivated Lactobacillus plantarum nF1 promotes intestinal health in Loperamide-induced constipation rats. PLoS One 2021; 16:e0250354. [PMID: 33872333 PMCID: PMC8055018 DOI: 10.1371/journal.pone.0250354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 04/05/2021] [Indexed: 01/08/2023] Open
Abstract
Constipation is a common condition that affects individuals of all ages, and prolonged constipation needs to be prevented to avoid potential complications and reduce the additional stress on individuals with pre-medical conditions. This study aimed to evaluate the effects of heat-inactivated Lactobacillus plantarum (HLp-nF1) on loperamide-induced constipation in rats. Constipation-induced male rats were treated orally with low to high doses of HLp-nF1 and an anti-constipation medication Dulcolax for five weeks. Study has 8 groups, control group; loperamide-treated group; Dulcolax-treated group; treatment with 3.2 × 1010, 8 × 1010 and 1.6 × 1011, cells/mL HLp-nF1; Loperamide + Dulcolax treated group. HLp-nF1 treated rats showed improvements in fecal pellet number, weight, water content, intestinal transit length, and contractility compared to the constipation-induced rats. Also, an increase in the intestine mucosal layer thickness and the number of mucin-producing crypt epithelial cells were observed in HLp-nF1-treated groups. Further, the levels of inflammatory cytokines levels were significantly downregulated by treatment with HLp-nF1 and Dulcolax. Notably, the metagenomics sequencing analysis demonstrated a similar genus pattern to the pre-preparation group and control with HLp-nF1 treatment. In conclusion, the administration of >3.2 × 1010 cells/mL HLp-nF1 has a positive impact on the constipated rats overall health.
Collapse
Affiliation(s)
- Seon-Ah Park
- Non-Clinical Evaluation Center, Research Institute of Clinical Medicine of Jeonbuk National University, Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, South Korea
| | - Geum-Hwa Lee
- Non-Clinical Evaluation Center, Research Institute of Clinical Medicine of Jeonbuk National University, Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, South Korea
| | - The-Hiep Hoang
- Non-Clinical Evaluation Center, Research Institute of Clinical Medicine of Jeonbuk National University, Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, South Korea
- Department of Pharmacology and Institute of New Drug Development, School of Medicine, Jeonbuk National University, Jeonju, South Korea
| | - Hwa-Young Lee
- Non-Clinical Evaluation Center, Research Institute of Clinical Medicine of Jeonbuk National University, Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, South Korea
- Department of Pharmacology and Institute of New Drug Development, School of Medicine, Jeonbuk National University, Jeonju, South Korea
| | | | - Myong-Ja Chung
- Department of Pathology, Jeonbuk National University Medical School, Jeonju, Korea
| | - Jong-Sik Jin
- Department of Oriental Medicine Resources, Jeonbuk National University, Iksan, South Korea
| | - Han-Jung Chae
- Non-Clinical Evaluation Center, Research Institute of Clinical Medicine of Jeonbuk National University, Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, South Korea
- Department of Pharmacology and Institute of New Drug Development, School of Medicine, Jeonbuk National University, Jeonju, South Korea
- * E-mail:
| |
Collapse
|
7
|
Ghanemi A, Yoshioka M, St-Amand J. High-Fat Diet-Induced Trefoil Factor Family Member 2 (TFF2) to Counteract the Immune-Mediated Damage in Mice. Animals (Basel) 2021; 11:ani11020258. [PMID: 33494143 PMCID: PMC7909836 DOI: 10.3390/ani11020258] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/16/2021] [Accepted: 01/19/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary High-fat (HF) diet induces both immune-mediated damage and trefoil factor family member 2 (Tff2) expression. As TFF2 has tissue repair and protection properties, this suggests that HF diet-induced Tff2 production and the resulting TFF2 mucosal protective effects would be a mechanism to counteract the HF diet-induced tissue damage. On the other hand, the induction of Tff2 by HF diet could indicate that TFF2 is a food intake regulator (appetite control) since Tff2 is also expressed in the brain. This highlights the importance of exploring TFF2-related pathways in the context of obesity management towards potential therapies. Abstract Physiological homeostasis requires a balance between the immunological functions and the resulting damage/side effects of the immunological reactions including those related to high-fat (HF) diet. Within this context, whereas HF diet, through diverse mechanisms (such as inflammation), leads to immune-mediated damage, trefoil factor family member 2 (Tff2) represents a HF diet-induced gene. On the other hand, TFF2 both promotes tissue repair and reduces inflammation. These properties are towards counteracting the immune-mediated damage resulting from the HF diet. These observations suggest that the HF diet-induction of Tff2 could be a regulatory pathway aiming to counteract the immune-mediated damage resulting from the HF diet. Interestingly, since Tff2 expression increases with HF diet and with Tff2 also expressed in the brain, we also hypothesize that TFF2 could be a HF diet-induced food intake-control signal that reduces appetite. This hypothesis fits with counteracting the immune damage since reducing the food intake will reduce the HF intake and therefore, reduces the HF diet-induced tissue damage. Such food intake signaling would be an indirect mechanism by which TFF2 promotes tissue repair as well as a pathway worth exploring for potential obesity management pharmacotherapies.
Collapse
Affiliation(s)
- Abdelaziz Ghanemi
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec, QC G1V 0A6, Canada;
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CHU de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada;
| | - Mayumi Yoshioka
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CHU de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada;
| | - Jonny St-Amand
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec, QC G1V 0A6, Canada;
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CHU de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada;
- Correspondence: ; Tel.: +1-(418)-525-4444 (ext. 46448); Fax: +1-(418)-654-2298
| |
Collapse
|
8
|
Ghanemi A, Yoshioka M, St-Amand J. Trefoil Factor Family Member 2 (TFF2) as an Inflammatory-Induced and Anti-Inflammatory Tissue Repair Factor. Animals (Basel) 2020; 10:ani10091646. [PMID: 32937753 PMCID: PMC7552208 DOI: 10.3390/ani10091646] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/06/2020] [Accepted: 09/11/2020] [Indexed: 12/13/2022] Open
Abstract
Trefoil factor family member 2 (TFF2) is known for its involvement in mucosal repair. Whereas it is overexpressed during inflammatory processes, adding TFF2 leads to an anti-inflammatory effect that would contribute to create the microenvironment required for tissue repair. These properties present TFF2 with a homeostatic pattern during inflammatory processes as illustrated by selected examples.
Collapse
Affiliation(s)
- Abdelaziz Ghanemi
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec, QC G1V 0A6, Canada;
- Endocrinology and Nephrology Axis, Functional Genomics Laboratory, CHU de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada;
| | - Mayumi Yoshioka
- Endocrinology and Nephrology Axis, Functional Genomics Laboratory, CHU de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada;
| | - Jonny St-Amand
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec, QC G1V 0A6, Canada;
- Endocrinology and Nephrology Axis, Functional Genomics Laboratory, CHU de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada;
- Correspondence: ; Tel.: +1-(418)-654-2296; Fax: +1-(418)-654-2761
| |
Collapse
|
9
|
Hoffmann W. Trefoil Factor Family (TFF) Peptides and Their Diverse Molecular Functions in Mucus Barrier Protection and More: Changing the Paradigm. Int J Mol Sci 2020; 21:ijms21124535. [PMID: 32630599 PMCID: PMC7350206 DOI: 10.3390/ijms21124535] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 02/07/2023] Open
Abstract
Trefoil factor family peptides (TFF1, TFF2, TFF3) are typically co-secreted together with mucins. Tff1 represents a gastric tumor suppressor gene in mice. TFFs are also synthesized in minute amounts in the immune and central nervous systems. In mucous epithelia, they support rapid repair by enhancing cell migration ("restitution") via their weak chemotactic and anti-apoptotic effects. For a long time, as a paradigm, this was considered as their major biological function. Within recent years, the formation of disulfide-linked heterodimers was documented for TFF1 and TFF3, e.g., with gastrokine-2 and IgG Fc binding protein (FCGBP). Furthermore, lectin activities were recognized as enabling binding to a lipopolysaccharide of Helicobacter pylori (TFF1, TFF3) or to a carbohydrate moiety of the mucin MUC6 (TFF2). Only recently, gastric TFF1 was demonstrated to occur predominantly in monomeric forms with an unusual free thiol group. Thus, a new picture emerged, pointing to diverse molecular functions for TFFs. Monomeric TFF1 might protect the gastric mucosa as a scavenger for extracellular reactive oxygen/nitrogen species. Whereas, the TFF2/MUC6 complex stabilizes the inner layer of the gastric mucus. In contrast, the TFF3-FCGBP heterodimer (and also TFF1-FCGBP) are likely part of the innate immune defense of mucous epithelia, preventing the infiltration of microorganisms.
Collapse
Affiliation(s)
- Werner Hoffmann
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| |
Collapse
|
10
|
Grover M, Dasari S, Bernard CE, Chikkamenahalli LL, Yates KP, Pasricha PJ, Sarosiek I, McCallum R, Koch KL, Abell TL, Kuo B, Shulman RJ, Gibbons SJ, McKenzie TJ, Kellogg TA, Kendrick ML, Tonascia J, Hamilton FA, Parkman HP, Farrugia G. Proteomics in gastroparesis: unique and overlapping protein signatures in diabetic and idiopathic gastroparesis. Am J Physiol Gastrointest Liver Physiol 2019; 317:G716-G726. [PMID: 31482734 PMCID: PMC6879892 DOI: 10.1152/ajpgi.00115.2019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Macrophage-based immune dysregulation plays a critical role in development of delayed gastric emptying in diabetic mice. Loss of anti-inflammatory macrophages and increased expression of genes associated with pro-inflammatory macrophages has been reported in full-thickness gastric biopsies from gastroparesis patients. We aimed to determine broader protein expression (proteomics) and protein-based signaling pathways in gastric biopsies of diabetic (DG) and idiopathic gastroparesis (IG) patients. Additionally, we determined correlations between protein expressions, gastric emptying, and symptoms. Full-thickness gastric antrum biopsies were obtained from nine DG patients, seven IG patients, and five nondiabetic controls. Aptamer-based SomaLogic tissue scan that quantitatively identifies 1,305 human proteins was used. Protein fold changes were computed, and differential expressions were calculated using Limma. Ingenuity pathway analysis and correlations were carried out. Multiple-testing corrected P < 0.05 was considered statistically significant. Seventy-three proteins were differentially expressed in DG, 132 proteins were differentially expressed in IG, and 40 proteins were common to DG and IG. In both DG and IG, "Role of Macrophages, Fibroblasts and Endothelial Cells" was the most statistically significant altered pathway [DG false discovery rate (FDR) = 7.9 × 10-9; IG FDR = 6.3 × 10-12]. In DG, properdin expression correlated with GCSI bloating (r = -0.99, FDR = 0.02) and expressions of prostaglandin G/H synthase 2, protein kinase C-ζ type, and complement C2 correlated with 4 h gastric retention (r = -0.97, FDR = 0.03 for all). No correlations were found between proteins and symptoms or gastric emptying in IG. Protein expression changes suggest a central role of macrophage-driven immune dysregulation in gastroparesis, specifically, complement activation in diabetic gastroparesis.NEW & NOTEWORTHY This study uses SOMAscan, a novel proteomics assay for determination of altered proteins and associated molecular pathways in human gastroparesis. Seventy-three proteins were changed in diabetic gastroparesis, 132 in idiopathic gastroparesis compared with controls. Forty proteins were common in both. Macrophage-based immune dysregulation pathway was most significantly affected in both diabetic and idiopathic gastroparesis. Proteins involved in the complement and prostaglandin synthesis pathway were associated with symptoms and gastric emptying delay in diabetic gastroparesis.
Collapse
Affiliation(s)
| | - Surendra Dasari
- 2Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota
| | | | | | - Katherine P. Yates
- 3Johns Hopkins University Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | | | - Irene Sarosiek
- 5Texas Tech University Health Sciences Center, El Paso, Texas
| | | | | | | | - Braden Kuo
- 8Massachusetts General Hospital, Boston, Massachusetts
| | | | - Simon J. Gibbons
- 1Enteric NeuroScience Program, Mayo Clinic, Rochester, Minnesota
| | | | | | | | - James Tonascia
- 3Johns Hopkins University Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Frank A. Hamilton
- 11National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland
| | | | | |
Collapse
|
11
|
Kotsiou OS, Gourgoulianis KI, Zarogiannis SG. IL-33/ST2 Axis in Organ Fibrosis. Front Immunol 2018; 9:2432. [PMID: 30405626 PMCID: PMC6207585 DOI: 10.3389/fimmu.2018.02432] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 10/02/2018] [Indexed: 12/19/2022] Open
Abstract
Interleukin 33 (IL-33) is highly expressed in barrier sites, acting via the suppression of tumorigenicity 2 receptor (ST2). IL-33/ST2 axis has long been known to play a pivotal role in immunity and cell homeostasis by promoting wound healing and tissue repair. However, it is also involved in the loss of balance between extensive inflammation and tissue regeneration lead to remodeling, the hallmark of fibrosis. The aim of the current review is to critically evaluate the available evidence regarding the role of the IL-33/ST2 axis in organ fibrosis. The role of the axis in tissue remodeling is better understood considering its crucial role reported in organ development and regeneration. Generally, the IL-33/ST2 signaling pathway has mainly anti-inflammatory/anti-proliferative effects; however, chronic tissue injury is responsible for pro-fibrogenetic responses. Regarding pulmonary fibrosis mature IL-33 enhances pro-fibrogenic type 2 cytokine production in an ST2- and macrophage-dependent manner, while full-length IL-33 is also implicated in the pulmonary fibrotic process in an ST2-independent, Th2-independent fashion. In liver fibrosis, evidence indicate that when acute and massive liver damage occurs, the release of IL-33 might act as an activator of tissue-protective mechanisms, while in cases of chronic injury IL-33 plays the role of a hepatic fibrotic factor. IL-33 signaling has also been involved in the pathogenesis of acute and chronic pancreatitis. Moreover, IL-33 could be used as an early marker for ulcer-associated activated fibroblasts and myofibroblast trans-differentiation; thus one cannot rule out its potential role in inflammatory bowel disease-associated fibrosis. Similarly, the upregulation of the IL-33/ST2 axismay contribute to tubular cell injury and fibrosis via epithelial to mesenchymal transition (EMT) of various cell types in the kidneys. Of note, IL-33 exerts a cardioprotective role via ST2 signaling, while soluble ST2 has been demonstrated as a marker of myocardial fibrosis. Finally, IL-33 is a crucial cytokine in skin pathology responsible for abnormal fibroblast proliferation, leukocyte infiltration and morphologic differentiation of human endothelial cells. Overall, emerging data support a novel contribution of the IL-33/ST2 pathway in tissue fibrosis and highlight the significant role of the Th2 pattern of immune response in the pathophysiology of organ fibrosis.
Collapse
Affiliation(s)
- Ourania S. Kotsiou
- Department of Respiratory Medicine, Faculty of Medicine, School of Health Sciences, University of Thessaly, BIOPOLIS, Larissa, Greece
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Thessaly, BIOPOLIS, Larissa, Greece
| | - Konstantinos I. Gourgoulianis
- Department of Respiratory Medicine, Faculty of Medicine, School of Health Sciences, University of Thessaly, BIOPOLIS, Larissa, Greece
| | - Sotirios G. Zarogiannis
- Department of Respiratory Medicine, Faculty of Medicine, School of Health Sciences, University of Thessaly, BIOPOLIS, Larissa, Greece
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Thessaly, BIOPOLIS, Larissa, Greece
| |
Collapse
|
12
|
Andrews C, McLean MH, Durum SK. Cytokine Tuning of Intestinal Epithelial Function. Front Immunol 2018; 9:1270. [PMID: 29922293 PMCID: PMC5996247 DOI: 10.3389/fimmu.2018.01270] [Citation(s) in RCA: 205] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/22/2018] [Indexed: 12/12/2022] Open
Abstract
The intestine serves as both our largest single barrier to the external environment and the host of more immune cells than any other location in our bodies. Separating these potential combatants is a single layer of dynamic epithelium composed of heterogeneous epithelial subtypes, each uniquely adapted to carry out a subset of the intestine’s diverse functions. In addition to its obvious role in digestion, the intestinal epithelium is responsible for a wide array of critical tasks, including maintaining barrier integrity, preventing invasion by microbial commensals and pathogens, and modulating the intestinal immune system. Communication between these epithelial cells and resident immune cells is crucial for maintaining homeostasis and coordinating appropriate responses to disease and can occur through cell-to-cell contact or by the release or recognition of soluble mediators. The objective of this review is to highlight recent literature illuminating how cytokines and chemokines, both those made by and acting on the intestinal epithelium, orchestrate many of the diverse functions of the intestinal epithelium and its interactions with immune cells in health and disease. Areas of focus include cytokine control of intestinal epithelial proliferation, cell death, and barrier permeability. In addition, the modulation of epithelial-derived cytokines and chemokines by factors such as interactions with stromal and immune cells, pathogen and commensal exposure, and diet will be discussed.
Collapse
Affiliation(s)
- Caroline Andrews
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, United States
| | - Mairi H McLean
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| | - Scott K Durum
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, United States
| |
Collapse
|
13
|
Kumar V, Mansfield J, Fan R, MacLean A, Li J, Mohan M. miR-130a and miR-212 Disrupt the Intestinal Epithelial Barrier through Modulation of PPARγ and Occludin Expression in Chronic Simian Immunodeficiency Virus-Infected Rhesus Macaques. THE JOURNAL OF IMMUNOLOGY 2018. [PMID: 29514950 DOI: 10.4049/jimmunol.1701148] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Intestinal epithelial barrier dysfunction is a well-known sequela of HIV/SIV infection that persists despite antiretroviral therapy. Although inflammation is a triggering factor, the underlying molecular mechanisms remain unknown. Emerging evidence suggests that epithelial barrier function is epigenetically regulated by inflammation-induced microRNAs (miRNAs). Accordingly, we profiled and characterized miRNA/mRNA expression exclusively in colonic epithelium and identified 46 differentially expressed miRNAs (20 upregulated and 26 downregulated) in chronically SIV-infected rhesus macaques (Macaca mulatta). We bioinformatically crossed the predicted miRNA targets to transcriptomic data and characterized miR-130a and miR-212 as both were predicted to interact with critical epithelial barrier-associated genes. Next, we characterized peroxisome proliferator-activated receptor γ (PPARγ) and occludin (OCLN), predicted targets of miR-130a and miR-212, respectively, as their downregulation has been strongly linked to epithelial barrier disruption and dysbiosis. Immunofluorescence, luciferase reporter, and overexpression studies confirmed the ability of miR-130a and miR-212 to decrease protein expression of PPARγ and OCLN, respectively, and reduce transepithelial electrical resistance. Because Δ-9-tetrahydrocannabinol exerted protective effects in the intestine in our previous studies, we successfully used it to reverse miR-130a- and miR-212-mediated reduction in transepithelial electrical resistance. Finally, ex vivo Δ-9-tetrahydrocannabinol treatment of colon tissue from chronically SIV-infected rhesus macaques significantly increased PPARγ expression. Our findings suggest that dysregulated miR-130a and miR-212 expression in colonic epithelium during chronic HIV/SIV infection can facilitate epithelial barrier disruption by downregulating OCLN and PPARγ expression. Most importantly, our results highlight the beneficial effects of cannabinoids on epithelial barrier function in not just HIV/SIV but potentially other chronic intestinal inflammatory diseases.
Collapse
Affiliation(s)
- Vinay Kumar
- Eurofins Bioanalytics USA, Saint Charles, MO 63304
| | - Joshua Mansfield
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA 70433; and
| | - Rong Fan
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA 70433; and
| | - Andrew MacLean
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA 70433; and
| | - Jian Li
- Department of Global Biostatistics and Data Science, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112
| | - Mahesh Mohan
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA 70433; and
| |
Collapse
|
14
|
Hung LY, Oniskey TK, Sen D, Krummel MF, Vaughan AE, Cohen NA, Herbert DR. Trefoil Factor 2 Promotes Type 2 Immunity and Lung Repair through Intrinsic Roles in Hematopoietic and Nonhematopoietic Cells. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:1161-1170. [PMID: 29458008 DOI: 10.1016/j.ajpath.2018.01.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 01/08/2018] [Accepted: 01/23/2018] [Indexed: 01/03/2023]
Abstract
Trefoil factors (TFFs) are small secreted proteins that regulate tissue integrity and repair at mucosal surfaces, particularly in the gastrointestinal tract. However, their relative contribution(s) to controlling baseline lung function or the extent of infection-induced lung injury are unknown issues. With the use of irradiation bone marrow chimeras, we found that TFF2 produced from both hematopoietic- and nonhematopoietic-derived cells is essential for host protection, proliferation of alveolar type 2 cells, and restoration of pulmonary gas exchange after infection with the hookworm parasite Nippostrongylus brasiliensis. In the absence of TFF2, lung epithelia were unable to proliferate and expressed reduced lung mRNA transcript levels for type 2 response-inducing IL-25 and IL-33 after infectious injury. Strikingly, even in the absence of infection or irradiation, TFF2 deficiency compromised lung structure and function, as characterized by distended alveoli and reduced blood oxygen levels relative to wild-type control mice. Taken together, we show a previously unappreciated role for TFF2, produced by either hematopoietic or nonhematopoietic sources, as a pro-proliferative factor for lung epithelial cells under steady-state and infectious injury conditions.
Collapse
Affiliation(s)
- Li-Yin Hung
- Division of Experimental Medicine, University of California San Francisco, San Francisco, California
| | - Taylor K Oniskey
- Division of Experimental Medicine, University of California San Francisco, San Francisco, California
| | - Debasish Sen
- Department of Pathology, University of California San Francisco, San Francisco, California
| | - Matthew F Krummel
- Department of Pathology, University of California San Francisco, San Francisco, California
| | - Andrew E Vaughan
- Department of Biological Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania
| | - Noam A Cohen
- Department of Otorhinololaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - De'Broski R Herbert
- Division of Experimental Medicine, University of California San Francisco, San Francisco, California.
| |
Collapse
|
15
|
Zeolite-Containing Mixture Supplementation Ameliorated Dextran Sodium Sulfate-Induced Colitis in Mice by Suppressing the Inflammatory Bowel Disease Pathway and Improving Apoptosis in Colon Mucosa. Nutrients 2017; 9:nu9050467. [PMID: 28481231 PMCID: PMC5452197 DOI: 10.3390/nu9050467] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 04/28/2017] [Accepted: 05/02/2017] [Indexed: 12/14/2022] Open
Abstract
Inflammatory bowel disease (IBD) is induced by multiple environmental factors, and there is still no known treatment capable of curing the disease completely. We propose a zeolite-containing mixture (Hydryeast®, HY)-a multi-component nutraceutical of which the main ingredients are Azumaceramics (mixture of zeolite and oyster shell burned under high temperature), citric acid, red rice yeast (monascus) and calcium stearate-as a nutraceutical intervention in IBD to ameliorate dextran sodium sulfate (DSS)-induced colitis. We show the mechanism through integrated omics using transcriptomics and proteomics. C57BL6 mice were given an AIN-93G basal diet or a 0.8% HY containing diet and sterilized tap water for 11 days. Colitis was then induced by 1.5% (w/v) DSS-containing water for 9 days. HY fed mice showed significantly improved disease activity index and colon length compared to DSS mice. Colonic mucosa microarray analysis plus RT-PCR results indicate HY supplementation may ameliorate inflammation by inhibiting the intestinal inflammatory pathway and suppress apoptosis by curbing the expression of genes like tumor protein 53 and epidermal growth factor receptor and by upregulating epithelial protection-related proteins such as epithelial cell adhesion molecule and tenascin C, thus maintaining mucosal immune homeostasis and epithelial integrity, mirroring the proteome analysis results. HY appears to have a suppressive effect on colitis.
Collapse
|
16
|
Bosmans JWAM, Jongen ACHM, Birchenough GMH, Nyström EEL, Gijbels MJJ, Derikx JPM, Bouvy ND, Hansson GC. Functional mucous layer and healing of proximal colonic anastomoses in an experimental model. Br J Surg 2017; 104:619-630. [PMID: 28195642 DOI: 10.1002/bjs.10456] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 07/14/2016] [Accepted: 11/09/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND Anastomotic leakage (AL) is the most dreaded complication after colorectal surgery, causing high morbidity and mortality. Mucus is a first line of defence against external factors in the gastrointestinal tract. In this study, the structural mucus protein Muc2 was depleted in genetically engineered mice and the effect on healing of colonic anastomoses studied in an experimental model. METHODS Mice of different Muc2 genotypes were used in a proximal colonic AL model. Tissues were scored histologically for inflammation, bacterial translocation was determined by quantitative PCR of bacterial 16S ribosomal DNA, and epithelial cell damage was determined by assessing serum levels of intestinal fatty acid-binding protein. RESULTS Of 22 Muc2-deficient (Muc2-/- ) mice, 20 developed AL, compared with seven of 22 control animals (P < 0·001). Control mice showed normal healing, whereas Muc2-/- mice had more inflammation with less collagen deposition and neoangiogenesis. A tendency towards higher bacterial translocation was seen in mesenteric lymph nodes and spleen in Muc2-/- mice. Intestinal fatty acid-binding protein levels were significantly higher in Muc2-/- mice compared with controls (P = 0·011). CONCLUSION A functional mucous layer facilitates the healing of colonic anastomoses. Clinical relevance Colorectal anastomotic leakage remains the most dreaded complication after colorectal surgery. It is known that the aetiology of anastomotic leakage is multifactorial, and a role is suggested for the interaction between intraluminal content and mucosa. In this murine model of proximal colonic anastomotic leakage, the authors investigated the mucous layer at the intestinal mucosa, as the first line of defence, and found that a normal, functioning mucous layer is essential in the healing process of colonic anastomoses. Further research on anastomotic healing should focus on positively influencing the mucous layer to promote better postoperative recovery.
Collapse
Affiliation(s)
- J W A M Bosmans
- Department of Surgery, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht, The Netherlands
| | - A C H M Jongen
- Department of Surgery, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht, The Netherlands
| | - G M H Birchenough
- Department of Medical Biochemistry, University of Gothenburg, Gothenburg, Sweden
| | - E E L Nyström
- Department of Medical Biochemistry, University of Gothenburg, Gothenburg, Sweden
| | - M J J Gijbels
- Departments of Pathology and Molecular Genetics, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht, The Netherlands.,Experimental Vascular Biology, Department of Medical Biochemistry, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - J P M Derikx
- Department of Surgery, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht, The Netherlands.,Paediatric Surgical Centre Amsterdam, Emma Children's Hospital/VU University Medical Centre, Amsterdam, The Netherlands
| | - N D Bouvy
- Department of Surgery, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht, The Netherlands
| | - G C Hansson
- Department of Medical Biochemistry, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
17
|
Abstract
Trefoil factor (TFF) peptides, with a 40-amino acid motif and including six conserved cysteine residues that form intramolecular disulfide bonds, are a family of mucin-associated secretory molecules mediating many physiological roles that maintain and restore gastrointestinal (GI) mucosal homeostasis. TFF peptides play important roles in response to GI mucosal injury and inflammation. In response to acute GI mucosal injury, TFF peptides accelerate cell migration to seal the damaged area from luminal contents, whereas chronic inflammation leads to increased TFF expression to prevent further progression of disease. Although much evidence supports the physiological significance of TFF peptides in mucosal defenses, the molecular and cellular mechanisms of TFF peptides in the GI epithelium remain largely unknown. In this review, we summarize the functional roles of TFF1, 2, and 3 and illustrate their action mechanisms, focusing on defense mechanisms in the GI tract.
Collapse
Affiliation(s)
- Eitaro Aihara
- Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, Ohio 45267;
| | - Kristen A Engevik
- Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, Ohio 45267;
| | - Marshall H Montrose
- Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, Ohio 45267;
| |
Collapse
|
18
|
Involvement of trefoil factor family 2 in the enlargement of intestinal tumors in Apc(Min/+) mice. Biochem Biophys Res Commun 2015; 463:859-63. [PMID: 26056002 DOI: 10.1016/j.bbrc.2015.06.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 06/03/2015] [Indexed: 02/02/2023]
Abstract
It is assumed that tumor size may be associated with malignant tumor conversion. However, the molecules responsible for determination of tumor size are not well understood. We counted the number of intestinal tumors in 8, 12 and 30-week-old Apc(Min/+) mice and measured tumor sizes, respectively. Genes involved in determining tumor size were examined using microarray analysis. Cultured cells were then, transfected with a mammalian expression vector containing a candidate gene to examine the functional role of the gene. The effect of forced expression of candidate gene on cell growth was evaluated by measuring the doubling time of the cultured cells and the growth of grafted cells in nude mice. Unexpectedly, microarray analysis identified trefoil factor family 2 (Tff2) rather than growth related genes and/or oncogenes as a most variable gene. Overexpressing Tff2 in cultured cells reduced doubling time in vitro and rapidly increased xenograft tumor size in vivo. We found Tff2 as a novel important factor that to be able to enlarge an intestinal tumor size.
Collapse
|