1
|
Luo Z, Zhou W, Xie T, Xu W, Shi C, Xiao Z, Si Y, Ma Y, Ren Q, Di L, Shan J. The role of botanical triterpenoids and steroids in bile acid metabolism, transport, and signaling: Pharmacological and toxicological implications. Acta Pharm Sin B 2024; 14:3385-3415. [PMID: 39220868 PMCID: PMC11365449 DOI: 10.1016/j.apsb.2024.04.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/28/2024] [Accepted: 04/22/2024] [Indexed: 09/04/2024] Open
Abstract
Bile acids (BAs) are synthesized by the host liver from cholesterol and are delivered to the intestine, where they undergo further metabolism by gut microbes and circulate between the liver and intestines through various transporters. They serve to emulsify dietary lipids and act as signaling molecules, regulating the host's metabolism and immune homeostasis through specific receptors. Therefore, disruptions in BA metabolism, transport, and signaling are closely associated with cholestasis, metabolic disorders, autoimmune diseases, and others. Botanical triterpenoids and steroids share structural similarities with BAs, and they have been found to modulate BA metabolism, transport, and signaling, potentially exerting pharmacological or toxicological effects. Here, we have updated the research progress on BA, with a particular emphasis on new-found microbial BAs. Additionally, the latest advancements in targeting BA metabolism and signaling for disease treatment are highlighted. Subsequently, the roles of botanical triterpenoids in BA metabolism, transport, and signaling are examined, analyzing their potential pharmacological, toxicological, or drug interaction effects through these mechanisms. Finally, a research paradigm is proposed that utilizes the gut microbiota as a link to interpret the role of these important natural products in BA signaling.
Collapse
Affiliation(s)
- Zichen Luo
- Medical Metabolomics Center, Institute of Pediatrics, Jiangsu Key Laboratory of Children’s Health and Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wei Zhou
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Tong Xie
- Medical Metabolomics Center, Institute of Pediatrics, Jiangsu Key Laboratory of Children’s Health and Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Weichen Xu
- Medical Metabolomics Center, Institute of Pediatrics, Jiangsu Key Laboratory of Children’s Health and Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chen Shi
- Medical Metabolomics Center, Institute of Pediatrics, Jiangsu Key Laboratory of Children’s Health and Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zihan Xiao
- Medical Metabolomics Center, Institute of Pediatrics, Jiangsu Key Laboratory of Children’s Health and Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yu Si
- Jiangsu CM Clinical Medicine Innovation Center for Obstetrics, Gynecology, and Reproduction, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210001, China
| | - Yan Ma
- National Institute of Biological Sciences, Beijing 102206, China
| | - Qingling Ren
- Jiangsu CM Clinical Medicine Innovation Center for Obstetrics, Gynecology, and Reproduction, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210001, China
| | - Liuqing Di
- Jiangsu Engineering Research Center for Efficient Delivery System of TCM, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jinjun Shan
- Medical Metabolomics Center, Institute of Pediatrics, Jiangsu Key Laboratory of Children’s Health and Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
2
|
Chow MD, Otersen K, Wassef A, Kong B, Yamarthy S, Rizzolo D, Yang I, Buckley B, Lu A, Crook N, Lee M, Gao J, Naganand S, Stofan MF, Armstrong L, Schumacher J, Taylor R, Henry Z, Basaly V, Yang Z, Zhang M, Huang M, Kagan L, Brunetti L, Sadek R, Lee YH, Guo GL. Effects of intestine-specific deletion of FGF15 on the development of fatty liver disease with vertical sleeve gastrectomy. Hepatol Commun 2024; 8:e0444. [PMID: 38780301 PMCID: PMC11124683 DOI: 10.1097/hc9.0000000000000444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/27/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Vertical sleeve gastrectomy (SGx) is a type of bariatric surgery to treat morbid obesity and metabolic dysfunction-associated steatotic liver disease (MASLD). The molecular mechanisms of SGx to improve MASLD are unclear, but increased bile acids (BAs) and FGF19 (mouse FGF15) were observed. FGF15/19 is expressed in the ileum in response to BAs and is critical in not only suppressing BA synthesis in the liver but also promoting energy expenditure. We hypothesized the reduction of obesity and resolution of MASLD by SGx may be mediated by FGF15/19. METHODS First, we conducted hepatic gene expression analysis in obese patients undergoing SGx, with the results showing increased expression of FGF19 in obese patients' livers. Next, we used wild-type and intestine-specific Fgf15 knockout mice (Fgf15ile-/-) to determine the effects of FGF15 deficiency on improving the metabolic effects. RESULTS SGx improved metabolic endpoints in both genotypes, evidenced by decreased obesity, improved glucose tolerance, and reduced MASLD progression. However, Fgf15ile-/- mice showed better improvement compared to wild-type mice after SGx, suggesting that other mediators than FGF15 are also responsible for the beneficial effects of FGF15 deficiency. Further gene expression analysis in brown adipose tissue suggests increased thermogenesis. CONCLUSIONS FGF15 deficiency, the larger BA pool and higher levels of secondary BAs may increase energy expenditure in extrahepatic tissues, which may be responsible for improved metabolic functions following SGx.
Collapse
Affiliation(s)
- Monica D. Chow
- Department of Surgery, Division of Pediatric Surgery, Rutgers Robert Wood Johnson Medical Center School, New Brunswick, New Jersey, USA
| | - Katherine Otersen
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey, USA
| | - Andrew Wassef
- Department of Pharmaceutics, Ernest Mario School of Pharmacy-Rutgers University, Piscataway, New Jersey, USA
- Center of Excellence for Pharmaceutical Translational Research and Education, Rutgers University, Piscataway, New Jersey, USA
- Center of Excellence for Metabolic and Bariatric Surgery, Robert Wood Johnson Barnabas University Hospital, New Brunswick, New Jersey, USA
- Advanced Surgical & Bariatrics of NJ, Somerset, New Jersey, USA
| | - Bo Kong
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey, USA
| | - Sowmya Yamarthy
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey, USA
| | - Daniel Rizzolo
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey, USA
| | - Ill Yang
- Environmental and Occupational Health Science Institute, Rutgers University, Piscataway, New Jersey, USA
| | - Brian Buckley
- Environmental and Occupational Health Science Institute, Rutgers University, Piscataway, New Jersey, USA
| | - Alexander Lu
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey, USA
| | - Naomi Crook
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey, USA
| | - Matthew Lee
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey, USA
| | - Judy Gao
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey, USA
| | - Sareena Naganand
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey, USA
| | - Mary F. Stofan
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey, USA
| | - Laura Armstrong
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey, USA
| | - Justin Schumacher
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey, USA
| | - Rulaiha Taylor
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey, USA
| | - Zakiyah Henry
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey, USA
| | - Veronia Basaly
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey, USA
| | - Zhenning Yang
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey, USA
| | - Min Zhang
- Children’s Liver Disease Center, 302 Military Hospital, Beijing, China
| | - Mingxing Huang
- Department of Infectious Diseases, the Fifth Affiliated Hospital of Sun Yat-Sen University (SYSU), Zhuhai, Guangdong, China
| | - Leonid Kagan
- Department of Pharmaceutics, Ernest Mario School of Pharmacy-Rutgers University, Piscataway, New Jersey, USA
- Center of Excellence for Pharmaceutical Translational Research and Education, Rutgers University, Piscataway, New Jersey, USA
| | - Luigi Brunetti
- Department of Pharmaceutics, Ernest Mario School of Pharmacy-Rutgers University, Piscataway, New Jersey, USA
- Center of Excellence for Pharmaceutical Translational Research and Education, Rutgers University, Piscataway, New Jersey, USA
| | - Ragui Sadek
- Center of Excellence for Metabolic and Bariatric Surgery, Robert Wood Johnson Barnabas University Hospital, New Brunswick, New Jersey, USA
- Advanced Surgical & Bariatrics of NJ, Somerset, New Jersey, USA
| | - Yi-Horng Lee
- Department of Surgery, Division of Pediatric Surgery, Rutgers Robert Wood Johnson Medical Center School, New Brunswick, New Jersey, USA
| | - Grace L. Guo
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey, USA
- Environmental and Occupational Health Science Institute, Rutgers University, Piscataway, New Jersey, USA
- Department of Veterans Affairs New Jersey Health Care System, East Orange, New Jersey, USA
- Rutgers Center for Lipid Research, New Brunswick, New Jersey, USA
| |
Collapse
|
3
|
Fligor SC, Tsikis ST, Hirsch TI, Jain A, Sun L, Rockowitz S, Gura KM, Puder M. Inflammation drives pathogenesis of early intestinal failure-associated liver disease. Sci Rep 2024; 14:4240. [PMID: 38378873 PMCID: PMC10879484 DOI: 10.1038/s41598-024-54675-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 02/15/2024] [Indexed: 02/22/2024] Open
Abstract
Patients with intestinal failure who receive long-term parenteral nutrition (PN) often develop intestinal failure-associated liver disease (IFALD). Although there are identified risk factors, the early pathogenesis is poorly understood and treatment options are limited. Here, we perform a transcriptomic analysis of liver tissue in a large animal IFALD model to generate mechanistic insights and identify therapeutic targets. Preterm Yorkshire piglets were provided PN or bottle-fed with sow-milk replacer for 14 days. Compared to bottle-fed controls, piglets receiving PN developed biochemical cholestasis by day of life 15 (total bilirubin 0.2 vs. 2.9 mg/dL, P = 0.01). RNA-Seq of liver tissue was performed. Ingenuity Pathway Analysis identified 747 differentially expressed genes (343 upregulated and 404 downregulated) with an adjusted P < 0.05 and a fold-change of > |1|. Enriched canonical pathways were identified, demonstrating broad activation of inflammatory pathways and inhibition of cell cycle progression. Potential therapeutics including infliximab, glucocorticoids, statins, and obeticholic acid were identified as predicted upstream master regulators that may reverse the PN-induced gene dysregulation. The early driver of IFALD in neonates may be inflammation with an immature liver; identified therapeutics that target the inflammatory response in the liver should be investigated as potential treatments.
Collapse
Affiliation(s)
- Scott C Fligor
- Vascular Biology Program and Department of Surgery, Boston Children's Hospital, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, USA
| | - Savas T Tsikis
- Vascular Biology Program and Department of Surgery, Boston Children's Hospital, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, USA
| | - Thomas I Hirsch
- Vascular Biology Program and Department of Surgery, Boston Children's Hospital, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, USA
| | - Ashish Jain
- Research Computing, Information Technology, Boston Children's Hospital, Boston, MA, USA
| | - Liang Sun
- Research Computing, Information Technology, Boston Children's Hospital, Boston, MA, USA
| | - Shira Rockowitz
- Harvard Medical School, Boston, MA, USA
- Research Computing, Information Technology, Boston Children's Hospital, Boston, MA, USA
- Division of Genetics and Genomics, and the Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA
| | - Kathleen M Gura
- Harvard Medical School, Boston, MA, USA
- Department of Pharmacy and the Division of Gastroenterology and Nutrition, Boston Children's Hospital, Boston, MA, USA
| | - Mark Puder
- Vascular Biology Program and Department of Surgery, Boston Children's Hospital, Boston, MA, 02115, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Xu J, Zhou Y, Cheng S, Zhao Y, Yan J, Wang Y, Cai W, Jiang L. Lactobacillus johnsonii Attenuates Liver Steatosis and Bile Acid Dysregulation in Parenteral Nutrition-Fed Rats. Metabolites 2023; 13:1043. [PMID: 37887368 PMCID: PMC10608838 DOI: 10.3390/metabo13101043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/24/2023] [Accepted: 09/27/2023] [Indexed: 10/28/2023] Open
Abstract
Parenteral nutrition (PN), a vital therapy for patients with intestinal failure, can lead to the development of parenteral nutrition-associated liver disease (PNALD). In this study, we aimed to investigate the role of Lactobacillus johnsonii (L. johnsonii) in a rat model of PNALD. Total parenteral nutrition (TPN)-fed rats were used to assess the role of L. johnsonii in liver steatosis, bile acid metabolism, gut microbiota, and hepatocyte apoptosis. We observed a depletion of L. johnsonii that was negatively correlated with the accumulation of glycochenodeoxycholic acid (GCDCA), a known apoptosis inducer, in rats subjected to TPN. L. johnsonii attenuated TPN-induced liver steatosis by inhibiting fatty acid synthesis and promoting fatty acid oxidation. TPN resulted in a decrease in bile acid synthesis and biliary bile secretion, which were partially restored by L. johnsonii treatment. The gut microbial profile revealed depletion of pathogenic bacteria in L. johnsonii-treated rats. L. johnsonii treatment reduced both hepatic GCDCA levels and hepatocyte apoptosis compared with the TPN group. In vitro, L. johnsonii treatment inhibited GCDCA-induced hepatocyte apoptosis via its bile salt hydrolase (BSH) activity. Our findings suggest that L. johnsonii protects against liver steatosis, bile acid dysregulation, and hepatocyte apoptosis in TPN-fed rats.
Collapse
Affiliation(s)
- Juan Xu
- Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China; (J.X.); (J.Y.); (Y.W.)
| | - Yongchang Zhou
- Shanghai Institute for Pediatric Research, Shanghai 200092, China;
| | - Siyang Cheng
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China; (S.C.); (Y.Z.)
| | - Yuling Zhao
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China; (S.C.); (Y.Z.)
| | - Junkai Yan
- Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China; (J.X.); (J.Y.); (Y.W.)
- Shanghai Institute for Pediatric Research, Shanghai 200092, China;
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai 200092, China
| | - Ying Wang
- Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China; (J.X.); (J.Y.); (Y.W.)
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai 200092, China
| | - Wei Cai
- Shanghai Institute for Pediatric Research, Shanghai 200092, China;
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China; (S.C.); (Y.Z.)
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai 200092, China
| | - Lu Jiang
- Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China; (J.X.); (J.Y.); (Y.W.)
- Shanghai Institute for Pediatric Research, Shanghai 200092, China;
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai 200092, China
| |
Collapse
|
5
|
Maitiabula G, Tian F, Wang P, Zhang L, Gao X, Wan S, Sun H, Yang J, Zhang Y, Gao T, Xue B, Li C, Li J, Wang X. Liver PP2A-Cα Protects From Parenteral Nutrition-associated Hepatic Steatosis. Cell Mol Gastroenterol Hepatol 2022; 14:669-692. [PMID: 35643235 PMCID: PMC9421584 DOI: 10.1016/j.jcmgh.2022.05.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 05/18/2022] [Accepted: 05/18/2022] [Indexed: 01/07/2023]
Abstract
BACKGROUND & AIMS Parenteral nutrition (PN) is a lifesaving therapy for patients with intestinal failure. Hepatic steatosis is a potentially fatal complication of long-term PN, but the involved pathological mechanisms are incompletely unclarified. Herein, we identify the role of protein phosphatase 2A (PP2A) in the pathogenesis of parenteral nutrition-associated hepatic steatosis (PNAHS). METHODS Proteomic/phosphoproteomic analyses of liver samples from patients with PNAHS were applied to identify the mechanism of PNAHS. Total parenteral nutrition (TPN) mice model, in vivo, and in vitro experiments were used to assess the effect of PP2A-Cα on liver fatty acid metabolism. RESULTS Reduced expression of PP2A-Cα (catalytic subunit) enhanced activation of serine/threonine kinase Akt2 and decreased activation of adenosine monophosphate-activated protein kinase (AMPK) were associated with hepatic steatosis in patients with PNAHS. Mice given PN for 14 days developed hepatic steatosis, down-regulation of PP2A-Cα, activation of Akt2, and inhibition of AMPK. Hepatocyte-specific deletion of PP2A-Cα in mice given PN exacerbated Akt2 activation, AMPK inhibition, and hepatic steatosis through an effect on fatty acid degradation, whereas hepatocyte-specific PP2A-Cα overexpression significantly ameliorated hepatic steatosis accompanied with Akt2 suppression and AMPK activation. Additionally, pharmacological activation of Akt2 in mice overexpressing PP2A-Cα led to the aggravation of hepatic steatosis. CONCLUSIONS Our findings demonstrate that hepatic PP2A-Cα serves as a protective factor of PNAHS due to ameliorating hepatic steatosis and improving liver function. Our study provides a strong rationale that PP2A-Cα may be involved in the pathogenesis of PNAHS.
Collapse
Affiliation(s)
- Gulisudumu Maitiabula
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Feng Tian
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Peng Wang
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Li Zhang
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xuejin Gao
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Songlin Wan
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Haifeng Sun
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jianbo Yang
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yupeng Zhang
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Tingting Gao
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Bin Xue
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center of the Medical School of Nanjing University, Nanjing, China,Core Laboratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China,Bin Xue, PhD, LongMian Avenue, Nanjing 211166, China. tel: +86-25-87115542
| | - Chaojun Li
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center of the Medical School of Nanjing University, Nanjing, China,Chaojun Li, PhD, Hankou Road, Nanjing, 210093, China. tel: +86-25-83596289.
| | - Jieshou Li
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xinying Wang
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China,Correspondence Address correspondence to: Xinying Wang, MD, PhD, Department of General Surgery, Jinling Hospital, Medical School of Nanjing University. 305 East Zhongshan Road, Nanjing, 210002, China. tel: +86-25-80861429
| |
Collapse
|
6
|
Effects of intestine-specific deletion of fibroblast growth factor 15 on alcoholic liver disease development in mice. LIVER RESEARCH 2022. [DOI: 10.1016/j.livres.2022.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Jiang L, Wang Y, Xiao Y, Wang Y, Yan J, Schnabl B, Cai W. Role of the Gut Microbiota in Parenteral Nutrition-Associated Liver Disease: From Current Knowledge to Future Opportunities. J Nutr 2022; 152:377-385. [PMID: 34734271 DOI: 10.1093/jn/nxab380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/02/2021] [Accepted: 10/26/2021] [Indexed: 11/13/2022] Open
Abstract
Parenteral nutrition-associated liver disease (PNALD) refers to a spectrum of conditions that can develop cholestasis, steatosis, fibrosis, and cirrhosis in the setting of parenteral nutrition (PN) use. Patient risk factors include short bowel syndrome, bacterial overgrowth and translocation, disturbance of hepatobiliary circulation, and lack of enteral feeding. A growing body of evidence suggests an intricate linkage between the gut microbiota and the pathogenesis of PNALD. In this review, we highlight current knowledge on the taxonomic and functional changes in the gut microbiota that might serve as noninvasive biomarkers. We also discuss the function of microbial metabolites and associated signaling pathways in the pathogenesis of PNALD. By providing the perspectives of microbiota-host interactions in PNALD for basic and translational research and summarizing current limitations of microbiota-based approaches, this review paves the path for developing novel and precise microbiota-based therapies in PNALD.
Collapse
Affiliation(s)
- Lu Jiang
- Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Institute for Pediatric Research, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Ying Wang
- Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Yongtao Xiao
- Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Institute for Pediatric Research, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Yong Wang
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Junkai Yan
- Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Institute for Pediatric Research, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, CA, USA.,Department of Medicine, VA San Diego Healthcare System, San Diego, CA, USA
| | - Wei Cai
- Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Institute for Pediatric Research, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.,Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
8
|
Memon N, Lee CW, Herdt A, Weinberger BI, Hegyi T, Carayannopoulos MO, Aleksunes LM, Guo GL, Griffin IJ. Suppression of Bile Acid Synthesis in a Preterm Infant Receiving Prolonged Parenteral Nutrition. J Clin Exp Hepatol 2022; 12:200-203. [PMID: 35068799 PMCID: PMC8766543 DOI: 10.1016/j.jceh.2021.04.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 04/06/2021] [Indexed: 01/03/2023] Open
Abstract
Bile acid metabolism is altered in neonates on parenteral nutrition (PN), predisposing them to parenteral nutrition-associated liver disease. Cholesterol 7α-hydroxylase (CYP7A1), the rate-limiting enzyme in the bile acid synthesis pathway, is repressed by fibroblast growth factor 19 (FGF19) and phytosterols (PS). We describe a case of a preterm infant who developed necrotizing enterocolitis (NEC) and received exclusive PN for over 2 months. Our objective was to serially assess CYP7A1 activity and plasma FGF19 and PS concentrations in this infant case compared to five healthy preterm infants. We found that CYP7A1 activity increased during the first 2 weeks of life in control infants but was undetectable in the infant case. FGF19 concentrations were high at birth in all infants and subsequently declined and did not differ between the case and control infants. As expected, PS concentrations were elevated in the infant case and continued to increase despite lipid minimization. In conclusion, CYP7A1 activity was gradually upregulated in healthy preterm infants but remained suppressed in the infant requiring prolonged PN. Preterm infants also had elevated FGF19 concentrations at birth, which decreased with advancing postnatal age.
Collapse
Key Words
- ALT, alanine aminotransferase
- AST, aspartate aminotransferase
- BA, bile acid
- C4, 7α-hydroxy-4-cholestene-3-one
- CYP7A1, cholesterol 7α-hydroxylase
- DMG, N, N-dimethylglycine
- DOL, day of life
- ELISA, enzyme-linked immunosorbent assay
- FGF19, fibroblast growth factor 19
- FXR, Farnesoid X receptor
- IRB, institutional review board
- LC-MS/MS, liquid chromatography/tandem mass spectrometry
- NEC, necrotizing enterocolitis
- NPO, nil per os
- PN, parenteral nutrition
- PNALD, parenteral nutrition-associated liver disease
- PS, phytosterols
- bile acid metabolism
- cholesterol 7-alpha hydroxylase
- farnesoid x receptor
- fibroblast growth factor 19
- intravenous lipid emulsion
Collapse
Affiliation(s)
- Naureen Memon
- MidAtlantic Neonatology Associates, Morristown, NJ, USA,Goryeb Children's Hospital, Atlantic Health System, Morristown, NJ, USA,Address for correspondence: MidAtlantic Neonatology Associates, Goryeb Children's Hospital, Atlantic Health System, 100 Madison Avenue, Morristown, NJ, 07962, USA. Tel.: (973) 971-5488, Fax: +(973) 290 7175.
| | - Chris W. Lee
- MidAtlantic Neonatology Associates, Morristown, NJ, USA
| | - Aimee Herdt
- MidAtlantic Neonatology Associates, Morristown, NJ, USA
| | | | - Thomas Hegyi
- Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | | | - Lauren M. Aleksunes
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ, USA
| | - Grace L. Guo
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ, USA
| | - Ian J. Griffin
- MidAtlantic Neonatology Associates, Morristown, NJ, USA,Goryeb Children's Hospital, Atlantic Health System, Morristown, NJ, USA
| |
Collapse
|
9
|
Alterations of gut microbiota and serum bile acids are associated with parenteral nutrition-associated liver disease. J Pediatr Surg 2021; 56:738-744. [PMID: 32732165 DOI: 10.1016/j.jpedsurg.2020.06.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/10/2020] [Accepted: 06/22/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Parenteral nutrition-associated liver disease (PNALD) is a major complication of long-term parenteral nutrition (PN). The pathogenesis of PNALD remains unclear. We investigated the changes in taxonomic and functional composition of gut microbiota and serum bile acid levels in a rat model of PNALD. METHODS Male 4-week-old Sprague Dawley rats received either total parenteral nutrition or standard chow with 0.9% saline for 7 days. The taxonomic composition of cecal microbiota and its functional composition associated with bile acid metabolism were measured. RESULTS There were differences in taxonomic composition between the two groups. The abundance of the secondary bile acid biosynthesis pathway was higher in the TPN group (p < 0.05) with an increase in the percentage of bacteria expressing 7-alpha-hydroxysteroid dehydrogenase (p < 0.05). The abundance of enzymes associated with bile salt hydrolase was also higher (p < 0.05) in the TPN group. The TPN group showed a distinct bile acid profile characterized by a higher ratio of secondary bile acids to primary bile acids. CONCLUSIONS The alteration of bile acid-associated microbiota may lead to increased secondary bile acid production in a rat model of PNALD.
Collapse
|
10
|
Lou PH, Lucchinetti E, Wawrzyniak P, Morsy Y, Wawrzyniak M, Scharl M, Krämer SD, Rogler G, Hersberger M, Zaugg M. Choice of Lipid Emulsion Determines Inflammation of the Gut-Liver Axis, Incretin Profile, and Insulin Signaling in a Murine Model of Total Parenteral Nutrition. Mol Nutr Food Res 2021; 65:e2000412. [PMID: 32729969 DOI: 10.1002/mnfr.202000412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/16/2020] [Indexed: 12/19/2022]
Abstract
SCOPE The aim of this study is to test whether the choice of the lipid emulsion in total parenteral nutrition (TPN), that is, n-3 fatty acid-based Omegaven versus n-6 fatty acid-based Intralipid, determines inflammation in the liver, the incretin profile, and insulin resistance. METHODS AND RESULTS Jugular vein catheters (JVC) are placed in C57BL/6 mice and used for TPN for 7 days. Mice are randomized into a saline group (saline infusion with oral chow), an Intralipid group (IL-TPN, no chow), an Omegaven group (OV-TPN, no chow), or a chow only group (without JVC). Both TPN elicite higher abundance of lipopolysaccharide binding protein in the liver, but only IL-TPN increases interleukin-6 and interferon-γ, while OV-TPN reduces interleukin-4, monocyte chemoattractant protein-1, and interleukin-1α. Insulin plasma concentrations are higher in both TPN, while glucagon and glucagon-like peptide-1 (GLP-1) were higher in IL-TPN. Gluconeogenesis is increased in IL-TPN and the nuclear profile of key metabolic transcription factors shows a liver-protective phenotype in OV-TPN. OV-TPN increases insulin sensitivity in the liver and skeletal muscle. CONCLUSION OV-TPN as opposed to IL-TPN mitigates inflammation in the liver and reduces the negative metabolic effects of hyperinsulinemia and hyperglucagonemia by "re-sensitizing" the liver and skeletal muscle to insulin.
Collapse
Affiliation(s)
- Phing-How Lou
- Department of Pharmacology, University of Alberta, Edmonton, T6G 2R3, Canada
| | - Eliana Lucchinetti
- Department of Anesthesiology and Pain Medicine and Cardiovascular Research Centre, University of Alberta, Edmonton, T6G 2R3, Canada
| | - Paulina Wawrzyniak
- Division of Clinical Chemistry and Biochemistry, University Children's Hospital Zurich, Zurich, 8032, Switzerland
| | - Yasser Morsy
- Department of Gastroenterology and Hepatology, University Hospital Zurich and University of Zurich, Zurich, 8091, Switzerland
| | - Marcin Wawrzyniak
- Department of Gastroenterology and Hepatology, University Hospital Zurich and University of Zurich, Zurich, 8091, Switzerland
| | - Michael Scharl
- Department of Gastroenterology and Hepatology, University Hospital Zurich and University of Zurich, Zurich, 8091, Switzerland
| | - Stefanie D Krämer
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, 8093, Switzerland
| | - Gerhard Rogler
- Department of Gastroenterology and Hepatology, University Hospital Zurich and University of Zurich, Zurich, 8091, Switzerland
| | - Martin Hersberger
- Division of Clinical Chemistry and Biochemistry, University Children's Hospital Zurich, Zurich, 8032, Switzerland
- Center for Integrative Human Physiology, University of Zurich, Zurich, 8057, Switzerland
| | - Michael Zaugg
- Department of Pharmacology, University of Alberta, Edmonton, T6G 2R3, Canada
- Department of Anesthesiology and Pain Medicine and Cardiovascular Research Centre, University of Alberta, Edmonton, T6G 2R3, Canada
| |
Collapse
|
11
|
Burrin D, Sangild PT, Stoll B, Thymann T, Buddington R, Marini J, Olutoye O, Shulman RJ. Translational Advances in Pediatric Nutrition and Gastroenterology: New Insights from Pig Models. Annu Rev Anim Biosci 2020; 8:321-354. [PMID: 32069436 DOI: 10.1146/annurev-animal-020518-115142] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Pigs are increasingly important animals for modeling human pediatric nutrition and gastroenterology and complementing mechanistic studies in rodents. The comparative advantages in size and physiology of the neonatal pig have led to new translational and clinically relevant models of important diseases of the gastrointestinal tract and liver in premature infants. Studies in pigs have established the essential roles of prematurity, microbial colonization, and enteral nutrition in the pathogenesis of necrotizing enterocolitis. Studies in neonatal pigs have demonstrated the intestinal trophic effects of akey gut hormone, glucagon-like peptide 2 (GLP-2), and its role in the intestinal adaptation process and efficacy in the treatment of short bowel syndrome. Further, pigs have been instrumental in elucidating the physiology of parenteral nutrition-associated liver disease and the means by which phytosterols, fibroblast growth factor 19, and a new generation of lipid emulsions may modify disease. The premature pig will continue to be a valuable model in the development of optimal infant diets (donor human milk, colostrum), specific milk bioactives (arginine, growth factors), gut microbiota modifiers (pre-, pro-, and antibiotics), pharmaceutical drugs (GLP-2 analogs, FXR agonists), and novel diagnostic tools (near-infrared spectroscopy) to prevent and treat these pediatric diseases.
Collapse
Affiliation(s)
- Douglas Burrin
- USDA-ARS Children's Nutrition Research Center, Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, Baylor College of Medicine, Houston, Texas 77030, USA;
| | - Per Torp Sangild
- Comparative Pediatrics and Nutrition, University of Copenhagen, DK-1870 Frederiksberg C., Copenhagen, Denmark
| | - Barbara Stoll
- USDA-ARS Children's Nutrition Research Center, Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, Baylor College of Medicine, Houston, Texas 77030, USA;
| | - Thomas Thymann
- Comparative Pediatrics and Nutrition, University of Copenhagen, DK-1870 Frederiksberg C., Copenhagen, Denmark
| | - Randal Buddington
- College of Nursing, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | - Juan Marini
- USDA-ARS Children's Nutrition Research Center, Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, Baylor College of Medicine, Houston, Texas 77030, USA; .,Department of Pediatrics, Section of Critical Care Medicine, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Oluyinka Olutoye
- Division of Pediatric Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Robert J Shulman
- USDA-ARS Children's Nutrition Research Center, Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, Baylor College of Medicine, Houston, Texas 77030, USA;
| |
Collapse
|
12
|
Maitiabola G, Tian F, Sun H, Zhang L, Gao X, Xue B, Wang X. Proteome characteristics of liver tissue from patients with parenteral nutrition-associated liver disease. Nutr Metab (Lond) 2020; 17:43. [PMID: 32518576 PMCID: PMC7268697 DOI: 10.1186/s12986-020-00453-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 04/13/2020] [Indexed: 12/15/2022] Open
Abstract
Background Parenteral nutrition (PN)-associated liver disease (PNALD) is a common and life-threatening complication in patients receiving PN. However, its definitive etiology is not yet clear. Therefore, performed proteomic analyses of human liver tissue to explore the same. Methods Liver tissue was derived and compared across selected patients with (n = 3) /without (n = 4) PNALD via isobaric Tag for Relative and Absolute Quantitation (iTRAQ)-based quantitative proteomics. Bioinformatics analysis was performed using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases to explore the mechanisms of PNALD based on differentially expressed proteins (DEPs). The essential proteins that were differentially expressed between the two groups were explored and verified by western blotting. Results A total of 112 proteins were found to be differentially expressed, of which 73 were downregulated, and 39 were upregulated in the PNALD group. Bioinformatics analysis showed DEPs to be associated with mitochondrial oxidative phosphorylation (mainly involved in mitochondrial respiratory chain complex I assembly), hepatic glycolipid metabolism (involved primarily in glycogen formation and gluconeogenesis), and oxidative stress (mainly involved in antioxidant change). Conclusion Overall, our results indicated that mitochondrial energy metabolism impairment, hepatic glycolipid metabolism disorder, and excessive oxidative stress injury might explain the comprehensive mechanism underlying PNALD. Moreover, we have provided multiple potential targets for further exploring the PNALD mechanism.
Collapse
Affiliation(s)
- Gulisudumu Maitiabola
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, East Zhongshan Road 305, Nanjing, 210002 P.R. China
| | - Feng Tian
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, East Zhongshan Road 305, Nanjing, 210002 P.R. China
| | - Haifeng Sun
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, East Zhongshan Road 305, Nanjing, 210002 P.R. China
| | - Li Zhang
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, East Zhongshan Road 305, Nanjing, 210002 P.R. China
| | - Xuejin Gao
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, East Zhongshan Road 305, Nanjing, 210002 P.R. China
| | - Bin Xue
- Core Laboratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing, 211166 China
| | - Xinying Wang
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, East Zhongshan Road 305, Nanjing, 210002 P.R. China
| |
Collapse
|
13
|
Lucchinetti E, Lou PH, Wawrzyniak P, Wawrzyniak M, Scharl M, Holtzhauer GA, Krämer SD, Hersberger M, Rogler G, Zaugg M. Novel Strategies to Prevent Total Parenteral Nutrition-Induced Gut and Liver Inflammation, and Adverse Metabolic Outcomes. Mol Nutr Food Res 2020; 65:e1901270. [PMID: 32359213 DOI: 10.1002/mnfr.201901270] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/09/2020] [Indexed: 12/15/2022]
Abstract
Total parenteral nutrition (TPN) is a life-saving therapy administered to millions of patients. However, it is associated with significant adverse effects, namely liver injury, risk of infections, and metabolic derangements. In this review, the underlying causes of TPN-associated adverse effects, specifically gut atrophy, dysbiosis of the intestinal microbiome, leakage of the epithelial barrier with bacterial invasion, and inflammation are first described. The role of the bile acid receptors farnesoid X receptor and Takeda G protein-coupled receptor, of pleiotropic hormones, and growth factors is highlighted, and the mechanisms of insulin resistance, namely the lack of insulinotropic and insulinomimetic signaling of gut-originating incretins as well as the potentially toxicity of phytosterols and pro-inflammatory fatty acids mainly released from soybean oil-based lipid emulsions, are discussed. Finally, novel approaches in the design of next generation lipid delivery systems are proposed. Propositions include modifying the physicochemical properties of lipid emulsions, the use of lipid emulsions generated from sustainable oils with favorable ratios of anti-inflammatory n-3 to pro-inflammatory n-6 fatty acids, beneficial adjuncts to TPN, and concomitant pharmacotherapies to mitigate TPN-associated adverse effects.
Collapse
Affiliation(s)
- Eliana Lucchinetti
- Department of Anesthesiology and Pain Medicine and Cardiovascular Research Centre, University of Alberta, Edmonton, T6G 2R3, Canada
| | - Phing-How Lou
- Department of Pharmacology, University of Alberta, Edmonton, T6G 2R3, Canada
| | - Paulina Wawrzyniak
- Division of Clinical Chemistry and Biochemistry, Children's Hospital Zurich, Zurich, 8032, Switzerland
| | - Marcin Wawrzyniak
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, 8091, Switzerland
| | - Michael Scharl
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, 8091, Switzerland
| | - Gregory A Holtzhauer
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, 8093, Switzerland
| | - Stefanie D Krämer
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, 8093, Switzerland
| | - Martin Hersberger
- Division of Clinical Chemistry and Biochemistry, Children's Hospital Zurich, Zurich, 8032, Switzerland
| | - Gerhard Rogler
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, 8091, Switzerland
| | - Michael Zaugg
- Department of Anesthesiology and Pain Medicine and Cardiovascular Research Centre, University of Alberta, Edmonton, T6G 2R3, Canada.,Department of Pharmacology, University of Alberta, Edmonton, T6G 2R3, Canada
| |
Collapse
|
14
|
Pierre JF. Reply to "Letter to Editor: Takeda-G Protein Receptor-5 signaling mitigates parenteral nutrition-associated liver disease: public health impact". Am J Physiol Gastrointest Liver Physiol 2020; 318:G930. [PMID: 32330095 DOI: 10.1152/ajpgi.00080.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Joseph F Pierre
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
15
|
Pandey S. Letter to Editor: Takeda-G protein receptor-5 signaling mitigates parenteral nutrition-associated liver disease: public health impact. Am J Physiol Gastrointest Liver Physiol 2020; 318:G928-G929. [PMID: 32330096 DOI: 10.1152/ajpgi.00073.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Saumya Pandey
- Department of Clinical Research, Indira-IVF Hospital, Udaipur, India
| |
Collapse
|
16
|
Willis KA, Gomes CK, Rao P, Micic D, Moran ER, Stephenson E, Puchowicz M, Al Abdallah Q, Mims TS, Gosain A, Yin D, Talati AJ, Chang EB, Han JC, Pierre JF. TGR5 signaling mitigates parenteral nutrition-associated liver disease. Am J Physiol Gastrointest Liver Physiol 2020; 318:G322-G335. [PMID: 31905022 DOI: 10.1152/ajpgi.00216.2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Bile acid receptors regulate the metabolic and immune functions of circulating enterohepatic bile acids. This process is disrupted by administration of parenteral nutrition (PN), which may induce progressive hepatic injury for unclear reasons, especially in the newborn, leading to PN-associated liver disease. To explore the role of bile acid signaling on neonatal hepatic function, we initially observed that Takeda G protein receptor 5 (TGR5)-specific bile acids were negatively correlated with worsening clinical disease markers in the plasma of human newborns with prolonged PN exposure. To test our resulting hypothesis that TGR5 regulates critical liver functions to PN exposure, we used TGR5 receptor deficient mice (TGR5-/-). We observed PN significantly increased liver weight, cholestasis, and serum hepatic stress enzymes in TGR5-/- mice compared with controls. Mechanistically, PN reduced bile acid synthesis genes in TGR5-/-. Serum bile acid composition revealed that PN increased unconjugated primary bile acids and secondary bile acids in TGR5-/- mice, while increasing conjugated primary bile acid levels in TGR5-competent mice. Simultaneously, PN elevated hepatic IL-6 expression and infiltrating macrophages in TGR5-/- mice. However, the gut microbiota of TGR5-/- mice compared with WT mice following PN administration displayed highly elevated levels of Bacteroides and Parabacteroides, and possibly responsible for the elevated levels of secondary bile acids in TGR5-/- animals. Intestinal bile acid transporters expression was unchanged. Collectively, this suggests TGR5 signaling specifically regulates fundamental aspects of liver bile acid homeostasis during exposure to PN. Loss of TGR5 is associated with biochemical evidence of cholestasis in both humans and mice on PN.NEW & NOTEWORTHY Parenteral nutrition is associated with deleterious metabolic outcomes in patients with prolonged exposure. Here, we demonstrate that accelerated cholestasis and parental nutrition-associated liver disease (PNALD) may be associated with deficiency of Takeda G protein receptor 5 (TGR5) signaling. The microbiome is responsible for production of secondary bile acids that signal through TGR5. Therefore, collectively, these data support the hypothesis that a lack of established microbiome in early life or under prolonged parenteral nutrition may underpin disease development and PNALD.
Collapse
Affiliation(s)
- Kent A Willis
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Charles K Gomes
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee.,Childrens Foundation Research Institute, Memphis, Tennessee
| | - Prahlad Rao
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Dejan Micic
- Department of Medicine, Section of Gastroenterology, Hepatology and Nutrition, University of Chicago, Chicago, Illinois
| | - E Richard Moran
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Erin Stephenson
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Michelle Puchowicz
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Qusai Al Abdallah
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Tahliyah S Mims
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Ankush Gosain
- Childrens Foundation Research Institute, Memphis, Tennessee.,Department of Surgery, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Dengping Yin
- Department of Surgery, University of Chicago, Chicago, Illinois
| | - Ajay J Talati
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee.,Department of Obstetrics and Gynecology, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Eugene B Chang
- Department of Medicine, Section of Gastroenterology, Hepatology and Nutrition, University of Chicago, Chicago, Illinois
| | - Joan C Han
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee.,Childrens Foundation Research Institute, Memphis, Tennessee.,Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Joseph F Pierre
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee.,Childrens Foundation Research Institute, Memphis, Tennessee.,Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
17
|
Effects of total parenteral nutrition on drug metabolism gene expression in mice. Acta Pharm Sin B 2020; 10:153-158. [PMID: 31993312 PMCID: PMC6976970 DOI: 10.1016/j.apsb.2019.10.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/25/2019] [Accepted: 10/08/2019] [Indexed: 02/01/2023] Open
Abstract
Parenteral nutrition-associated liver disease (PNALD) is a liver dysfunction caused by various risk factors presented in patients receiving total parenteral nutrition (TPN). Omega-6 rich Intralipid® and omega-3 rich Omegaven® are two intravenous lipid emulsions used in TPN. TPN could affect the hepatic expression of genes in anti-oxidative stress, but it's unknown whether TPN affects genes in drug metabolism. In this study, either Intralipid®- or Omegaven®-based TPN was administered to mice and the expression of a cohort of genes involved in anti-oxidative stress or drug metabolism was analyzed, glutathione (GSH) levels were measured, and protein levels for two key drug metabolism genes were determined. Overall, the expression of most genes was downregulated by Intralipid®-based TPN (Gstp1, Gstm1, 3, 6, Nqo1, Ho-1, Mt-1, Gclc, Gclm, Cyp2d9, 2f2, 2b10, and 3a11). Omegaven® showed similar results as Intralipid® except for preserving the expression of Gstm1 and Cyp3a11, and increasing Ho-1. Total GSH levels were decreased by Intralipid®, but increased by Omegaven®. CYP3A11 protein levels were increased by Omegaven®. In conclusion, TPN reduced the expression of many genes involved in anti-oxidative stress and drug metabolism in mice. However, Omegaven® preserved expression of Cyp3a11, suggesting another beneficial effect of Omegaven® in protecting liver functions.
Collapse
Key Words
- CYP450, cytochrome p450
- Drug metabolism
- FAs, fatty acids
- GADPH, glyceraldehyde 3-phosphate dehydrogenase
- GSH, glutathione
- GSSG, GSH/glutathione disulfide
- Gclc: glutamate-cysteine ligase catalytic subunit, Gclm: glutamate-cysteine ligase modifier subunit
- Glutathione
- Gpx3, glutathione peroxidase 3
- Gstm1, glutathione S-transferase, mu 1
- Gstm3, glutathione S-transferase, mu 3
- Gstm6, glutathione S-transferase, mu 6
- Gstp1, glutathione S-transferase, pi 1
- Ho-1, heme oxygenase 1
- Liver
- Mt-1, metallothionein 1
- NQO1, NAD(P)H:quinone acceptor oxidoreductase 1
- PNALD, parenteral nutrition-associated liver disease
- Parenteral nutrition-associated liver disease
- ROS, reactive oxygen species
- TPN, total parenteral nutrition
- Total parenteral nutrition
Collapse
|
18
|
Kong B, Zhang M, Huang M, Rizzolo D, Armstrong L, Schumacher J, Chow MD, Lee YH, Guo GL. FXR deficiency alters bile acid pool composition and exacerbates chronic alcohol induced liver injury. Dig Liver Dis 2019; 51:570-576. [PMID: 30803859 PMCID: PMC6451669 DOI: 10.1016/j.dld.2018.12.026] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 12/13/2018] [Accepted: 12/31/2018] [Indexed: 12/11/2022]
Abstract
Recent studies have investigated the roles of FXR deficiency in the pathogenesis of alcoholic liver disease (ALD). However, the underlying molecular mechanisms remain unclear. In this study, FXR knockout (FXR-/-) and wild-type (WT) mice were subjected to chronic-plus-binge alcohol feeding to study the effect of FXR deficiency on ALD development. The degree of liver injury was greater in FXR-/- mice compared to WT mice. Ethanol feeding enhanced hepatic steatosis in FXR-/- mice, accompanied by decreased mRNA levels of Pparα and Srebp-1c. The expression of Lcn2 was increased by ethanol treatment, despite unchanged expression of pro-inflammatory cytokines Tnfα, Il6 and Il-1β. Furthermore, ethanol treatment altered bile acid (BA) homeostasis to a greater extent in FXR-/- mice, as well as serum and hepatic BA pool composition. The mRNA levels of hepatic Cyp7a1 and Shp, as well as intestinal Fgf15, were decreased in WT mice with ethanol feeding, which were further reduced in FXR-/- mice. Levels of both primary and secondary BAs were markedly elevated in FXR-/- mice, which were further increased after ethanol treatment. Moreover, hepatic MAPK signaling pathways were disturbed presumably by increased hepatic BA levels. In summary, FXR deficiency increased hepatic steatosis and altered BA pool composition, contributing to worsened liver toxicity.
Collapse
Affiliation(s)
- Bo Kong
- School of Life Sciences, Guangzhou University, Guangzhou, China 510006,Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854
| | - Min Zhang
- Children's Liver Disease Center, 302 Military Hospital, Beijing, China 100039
| | - Mingxing Huang
- Department of Infectious Diseases, the Fifth Affiliated Hospital of Sun Yat-Sen University (SYSU), Zhuhai, Guangdong, China 519000
| | - Dan Rizzolo
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854
| | - Laura Armstrong
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854
| | - Justin Schumacher
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854
| | - Monica D. Chow
- Department of General Surgery, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ 08901
| | - Yi-Horng Lee
- Division of Pediatric Surgery, Department of Surgery, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ 08901
| | - Grace L Guo
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854,Environmental and Occupational Health Sciences Institute (EOHSI), Rutgers, The State University of New Jersey, Piscataway, NJ 08854,VA New Jersey Health Care System, Veterans Administration Medical Center, East Orange, NJ 07017,Corresponding author: Grace L. Guo, 170 Frelinghuysen Road, Piscataway, NJ, 08807 (Address), (848)4458186 (phone), (732)4454161 (fax),
| |
Collapse
|
19
|
Poillet-Perez L, Xie X, Zhan L, Yang Y, Sharp DW, Hu ZS, Su X, Maganti A, Jiang C, Lu W, Zheng H, Bosenberg MW, Mehnert JM, Guo JY, Lattime E, Rabinowitz JD, White E. Autophagy maintains tumour growth through circulating arginine. Nature 2018; 563:569-573. [PMID: 30429607 PMCID: PMC6287937 DOI: 10.1038/s41586-018-0697-7] [Citation(s) in RCA: 255] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 09/17/2018] [Indexed: 11/10/2022]
Abstract
Autophagy captures intracellular components and delivers them to lysosomes, where they are degraded and recycled to sustain metabolism and to enable survival during starvation1-5. Acute, whole-body deletion of the essential autophagy gene Atg7 in adult mice causes a systemic metabolic defect that manifests as starvation intolerance and gradual loss of white adipose tissue, liver glycogen and muscle mass1. Cancer cells also benefit from autophagy. Deletion of essential autophagy genes impairs the metabolism, proliferation, survival and malignancy of spontaneous tumours in models of autochthonous cancer6,7. Acute, systemic deletion of Atg7 or acute, systemic expression of a dominant-negative ATG4b in mice induces greater regression of KRAS-driven cancers than does tumour-specific autophagy deletion, which suggests that host autophagy promotes tumour growth1,8. Here we show that host-specific deletion of Atg7 impairs the growth of multiple allografted tumours, although not all tumour lines were sensitive to host autophagy status. Loss of autophagy in the host was associated with a reduction in circulating arginine, and the sensitive tumour cell lines were arginine auxotrophs owing to the lack of expression of the enzyme argininosuccinate synthase 1. Serum proteomic analysis identified the arginine-degrading enzyme arginase I (ARG1) in the circulation of Atg7-deficient hosts, and in vivo arginine metabolic tracing demonstrated that serum arginine was degraded to ornithine. ARG1 is predominantly expressed in the liver and can be released from hepatocytes into the circulation. Liver-specific deletion of Atg7 produced circulating ARG1, and reduced both serum arginine and tumour growth. Deletion of Atg5 in the host similarly regulated [corrected] circulating arginine and suppressed tumorigenesis, which demonstrates that this phenotype is specific to autophagy function rather than to deletion of Atg7. Dietary supplementation of Atg7-deficient hosts with arginine partially restored levels of circulating arginine and tumour growth. Thus, defective autophagy in the host leads to the release of ARG1 from the liver and the degradation of circulating arginine, which is essential for tumour growth; this identifies a metabolic vulnerability of cancer.
Collapse
Affiliation(s)
| | - Xiaoqi Xie
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Le Zhan
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Yang Yang
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Daniel W Sharp
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | | | - Xiaoyang Su
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA.,Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Anurag Maganti
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Cherry Jiang
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Wenyun Lu
- Department of Chemistry and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Haiyan Zheng
- Biological Mass Spectrometry Facility, Rutgers University, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
| | - Marcus W Bosenberg
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Janice M Mehnert
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA.,Department of Medicine, Division of Medical Oncology, Developmental Therapeutics Unit, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Jessie Yanxiang Guo
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA.,Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA.,Department of Chemical Biology, Rutgers Ernest Mario School of Pharmacy, Piscataway, NJ, USA
| | - Edmund Lattime
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA.,Department of Surgery, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Joshua D Rabinowitz
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA.,Department of Chemistry and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Eileen White
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA. .,Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ, USA.
| |
Collapse
|
20
|
Cheng K, Metry M, Felton J, Shang AC, Drachenberg CB, Xu S, Zhan M, Schumacher J, Guo GL, Polli JE, Raufman JP. Diminished gallbladder filling, increased fecal bile acids, and promotion of colon epithelial cell proliferation and neoplasia in fibroblast growth factor 15-deficient mice. Oncotarget 2018; 9:25572-25585. [PMID: 29876009 PMCID: PMC5986650 DOI: 10.18632/oncotarget.25385] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 04/26/2018] [Indexed: 01/20/2023] Open
Abstract
Fibroblast growth factor-19 (human FGF19; murine FGF15) suppresses bile acid synthesis. In FGF19 deficiency, diarrhea resulting from bile acid spillage into the colon mimics irritable bowel syndrome. To seek other consequences of FGF19/15 deficiency, we used Fgf15-/- and wild-type (WT) mice to assess gallbladder filling, the bile acid pool, fecal bile acid levels, and colon neoplasia. We fasted mice for six hours before assessing gallbladder size by magnetic resonance imaging (MRI). We measured bile acid levels in different compartments by enzymatic assay, and induced colon neoplasia with azoxymethane (AOM)/dextran sodium sulfate (DSS) and quantified epithelial Ki67 immunostaining and colon tumors 20 weeks later. In vivo MRI confirmed the gross finding of tubular gallbladders in FGF15-deficient compared to WT mice, but fasting gallbladder volumes overlapped. After gavage with a bile acid analogue, ex vivo MRI revealed diminished gallbladder filling in FGF15-deficient mice (P = 0.0399). In FGF15-deficient mice, the total bile acid pool was expanded 45% (P <0.05) and fecal bile acid levels were increased 2.26-fold (P <0.001). After AOM/DSS treatment, colons from FGF15-deficient mice had more epithelial cell Ki67 staining and tumors (7.33 ± 1.32 vs. 4.57 ± 0.72 tumors/mouse; P = 0.003 compared to WT mice); carcinomas were more common in FGF15-deficient mice (P = 0.01). These findings confirm FGF15, the murine homolog of FGF19, plays a key role in modulating gallbladder filling and bile acid homeostasis. In a well-characterized animal model of colon cancer, increased fecal bile acid levels in FGF15-deficient mice promoted epithelial proliferation and advanced neoplasia.
Collapse
Affiliation(s)
- Kunrong Cheng
- VA Maryland Healthcare System, Baltimore, Maryland, 21201, USA
- Department of Medicine, Division of Gastroenterology & Hepatology, University of Maryland School of Medicine, Baltimore, Maryland, 21201, USA
| | - Melissa Metry
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland, 21201, USA
| | - Jessica Felton
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, 21201, USA
| | - Aaron C. Shang
- Department of Medicine, Division of Gastroenterology & Hepatology, University of Maryland School of Medicine, Baltimore, Maryland, 21201, USA
| | - Cinthia B. Drachenberg
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, 21201, USA
| | - Su Xu
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, 21201, USA
| | - Min Zhan
- Department of Epidemiology & Public Health, University of Maryland School of Medicine, Baltimore, Maryland, 21201, USA
| | - Justin Schumacher
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, 08854, USA
| | - Grace L. Guo
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, 08854, USA
| | - James E. Polli
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland, 21201, USA
| | - Jean-Pierre Raufman
- VA Maryland Healthcare System, Baltimore, Maryland, 21201, USA
- Department of Medicine, Division of Gastroenterology & Hepatology, University of Maryland School of Medicine, Baltimore, Maryland, 21201, USA
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, 21201, USA
| |
Collapse
|
21
|
Effect of a fish oil-based lipid emulsion on intestinal failure-associated liver disease in children. Eur J Clin Nutr 2018; 72:1364-1372. [DOI: 10.1038/s41430-018-0096-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 12/28/2017] [Accepted: 12/29/2017] [Indexed: 02/06/2023]
|
22
|
Ihde ES, Zamudio S, Loh JM, Zhu Y, Woytanowski J, Rosen L, Liu M, Buckley B. Application of a novel mass spectrometric (MS) method to examine exposure to Bisphenol-A and common substitutes in a maternal fetal cohort. HUMAN AND ECOLOGICAL RISK ASSESSMENT : HERA 2017; 24:331-346. [PMID: 31588171 PMCID: PMC6777866 DOI: 10.1080/10807039.2017.1381831] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 09/16/2017] [Indexed: 05/26/2023]
Abstract
The use of Bisphenol A (BPA) has widely been replaced in consumer products by analogs BPB, BPE, BPF, BPS, and BPAF. Recent studies have linked these substitutes to similar adverse health outcomes as BPA, including disruption of endocrine pathways in animal and human studies. We designed a novel MS method, developed specifically for this study, to capture the most relevant BPA alternatives, BPB, BPE, BPF, BPS, BPAF and 4-NP in human blood and urine to quantify potential in utero exposures. To our knowledge, this is the first study to explore in utero exposure to these BPA analogs and the first U.S. study to test for BPA in maternal/fetal pairs. The method was run on 30 paired maternal urine and fetal cord blood samples from mothers undergoing elective Caesarean sections. 90% of mothers and 77% of babies tested positive for at least one BP analog. 83% of mothers tested positive for BPAF, 60% for BPS, 57% for BPB, 17% for BPF and 7% for BPA. 57% of babies tested positive for BPAF and 50% for BPF. BPA and BPB were detected in one cord blood sample each. BPS was not detected in cord blood. BPE was not detected in any fetal cord blood or maternal urine samples. These findings demonstrate the pervasiveness of some BP analogs in pregnant women and their babies at birth.
Collapse
Affiliation(s)
- Erin Speiser Ihde
- The Deirdre Imus Environmental Health Center®, Hackensack University Medical Center, 30 Prospect Ave, Research Building, Hackensack NJ 07601, USA
| | - Stacy Zamudio
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine and Surgery, Hackensack University Medical Center, 30 Prospect Ave, Hackensack NJ 07601, USA
| | - Ji Meng Loh
- Dept. of Mathematical Sciences, NJ Institute of Technology, University Heights, Newark, NJ 07102, USA
| | - Yalin Zhu
- Dept. of Mathematical Sciences, NJ Institute of Technology, University Heights, Newark, NJ 07102, USA
| | - John Woytanowski
- St. George’s University School of Medicine, Grenada, West Indies
- Drexel University College of Medicine, Dept. of Internal Medicine, 2900 W. Queen Lane, Philadelphia, PA 19129, USA
| | - Lawrence Rosen
- The Deirdre Imus Environmental Health Center®, Hackensack University Medical Center, 30 Prospect Ave, Research Building, Hackensack NJ 07601, USA
| | - Min Liu
- Environmental and Occupational Health Sciences Institute, Rutgers University, 170 Frelinghuysen Road, Piscataway, NJ08854, USA
| | - Brian Buckley
- Environmental and Occupational Health Sciences Institute, Rutgers University, 170 Frelinghuysen Road, Piscataway, NJ08854, USA
| |
Collapse
|
23
|
Pierre JF. Gastrointestinal immune and microbiome changes during parenteral nutrition. Am J Physiol Gastrointest Liver Physiol 2017; 312:G246-G256. [PMID: 28154012 PMCID: PMC5401992 DOI: 10.1152/ajpgi.00321.2016] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 01/19/2017] [Accepted: 01/29/2017] [Indexed: 01/31/2023]
Abstract
Parenteral nutrition (PN) is a lifesaving therapy that provides intravenous nutrition support to patients who cannot, or should not, feed via the gastrointestinal (GI) tract. Unfortunately, PN also carries certain risks related to infection and metabolic complications compared with enteral nutrition. In this review, an overview of PN and GI immune and microbiome changes is provided. PN impacts the gut-associated lymphoid tissue functions, especially adaptive immune cells, changes the intestinal epithelium and chemical secretions, and significantly alters the intestinal microbiome. Collectively, these changes functionally result in increased susceptibility to infectious and injurious challenge. Since PN remains necessary in large numbers of patients, the search to improve outcomes by stimulating GI immune function during PN remains of interest. This review closes by describing recent advances in using enteric nervous system neuropeptides or microbially derived products during PN, which may improve GI parameters by maintaining immunity and physiology.
Collapse
Affiliation(s)
- Joseph F. Pierre
- Section of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Chicago, Chicago, Illinois
| |
Collapse
|
24
|
Koelfat KVK, Schaap FG, Hodin CMJM, Visschers RGJ, Svavarsson BI, Lenicek M, Shiri-Sverdlov R, Lenaerts K, Olde Damink SWM. Parenteral nutrition dysregulates bile salt homeostasis in a rat model of parenteral nutrition-associated liver disease. Clin Nutr 2016; 36:1403-1410. [PMID: 28029505 DOI: 10.1016/j.clnu.2016.09.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 07/23/2016] [Accepted: 09/13/2016] [Indexed: 01/09/2023]
Abstract
BACKGROUND & AIMS Parenteral nutrition (PN), a lifesaving therapy in patients with intestinal failure, has been associated with hepatobiliary complications including steatosis, cholestasis and fibrosis, collectively known as parenteral nutrition-associated liver disease (PNALD). To date, the pathogenesis of PNALD is poorly understood and therapeutic options are limited. Impaired bile salt homeostasis has been proposed to contribute PNALD. The objective of this study was to establish a PNALD model in rats and to evaluate the effects of continuous parenteral nutrition (PN) on bile salt homeostasis. METHODS Rats received either PN via the jugular vein or received normal diet for 3, 7 or 14 days. Serum biochemistry, hepatic triglycerides, circulating bile salts and C4, IL-6 and TNF-alpha, and lipogenic and bile salt homeostatic gene expression in liver and ileum were assessed. RESULTS PN increased hepatic triglycerides already after 3 days of administration, and resulted in conjugated bilirubin elevation after 7 or more days. This indicates PN-induced steatosis and impaired canalicular secretion of bilirubin, the latter which is in line with reduced hepatic expression of Mrp2 mRNA. There was no histological evidence for liver inflammation after PN administration, and circulating levels of pro-inflammatory cytokines IL-6 and TNF-α, were comparable in all groups. Hepatic expression of Fxr mRNA was decreased after 7 days of PN, without apparent effect on expression of Fxr targets Bsep and Shp. Nonetheless, Cyp7a1 expression was reduced after 7 days of PN, indicative for lowered bile salt synthesis. Circulating levels of C4 (marker of bile salt synthesis) were also decreased after 3, 7 and 14 days of PN. Levels of circulating bile salts were not affected by PN. CONCLUSIONS This study showed that PN in rats caused early mild steatosis and cholestasis, while hepatic and systemic inflammation were not present. The onset of these abnormalities was associated with alterations in bile salt synthesis and transport. This animal model serves as an experimental model to further investigate the pathogenesis of PNALD inflicted by steatosis and cholestasis.
Collapse
Affiliation(s)
- Kiran V K Koelfat
- Department of Surgery, Maastricht University Medical Center and NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands.
| | - Frank G Schaap
- Department of Surgery, Maastricht University Medical Center and NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Caroline M J M Hodin
- Department of Surgery, Maastricht University Medical Center and NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Ruben G J Visschers
- Department of Surgery, Maastricht University Medical Center and NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Björn I Svavarsson
- Department of Surgery, Maastricht University Medical Center and NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Martin Lenicek
- Department of Medical Biochemistry and Laboratory Diagnostics, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Ronit Shiri-Sverdlov
- Department of Molecular Genetics, Maastricht University and NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Kaatje Lenaerts
- Department of Surgery, Maastricht University Medical Center and NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Steven W M Olde Damink
- Department of Surgery, Maastricht University Medical Center and NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands; Institute for Liver and Digestive Health, University College London, London, United Kingdom.
| |
Collapse
|
25
|
Moscovitz JE, Kong B, Buckley K, Buckley B, Guo GL, Aleksunes LM. Restoration of enterohepatic bile acid pathways in pregnant mice following short term activation of Fxr by GW4064. Toxicol Appl Pharmacol 2016; 310:60-67. [PMID: 27609522 DOI: 10.1016/j.taap.2016.08.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 08/16/2016] [Accepted: 08/23/2016] [Indexed: 12/27/2022]
Abstract
The farnesoid X receptor (Fxr) controls bile acid homeostasis by coordinately regulating the expression of synthesizing enzymes (Cyp7a1, Cyp8b1), conjugating enzymes (Bal, Baat) and transporters in the ileum (Asbt, Ostα/β) and liver (Ntcp, Bsep, Ostβ). Transcriptional regulation by Fxr can be direct, or through the ileal Fgf15/FGF19 and hepatic Shp pathways. Circulating bile acids are increased during pregnancy due to hormone-mediated disruption of Fxr signaling. While this adaptation enhances lipid absorption, elevated bile acids may predispose women to develop maternal cholestasis. The objective of this study was to determine whether short-term treatment of pregnant mice with GW4064 (a potent FXR agonist) restores Fxr signaling to the level observed in virgin mice. Plasma, liver and ilea were collected from virgin and pregnant mice administered vehicle or GW4064 by oral gavage. Treatment of pregnant mice with GW4064 induced ileal Fgf15, Shp and Ostα/β mRNAs, and restored hepatic Shp, Bal, Ntcp, and Bsep back to vehicle-treated virgin levels. Pregnant mice exhibited 2.5-fold increase in Cyp7a1 mRNA compared to virgin controls, which was reduced by GW4064. Similarly treatment of mouse primary hepatocytes with plasma isolated from pregnant mice induced Cyp7a1 mRNA by nearly 3-fold as compared to virgin plasma, which could be attenuated by co-treatment with either GW4064 or recombinant FGF19 protein. Collectively, these data reveal that repressed activity of intestinal and hepatic Fxr in pregnancy, as previously demonstrated, may be restored by pharmacological activation. This study provides the basis for a novel approach to restore bile acid homeostasis in patients with maternal cholestasis.
Collapse
Affiliation(s)
- Jamie E Moscovitz
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, 170 Frelinghuysen Rd., Piscataway, NJ 08854, USA
| | - Bo Kong
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, 170 Frelinghuysen Rd., Piscataway, NJ 08854, USA
| | - Kyle Buckley
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, 170 Frelinghuysen Rd., Piscataway, NJ 08854, USA
| | - Brian Buckley
- Environmental and Occupational Health Sciences Institute, 170 Frelinghuysen Rd., Piscataway, NJ 08854, USA
| | - Grace L Guo
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, 170 Frelinghuysen Rd., Piscataway, NJ 08854, USA; Environmental and Occupational Health Sciences Institute, 170 Frelinghuysen Rd., Piscataway, NJ 08854, USA
| | - Lauren M Aleksunes
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, 170 Frelinghuysen Rd., Piscataway, NJ 08854, USA; Environmental and Occupational Health Sciences Institute, 170 Frelinghuysen Rd., Piscataway, NJ 08854, USA.
| |
Collapse
|
26
|
Kong B, Zhu Y, Li G, Williams JA, Buckley K, Tawfik O, Luyendyk JP, Guo GL. Mice with hepatocyte-specific FXR deficiency are resistant to spontaneous but susceptible to cholic acid-induced hepatocarcinogenesis. Am J Physiol Gastrointest Liver Physiol 2016; 310:G295-302. [PMID: 26744468 PMCID: PMC4773826 DOI: 10.1152/ajpgi.00134.2015] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 12/12/2015] [Indexed: 01/31/2023]
Abstract
Farnesoid X receptor (FXR) belongs to the nuclear receptor superfamily with its endogenous ligands bile acids. Mice with whole body FXR deficiency develop liver tumors spontaneously, but the underlying mechanism is unclear. Moreover, it is unknown whether FXR deficiency in liver alone serves as a tumor initiator or promoter during liver carcinogenesis. This study aims to evaluate the effects of hepatocyte-specific FXR deficiency (FXR(hep-/-)) in liver tumor formation. The results showed that FXR(hep-/-) mice did not show spontaneous liver tumorigenesis with aging (up to 24 mo of age). Therefore FXR(hep-/-) mice were fed a bile acid (cholic acid)-containing diet alone or along with a liver tumor initiator, diethylnitrosamine (DEN). Thirty weeks later, no tumors were found in wild-type or FXR(hep-/-) mice without any treatment or with DEN only. However, with cholic acid, while only some wild-type mice developed tumors, all FXR(hep-/-) mice presented with severe liver injury and tumors. Interestingly, FXR(hep-/-) mouse livers increased basal expression of tumor suppressor p53 protein, apoptosis, and decreased basal cyclin D1 expression, which may prevent tumor development in FXR(hep-/-) mice. However, cholic acid feeding reversed these effects in FXR(hep-/-) mice, which is associated with an increased cyclin D1 and decreased cell cycle inhibitors. More in-depth analysis indicates that the increased in cell growth might result from disturbance of the MAPK and JAK/Stat3 signaling pathways. In conclusion, this study shows that hepatic FXR deficiency may only serve as a tumor initiator, and increased bile acids is required for tumor formation likely by promoting cell proliferation.
Collapse
Affiliation(s)
- Bo Kong
- 1Department of Pharmacology and Toxicology, School of Pharmacy, Rutgers University, Piscataway, New Jersey;
| | - Yan Zhu
- 2Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China;
| | - Guodong Li
- 3Department of General Surgery, the Fourth Hospital of Harbin Medical University, Harbin; ,4Division of Biobank Research, Department of General Surgery, the Fourth Hospital of Harbin Medical University, Harbin;
| | - Jessica A. Williams
- 5Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas;
| | - Kyle Buckley
- 1Department of Pharmacology and Toxicology, School of Pharmacy, Rutgers University, Piscataway, New Jersey;
| | - Ossama Tawfik
- 6Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas; and
| | - James P. Luyendyk
- 7Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, Michigan
| | - Grace L. Guo
- 1Department of Pharmacology and Toxicology, School of Pharmacy, Rutgers University, Piscataway, New Jersey;
| |
Collapse
|