1
|
Vanhie JJ, Orloff LE, Tate A, Goode C, Collao N, Pisanko A, Power KA, DE Lisio M. Obesity Promotes Marrow-Derived Myeloid Cell Accumulation While Exercise Reduces Proliferative Signaling in Colon Cancer. Med Sci Sports Exerc 2025; 57:317-326. [PMID: 39350427 DOI: 10.1249/mss.0000000000003572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2025]
Abstract
PURPOSE Obesity increases colon cancer risk that has been previously linked to marrow-derived myeloid cells. We previously demonstrated that exercise training (EX) prevents colon cancer initiation, potentially through reduced myelopoiesis. However, it remains unknown whether early myeloid cell accumulation and inflammation in the colon precedes carcinogenesis with high-fat diet (HFD)-induced obesity, and if EX can attenuate these effects. We hypothesized that obesity would promote colon carcinogenesis that was preceded by myeloid cell accumulation and inflammation that would be attenuated by EX. METHODS C57BL/6 mice were randomized to a HFD or control (CON) diet for 8 weeks. The HFD mice switched to CON diet and all mice were given intraperitoneal injections of azoxymethane (AOM) to induce colon cancer and randomized into EX or sedentary (SED) conditions. RESULTS HFD mice developed more aberrant crypt foci (ACF), a marker for early carcinogenesis, compared with CON ( P < 0.01), and EX developed fewer ACF compared with SED ( P < 0.0001). Marrow-derived ( P < 0.001) CD206 + macrophages were elevated in HFD compared with CON at study week 16 ( P < 0.01). Marrow-derived CD206 - macrophages ( P < 0.05) and marrow-derived ( P < 0.05) CD206 + macrophages were more abundant in HFD compared with CON at study week 42. EX did not alter colon immune cell populations. β-catenin protein was higher in HFD compared with CON at study week 42 ( P < 0.05), and STAT3 protein content was lower at study week 28 with EX compared with SED ( P < 0.05). CONCLUSIONS The results suggest that obesity promotes colon ACF formation, potentially through early inflammatory myeloid cell accumulation. Despite attenuating ACF, EX did not alter myeloid cell accumulation in the colon, suggesting that EX inhibits ACF formation through alternative mechanisms which may include reduced β-catenin and STAT3 signaling.
Collapse
Affiliation(s)
- James J Vanhie
- School of Human Kinetics, University of Ottawa, Ottawa, ON, CANADA
| | - Lisa Ek Orloff
- School of Human Kinetics, University of Ottawa, Ottawa, ON, CANADA
| | - Alice Tate
- School of Human Kinetics, University of Ottawa, Ottawa, ON, CANADA
| | - Cole Goode
- School of Human Kinetics, University of Ottawa, Ottawa, ON, CANADA
| | | | - Anastasia Pisanko
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, CANADA
| | | | | |
Collapse
|
2
|
Dzhalilova D, Zolotova N, Fokichev N, Makarova O. Murine models of colorectal cancer: the azoxymethane (AOM)/dextran sulfate sodium (DSS) model of colitis-associated cancer. PeerJ 2023; 11:e16159. [PMID: 37927787 PMCID: PMC10624171 DOI: 10.7717/peerj.16159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/31/2023] [Indexed: 11/07/2023] Open
Abstract
Background Colorectal cancer (CRC) is the third most common cancer. It is a heterogeneous disease, including both hereditary and sporadic types of tumors. CRC results from complex interactions between various genetic and environmental factors. Inflammatory bowel disease is an important risk factor for developing CRC. Despite growing understanding of the CRC biology, preclinical models are still needed to investigate the etiology and pathogenesis of the disease, as well as to find new methods of treatment and prevention. Objectives The purpose of this review is to describe existing murine models of CRC with a focus on the models of colitis-associated CRC. This manuscript could be relevant for experimental biologists and oncologists. Methodology We checked PubMed and Google from 01/2018 to 05/2023 for reviews of CRC models. In addition, we searched PubMed from 01/2022 to 01/2023 for articles using the azoxymethane (AOM)/dextran sulfate sodium (DSS) CRC model. Results Existing murine models of CRC include spontaneous, genetically engineered, transplantation, and chemically induced models. For the study of colitis-associated cancer (CAC), the AOM/DSS model is predominantly used. This model is very similar in histological and molecular characteristics to the human CAC, and is highly reproducible, inexpensive, and easy to use. Despite its popularity, the AOM/DSS model is not standardized, which makes it difficult to analyze and compare data from different studies. Conclusions Each model demonstrates particular advantages and disadvantages, and allows to reproduce different subtypes or aspects of the pathogenesis of CRC.
Collapse
Affiliation(s)
- Dzhuliia Dzhalilova
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Centre of Surgery, Moscow, Russia
| | - Natalia Zolotova
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Centre of Surgery, Moscow, Russia
| | - Nikolai Fokichev
- Biological Department, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Olga Makarova
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Centre of Surgery, Moscow, Russia
| |
Collapse
|
3
|
Bowers LW, Glenny EM, Punjala A, Lanman NA, Goldbaum A, Himbert C, Montgomery SA, Yang P, Roper J, Ulrich CM, Dannenberg AJ, Coleman MF, Hursting SD. Weight Loss and/or Sulindac Mitigate Obesity-associated Transcriptome, Microbiome, and Protumor Effects in a Murine Model of Colon Cancer. Cancer Prev Res (Phila) 2022; 15:481-495. [PMID: 35653548 PMCID: PMC9357192 DOI: 10.1158/1940-6207.capr-21-0531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 04/05/2022] [Accepted: 05/23/2022] [Indexed: 02/03/2023]
Abstract
Obesity is associated with an increased risk of colon cancer. Our current study examines whether weight loss and/or treatment with the NSAID sulindac suppresses the protumor effects of obesity in a mouse model of colon cancer. Azoxymethane-treated male FVB/N mice were fed a low-fat diet (LFD) or high-fat diet (HFD) for 15 weeks, then HFD mice were randomized to remain on HFD (obese) or switch to LFD [formerly obese (FOb-LFD)]. Within the control (LFD), obese, and FOb-LFD groups, half the mice started sulindac treatment (140 ppm in the diet). All mice were euthanized 7 weeks later. FOb-LFD mice had intermediate body weight levels, lower than obese but higher than control (P < 0.05). Sulindac did not affect body weight. Obese mice had greater tumor multiplicity and burden than all other groups (P < 0.05). Transcriptomic profiling indicated that weight loss and sulindac each modulate the expression of tumor genes related to invasion and may promote a more antitumor immune landscape. Furthermore, the fecal microbes Coprobacillus, Prevotella, and Akkermansia muciniphila were positively correlated with tumor multiplicity and reduced by sulindac in obese mice. Coprobacillus abundance was also decreased in FOb-LFD mice. In sum, weight loss and sulindac treatment, alone and in combination, reversed the effects of chronic obesity on colon tumor multiplicity and burden. Our findings suggest that an investigation regarding the effects of NSAID treatment on colon cancer risk and/or progression in obese individuals is warranted, particularly for those unable to achieve moderate weight loss. PREVENTION RELEVANCE Obesity is a colon cancer risk and/or progression factor, but the underlying mechanisms are incompletely understood. Herein we demonstrate that obesity enhances murine colon carcinogenesis and expression of numerous tumoral procancer and immunosuppressive pathways. Moreover, we establish that weight loss via LFD and/or the NSAID sulindac mitigate procancer effects of obesity.
Collapse
Affiliation(s)
- Laura W. Bowers
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Elaine M. Glenny
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Arunima Punjala
- School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nadia A. Lanman
- Center for Cancer Research, Purdue University, West Lafayette, IN, USA
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA
| | - Audrey Goldbaum
- Department of Nutrition Science, Purdue University, West Lafayette, IN, USA
| | - Caroline Himbert
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT, USA
| | - Stephanie A. Montgomery
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Peiying Yang
- Department of Palliative, Rehabilitation, and Integrative Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jatin Roper
- Department of Medicine, Duke University, Durham, NC, USA
| | - Cornelia M. Ulrich
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT, USA
| | - Andrew J. Dannenberg
- Department of Medicine (retired), Weill Cornell Medical College, New York, NY, USA
| | - Michael F. Coleman
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Stephen D. Hursting
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, USA
| |
Collapse
|
4
|
Xu Y, Rogers CJ. Impact of physical activity and energy restriction on immune regulation of cancer. Transl Cancer Res 2020; 9:5700-5731. [PMID: 35117934 PMCID: PMC8798226 DOI: 10.21037/tcr.2020.03.38] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 03/04/2020] [Indexed: 11/06/2022]
Abstract
Cancer is a major public health issue worldwide. Lifestyle factors, such as body weight and physical activity (PA), significantly impact cancer risk and progression. There is strong evidence that PA reduces and obesity increases risk and mortality from numerous cancer types. Energy restriction (ER) in non-obese hosts significantly reduces tumor incidence in a variety of preclinical models, and reduces body weight and cardiometabolic risk factors in humans. Emerging data suggest that PA- and ER-induced changes in inflammatory and immune mediators may contribute to the cancer prevention effects of these interventions. A systematic literature search was conducted to identify studies that evaluated the impact of PA and ER on tumor and immune outcomes in humans and animal models. A total of 97 eligible studies were identified (68 studies reporting PA interventions and 30 studies reporting ER interventions). Thirty-one studies investigated the effect of PA on cancer immune outcomes using preclinical cancer models of breast (n=17, 55%), gastrointestinal (n=6, 19%), melanoma (n=4, 13%), and several other cancer types (n=4, 13%). Despite the heterogeneity in study designs, the majority of studies (n=23, 74%) reported positive effects of PA on tumor outcomes. Thirty-seven clinical studies investigated the effect of PA on cancer immune outcomes. None reported tumor outcomes, thus only immune outcomes were evaluated in these studies. PA studies were conducted in patients with breast (n=22, 59%), gastrointestinal (n=5, 14%), prostate (n=2, 5%), esophageal (n=1, 3%), lung (n=1, 3%) cancer, leukemia (n=1, 3%), or mixed cancer types (n=5, 14%). Twenty-two studies investigated the effect of ER interventions on cancer immune outcomes using preclinical cancer models including breast (n=5, 23%), gastrointestinal (n=5, 23%), lung (n=2, 9%), liver (n=2, 9%), pancreatic (n=2, 9%), and several other cancer types (n=6, 27%). Positive effects of ER on tumor outcomes were reported in 21 of 22 studies. Six clinical studies investigated the effect of ER (in combination with PA) on tumor immune outcomes in cancer patients with overweight or obesity. Five were conducted in breast cancer patients, and one recruited patients of a mix of cancer types. A wide range of immunological parameters including immune cell phenotype and function, cytokines, and other immune and inflammatory markers were assessed in multiple tissue compartments (blood, spleen, lymph nodes and tumor) in the included studies. Results from preclinical and clinical studies suggest that both PA and ER exert heterogeneous effects on circulating factors and systemic immune responses. PA + ER alters the gene expression profile and immune infiltrates in the tumor which may result in a reduction in immune suppressive factors. However, additional studies are needed to better understand the effect of PA and/or ER on immunomodulation, particularly in the tumor microenvironment (TME).
Collapse
Affiliation(s)
- Yitong Xu
- Intercollege Graduate Degree Program in Integrative and Biomedical Physiology, Huck Institutes of the Life Sciences, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Connie J. Rogers
- Department of Nutritional Sciences, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
- Center for Molecular Immunology and Infectious Disease, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
- Penn State Cancer Institute, Hershey, PA, USA
| |
Collapse
|
5
|
Bürtin F, Mullins CS, Linnebacher M. Mouse models of colorectal cancer: Past, present and future perspectives. World J Gastroenterol 2020; 26:1394-1426. [PMID: 32308343 PMCID: PMC7152519 DOI: 10.3748/wjg.v26.i13.1394] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/05/2020] [Accepted: 03/09/2020] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common diagnosed malignancy among both sexes in the United States as well as in the European Union. While the incidence and mortality rates in western, high developed countries are declining, reflecting the success of screening programs and improved treatment regimen, a rise of the overall global CRC burden can be observed due to lifestyle changes paralleling an increasing human development index. Despite a growing insight into the biology of CRC and many therapeutic improvements in the recent decades, preclinical in vivo models are still indispensable for the development of new treatment approaches. Since the development of carcinogen-induced rodent models for CRC more than 80 years ago, a plethora of animal models has been established to study colon cancer biology. Despite tenuous invasiveness and metastatic behavior, these models are useful for chemoprevention studies and to evaluate colitis-related carcinogenesis. Genetically engineered mouse models (GEMM) mirror the pathogenesis of sporadic as well as inherited CRC depending on the specific molecular pathways activated or inhibited. Although the vast majority of CRC GEMM lack invasiveness, metastasis and tumor heterogeneity, they still have proven useful for examination of the tumor microenvironment as well as systemic immune responses; thus, supporting development of new therapeutic avenues. Induction of metastatic disease by orthotopic injection of CRC cell lines is possible, but the so generated models lack genetic diversity and the number of suited cell lines is very limited. Patient-derived xenografts, in contrast, maintain the pathological and molecular characteristics of the individual patient’s CRC after subcutaneous implantation into immunodeficient mice and are therefore most reliable for preclinical drug development – even in comparison to GEMM or cell line-based analyses. However, subcutaneous patient-derived xenograft models are less suitable for studying most aspects of the tumor microenvironment and anti-tumoral immune responses. The authors review the distinct mouse models of CRC with an emphasis on their clinical relevance and shed light on the latest developments in the field of preclinical CRC models.
Collapse
Affiliation(s)
- Florian Bürtin
- Department of General, Visceral, Vascular and Transplantation Surgery, University Medical Center Rostock, University of Rostock, Rostock 18057, Germany
| | - Christina S Mullins
- Department of Thoracic Surgery, University Medical Center Rostock, University of Rostock, Rostock 18057, Germany
| | - Michael Linnebacher
- Molecular Oncology and Immunotherapy, Department of General, Visceral, Vascular and Transplantation Surgery, University Medical Center Rostock, Rostock 18057, Germany
| |
Collapse
|
6
|
Garcia-Villatoro EL, DeLuca JAA, Callaway ES, Allred KF, Davidson LA, Hensel ME, Menon R, Ivanov I, Safe SH, Jayaraman A, Chapkin RS, Allred CD. Effects of high-fat diet and intestinal aryl hydrocarbon receptor deletion on colon carcinogenesis. Am J Physiol Gastrointest Liver Physiol 2020; 318:G451-G463. [PMID: 31905023 PMCID: PMC7137094 DOI: 10.1152/ajpgi.00268.2019] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Consumption of a high-fat diet has been associated with an increased risk of developing colorectal cancer (CRC). However, the effects of the interaction between dietary fat content and the aryl hydrocarbon receptor (AhR) on colorectal carcinogenesis remain unclear. Mainly known for its role in xenobiotic metabolism, AhR has been identified as an important regulator for maintaining intestinal epithelial homeostasis. Although previous research using whole body AhR knockout mice has revealed an increased incidence of colon and cecal tumors, the unique role of AhR activity in intestinal epithelial cells (IECs) and modifying effects of fat content in the diet at different stages of sporadic CRC development are yet to be elucidated. In the present study, we have examined the effects of a high-fat diet on IEC-specific AhR knockout mice in a model of sporadic CRC. Although loss of AhR activity in IECs significantly induced the development of premalignant lesions, in a separate experiment, no significant changes in colon mass incidence were observed. Moreover, consumption of a high-fat diet promoted cell proliferation in crypts at the premalignant colon cancer lesion stage and colon mass multiplicity as well as β-catenin expression and nuclear localization in actively proliferating cells in colon masses. Our data demonstrate the modifying effects of high-fat diet and AhR deletion in IECs on tumor initiation and progression.NEW & NOTEWORTHY Through the use of an intestinal-specific aryl hydrocarbon receptor (AhR) knockout mouse model, this study demonstrates that the expression of AhR in intestinal epithelial cells is required to reduce the formation of premalignant colon cancer lesions. Furthermore, consumption of a high-fat diet and the loss of AhR in intestinal epithelial cells influences the development of colorectal cancer at various stages.
Collapse
Affiliation(s)
| | - Jennifer A. A. DeLuca
- 1Department of Nutrition and Food Science, Texas A&M University, College Station, Texas
| | - Evelyn S. Callaway
- 2Department of Chemical Engineering, Texas A&M University, College Station, Texas
| | - Kimberly F. Allred
- 1Department of Nutrition and Food Science, Texas A&M University, College Station, Texas
| | - Laurie A. Davidson
- 1Department of Nutrition and Food Science, Texas A&M University, College Station, Texas,3Program in Integrative Nutrition & Complex Diseases, Texas A&M University, College Station, Texas
| | - Martha E. Hensel
- 4Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas
| | - Rani Menon
- 2Department of Chemical Engineering, Texas A&M University, College Station, Texas
| | - Ivan Ivanov
- 5Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas
| | - Stephen H. Safe
- 5Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas
| | - Arul Jayaraman
- 2Department of Chemical Engineering, Texas A&M University, College Station, Texas
| | - Robert S. Chapkin
- 1Department of Nutrition and Food Science, Texas A&M University, College Station, Texas,3Program in Integrative Nutrition & Complex Diseases, Texas A&M University, College Station, Texas
| | - Clinton D. Allred
- 1Department of Nutrition and Food Science, Texas A&M University, College Station, Texas
| |
Collapse
|
7
|
Velázquez KT, Enos RT, Bader JE, Sougiannis AT, Carson MS, Chatzistamou I, Carson JA, Nagarkatti PS, Nagarkatti M, Murphy EA. Prolonged high-fat-diet feeding promotes non-alcoholic fatty liver disease and alters gut microbiota in mice. World J Hepatol 2019; 11:619-637. [PMID: 31528245 PMCID: PMC6717713 DOI: 10.4254/wjh.v11.i8.619] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 07/05/2019] [Accepted: 07/16/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) has become an epidemic largely due to the worldwide increase in obesity. While lifestyle modifications and pharmacotherapies have been used to alleviate NAFLD, successful treatment options are limited. One of the main barriers to finding safe and effective drugs for long-term use in NAFLD is the fast initiation and progression of disease in the available preclinical models. Therefore, we are in need of preclinical models that (1) mimic the human manifestation of NAFLD and (2) have a longer progression time to allow for the design of superior treatments.
AIM To characterize a model of prolonged high-fat diet (HFD) feeding for investigation of the long-term progression of NAFLD.
METHODS In this study, we utilized prolonged HFD feeding to examine NAFLD features in C57BL/6 male mice. We fed mice with a HFD (60% fat, 20% protein, and 20% carbohydrate) for 80 wk to promote obesity (Old-HFD group, n = 18). A low-fat diet (LFD) (14% fat, 32% protein, and 54% carbohydrate) was administered for the same duration to age-matched mice (Old-LFD group, n = 15). An additional group of mice was maintained on the LFD (Young-LFD, n = 20) for a shorter duration (6 wk) to distinguish between age-dependent and age-independent effects. Liver, colon, adipose tissue, and feces were collected for histological and molecular assessments.
RESULTS Prolonged HFD feeding led to obesity and insulin resistance. Histological analysis in the liver of HFD mice demonstrated steatosis, cell injury, portal and lobular inflammation and fibrosis. In addition, molecular analysis for markers of endoplasmic reticulum stress established that the liver tissue of HFD mice have increased phosphorylated Jnk and CHOP. Lastly, we evaluated the gut microbial composition of Old-LFD and Old-HFD. We observed that prolonged HFD feeding in mice increased the relative abundance of the Firmicutes phylum. At the genus level, we observed a significant increase in the abundance of Adercreutzia, Coprococcus, Dorea, and Ruminococcus and decreased relative abundance of Turicibacter and Anaeroplasma in HFD mice.
CONCLUSION Overall, these data suggest that chronic HFD consumption in mice can mimic pathophysiological and some microbial events observed in NAFLD patients.
Collapse
Affiliation(s)
- Kandy T Velázquez
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC 29209, United States
| | - Reilly T Enos
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC 29209, United States
| | - Jackie E Bader
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC 29209, United States
| | - Alexander T Sougiannis
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC 29209, United States
| | - Meredith S Carson
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC 29209, United States
| | - Ioulia Chatzistamou
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC 29209, United States
| | - James A Carson
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC 29209, United States
- College of Health Professions, University of Tennessee Health Sciences Center, Memphis, TN 38163, United States
| | - Prakash S Nagarkatti
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC 29209, United States
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC 29209, United States
| | - E Angela Murphy
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC 29209, United States
| |
Collapse
|
8
|
Goncalves MD, Hopkins BD, Cantley LC. Dietary Fat and Sugar in Promoting Cancer Development and Progression. ANNUAL REVIEW OF CANCER BIOLOGY-SERIES 2019. [DOI: 10.1146/annurev-cancerbio-030518-055855] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The uncontrolled cellular growth that characterizes tumor formation requires a constant delivery of nutrients. Since the 1970s, researchers have wondered if the supply of nutrients from the diet could impact tumor development. Numerous studies have assessed the impact of dietary components, specifically sugar and fat, to increased cancer risk. For the most part, data from these trials have been inconclusive; however, this does not indicate that dietary factors do not contribute to cancer progression. Rather, the dietary contribution may be dependent on tumor, patient, and context, making it difficult to detect in the setting of large trials. In this review, we combine data from prospective cohort trials with mechanistic studies in mice to argue that fat and sugar can play a role in tumorigenesis and disease progression. We find that certain tumors may respond directly to dietary sugar (colorectal and endometrial cancers) and fat (prostate cancer) or indirectly to the obese state (breast cancer).
Collapse
Affiliation(s)
- Marcus D. Goncalves
- Meyer Cancer Center, Department of Medicine, Weill Cornell Medical College, New York, NY 10021, USA;, ,
- Division of Endocrinology, Department of Medicine, Weill Cornell Medical College, New York, NY 10021, USA
| | - Benjamin D. Hopkins
- Meyer Cancer Center, Department of Medicine, Weill Cornell Medical College, New York, NY 10021, USA;, ,
| | - Lewis C. Cantley
- Meyer Cancer Center, Department of Medicine, Weill Cornell Medical College, New York, NY 10021, USA;, ,
| |
Collapse
|
9
|
Emmons R, Xu G, Hernández-Saavedra D, Kriska A, Pan YX, Chen H, De Lisio M. Effects of obesity and exercise on colon cancer induction and hematopoiesis in mice. Am J Physiol Endocrinol Metab 2019; 316:E210-E220. [PMID: 30512990 DOI: 10.1152/ajpendo.00237.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Obesity-induced inflammation is associated with increased risk for colorectal cancer (CRC). The role of diet and exercise in modulating increased CRC risk in obesity and the potential role of altered hematopoiesis as a contributor to these effects remain unknown. The purpose of this study was to examine how weight loss induced during CRC induction with or without exercise alters CRC initiation and its relationship to altered hematopoiesis. Mice consumed either a control (CON) or a high-fat diet to induce obesity. All mice were then placed on the control diet during CRC induction with azoxymethane (AOM). Following AOM injection, mice originally on the high-fat diet were randomized into sedentary (HF-SED) or exercise trained (HF-EX) conditions. At euthanasia, body weight and fat mass were similar among all three groups ( P < 0.05). Compared with CON and HF-EX, HF-SED developed increased content of preneoplastic lesions ( P < 0.05), and HF-SED had significantly increased markers of colon inflammation compared with CON. Compared with both CON and HF-EX, HF-SED had decreased content of short-term hematopoietic stem cells and increased content of common myeloid progenitor cells (both P < 0.05). Similarly, HF-SED had increased bone marrow adiposity compared with CON and HF-EX ( P < 0.05), and proteomics analysis revealed an increased marker of bone marrow inflammation in HF-SED compared with CON and HF-EX. Our results suggest that the early removal of a high-fat diet reduces CRC incidence when combined with an exercise training intervention. This reduction in risk was related to lower colon inflammation with anti-inflammatory changes in hematopoiesis induced by exercise.
Collapse
Affiliation(s)
- Russell Emmons
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign , Urbana, Illinois
| | - Guanying Xu
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign , Urbana, Illinois
| | | | - Adam Kriska
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign , Urbana, Illinois
| | - Yuan-Xiang Pan
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign , Urbana, Illinois
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign , Urbana, Illinois
| | - Hong Chen
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign , Urbana, Illinois
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign , Urbana, Illinois
| | - Michael De Lisio
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign , Urbana, Illinois
| |
Collapse
|
10
|
Guan F, Tabrizian T, Novaj A, Nakanishi M, Rosenberg DW, Huffman DM. Dietary Walnuts Protect Against Obesity-Driven Intestinal Stem Cell Decline and Tumorigenesis. Front Nutr 2018; 5:37. [PMID: 29904634 PMCID: PMC5990619 DOI: 10.3389/fnut.2018.00037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/23/2018] [Indexed: 12/12/2022] Open
Abstract
Obesity can negatively impact intestinal homeostasis, and increase colon cancer risk and related mortality. Thus, given the alarmingly high rates of obesity in the US and globally, it is critical to identify practical strategies that can break the obesity-cancer link. Walnuts have been increasingly recognized to mitigate cancer risk, and contain many bioactive constituents with antioxidant and anti-inflammatory properties that could potentially counteract pathways thought to be initiators of obesity-related cancer. Therefore, the purpose of this study was to determine if walnuts could preserve intestinal homeostasis, and attenuate tumorigenesis and growth in the context of obesity and a high calorie diet. To this end, we studied effects of walnuts on these parameters under different dietary conditions in wildtype mice, two independent Apc models (Apc1638N/+ and ApcΔ14), and in MC38 colon cancer cells in vivo, respectively. Walnuts did not alter the metabolic phenotype or intestinal morphology in normal mice fed either a low-fat diet (LFD), LFD with 6% walnuts (LFD+W), high-fat diet (HFD), or HFD with 7.6% walnuts (HFD+W). However, walnuts did lead to a significant reduction in circulating CCL5 and preserved intestinal stem cell (ISC) function under HFD-fed conditions. Furthermore, walnuts reduced tumor multiplicity in Apc1638N/+ male HFD+W animals, as compared to HFD controls (3.7 ± 0.5 vs. 2.5 ± 0.3; P = 0.015), tended to reduce the number of adenocarcinomas (0.67 ± 0.16 vs. 0.29 ± 0.12; P = 0.07), and preferentially limited tumor growth in ApcΔ14 male mice (P = 0.019) fed a high-calorie western-style diet. In summary, these data demonstrate that walnuts confer significant protection against intestinal tumorigenesis and growth and preserve ISC function in the context of a high-calorie diet and obesity. Thus, these data add to the accumulating evidence connecting walnuts as a potentially effective dietary strategy to break the obesity-colon cancer link.
Collapse
Affiliation(s)
- Fangxia Guan
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States.,Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States.,School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Tahmineh Tabrizian
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States.,Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Ardijana Novaj
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States.,Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Masako Nakanishi
- School of Medicine, University of Connecticut Health, Farmington, CT, United States
| | - Daniel W Rosenberg
- School of Medicine, University of Connecticut Health, Farmington, CT, United States
| | - Derek M Huffman
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States.,Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States.,Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
11
|
Velázquez KT, Enos RT, Carson MS, Cranford TL, Bader JE, Sougiannis AT, Pritchett C, Fan D, Carson JA, Murphy EA. miR155 deficiency aggravates high-fat diet-induced adipose tissue fibrosis in male mice. Physiol Rep 2017; 5:e13412. [PMID: 28947593 PMCID: PMC5617927 DOI: 10.14814/phy2.13412] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/18/2017] [Accepted: 08/14/2017] [Indexed: 02/06/2023] Open
Abstract
Noncoding RNAs are emerging as regulators of inflammatory and metabolic processes. There is evidence to suggest that miRNA155 (miR155) may be linked to inflammation and processes associated with adipogenesis. We examined the impact of global miRNA-155 deletion (miR155-/-) on the development of high-fat diet (HFD)-induced obesity. We hypothesized that loss of miR155 would decrease adipose tissue inflammation and improve the metabolic profile following HFD feedings. Beginning at 4-5 weeks of age, male miR155-/- and wild-type (WT) mice (n = 13-14) on a C57BL/6 background were fed either a HFD or low-fat diet for 20 weeks. Body weight was monitored throughout the study. Baseline and terminal body composition was assessed by DEXA analysis. Adipose tissue mRNA expression (RT-qPCR) of macrophage markers (F4/80, CD11c, and CD206) and inflammatory mediators (MCP-1 and TNF-α) as well as adiponectin were measured along with activation of NFκB-p65 and JNK and PPAR-γ Adipose tissue fibrosis was assessed by picrosirius red staining and western blot analysis of Collagen I, III, and VI. Glucose metabolism and insulin resistance were assessed by Homeostatic Model Assessment - Insulin Resistance (HOMA-IR), and a glucose tolerance test. Compared to WT HFD mice, miR155-/- HFD mice displayed similar body weights, yet reduced visceral adipose tissue accumulation. However, miR155-/- HFD displayed exacerbated adipose tissue fibrosis and decreased PPAR-γ protein content. The loss of miR155 did not affect adipose tissue inflammation or glucose metabolism. In conclusion, miR155 deletion did not attenuate the development of the obese phenotype, but adipose tissue fibrosis was exacerbated, possibly through changes to adipogenic processes.
Collapse
Affiliation(s)
- Kandy T Velázquez
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina
| | - Reilly T Enos
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina
| | - Meredith S Carson
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina
| | - Taryn L Cranford
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina
| | - Jackie E Bader
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina
| | - Alexander T Sougiannis
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina
| | - Cara Pritchett
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina
| | - Daping Fan
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, South Carolina
| | - James A Carson
- Department of Exercise Science, University of South Carolina, Columbia, South Carolina
| | - E Angela Murphy
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina
| |
Collapse
|