1
|
Cui W, Ma Y, Zhang L, Zhang L, Yao Q, Zhang J, Cheng Y, Zeng W, Liu Q, Liu F, Liang C. Neuregulin 1 improved gastric motility and reduced gastric inflammation by activating the α7nAChR through the cholinergic anti-inflammatory pathway in diabetic rats. Toxicol Appl Pharmacol 2024; 495:117205. [PMID: 39689756 DOI: 10.1016/j.taap.2024.117205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/02/2024] [Accepted: 12/10/2024] [Indexed: 12/19/2024]
Abstract
Diabetic gastroparesis (DGP), a prevalent complication of diabetes, is characterized by delayed gastric emptying and inflammation. The dorsal motor nucleus of the vagus (DMV) plays a crucial role in modulating gastric function via the vagus nerve. Neuregulin 1 (NRG1), which is present in the DMV and influences the autonomic nervous system, has an unclear role in DGP. This study aimed to investigate the expression of NRG1 in the DMV of Zucker diabetic fatty (ZDF) rats and to evaluate the impact of centrally administered NRG1 on gastric motility and inflammation, as well as the underlying mechanisms. Our findings revealed a decrease in NRG1 and choline acetyltransferase (ChAT) expression in the DMV of ZDF rats, corresponding to weakened gastric motility. Microinjection of AAV-NRG1 (overexpressed NRG1 by means of an adeno-associated viral vector delivery of NRG1) into the DMV enhanced gastric motility and increased vagal nerve discharge frequency. Moreover, AAV-NRG1 upregulated acetylcholine (Ach) and α7 nicotinic acetylcholine receptor (α7nAChR) expression in the gastric body, mitigating gastric inflammation. The beneficial effects of AAV-NRG1 were partially reversed by vagotomy or α7nAChR antagonism. These findings provide novel evidence that NRG1 in the DMV can stimulate Ach release and activate α7nAChRs, thereby reducing inflammation and restoring gastric motility via the vagus nerve. This implicates the NRG1 as a potential therapeutic target for DGP.
Collapse
Affiliation(s)
- Weigang Cui
- Department of Human Anatomy, Medical college of Jiaying University, Meizhou, China; Department of Human Anatomy and histoembryology, Xinxiang Medical University, Xinxiang, China; Institute of Neuroscience and Mental Health, Medical college of Jiaying University, Meizhou, China.
| | - Yuqi Ma
- Department of Human Anatomy and histoembryology, Xinxiang Medical University, Xinxiang, China; College of Pharmaceutical Sciences, Soochow University, Soochow, China
| | - Libin Zhang
- Department of Physiology and Pathophysiology, Xinxiang Medical University, Xinxiang, China
| | - Lei Zhang
- Institute of Neuroscience and Mental Health, Medical college of Jiaying University, Meizhou, China
| | - Qianyin Yao
- Department of Human Anatomy, Medical college of Jiaying University, Meizhou, China
| | - Jie Zhang
- Department of Human Anatomy, Medical college of Jiaying University, Meizhou, China
| | - Yatao Cheng
- Department of Human Anatomy, Medical college of Jiaying University, Meizhou, China
| | - Wenqin Zeng
- Department of Human Anatomy, Medical college of Jiaying University, Meizhou, China
| | - Qin Liu
- Department of Human Anatomy, Medical college of Jiaying University, Meizhou, China
| | - Fengyun Liu
- Department of Human Anatomy, Medical college of Jiaying University, Meizhou, China
| | | |
Collapse
|
2
|
Ayoub M, Faris C, Tomanguillo J, Anwar N, Chela H, Daglilar E. The Use of Pre-Endoscopic Metoclopramide Does Not Prevent the Need for Repeat Endoscopy: A U.S. Based Retrospective Cohort Study. Life (Basel) 2024; 14:526. [PMID: 38672796 PMCID: PMC11051147 DOI: 10.3390/life14040526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/14/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Peptic ulcer disease (PUD) can cause upper gastrointestinal bleeding (UGIB), often needing esophagogastroduodenoscopy (EGD). Second-look endoscopies verify resolution, but cost concerns prompt research on metoclopramide's efficacy compared to erythromycin. METHODS We analyzed the Diamond Network of TriNetX Research database, dividing UGIB patients with PUD undergoing EGD into three groups: metoclopramide, erythromycin, and no medication. Using 1:1 propensity score matching, we compared repeat EGD, post-EGD transfusion, and mortality within one month in two study arms. RESULTS Out of 97,040 patients, 11.5% received metoclopramide, 3.9% received erythromycin, and 84.6% received no medication. Comparing metoclopramide to no medication showed no significant difference in repeat EGD (10.1% vs. 9.7%, p = 0.34), transfusion (0.78% vs. 0.86%, p = 0.5), or mortality (1.08% vs. 1.08%, p = 0.95). However, metoclopramide had a higher repeat EGD rate compared to erythromycin (9.4% vs. 7.5%, p = 0.003), with no significant difference in transfusion or mortality. CONCLUSIONS The need to repeat EGD was not decreased with pre-EGD use of metoclopramide. If a prokinetic agent is to be used prior to EGD, erythromycin shows superior reduction in the need of repeat EGD as compared to metoclopramide.
Collapse
Affiliation(s)
- Mark Ayoub
- Department of Internal Medicine, Charleston Area Medical Center, West Virginia University, Charleston, WV 25304, USA
| | - Carol Faris
- Department of General Surgery, Marshall University, Huntington, WV 25755, USA;
| | - Julton Tomanguillo
- Department of Internal Medicine, Charleston Area Medical Center, West Virginia University, Charleston, WV 25304, USA
| | - Nadeem Anwar
- Division of Gastroenterology and Hepatology, Charleston Area Medical Center, West Virginia University, Charleston, WV 25304, USA
| | - Harleen Chela
- Division of Gastroenterology and Hepatology, Charleston Area Medical Center, West Virginia University, Charleston, WV 25304, USA
| | - Ebubekir Daglilar
- Division of Gastroenterology and Hepatology, Charleston Area Medical Center, West Virginia University, Charleston, WV 25304, USA
| |
Collapse
|
3
|
Xing T, Nanni G, Burkholder CR, Browning KN, Travagli RA. The substantia nigra modulates proximal colon tone and motility in a vagally-dependent manner in the rat. J Physiol 2023; 601:4751-4766. [PMID: 37772988 PMCID: PMC10873099 DOI: 10.1113/jp284238] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 09/08/2023] [Indexed: 09/30/2023] Open
Abstract
A monosynaptic pathway connects the substantia nigra pars compacta (SNpc) to neurons of the dorsal motor nucleus of the vagus (DMV). This monosynaptic pathway modulates the vagal control of gastric motility. It is not known, however, whether this nigro-vagal pathway also modulates the tone and motility of the proximal colon. In rats, microinjection of retrograde tracers in the proximal colon and of anterograde tracers in SNpc showed that bilaterally labelled colonic-projecting neurons in the DMV received inputs from SNpc neurons. Microinjections of the ionotropic glutamate receptor agonist, NMDA, in the SNpc increased proximal colonic motility and tone, as measured via a strain gauge aligned with the colonic circular smooth muscle; the motility increase was inhibited by acute subdiaphragmatic vagotomy. Upon transfection of SNpc with pAAV-hSyn-hM3D(Gq)-mCherry, chemogenetic activation of nigro-vagal nerve terminals by brainstem application of clozapine-N-oxide increased the firing rate of DMV neurons and proximal colon motility; both responses were abolished by brainstem pretreatment with the dopaminergic D1-like antagonist SCH23390. Chemogenetic inhibition of nigro-vagal nerve terminals following SNpc transfection with pAAV-hSyn-hM4D(Gi)-mCherry decreased the firing rate of DMV neurons and inhibited proximal colon motility. These data suggest that a nigro-vagal pathway modulates activity of the proximal colon motility tonically via a discrete dopaminergic synapse in a manner dependent on vagal efferent nerve activity. Impairment of this nigro-vagal pathway may contribute to the severely reduced colonic transit and prominent constipation observed in both patients and animal models of parkinsonism. KEY POINTS: Substantia nigra pars compacta (SNpc) neurons are connected to the dorsal motor nucleus of the vagus (DMV) neurons via a presumed direct pathway. Brainstem neurons in the lateral DMV innervate the proximal colon. Colonic-projecting DMV neurons receive inputs from neurons of the SNpc. The nigro-vagal pathway modulates tone and motility of the proximal colon via D1-like receptors in the DMV. The present study provides the mechanistic basis for explaining how SNpc alterations may lead to a high rate of constipation in patients with Parkinson's Disease.
Collapse
Affiliation(s)
| | | | | | - Kirsteen N. Browning
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA and Neurobiology Research, Newport, NC
| | | |
Collapse
|
4
|
Gillis RA, Dezfuli G, Bellusci L, Vicini S, Sahibzada N. Brainstem Neuronal Circuitries Controlling Gastric Tonic and Phasic Contractions: A Review. Cell Mol Neurobiol 2022; 42:333-360. [PMID: 33813668 PMCID: PMC9595174 DOI: 10.1007/s10571-021-01084-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 03/18/2021] [Indexed: 11/30/2022]
Abstract
This review is on how current knowledge of brainstem control of gastric mechanical function unfolded over nearly four decades from the perspective of our research group. It describes data from a multitude of different types of studies involving retrograde neuronal tracing, microinjection of drugs, whole-cell recordings from rodent brain slices, receptive relaxation reflex, accommodation reflex, c-Fos experiments, immunohistochemical methods, electron microscopy, transgenic mice, optogenetics, and GABAergic signaling. Data obtained indicate the following: (1) nucleus tractus solitarius (NTS)-dorsal motor nucleus of the vagus (DMV) noradrenergic connection is required for reflex control of the fundus; (2) second-order nitrergic neurons in the NTS are also required for reflex control of the fundus; (3) a NTS GABAergic connection is required for reflex control of the antrum; (4) a single DMV efferent pathway is involved in brainstem control of gastric mechanical function under most experimental conditions excluding the accommodation reflex. Dual-vagal effectors controlling cholinergic and non-adrenergic and non-cholinergic (NANC) input to the stomach may be part of the circuitry of this reflex. (5) GABAergic signaling within the NTS via Sst-GABA interneurons determine the basal (resting) state of gastric tone and phasic contractions. (6) For the vagal-vagal reflex to become operational, an endogenous opioid in the NTS is released and the activity of Sst-GABA interneurons is suppressed. From the data, we suggest that the CNS has the capacity to provide region-specific control over the proximal (fundus) and distal (antrum) stomach through engaging phenotypically different efferent inputs to the DMV.
Collapse
Affiliation(s)
- Richard A. Gillis
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Ghazaul Dezfuli
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Lorenza Bellusci
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Stefano Vicini
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, 20007, USA.
| | - Niaz Sahibzada
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC 20007, USA
| |
Collapse
|
5
|
Yavasoglu NG, Comoglu SS. The effect of subthalamic deep brain stimulation on autonomic dysfunction in Parkinson's disease: clinical and electrophysiological evaluation. Neurol Res 2021; 43:894-899. [PMID: 34134609 DOI: 10.1080/01616412.2021.1942409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: Subthalamic nucleus (STN) deep brain stimulation (DBS) is an important option in the treatment of motor symptoms and fluctuations in patients with advanced Parkinson's disease (PD). In addition to the improvement in motor symptoms, many studies have reported changes in some non-motor symptoms (NMS) after STN DBS.Method: 61 patients (42 males) who underwent STN DBS with advanced PD and 24 healthy controls (15 males) were included in the study. Autonomic symptoms (orthostatic hypotension, sweating, salivation) were assessed with a semi-structured questionnaire. Sympathetic skin responses (SSR) were studied by electrophysiological examination within 3-6 months after STN DBS.Results: SSR latency and amplitude were found between the control group and preoperative patients (P ≤ 0.01; p = 0.01, respectively), and between preoperative and postoperative patients (P ≤ 0.01; P ≤ 0.01, respectively). There was a statistically significant difference between the control group and postoperative patients (p = 0.005; p = 0.029, respectively). Orthostatic hypotension (29%) and sweating (48%) improved, but there was no change in the salivation.Discussion: We think that STN DBS applied in PD has not only motor symptoms and fluctuations, but also corrects autonomic dysfunctions such as sweating disorders and orthostatic hypotension; SSR is more sensitive and reliable in detecting autonomic dysfunction, independent of motor symptoms and fluctuations.
Collapse
Affiliation(s)
- Nese Gungor Yavasoglu
- Department of Neurology, Dışkapı Yıldırım Beyazıt Training and Research Hospital, Ankara, Turkey
| | - S Selcuk Comoglu
- Department of Neurology, Dışkapı Yıldırım Beyazıt Training and Research Hospital, Ankara, Turkey
| |
Collapse
|
6
|
Yang X, Lou J, Shan W, Ding J, Jin Z, Hu Y, Du Q, Liao Q, Xie R, Xu J. Pathophysiologic Role of Neurotransmitters in Digestive Diseases. Front Physiol 2021; 12:567650. [PMID: 34194334 PMCID: PMC8236819 DOI: 10.3389/fphys.2021.567650] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 05/06/2021] [Indexed: 01/09/2023] Open
Abstract
Neurotransmitters are special molecules that serve as messengers in chemical synapses between neurons, cells, or receptors, including catecholamines, serotonin, dopamine, and other neurotransmitters, which play an important role in both human physiology and pathology. Compelling evidence has indicated that neurotransmitters have an important physiological role in various digestive diseases. They act as ligands in combination with central or peripheral receptors, and transmits signals through chemical synapses, which are involved in regulating the physiological and pathological processes of the digestive tract organs. For instance, neurotransmitters regulate blood circulation and affect intestinal movement, nutrient absorption, the gastrointestinal innate immune system, and the microbiome. In this review, we will focus on the role of neurotransmitters in the pathogenesis of digestive tract diseases to provide novel therapeutic targets for new drug development in digestive diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Rui Xie
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jingyu Xu
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
7
|
Sinen O, Özkan A, Ağar A, Bülbül M. Neuropeptide-S prevents 6-OHDA-induced gastric dysmotility in rats. Brain Res 2021; 1762:147442. [PMID: 33753063 DOI: 10.1016/j.brainres.2021.147442] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 03/11/2021] [Accepted: 03/14/2021] [Indexed: 12/20/2022]
Abstract
This study aims to explore the effect of chronic central neuropeptide-S (NPS) treatment on gastrointestinal dysmotility and the changes of cholinergic neurons in the dorsal motor nucleus of the vagus (DMV) of a Parkinson's disease (PD) rat model. The PD model was induced through a unilateral medial forebrain bundle (MFB) administration of the 6-hydroxydopamine (6-OHDA). Locomotor activity (LMA), solid gastric emptying (GE), and gastrointestinal transit (GIT) were measured 7 days after the surgery. NPS was daily administered (1 nmol, icv, 7 days). In substantia nigra (SN), dorsal motor nucleus of the vagus (DMV), and gastric whole-mount samples, changes in tyrosine hydroxylase (TH), choline acetyltransferase (ChAT), neuronal nitric oxide synthase (nNOS), glial fibrillary acidic protein (GFAP), NPS receptor (NPSR), and alpha-synuclein (Ser129) were examined by immunohistochemistry. Cuprolinic blue staining was used to evaluate the number of neuronal cells in myenteric ganglia. The GIT rate, the total number of myenteric neurons, and the expressions of ChAT, nNOS, TH, and GFAP in the myenteric plexus were not changed in rats that received the 6-OHDA. Chronic NPS treatment reversed 6-OHDA-induced impairment of the motor performance, and GE, while preventing the loss of dopaminergic and cholinergic neurons in SN and DMV, respectively. NPS attenuated 6-OHDA-induced α-syn (Ser129) pathology both in SN and DMV. Additionally, expression of NPSR protein was detected in gastro-projecting cells in DMV. Taken together, centrally applied NPS seems to prevent 6-OHDA-induced gastric dysmotility through a neuroprotective action on central vagal circuitry.
Collapse
Affiliation(s)
- Osman Sinen
- Department of Physiology, Akdeniz University, Medical School, Antalya, Turkey
| | - Ayşe Özkan
- Department of Physiology, Akdeniz University, Medical School, Antalya, Turkey
| | - Aysel Ağar
- Department of Physiology, Akdeniz University, Medical School, Antalya, Turkey
| | - Mehmet Bülbül
- Department of Physiology, Akdeniz University, Medical School, Antalya, Turkey.
| |
Collapse
|
8
|
Calderón-Garcidueñas L, González-Maciel A, Reynoso-Robles R, Hammond J, Kulesza R, Lachmann I, Torres-Jardón R, Mukherjee PS, Maher BA. Quadruple abnormal protein aggregates in brainstem pathology and exogenous metal-rich magnetic nanoparticles (and engineered Ti-rich nanorods). The substantia nigrae is a very early target in young urbanites and the gastrointestinal tract a key brainstem portal. ENVIRONMENTAL RESEARCH 2020; 191:110139. [PMID: 32888951 DOI: 10.1016/j.envres.2020.110139] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/21/2020] [Accepted: 08/22/2020] [Indexed: 06/11/2023]
Abstract
Fine particulate air pollution (PM2.5) exposures are linked with Alzheimer's and Parkinson's diseases (AD,PD). AD and PD neuropathological hallmarks are documented in children and young adults exposed lifelong to Metropolitan Mexico City air pollution; together with high frontal metal concentrations (especially iron)-rich nanoparticles (NP), matching air pollution combustion- and friction-derived particles. Here, we identify aberrant hyperphosphorylated tau, ɑ synuclein and TDP-43 in the brainstem of 186 Mexico City 27.29 ± 11.8y old residents. Critically, substantia nigrae (SN) pathology seen in mitochondria, endoplasmic reticulum and neuromelanin (NM) is co-associated with the abundant presence of exogenous, Fe-, Al- and Ti-rich NPs.The SN exhibits early and progressive neurovascular unit damage and mitochondria and NM are associated with metal-rich NPs including exogenous engineered Ti-rich nanorods, also identified in neuroenteric neurons. Such reactive, cytotoxic and magnetic NPs may act as catalysts for reactive oxygen species formation, altered cell signaling, and protein misfolding, aggregation and fibril formation. Hence, pervasive, airborne and environmental, metal-rich and magnetic nanoparticles may be a common denominator for quadruple misfolded protein neurodegenerative pathologies affecting urbanites from earliest childhood. The substantia nigrae is a very early target and the gastrointestinal tract (and the neuroenteric system) key brainstem portals. The ultimate neural damage and neuropathology (Alzheimer's, Parkinson's and TDP-43 pathology included) could depend on NP characteristics and the differential access and targets achieved via their portals of entry. Thus where you live, what air pollutants you are exposed to, what you are inhaling and swallowing from the air you breathe,what you eat, how you travel, and your occupational longlife history are key. Control of NP sources becomes critical.
Collapse
Affiliation(s)
| | | | | | - Jessica Hammond
- Centre for Environmental Magnetism and Paleomagnetism, Lancaster Environment Centre, University of Lancaster, Lancaster, LA1 4YQ, UK
| | - Randy Kulesza
- Auditory Research Center, Lake Erie College of Osteopathic Medicine, Erie, PA, USA
| | | | - Ricardo Torres-Jardón
- Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, UNAM, Mexico City, 04510, Mexico
| | | | - Barbara A Maher
- Centre for Environmental Magnetism and Paleomagnetism, Lancaster Environment Centre, University of Lancaster, Lancaster, LA1 4YQ, UK
| |
Collapse
|
9
|
Harsanyiova J, Buday T, Kralova Trancikova A. Parkinson's Disease and the Gut: Future Perspectives for Early Diagnosis. Front Neurosci 2020; 14:626. [PMID: 32625058 PMCID: PMC7313629 DOI: 10.3389/fnins.2020.00626] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/19/2020] [Indexed: 12/11/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterized by progressive degeneration of dopaminergic neurons, and at the cellular level by the formation of Lewy bodies in the central nervous system (CNS). However, the onset of the disease is believed to be localized to peripheral organs, particularly the gastrointestinal tract (GIT) and the olfactory bulb sooner before neuropathological changes occur in the CNS. Patients already in the pre-motor stage of PD suffer from various digestive problems and/or due to significant changes in the composition of the intestinal microbiome in this early stage of the disease. Detailed analyses of patient biopsies and autopsies as well as animal models of neuropathological changes characteristic of PD provided important information on the pathology or treatment of PD symptoms. However, presently is not clarified (i) the specific tissue in the GIT where the pathological processes associated with PD is initiated; (ii) the mechanism by which these processes are disseminated to the CNS or other tissues within the GIT; and (iii) which neuropathological changes could also serve as a reliable diagnostic marker of the premotor stages of PD, or (iv) which type of GIT tissue would be the most appropriate choice for routine examination of patient biopsies.
Collapse
Affiliation(s)
- Jana Harsanyiova
- Departmet of Pahophysiology, Jessenius Faculty of Medicine in Martin, Comenius University, Bratislava, Slovakia
| | - Tomas Buday
- Departmet of Pahophysiology, Jessenius Faculty of Medicine in Martin, Comenius University, Bratislava, Slovakia
| | - Alzbeta Kralova Trancikova
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University, Bratislava, Slovakia
| |
Collapse
|
10
|
Teckentrup V, Neubert S, Santiago JCP, Hallschmid M, Walter M, Kroemer NB. Non-invasive stimulation of vagal afferents reduces gastric frequency. Brain Stimul 2019; 13:470-473. [PMID: 31884186 DOI: 10.1016/j.brs.2019.12.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/27/2019] [Accepted: 12/15/2019] [Indexed: 12/18/2022] Open
Abstract
Metabolic feedback between the gut and the brain relayed via the vagus nerve contributes to energy homeostasis. We investigated in healthy adults whether non-invasive stimulation of vagal afferents impacts energy homeostasis via efferent effects on metabolism or digestion. In a randomized crossover design, we applied transcutaneous auricular vagus nerve stimulation (taVNS) while recording efferent metabolic effects using simultaneous electrogastrography (EGG) and indirect calorimetry. We found that taVNS reduced gastric myoelectric frequency (p = .008), but did not alter resting energy expenditure. We conclude that stimulating vagal afferents induces gastric slowing via vagal efferents without acutely affecting net energy expenditure at rest. Collectively, this highlights the potential of taVNS to modulate digestion by activating the dorsal vagal complex. Thus, taVNS-induced changes in gastric frequency are an important peripheral marker of brain stimulation effects.
Collapse
Affiliation(s)
- Vanessa Teckentrup
- University of Tübingen, Department of Psychiatry and Psychotherapy, Germany.
| | - Sandra Neubert
- University of Tübingen, Department of Psychiatry and Psychotherapy, Germany
| | - João C P Santiago
- University of Tübingen, Department of Medical Psychology and Behavioral Neurobiology, Germany; German Center for Diabetes Research (DZD), Tübingen, Germany; Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the Eberhard Karls University Tübingen, Tübingen, Germany
| | - Manfred Hallschmid
- University of Tübingen, Department of Medical Psychology and Behavioral Neurobiology, Germany; German Center for Diabetes Research (DZD), Tübingen, Germany; Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the Eberhard Karls University Tübingen, Tübingen, Germany
| | - Martin Walter
- University of Tübingen, Department of Psychiatry and Psychotherapy, Germany; University of Magdeburg, Department of Psychiatry and Psychotherapy, Germany; Leibniz Institute for Neurobiology, Magdeburg, Germany; University of Jena, Department of Psychiatry and Psychotherapy, Germany
| | - Nils B Kroemer
- University of Tübingen, Department of Psychiatry and Psychotherapy, Germany.
| |
Collapse
|
11
|
Bove C, Anselmi L, Travagli RA. Altered gastric tone and motility response to brain-stem dopamine in a rat model of parkinsonism. Am J Physiol Gastrointest Liver Physiol 2019; 317:G1-G7. [PMID: 31042398 PMCID: PMC6689734 DOI: 10.1152/ajpgi.00076.2019] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The majority of patients with Parkinson's disease (PD) experience gastrointestinal dysfunction. Recently, we described a nigro-vagal pathway that uses dopaminergic (DA) inputs to the dorsal motor nucleus of the vagus (DMV) and A2 area neurons to modulate gastric motility and tone. This pathway is disrupted in a rodent model of PD. The aim of the present study was to test the hypothesis that brain-stem DA modulation of gastric tone and motility is altered in a rodent model of PD. Male Sprague-Dawley rats received three weekly intraperitoneal injections of paraquat (10 mg/kg) or saline (control). In naive conditions, microinjection of DA into the DMV induced a gastroinhibitory response in 100% of animals. In 19 of 28 PQ-treated animals, however, microinjection of DA into the DVC induced a biphasic response, with an initial increase in gastric tone and motility followed by a profound gastroinhibition. The excitatory response to DA microinjection was attenuated by a combination of DA type 1 (DA1)- and DA2-like receptor antagonists. Conversely, the inhibitory response was reduced by the DA2-like receptor antagonist only. Pretreatment with the α2-adrenoceptor antagonist yohimbine did not modulate the response to DA, thus excluding involvement of the A2 area. At the end of the experiments, induction of the Parkinson phenotype was confirmed by the presence of α-synuclein immunoreactivity in the DMV and substantia nigra pars compacta. These data suggest a maladaptive neural plasticity in brain-stem vagal circuits regulating gastric motility in PQ-treated rats that may be responsible for the gastric dysfunction observed in PD models. NEW & NOTEWORTHY After paraquat treatment and induction of Parkinson's disease, brain-stem dopamine (DA) application induces a biphasic gastric response in the majority of rats, with an initial increase in tone and motility followed by gastroinhibition. The initial increase in gastric tone and motility is mediated via a combined activation of DA type 1 (DA1)- and DA2-like receptors. The inhibitory effects of DA are mediated by DA2-like receptors and are not affected by blockade of adrenergic inputs mediated by α2-adrenoceptors.
Collapse
Affiliation(s)
- Cecilia Bove
- Department of Neural and Behavioral Sciences, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania
| | - Laura Anselmi
- Department of Neural and Behavioral Sciences, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania
| | - R. Alberto Travagli
- Department of Neural and Behavioral Sciences, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania
| |
Collapse
|
12
|
Goyal RK, Guo Y, Mashimo H. Advances in the physiology of gastric emptying. Neurogastroenterol Motil 2019; 31:e13546. [PMID: 30740834 PMCID: PMC6850045 DOI: 10.1111/nmo.13546] [Citation(s) in RCA: 176] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 11/29/2018] [Accepted: 12/16/2018] [Indexed: 12/16/2022]
Abstract
There have been many recent advances in the understanding of various aspects of the physiology of gastric motility and gastric emptying. Earlier studies had discovered the remarkable ability of the stomach to regulate the timing and rate of emptying of ingested food constituents and the underlying motor activity. Recent studies have shown that two parallel neural circuits, the gastric inhibitory vagal motor circuit (GIVMC) and the gastric excitatory vagal motor circuit (GEVMC), mediate gastric inhibition and excitation and therefore the rate of gastric emptying. The GIVMC includes preganglionic cholinergic neurons in the DMV and the postganglionic inhibitory neurons in the myenteric plexus that act by releasing nitric oxide, ATP, and peptide VIP. The GEVMC includes distinct gastric excitatory preganglionic cholinergic neurons in the DMV and postganglionic excitatory cholinergic neurons in the myenteric plexus. Smooth muscle is the final target of these circuits. The role of the intramuscular interstitial cells of Cajal in neuromuscular transmission remains debatable. The two motor circuits are differentially regulated by different sets of neurons in the NTS and vagal afferents. In the digestive period, many hormones including cholecystokinin and GLP-1 inhibit gastric emptying via the GIVMC, and in the inter-digestive period, hormones ghrelin and motilin hasten gastric emptying by stimulating the GEVMC. The GIVMC and GEVMC are also connected to anorexigenic and orexigenic neural pathways, respectively. Identification of the control circuits of gastric emptying may provide better delineation of the pathophysiology of abnormal gastric emptying and its relationship to satiety signals and food intake.
Collapse
Affiliation(s)
- Raj K. Goyal
- Department of Medicine, VA Boston Healthcare SystemHarvard Medical SchoolBostonMassachusetts
| | - Yanmei Guo
- Department of Medicine, VA Boston Healthcare SystemHarvard Medical SchoolBostonMassachusetts
| | - Hiroshi Mashimo
- Department of Medicine, VA Boston Healthcare SystemHarvard Medical SchoolBostonMassachusetts
| |
Collapse
|
13
|
Abstract
Parkinson's disease (PD) is predominantly idiopathic in origin, and a large body of evidence indicates that gastrointestinal (GI) dysfunctions are a significant comorbid clinical feature; these dysfunctions include dysphagia, nausea, delayed gastric emptying, and severe constipation, all of which occur commonly before the onset of the well-known motor symptoms of PD. Based on a distinct distribution pattern of Lewy bodies (LB) in the enteric nervous system (ENS) and in the preganglionic neurons of the dorsal motor nucleus of the vagus (DMV), and together with the early onset of GI symptoms, it was suggested that idiopathic PD begins in the ENS and spreads to the central nervous system (CNS), reaching the DMV and the substantia nigra pars compacta (SNpc). These two areas are connected by a recently discovered monosynaptic nigro-vagal pathway, which is dysfunctional in rodent models of PD. An alternative hypothesis downplays the role of LB transport through the vagus nerve and proposes that PD pathology is governed by regional or cell-restricted factors as the leading cause of nigral neuronal degeneration. The purpose of this brief review is to summarize the neuronal electrophysiological findings in the SNpc and DMV in PD.
Collapse
Affiliation(s)
- Cecilia Bove
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine , Hershey, Pennsylvania
| | - R Alberto Travagli
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine , Hershey, Pennsylvania
| |
Collapse
|
14
|
Feng XY, Yang J, Zhang X, Zhu J. Gastrointestinal non-motor dysfunction in Parkinson's disease model rats with 6-hydroxydopamine. Physiol Res 2019; 68:295-303. [PMID: 30628835 DOI: 10.33549/physiolres.933995] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disease with a progressive loss of mesencephalic dopaminergic neurons of the substantia nigra (SN). To further evaluate its pathophysiology, accurate animal models are needed. The current study aims to verify the impact of a 6-hydroxydopamine (6-OHDA) bilateral microinjection into the SN on gastrointestinal symptoms in rats and confirm that the 6-OHDA rat model is an appropriate tool to investigate the mechanisms of Parkinsonian GI disorders. Immunohistochemistry, digital X-ray imaging, short-circuit current, FITC-dextran permeability and ultra-performance liquid chromatography tandem mass spectrometry were used in this study. The results indicated that the dopaminergic neurons in SN and fibres in the striatum were markedly reduced in 6-OHDA rats. The 6-OHDA rats manifested reductions in occupancy in a rotarod test and increases in daily food debris but no difference in body mass or daily consumption. Compared with control rats, faecal pellets and their contents were significantly decreased, whereas gastric emptying and intestinal transport were delayed in 6-OHDA rats. The increased in vivo FITC-dextran permeability and decreased intestinal transepithelial resistance in the model suggest attenuated barrier function in the digestive tract in the PD model. Moreover, inflammatory factors in the plasma showed that pro-inflammatory factors IL-1? and IL-8 were significantly increased in 6-OHDA rats. Collectively, these findings indicate that the model is an interesting experimental tool to investigate the mechanisms involved in the progression of gastrointestinal dysfunction in PD.
Collapse
Affiliation(s)
- Xiao-Yan Feng
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Capital Medical University, Beijing, China.
| | | | | | | |
Collapse
|
15
|
Anselmi L, Bove C, Coleman FH, Le K, Subramanian MP, Venkiteswaran K, Subramanian T, Travagli RA. Ingestion of subthreshold doses of environmental toxins induces ascending Parkinsonism in the rat. NPJ Parkinsons Dis 2018; 4:30. [PMID: 30302391 PMCID: PMC6160447 DOI: 10.1038/s41531-018-0066-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 08/20/2018] [Accepted: 08/28/2018] [Indexed: 01/08/2023] Open
Abstract
Increasing evidence suggests that environmental neurotoxicants or misfolded α-synuclein generated by such neurotoxicants are transported from the gastrointestinal tract to the central nervous system via the vagus nerve, triggering degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc) and causing Parkinson's disease (PD). We tested the hypothesis that gastric co-administration of subthreshold doses of lectins and paraquat can recreate the pathology and behavioral manifestations of PD in rats. A solution containing paraquat + lectin was administered daily for 7 days via gastric gavage, followed by testing for Parkinsonian behavior and gastric dysmotility. At the end of the experiment, brainstem and midbrain tissues were analyzed for the presence of misfolded α-synuclein and neuronal loss in the SNpc and in the dorsal motor nucleus of the vagus (DMV). Misfolded α-synuclein was found in DMV and SNpc neurons. A significant decrease in tyrosine hydroxylase positive dopaminergic neurons was noted in the SNpc, conversely there was no apparent loss of cholinergic neurons of the DMV. Nigrovagally-evoked gastric motility was impaired in treated rats prior to the onset of parkinsonism, the motor deficits of which were improved by l-dopa treatment. Vagotomy prevented the development of parkinsonian symptoms and constrained the appearance of misfolded α-synuclein to myenteric neurons. These data demonstrate that co-administration of subthreshold doses of paraquat and lectin induces progressive, l-dopa-responsive parkinsonism that is preceded by gastric dysmotility. This novel preclinical model of environmentally triggered PD provides functional support for Braak's staging hypothesis of idiopathic PD.
Collapse
Affiliation(s)
- L. Anselmi
- Department of Neural and Behavioral Sciences, Penn State—College of Medicine, Hershey, PA USA
| | - C. Bove
- Department of Neural and Behavioral Sciences, Penn State—College of Medicine, Hershey, PA USA
| | - F. H. Coleman
- Department of Neural and Behavioral Sciences, Penn State—College of Medicine, Hershey, PA USA
| | - K. Le
- Department of Neurology, Penn State—College of Medicine, Hershey, PA USA
| | - M. P. Subramanian
- Department of Neural and Behavioral Sciences, Penn State—College of Medicine, Hershey, PA USA
| | - K. Venkiteswaran
- Department of Neural and Behavioral Sciences, Penn State—College of Medicine, Hershey, PA USA
- Department of Neurology, Penn State—College of Medicine, Hershey, PA USA
| | - T. Subramanian
- Department of Neural and Behavioral Sciences, Penn State—College of Medicine, Hershey, PA USA
- Department of Neurology, Penn State—College of Medicine, Hershey, PA USA
| | - R. A. Travagli
- Department of Neural and Behavioral Sciences, Penn State—College of Medicine, Hershey, PA USA
| |
Collapse
|
16
|
Anselmi L, Toti L, Bove C, Hampton J, Travagli RA. A Nigro-Vagal Pathway Controls Gastric Motility and Is Affected in a Rat Model of Parkinsonism. Gastroenterology 2017; 153:1581-1593. [PMID: 28912019 PMCID: PMC5705565 DOI: 10.1053/j.gastro.2017.08.069] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 08/16/2017] [Accepted: 08/29/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND & AIMS In most patients with Parkinson's disease, gastrointestinal (GI) dysfunctions, such as gastroparesis and constipation, are prodromal to the cardinal motor symptoms of the disease. Sporadic Parkinson's disease has been proposed to develop after ingestion of neurotoxicants that affect the brain-gut axis via the vagus nerve, and then travel to higher centers, compromising the substantia nigra pars compacta (SNpc) and, later, the cerebral cortex. We aimed to identify the pathway that connects the brainstem vagal nuclei and the SNpc, and to determine whether this pathway is compromised in a rat model of Parkinsonism. METHODS To study this neural pathway in rats, we placed tracers in the dorsal vagal complex or SNpc; brainstem and midbrain were examined for tracer distribution and neuronal neurochemical phenotype. Rats were given injections of paraquat once weekly for 3 weeks to induce features of Parkinsonism, or vehicle (control). Gastric tone and motility were recorded after N-methyl-d-aspartate microinjection in the SNpc and/or optogenetic stimulation of nigro-vagal terminals in the dorsal vagal complex. RESULTS Stimulation of the SNpc increased gastric tone and motility via activation of dopamine 1 receptors in the dorsal vagal complex. In the paraquat-induced model of Parkinsonism, this nigro-vagal pathway was compromised during the early stages of motor deficit development. CONCLUSIONS We identified and characterized a nigro-vagal monosynaptic pathway in rats that controls gastric tone and motility. This pathway might be involved in the prodromal gastric dysmotility observed in patients with early-stage Parkinson's disease.
Collapse
Affiliation(s)
- Laura Anselmi
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, Pennsylvania
| | - Luca Toti
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, Pennsylvania
| | - Cecilia Bove
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, Pennsylvania
| | - Jessica Hampton
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, Pennsylvania
| | - R Alberto Travagli
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, Pennsylvania.
| |
Collapse
|