1
|
Ji X, Ma S, Sun X, Yu D, Song Y, Li R. Analysis of ferroptosis-associated genes in Crohn's disease based on bioinformatics. Front Med (Lausanne) 2023; 9:1058076. [PMID: 36714107 PMCID: PMC9881725 DOI: 10.3389/fmed.2022.1058076] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/29/2022] [Indexed: 01/14/2023] Open
Abstract
Background Ferroptosis, a novel mode of apoptosis has recently been shown to be associated with fibrosis, tumor, cardiovascular, and other diseases. In this study, using bioinformatic analysis, we identified ferroptosis genes associated with Crohn's disease (CD) and performed biological function analysis, identified potential drug targets, and provided new directions for the future treatment of CD. Methods Differential expression analysis was performed using the GSE186582 dataset from the Gene Expression Omnibus (GEO) database. Ferroptosis-associated genes were downloaded from the FerrDB database, and overlapping genes associated with CD and ferroptosis were extracted. Then, we performed functional enrichment analysis, constructed a protein-protein interaction network (PPI), identified the correlation between hub genes and immune infiltration, performed external validation using a second and third dataset (GSE102133, GSE95095), and identified potential therapeutic agents. Finally, we validated the protein expression levels of the identified hub genes by immunohistochemical staining in the colon tissues from CD and healthy participants. Results A total of 28 ferroptosis-associated genes associated with CD were identified in our analysis, which included 22 up-regulated and 6 down-regulated genes. Gene Ontology (GO) analysis showed that these genes are essential for the apical plasma membrane and amide transport, and Metascape analysis showed that these genes mainly act on IL-4 and IL-13 signaling pathways. Five hub genes, PTGS2, IL6, IL1B, NOS2, and IDO1, were identified by a protein interaction network, and external validation of these hub genes showed statistically significant differences in expression between the CD patients and normal participants (p < 0.05), and all AUC values were greater than 0.8. Further, we predicted the top 10 drugs used to treat CD. Immune infiltration results suggest that Hub gene is related to T cells, macrophages, dendritic cells, and other immune cells. Finally, the results of immunohistochemical experiments showed that the protein expression of the hub gene was higher in CD colon tissue than in normal subjects (p < 0.05). Conclusion Bioinformatics analysis showed that ferroptosis is closely related to the development of CD, and the prediction of potential drugs provides new targets for the treatment of CD. Moreover, five hub genes identified are potentially new and effective markers for the diagnosis of CD.
Collapse
Affiliation(s)
- Xingyu Ji
- Department of Gastroenterology, The First Affiliated Hospital of Jiamusi University, Jiamusi, China,Department of Gastroenterology, Heilongjiang Provincial Hospital, Harbin, China
| | - Su Ma
- Department of Gastroenterology, The First Affiliated Hospital of Jiamusi University, Jiamusi, China,Department of Gastroenterology, Heilongjiang Provincial Hospital, Harbin, China
| | - Xiaomei Sun
- Department of Gastroenterology, Heilongjiang Provincial Hospital, Harbin, China,*Correspondence: Xiaomei Sun,
| | - Dan Yu
- Department of Gastroenterology, Heilongjiang Provincial Hospital, Harbin, China
| | - Ye Song
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Rui Li
- Department of Gastroenterology, Heilongjiang Provincial Hospital, Harbin, China
| |
Collapse
|
2
|
Docsa T, Sipos A, Cox CS, Uray K. The Role of Inflammatory Mediators in the Development of Gastrointestinal Motility Disorders. Int J Mol Sci 2022; 23:6917. [PMID: 35805922 PMCID: PMC9266627 DOI: 10.3390/ijms23136917] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/20/2022] [Accepted: 06/20/2022] [Indexed: 02/04/2023] Open
Abstract
Feeding intolerance and the development of ileus is a common complication affecting critically ill, surgical, and trauma patients, resulting in prolonged intensive care unit and hospital stays, increased infectious complications, a higher rate of hospital readmission, and higher medical care costs. Medical treatment for ileus is ineffective and many of the available prokinetic drugs have serious side effects that limit their use. Despite the large number of patients affected and the consequences of ileus, little progress has been made in identifying new drug targets for the treatment of ileus. Inflammatory mediators play a critical role in the development of ileus, but surprisingly little is known about the direct effects of inflammatory mediators on cells of the gastrointestinal tract, and many of the studies are conflicting. Understanding the effects of inflammatory cytokines/chemokines on the development of ileus will facilitate the early identification of patients who will develop ileus and the identification of new drug targets to treat ileus. Thus, herein, we review the published literature concerning the effects of inflammatory mediators on gastrointestinal motility.
Collapse
Affiliation(s)
- Tibor Docsa
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (T.D.); (A.S.)
| | - Adám Sipos
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (T.D.); (A.S.)
| | - Charles S. Cox
- Department of Pediatric Surgery, University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77204, USA;
| | - Karen Uray
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (T.D.); (A.S.)
| |
Collapse
|
3
|
Collier CA, Mendiondo C, Raghavan S. Tissue engineering of the gastrointestinal tract: the historic path to translation. J Biol Eng 2022; 16:9. [PMID: 35379299 PMCID: PMC8981633 DOI: 10.1186/s13036-022-00289-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/08/2022] [Indexed: 11/15/2022] Open
Abstract
The gastrointestinal (GI) tract is imperative for multiple functions including digestion, nutrient absorption, and timely waste disposal. The central feature of the gut is peristalsis, intestinal motility, which facilitates all of its functions. Disruptions in GI motility lead to sub-optimal GI function, resulting in a lower quality of life in many functional GI disorders. Over the last two decades, tissue engineering research directed towards the intestine has progressed rapidly due to advances in cell and stem-cell biology, integrative physiology, bioengineering and biomaterials. Newer biomedical tools (including optical tools, machine learning, and nuanced regenerative engineering approaches) have expanded our understanding of the complex cellular communication within the GI tract that lead to its orchestrated physiological function. Bioengineering therefore can be utilized towards several translational aspects: (i) regenerative medicine to remedy/restore GI physiological function; (ii) in vitro model building to mimic the complex physiology for drug and pharmacology testing; (iii) tool development to continue to unravel multi-cell communication networks to integrate cell and organ-level physiology. Despite the significant strides made historically in GI tissue engineering, fundamental challenges remain including the quest for identifying autologous human cell sources, enhanced scaffolding biomaterials to increase biocompatibility while matching viscoelastic properties of the underlying tissue, and overall biomanufacturing. This review provides historic perspectives for how bioengineering has advanced over time, highlights newer advances in bioengineering strategies, and provides a realistic perspective on the path to translation.
Collapse
Affiliation(s)
- Claudia A Collier
- Department of Biomedical Engineering, Texas A&M University, Emerging Technologies Building, 3120 TAMU, College Station, TX, 77843, USA
| | - Christian Mendiondo
- Department of Biomedical Engineering, Texas A&M University, Emerging Technologies Building, 3120 TAMU, College Station, TX, 77843, USA
| | - Shreya Raghavan
- Department of Biomedical Engineering, Texas A&M University, Emerging Technologies Building, 3120 TAMU, College Station, TX, 77843, USA.
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA.
| |
Collapse
|
4
|
Yamani A, Wu D, Ahrens R, Waggoner L, Noah TK, Garcia-Hernandez V, Ptaschinski C, Parkos CA, Lukacs NW, Nusrat A, Hogan SP. Dysregulation of intestinal epithelial CFTR-dependent Cl - ion transport and paracellular barrier function drives gastrointestinal symptoms of food-induced anaphylaxis in mice. Mucosal Immunol 2021; 14:135-143. [PMID: 32576925 PMCID: PMC11197992 DOI: 10.1038/s41385-020-0306-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 04/20/2020] [Accepted: 05/01/2020] [Indexed: 02/04/2023]
Abstract
Food-triggered anaphylaxis can encompass a variety of systemic and intestinal symptoms. Murine-based and clinical studies have revealed a role for histamine and H1R and H2R-pathway in the systemic response; however, the molecular processes that regulate the gastrointestinal (GI) response are not as well defined. In the present study, by utilizing an IgE-mast cell (MC)-dependent experimental model of oral antigen-induced anaphylaxis, we define the intestinal epithelial response during a food-induced anaphylactic reaction. We show that oral allergen-challenge stimulates a rapid dysregulation of intestinal epithelial transcellular and paracellular transport that was associated with the development of secretory diarrhea. Allergen-challenge induced (1) a rapid intestinal epithelial Cftr-dependent Cl- secretory response and (2) paracellular macromolecular leak that was associated with modification in epithelial intercellular junction proteins claudin-1, 2, 3 and 5, E-cadherin and desmosomal cadherins. OVA-induced Cftr-dependent Cl- secretion and junctional protein degradation was rapid occurring and was sustained for 72 h following allergen-challenge. Blockade of both the proteolytic activity and Cl- secretory response was required to alleviate intestinal symptoms of food-induced anaphylaxis. Collectively, these data suggest that the GI symptom of food-induced anaphylactic reaction, secretory diarrhea, is a consequence of CFTR-dependent Cl- secretion and proteolytic activity.
Collapse
Affiliation(s)
- Amnah Yamani
- Mary H Weiser Food Allergy Center, Department of Pathology, Michigan Medicine, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
- Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, 3333 Burnet Ave, Cincinnati, OH, 45229-3026, USA
| | - David Wu
- Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, 3333 Burnet Ave, Cincinnati, OH, 45229-3026, USA
| | - Richard Ahrens
- Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, 3333 Burnet Ave, Cincinnati, OH, 45229-3026, USA
| | - Lisa Waggoner
- Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, 3333 Burnet Ave, Cincinnati, OH, 45229-3026, USA
| | - Taeko K Noah
- Mary H Weiser Food Allergy Center, Department of Pathology, Michigan Medicine, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
- Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, 3333 Burnet Ave, Cincinnati, OH, 45229-3026, USA
| | - Vicky Garcia-Hernandez
- Department of Pathology, Michigan Medicine, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
| | - Catherine Ptaschinski
- Mary H Weiser Food Allergy Center, Department of Pathology, Michigan Medicine, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
| | - Charles A Parkos
- Department of Pathology, Michigan Medicine, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
| | - Nicholas W Lukacs
- Mary H Weiser Food Allergy Center, Department of Pathology, Michigan Medicine, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
- Department of Pathology, Michigan Medicine, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
| | - Asma Nusrat
- Department of Pathology, Michigan Medicine, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
| | - Simon P Hogan
- Mary H Weiser Food Allergy Center, Department of Pathology, Michigan Medicine, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA.
- Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, 3333 Burnet Ave, Cincinnati, OH, 45229-3026, USA.
- Department of Pathology, Michigan Medicine, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA.
| |
Collapse
|
5
|
Dutta AK, Boggs K, Khimji AK, Getachew Y, Wang Y, Kresge C, Rockey DC, Feranchak AP. Signaling through the interleukin-4 and interleukin-13 receptor complexes regulates cholangiocyte TMEM16A expression and biliary secretion. Am J Physiol Gastrointest Liver Physiol 2020; 318:G763-G771. [PMID: 32090602 PMCID: PMC7191463 DOI: 10.1152/ajpgi.00219.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
TMEM16A is a Ca2+-activated Cl- channel in the apical membrane of biliary epithelial cells, known as cholangiocytes, which contributes importantly to ductular bile formation. Whereas cholangiocyte TMEM16A activity is regulated by extracellular ATP-binding membrane purinergic receptors, channel expression is regulated by interleukin-4 (IL-4) through an unknown mechanism. Therefore, the aim of the present study was to identify the signaling pathways involved in TMEM16A expression and cholangiocyte secretion. Studies were performed in polarized normal rat cholangiocyte monolayers, human Mz-Cha-1 biliary cells, and cholangiocytes isolated from murine liver tissue. The results demonstrate that all the biliary models expressed the IL-4Rα/IL-13Rα1 receptor complex. Incubation of cholangiocytes with either IL-13 or IL-4 increased the expression of TMEM16A protein, which was associated with an increase in the magnitude of Ca2+-activated Cl- currents in response to ATP in single cells and the short-circuit current response in polarized monolayers. The IL-4- and IL-13-mediated increase in TMEM16A expression was also associated with an increase in STAT6 phosphorylation. Specific inhibition of JAK-3 inhibited the increase in TMEM16A expression and the IL-4-mediated increase in ATP-stimulated currents, whereas inhibition of STAT6 inhibited both IL-4- and IL-13-mediated increases in TMEM16A expression and ATP-stimulated secretion. These studies demonstrate that the cytokines IL-13 and IL-4 regulate the expression and function of biliary TMEM16A channels through a signaling pathway involving STAT6. Identification of this regulatory pathway provides new insight into biliary secretion and suggests new targets to enhance bile formation in the treatment of cholestatic liver disorders.NEW & NOTEWORTHY The Ca2+-activated Cl- channel transmembrane member 16A (TMEM16A) has emerged as an important regulator of biliary secretion and hence, ductular bile formation. The present studies represent the initial description of the regulation of TMEM16A expression in biliary epithelium. Identification of this regulatory pathway involving the IL-4 and IL-13 receptor complex and JAK-3 and STAT-6 signaling provides new insight into biliary secretion and suggests new therapeutic targets to enhance bile formation in the treatment of cholestatic liver disorders.
Collapse
Affiliation(s)
- Amal K. Dutta
- 1Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Kristy Boggs
- 4Department of Pediatrics, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Al-karim Khimji
- 2Department of Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Yonas Getachew
- 2Department of Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Youxue Wang
- 1Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Charles Kresge
- 1Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Don C. Rockey
- 3Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Andrew P. Feranchak
- 4Department of Pediatrics, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| |
Collapse
|
6
|
Ford CL, Wang Y, Morgan K, Boktor M, Jordan P, Castor TP, Alexander JS. Interferon-gamma depresses human intestinal smooth muscle cell contractility: Relevance to inflammatory gut motility disturbances. Life Sci 2019; 222:69-77. [DOI: 10.1016/j.lfs.2019.01.059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 01/17/2019] [Accepted: 01/17/2019] [Indexed: 02/07/2023]
|
7
|
Cheng E, Zhang X, Wilson KS, Wang DH, Park JY, Huo X, Yu C, Zhang Q, Spechler SJ, Souza RF. JAK-STAT6 Pathway Inhibitors Block Eotaxin-3 Secretion by Epithelial Cells and Fibroblasts from Esophageal Eosinophilia Patients: Promising Agents to Improve Inflammation and Prevent Fibrosis in EoE. PLoS One 2016; 11:e0157376. [PMID: 27310888 PMCID: PMC4911010 DOI: 10.1371/journal.pone.0157376] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Accepted: 05/28/2016] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Although most studies on treatments for eosinophilic esophagitis (EoE) have focused on effects in the epithelium, EoE is a transmural disease. Eosinophils that infiltrate the subepithelial layers of the esophagus lead to fibrosis and the serious complications of EoE, and current therapies have shown minimal effects on this fibrosis. We aimed to elucidate T helper (Th)2 cytokine effects on esophageal fibroblasts and to explore potential fibroblast-targeted therapies for EoE. METHODS We established telomerase-immortalized fibroblasts from human esophageal biopsies. We stimulated these esophageal fibroblasts with Th2 cytokines, and examined effects of omeprazole and inhibitors of the Janus kinase (JAK)-signal transducer and activator of transcription (STAT6) pathway (AS1517499, leflunomide, and ruxolitinib) on STAT6 phosphorylation, STAT6 nuclear translocation, and eotaxin-3 expression. We also measured the effects of these inhibitors in esophageal epithelial cells stimulated with Th2 cytokines. RESULTS As in esophageal epithelial cells, Th2 cytokines increased STAT6 phosphorylation, STAT6 nuclear translocation, eotaxin-3 transcription and protein secretion in esophageal fibroblasts. Unlike in epithelial cells, however, omeprazole did not inhibit cytokine-stimulated eotaxin-3 expression in fibroblasts. In contrast, JAK-STAT6 pathway inhibitors decreased cytokine-stimulated eotaxin-3 expression in both fibroblasts and epithelial cells. CONCLUSIONS Omeprazole does not inhibit Th2 cytokine-stimulated eotaxin-3 expression by esophageal fibroblasts, suggesting that PPIs will have limited impact on subepithelial EoE processes such as fibrosis. JAK-STAT6 pathway inhibitors block Th2 cytokine-stimulated eotaxin-3 expression both in fibroblasts and in epithelial cells, suggesting a potential role for JAK-STAT inhibitors in treating both epithelial inflammation and subepithelial fibrosis in EoE.
Collapse
Affiliation(s)
- Edaire Cheng
- Esophageal Diseases Center, Veterans Affairs North Texas Health Care System and University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Department of Pediatrics, Children’s Health Children’s Medical Center, Dallas, Texas, United States of America
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Medical Services, Veterans Affairs North Texas Health Care System, Dallas, Texas, United States of America
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- * E-mail:
| | - Xi Zhang
- Esophageal Diseases Center, Veterans Affairs North Texas Health Care System and University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Medical Services, Veterans Affairs North Texas Health Care System, Dallas, Texas, United States of America
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Kathleen S. Wilson
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - David H. Wang
- Esophageal Diseases Center, Veterans Affairs North Texas Health Care System and University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Medical Services, Veterans Affairs North Texas Health Care System, Dallas, Texas, United States of America
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Jason Y. Park
- Esophageal Diseases Center, Veterans Affairs North Texas Health Care System and University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Department of Pathology, Children’s Health Children’s Medical Center, Dallas, Texas, United States of America
| | - Xiaofang Huo
- Esophageal Diseases Center, Veterans Affairs North Texas Health Care System and University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Medical Services, Veterans Affairs North Texas Health Care System, Dallas, Texas, United States of America
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Chunhua Yu
- Esophageal Diseases Center, Veterans Affairs North Texas Health Care System and University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Medical Services, Veterans Affairs North Texas Health Care System, Dallas, Texas, United States of America
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Qiuyang Zhang
- Esophageal Diseases Center, Veterans Affairs North Texas Health Care System and University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Medical Services, Veterans Affairs North Texas Health Care System, Dallas, Texas, United States of America
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Stuart J. Spechler
- Esophageal Diseases Center, Veterans Affairs North Texas Health Care System and University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Medical Services, Veterans Affairs North Texas Health Care System, Dallas, Texas, United States of America
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Rhonda F. Souza
- Esophageal Diseases Center, Veterans Affairs North Texas Health Care System and University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Medical Services, Veterans Affairs North Texas Health Care System, Dallas, Texas, United States of America
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| |
Collapse
|
8
|
Al-Kofahi M, Becker F, Gavins FNE, Woolard MD, Tsunoda I, Wang Y, Ostanin D, Zawieja DC, Muthuchamy M, von der Weid PY, Alexander JS. IL-1β reduces tonic contraction of mesenteric lymphatic muscle cells, with the involvement of cycloxygenase-2 and prostaglandin E2. Br J Pharmacol 2015; 172:4038-51. [PMID: 25989136 DOI: 10.1111/bph.13194] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 04/02/2015] [Accepted: 04/28/2015] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND AND PURPOSE The lymphatic system maintains tissue homeostasis by unidirectional lymph flow, maintained by tonic and phasic contractions within subunits, 'lymphangions'. Here we have studied the effects of the inflammatory cytokine IL-1β on tonic contraction of rat mesenteric lymphatic muscle cells (RMLMC). EXPERIMENTAL APPROACH We measured IL-1β in colon-conditioned media (CM) from acute (AC-CM, dextran sodium sulfate) and chronic (CC-CM, T-cell transfer) colitis-induced mice and corresponding controls (Con-AC/CC-CM). We examined tonic contractility of RMLMC in response to CM, the cytokines h-IL-1β or h-TNF-α (5, 10, 20 ng·mL(-1) ), with or without COX inhibitors [TFAP (10(-5) M), diclofenac (0.2 × 10(-5) M)], PGE2 (10(-5) M)], IL-1-receptor antagonist, Anakinra (5 μg·mL(-1) ), or a selective prostanoid EP4 receptor antagonist, GW627368X (10(-6) and 10(-7) M). KEY RESULTS Tonic contractility of RMLMC was reduced by AC- and CC-CM compared with corresponding control culture media, Con-AC/CC-CM. IL-1β or TNF-α was not found in Con-AC/CC-CM, but detected in AC- and CC-CM. h-IL-1β concentration-dependently decreased RMLMC contractility, whereas h-TNF-α showed no effect. Anakinra blocked h-IL-1β-induced RMLMC relaxation, and with AC-CM, restored contractility to RMLMC. IL-1β increased COX-2 protein and PGE2 production in RMLMC.. PGE2 induced relaxations in RMLMC, comparable to h-IL-1β. Conversely, COX-2 and EP4 receptor inhibition reversed relaxation induced by IL-1β. CONCLUSIONS AND IMPLICATIONS The IL-1β-induced decrease in RMLMC tonic contraction was COX-2 dependent, and mediated by PGE2 . In experimental colitis, IL-1β and tonic lymphatic contractility were causally related, as this cytokine was critical for the relaxation induced by AC-CM and pharmacological blockade of IL-1β restored tonic contraction.
Collapse
Affiliation(s)
- M Al-Kofahi
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center - Shreveport, Shreveport, LA, USA
| | - F Becker
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center - Shreveport, Shreveport, LA, USA.,Department for General and Visceral Surgery, University Hospital Muenster, Muenster, Germany
| | - F N E Gavins
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center - Shreveport, Shreveport, LA, USA
| | - M D Woolard
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center - Shreveport, Shreveport, LA, USA
| | - I Tsunoda
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center - Shreveport, Shreveport, LA, USA
| | - Y Wang
- Department of Obstetrics and Gynecology, Louisiana State University Health Sciences Center - Shreveport, Shreveport, LA, USA
| | - D Ostanin
- Department of Medicine, Division of Rheumatology, Louisiana State University Health Sciences Center - Shreveport, Shreveport, LA, USA
| | - D C Zawieja
- Department of Medicine, Cardiovascular Research Institute, Texas A&M Health Science Center, College Station, TX, USA
| | - M Muthuchamy
- Department of Medicine, Cardiovascular Research Institute, Texas A&M Health Science Center, College Station, TX, USA
| | - P Y von der Weid
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - J S Alexander
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center - Shreveport, Shreveport, LA, USA
| |
Collapse
|
9
|
Darby M, Schnoeller C, Vira A, Culley FJ, Culley F, Bobat S, Logan E, Kirstein F, Wess J, Cunningham AF, Brombacher F, Selkirk ME, Horsnell WGC. The M3 muscarinic receptor is required for optimal adaptive immunity to helminth and bacterial infection. PLoS Pathog 2015; 11:e1004636. [PMID: 25629518 PMCID: PMC4309615 DOI: 10.1371/journal.ppat.1004636] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 12/18/2014] [Indexed: 01/24/2023] Open
Abstract
Innate immunity is regulated by cholinergic signalling through nicotinic acetylcholine receptors. We show here that signalling through the M3 muscarinic acetylcholine receptor (M3R) plays an important role in adaptive immunity to both Nippostrongylus brasiliensis and Salmonella enterica serovar Typhimurium, as M3R-/- mice were impaired in their ability to resolve infection with either pathogen. CD4 T cell activation and cytokine production were reduced in M3R-/- mice. Immunity to secondary infection with N. brasiliensis was severely impaired, with reduced cytokine responses in M3R-/- mice accompanied by lower numbers of mucus-producing goblet cells and alternatively activated macrophages in the lungs. Ex vivo lymphocyte stimulation of cells from intact BALB/c mice infected with N. brasiliensis and S. typhimurium with muscarinic agonists resulted in enhanced production of IL-13 and IFN-γ respectively, which was blocked by an M3R-selective antagonist. Our data therefore indicate that cholinergic signalling via the M3R is essential for optimal Th1 and Th2 adaptive immunity to infection.
Collapse
Affiliation(s)
- Matthew Darby
- Institute of Infectious Disease and Molecular Medicine, International Centre for Genetic Engineering and Biotechnology and Division of Immunology, University of Cape Town, Cape Town, South Africa
| | - Corinna Schnoeller
- Department of Life Sciences, Sir Ernst Chain Building, South Kensington Campus, Imperial College London, London, United Kingdom
| | - Alykhan Vira
- Institute of Infectious Disease and Molecular Medicine, International Centre for Genetic Engineering and Biotechnology and Division of Immunology, University of Cape Town, Cape Town, South Africa
| | - Fiona Jane Culley
- National Heart and Lung Institute, St.Mary's Campus, Praed Street, Imperial College London, London, United Kingdom
| | - Fiona Culley
- National Heart and Lung Institute, St.Mary's Campus, Praed Street, Imperial College London, London, United Kingdom
| | - Saeeda Bobat
- Medical Research Council Centre for Immune Regulation, School of Immunity and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Erin Logan
- Institute of Infectious Disease and Molecular Medicine, International Centre for Genetic Engineering and Biotechnology and Division of Immunology, University of Cape Town, Cape Town, South Africa
| | - Frank Kirstein
- Institute of Infectious Disease and Molecular Medicine, International Centre for Genetic Engineering and Biotechnology and Division of Immunology, University of Cape Town, Cape Town, South Africa
| | - Jürgen Wess
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Adam F Cunningham
- Medical Research Council Centre for Immune Regulation, School of Immunity and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Frank Brombacher
- Institute of Infectious Disease and Molecular Medicine, International Centre for Genetic Engineering and Biotechnology and Division of Immunology, University of Cape Town, Cape Town, South Africa
| | - Murray E Selkirk
- Department of Life Sciences, Sir Ernst Chain Building, South Kensington Campus, Imperial College London, London, United Kingdom
| | - William G C Horsnell
- Institute of Infectious Disease and Molecular Medicine, International Centre for Genetic Engineering and Biotechnology and Division of Immunology, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
10
|
Bettenworth D, Rieder F. Medical therapy of stricturing Crohn's disease: what the gut can learn from other organs - a systematic review. FIBROGENESIS & TISSUE REPAIR 2014; 7:5. [PMID: 24678903 PMCID: PMC4230721 DOI: 10.1186/1755-1536-7-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 03/06/2014] [Indexed: 12/11/2022]
Abstract
Crohn’s disease (CD) is a chronic remitting and relapsing disease. Fibrostenosing complications such as intestinal strictures, stenosis and ultimately obstruction are some of its most common long-term complications. Despite recent advances in the pathophysiological understanding of CD and a significant improvement of anti-inflammatory therapeutics, medical therapy for stricturing CD is still inadequate. No specific anti-fibrotic therapy exists and the incidence rate of strictures has essentially remained unchanged. Therefore, the current therapy of established fibrotic strictures comprises mainly endoscopic dilation as well as surgical approaches. However, these treatment options are associated with major complications as well as high recurrence rates. Thus, a specific anti-fibrotic therapy for CD is urgently needed. Importantly, there is now a growing body of evidence for prevention as well as effective medical treatment of fibrotic diseases of other organs such as the skin, lung, kidney and liver. In face of the similarity of molecular mechanisms of fibrogenesis across these organs, translation of therapeutic approaches from other fibrotic diseases to the intestine appears to be a promising treatment strategy. In particular transforming growth factor beta (TGF-β) neutralization, selective tyrosine kinase inhibitors, blockade of components of the renin-angiotensin system, IL-13 inhibitors and mammalian target of rapamycin (mTOR) inhibitors have emerged as potential drug candidates for anti-fibrotic therapy and may retard progression or even reverse established intestinal fibrosis. However, major challenges have to be overcome in the translation of novel anti-fibrotics into intestinal fibrosis therapy, such as the development of appropriate biomarkers that predict the development and accurately monitor therapeutic responses. Future clinical studies are a prerequisite to evaluate the optimal timing for anti-fibrotic treatment approaches, to elucidate the best routes of application, and to evaluate the potential of drug candidates to reach the ultimate goal: the prevention or reversal of established fibrosis and strictures in CD patients.
Collapse
Affiliation(s)
| | - Florian Rieder
- Department of Gastroenterology and Hepatology, Digestive Disease Institute, Cleveland Clinic Foundation, Cleveland, OH, USA.,Department of Pathobiology, Lerner Research Institute, NC22, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| |
Collapse
|
11
|
Al-Qudah M, Anderson CD, Mahavadi S, Bradley ZL, Akbarali HI, Murthy KS, Grider JR. Brain-derived neurotrophic factor enhances cholinergic contraction of longitudinal muscle of rabbit intestine via activation of phospholipase C. Am J Physiol Gastrointest Liver Physiol 2014; 306:G328-37. [PMID: 24356881 PMCID: PMC3920121 DOI: 10.1152/ajpgi.00203.2013] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) belongs to the neurotrophin family of proteins best known for its role in neuronal survival, differentiation, migration, and synaptic plasticity in central and peripheral neurons. BDNF is also widely expressed in nonneuronal tissues including the gastrointestinal tract. The role of BDNF in intestinal smooth muscle contractility is not well defined. The aim of this study was to identify the role of BDNF in carbachol (CCh)- and substance P (SP)-induced contraction of intestinal longitudinal smooth muscle. BDNF, selective tropomyosin-related kinase B (TrkB) receptor agonists, and pharmacological inhibitors of signaling pathways were examined for their effects on contraction of rabbit intestinal longitudinal muscle strips induced by CCh and SP. BDNF activation of intracellular signaling pathways was examined by Western blot in homogenates of muscle strips and isolated muscle cells. One-hour preincubation with BDNF enhanced intestinal muscle contraction induced by CCh but not by SP. The selective synthetic TrkB agonists LM 22A4 and 7,8-dihydroxyflavone produced similar effects to BDNF. The Trk antagonist K-252a, a TrkB antibody but not p75NTR antibody, blocked the effect of BDNF. The enhancement of CCh-induced contraction by BDNF was blocked by the phospholipase C (PLC) antagonist U73122, but not by ERK1/2 or Akt antagonists. Direct measurement in muscle strips and isolated muscle cells showed that BDNF caused phosphorylation of TrkB receptors and PLC-γ, but not ERK1/2 or Akt. We conclude that exogenous BDNF augments the CCh-induced contraction of longitudinal muscle from rabbit intestine by activating TrkB receptors and subsequent PLC activation.
Collapse
Affiliation(s)
- M. Al-Qudah
- 1Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia; ,3Jordan University of Science and Technology, Irbid, Jordan
| | - C. D. Anderson
- 1Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia;
| | - S. Mahavadi
- 1Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia;
| | - Z. L. Bradley
- 1Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia;
| | - H. I. Akbarali
- 2Department of Pharmacology and Toxicology, VCU Program in Enteric Neuromuscular Sciences (VPENS), School of Medicine, Virginia Commonwealth University, Richmond, Virginia; and
| | - K. S. Murthy
- 1Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia;
| | - J. R. Grider
- 1Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia;
| |
Collapse
|
12
|
Biancheri P, Di Sabatino A, Ammoscato F, Facciotti F, Caprioli F, Curciarello R, Hoque SS, Ghanbari A, Joe‐Njoku I, Giuffrida P, Rovedatti L, Geginat J, Corazza GR, MacDonald TT. Absence of a role for interleukin‐13 in inflammatory bowel disease. Eur J Immunol 2014; 44:370-85. [DOI: 10.1002/eji.201343524] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 11/23/2013] [Accepted: 12/10/2013] [Indexed: 12/20/2022]
Affiliation(s)
- Paolo Biancheri
- Centre for Immunology and Infectious DiseaseBlizard InstituteBarts and the London School of Medicine and Dentistry London UK
- Department of Internal MedicineS. Matteo HospitalCentro per lo Studio e la Cura delle Malattie Infiammatorie Croniche IntestinaliUniversity of Pavia Pavia Italy
| | - Antonio Di Sabatino
- Department of Internal MedicineS. Matteo HospitalCentro per lo Studio e la Cura delle Malattie Infiammatorie Croniche IntestinaliUniversity of Pavia Pavia Italy
| | - Francesca Ammoscato
- Centre for Immunology and Infectious DiseaseBlizard InstituteBarts and the London School of Medicine and Dentistry London UK
| | | | - Flavio Caprioli
- Unit of Gastroenterology 2Fondazione IRCCS Ca’ Granda – Ospedale Maggiore Policlinico Milan Italy
- Dipartimento di Fisiopatologia Medico‐Chirurgica e dei TrapiantiUniversità degli Studi di Milano Milan Italy
| | - Renata Curciarello
- Centre for Immunology and Infectious DiseaseBlizard InstituteBarts and the London School of Medicine and Dentistry London UK
| | - Syed S. Hoque
- Centre for Immunology and Infectious DiseaseBlizard InstituteBarts and the London School of Medicine and Dentistry London UK
| | - Amir Ghanbari
- Centre for Immunology and Infectious DiseaseBlizard InstituteBarts and the London School of Medicine and Dentistry London UK
| | - Ijeoma Joe‐Njoku
- Centre for Immunology and Infectious DiseaseBlizard InstituteBarts and the London School of Medicine and Dentistry London UK
| | - Paolo Giuffrida
- Centre for Immunology and Infectious DiseaseBlizard InstituteBarts and the London School of Medicine and Dentistry London UK
| | - Laura Rovedatti
- Department of Internal MedicineS. Matteo HospitalCentro per lo Studio e la Cura delle Malattie Infiammatorie Croniche IntestinaliUniversity of Pavia Pavia Italy
| | - Jens Geginat
- Istituto Nazionale di Genetica Molecolare Milan Italy
| | - Gino R. Corazza
- Department of Internal MedicineS. Matteo HospitalCentro per lo Studio e la Cura delle Malattie Infiammatorie Croniche IntestinaliUniversity of Pavia Pavia Italy
| | - Thomas T. MacDonald
- Centre for Immunology and Infectious DiseaseBlizard InstituteBarts and the London School of Medicine and Dentistry London UK
| |
Collapse
|
13
|
Cullmann JL, Bickelhaupt S, Froehlich JM, Szucs-Farkas Z, Tutuian R, Patuto N, Dawson H, Patak MA. MR imaging in Crohn's disease: correlation of MR motility measurement with histopathology in the terminal ileum. Neurogastroenterol Motil 2013; 25:749-e577. [PMID: 23741963 DOI: 10.1111/nmo.12162] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 05/05/2013] [Indexed: 12/27/2022]
Abstract
BACKGROUND The objective of the study was to correlate MR-detectable motility alterations of the terminal ileum with biopsy-documented active and chronic changes in Crohn's disease. METHODS This IRB approved retrospective analysis of 43 patients included magnetic resonance enterography (MRE) and terminal ileum biopsies (<2 weeks apart). Motility was measured at the terminal ileum using coronal 2D trueFISP pulse sequences (1.5T MRI,TR 83.8,TE1.89) and dedicated motility assessment software. Motility grading (hypermotility, normal, hypomotility, complete arrest) was agreed by two experienced readers. Motility was compared and correlated with histopathology using two-tailed Kruskal-Wallis test and paired Spearman Rank-Order Correlation tests. KEY RESULTS Motility abnormalities were present in 27/43 patients: nine hypomotility and 18 complete arrest. Active disease was diagnosed on 15 biopsies: eight moderate and seven severe inflammatory activity. Chronic changes were diagnosed on 17 biopsies: 13 moderate and four severe cases. In four patients with normal motility alterations on histopathology were diagnosed. Histopathology correlated with presence (P = 0.0056 for hypomotility and P = 0.0119 for complete arrest) and grade (P < 0.0001; P = 0.0004) of motility alterations. A significant difference in the motility was observed in patients with active or chronic CD compared with patients without disease (P < 0.001; P = 0.0024). CONCLUSIONS & INFERENCES MR-detectable motility changes of the terminal ileum correlate with histopathological findings both in active and chronic CD. Motility changes may indicate the presence pathology, but do not allow differentiation of active and chronic disease.
Collapse
Affiliation(s)
- J L Cullmann
- Institute of Diagnostic, Interventional and Pediatric Radiology, University Hospital, Bern, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Papacleovoulou G, Critchley HOD, Hillier SG, Mason JI. IL1α and IL4 signalling in human ovarian surface epithelial cells. J Endocrinol 2011; 211:273-83. [PMID: 21903865 DOI: 10.1530/joe-11-0081] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The human ovarian surface epithelium (hOSE) is a mesothelial layer that surrounds the ovary and undergoes injury and repair cycles after ovulation-associated inflammation. We previously showed that IL4 is a key regulator of progesterone bioavailability during post-ovulatory hOSE repair as it differentially up-regulated 3β-HSD1 and 3β-HSD2 mRNA transcripts and total 3β-hydroxysteroid dehydrogenase activity whereas it inhibited androgen receptor (AR) expression. We now show that the pro-inflammatory effect of IL1α on 3β-HSD1 expression is mediated by nuclear factor-κB (NF-κB), whereas its anti-inflammatory action on 3β-HSD2 expression is exerted via p38 mitogen-activated protein kinase (MAPK), phosphatidylinositol 3-kinase (PI3K) and NF-κB signalling pathways. The anti-inflammatory IL4 effects on 3β-HSD1 and 3β-HSD2 mRNA expression are mediated through STAT6 and PI3K signalling networks. IL4 effects on AR and 3β-HSD2 expression involve the p38 MAPK pathway. We also document that IL4 up-regulates lysyl oxidase (LOX) mRNA transcripts, a key gene for extracellular matrix (ECM) deposition and inhibits IL1α-induced expression of cyclooxygenase-2 (COX-2) mRNA, a gene involved in breakdown of ECM, showing a further role in post-ovulatory wound healing. We conclude that IL1α and IL4 actions in the post-ovulatory wound healing of hOSE cells are mediated by different signalling transduction pathways. The p38 MAPK signalling pathway may have possible therapeutic benefit in inflammation-associated disorders of the ovary, including cancer.
Collapse
Affiliation(s)
- Georgia Papacleovoulou
- The Queen's Medical Research Institute, Centre for Reproductive Biology, Reproductive and Developmental Sciences, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | | | | | | |
Collapse
|
15
|
Signal transducer and activator of transcription-6 (STAT6) inhibition suppresses renal cyst growth in polycystic kidney disease. Proc Natl Acad Sci U S A 2011; 108:18067-72. [PMID: 22025716 DOI: 10.1073/pnas.1111966108] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Autosomal-dominant (AD) polycystic kidney disease (PKD) is a leading cause of renal failure in the United States, and currently lacks available treatment options to slow disease progression. Mutations in the gene coding for polycystin-1 (PC1) underlie the majority of cases but the function of PC1 has remained poorly understood. We have previously shown that PC1 regulates the transcriptional activity of signal transducer and activator of transcription-6 (STAT6). Here we show that STAT6 is aberrantly activated in cyst-lining cells in PKD mouse models. Activation of the STAT6 pathway leads to a positive feedback loop involving auto/paracrine signaling by IL13 and the IL4/13 receptor. The presence of IL13 in cyst fluid and the overexpression of IL4/13 receptor chains suggests a mechanism of sustained STAT6 activation in cysts. Genetic inactivation of STAT6 in a PKD mouse model leads to significant inhibition of proliferation and cyst growth and preservation of renal function. We show that the active metabolite of leflunomide, a drug approved for treatment of arthritis, inhibits STAT6 in renal epithelial cells. Treatment of PKD mice with this drug leads to amelioration of the renal cystic disease similar to genetic STAT6 inactivation. These results suggest STAT6 as a promising drug target for treatment of ADPKD.
Collapse
|
16
|
Akiho H, Ihara E, Motomura Y, Nakamura K. Cytokine-induced alterations of gastrointestinal motility in gastrointestinal disorders. World J Gastrointest Pathophysiol 2011; 2:72-81. [PMID: 22013552 PMCID: PMC3196622 DOI: 10.4291/wjgp.v2.i5.72] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 08/12/2011] [Accepted: 08/19/2011] [Indexed: 02/06/2023] Open
Abstract
Inflammation and immune activation in the gut are usually accompanied by alteration of gastrointestinal (GI) motility. In infection, changes in motor function have been linked to host defense by enhancing the expulsion of the infectious agents. In this review, we describe the evidence for inflammation and immune activation in GI infection, inflammatory bowel disease, ileus, achalasia, eosinophilic esophagitis, microscopic colitis, celiac disease, pseudo-obstruction and functional GI disorders. We also describe the possible mechanisms by which inflammation and immune activation in the gut affect GI motility. GI motility disorder is a broad spectrum disturbance of GI physiology. Although several systems including central nerves, enteric nerves, interstitial cells of Cajal and smooth muscles contribute to a coordinated regulation of GI motility, smooth muscle probably plays the most important role. Thus, we focus on the relationship between activation of cytokines induced by adaptive immune response and alteration of GI smooth muscle contractility. Accumulated evidence has shown that Th1 and Th2 cytokines cause hypocontractility and hypercontractility of inflamed intestinal smooth muscle. Th1 cytokines downregulate CPI-17 and L-type Ca2+ channels and upregulate regulators of G protein signaling 4, which contributes to hypocontractility of inflamed intestinal smooth muscle. Conversely, Th2 cytokines cause hypercontractilty via signal transducer and activator of transcription 6 or mitogen-activated protein kinase signaling pathways. Th1 and Th2 cytokines have opposing effects on intestinal smooth muscle contraction via 5-hydroxytryptamine signaling. Understanding the immunological basis of altered GI motor function could lead to new therapeutic strategies for GI functional and inflammatory disorders.
Collapse
|
17
|
Marshall ES, Elshekiha HM, Hakimi MA, Flynn RJ. Toxoplasma gondii peroxiredoxin promotes altered macrophage function, caspase-1-dependent IL-1β secretion enhances parasite replication. Vet Res 2011; 42:80. [PMID: 21707997 PMCID: PMC3141401 DOI: 10.1186/1297-9716-42-80] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 06/27/2011] [Indexed: 01/09/2023] Open
Abstract
Alternatively activated macrophages (AAM) are a key feature Th2 immunity and have been associated with a variety of roles during helminth infection. The role this cell subset plays in protzoan infection remain relatively unexplored, herein we describe the effects of a redox enzyme (rTgPrx) derived from Toxoplasma gondii on murine macrophage phenotype in vitro. RTgPrx has been previously associated with the maintainence of parasite oxidative balance. Here our experiments show that rTgPrx promotes AAM as indicated by high arginase-1 (arg-1), YM1 and FIZZ expression via both signal transducer and activator of transcription (STAT)6-dependent and -independent mechanisms. Additionally rTgPrx treatment reduced caspase-1 activity and IL-1β secretion, while simultaneously increasing IL-10 release. Furthermore the in vitro replication of T. gondii (RH strain) was enhanced when macrophages were treated with rTgPrx. This is in contrast with the previously described effects of a Plasmodium berghei ANKA 2-cys-peroxiredoxin that promotes pro-inflammatory cytokine production. These results highlight the role of T. gondii derived redox enzymes as important immune modulators and potentially indicate a role for AAM in modulating immunopathology and promoting parasite replication during T. gondii infection.
Collapse
Affiliation(s)
- Edward S Marshall
- School of Veterinary Medicine & Science, Faculty of Medicine and Health Sciences, University of Nottingham, Sutton Bonington Campus, Leicestershire, LE12 5RD, UK.
| | | | | | | |
Collapse
|
18
|
Ihara E, Akiho H, Nakamura K, Turner SR, MacDonald JA. MAPKs represent novel therapeutic targets for gastrointestinal motility disorders. World J Gastrointest Pathophysiol 2011; 2:19-25. [PMID: 21607162 PMCID: PMC3097965 DOI: 10.4291/wjgp.v2.i2.19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 01/28/2011] [Accepted: 02/04/2011] [Indexed: 02/06/2023] Open
Abstract
The number of patients suffering from symptoms associated with gastrointestinal (GI) motility disorders is on the rise. GI motility disorders are accompanied by alteration of gastrointestinal smooth muscle functions. Currently available drugs, which can directly affect gastrointestinal smooth muscle and restore altered smooth muscle contractility to normal, are not satisfactory for treating patients with GI motility disorders. We have recently shown that ERK1/2 and p38MAPK signaling pathways play an important role in the contractile response not only of normal intestinal smooth muscle but also of inflamed intestinal smooth muscle. Here we discuss the possibility that ERK1/2 and p38MAPK signaling pathways represent ideal targets for generation of novel therapeutics for patients with GI motility disorders.
Collapse
|
19
|
Perkins C, Yanase N, Smulian G, Gildea L, Orekov T, Potter C, Brombacher F, Aronow B, Wills-Karp M, Finkelman FD. Selective stimulation of IL-4 receptor on smooth muscle induces airway hyperresponsiveness in mice. ACTA ACUST UNITED AC 2011; 208:853-67. [PMID: 21464224 PMCID: PMC3135339 DOI: 10.1084/jem.20100023] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
IL-4Rα expression on airway smooth muscle cells is sufficient for the development of airway hyperresponsiveness. Production of the cytokines IL-4 and IL-13 is increased in both human asthma and mouse asthma models, and Stat6 activation by the common IL-4/IL-13R drives most mouse model pathophysiology, including airway hyperresponsiveness (AHR). However, the precise cellular mechanisms through which IL-4Rα induces AHR remain unclear. Overzealous bronchial smooth muscle constriction is thought to underlie AHR in human asthma, but the smooth muscle contribution to AHR has never been directly assessed. Furthermore, differences in mouse versus human airway anatomy and observations that selective IL-13 stimulation of Stat6 in airway epithelium induces murine AHR raise questions about the importance of direct IL-4R effects on smooth muscle in murine asthma models and the relevance of these models to human asthma. Using transgenic mice in which smooth muscle is the only cell type that expresses or fails to express IL-4Rα, we demonstrate that direct smooth muscle activation by IL-4, IL-13, or allergen is sufficient but not necessary to induce AHR. Five genes known to promote smooth muscle migration, proliferation, and contractility are activated by IL-13 in smooth muscle in vivo. These observations demonstrate that IL-4Rα promotes AHR through multiple mechanisms and provide a model for testing smooth muscle–directed asthma therapeutics.
Collapse
Affiliation(s)
- Charles Perkins
- Department of Medicine, Cincinnati Veterans Affairs Medical Center, Cincinnati, OH 45220, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Marillier RG, Brombacher TM, Dewals B, Leeto M, Barkhuizen M, Govender D, Kellaway L, Horsnell WGC, Brombacher F. IL-4R{alpha}-responsive smooth muscle cells increase intestinal hypercontractility and contribute to resistance during acute Schistosomiasis. Am J Physiol Gastrointest Liver Physiol 2010; 298:G943-51. [PMID: 20360135 DOI: 10.1152/ajpgi.00321.2009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Interleukin-(IL)-4 and IL-13 signal through heterodimeric receptors containing a common IL-4 receptor-alpha (IL-4Ralpha) subunit, which is important for protection against helminth infections, including schistosomiasis. Previous studies demonstrated important roles for IL-4Ralpha-responsive hematopoietic cells, including T cells and macrophages in schistosomiasis. In this study, we examined the role of IL-4Ralpha responsiveness by nonhematopoietic smooth muscle cells during experimental acute murine schistosomiasis. Comparative Schistosoma mansoni infection studies with smooth muscle cell-specific IL-4Ralpha-deficient (SM-MHC(cre)IL-4Ralpha(-/flox)) mice, heterozygous control (IL-4Ralpha(-/flox)) mice, and global IL-4Ralpha-deficient (IL-4Ralpha(-/-)) mice were conducted. S. mansoni-infected SM-MHC(cre)IL-4Ralpha(-/flox) mice showed increased weight loss and earlier mortalities compared with IL-4Ralpha(-/flox) mice, despite comparable T(H)2/type 2 immune responses. In contrast to highly susceptible IL-4Ralpha-deficient mice, increased susceptibility in SM-MHC(cre)IL-4Ralpha(-/flox) mice was not accompanied by intestinal tissue damage and subsequent sepsis. However, both susceptible mutant mouse strains failed to efficiently expel eggs, demonstrated by egg reduction in the feces compared with control mice. Reduced egg expulsion was accompanied by impaired IL-4/IL-13-mediated hypercontractile intestinal responses, which was present in the more resistant control mice. Together, we conclude that IL-4Ralpha responsiveness by smooth muscle cells and subsequent IL-4- and IL-13-mediated hypercontractility are required for host protection during acute schistosomiasis to efficiently expel S. mansoni eggs and to prevent premature mortality.
Collapse
Affiliation(s)
- Reece G Marillier
- International Centre for Genetic Engineering and Biotechnology (ICGEB Univ. of Cape Town Campus, Wernher Beit South, 7925 Cape Town, South Africa
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Finkelman FD, Hogan SP, Hershey GKK, Rothenberg ME, Wills-Karp M. Importance of cytokines in murine allergic airway disease and human asthma. THE JOURNAL OF IMMUNOLOGY 2010; 184:1663-74. [PMID: 20130218 DOI: 10.4049/jimmunol.0902185] [Citation(s) in RCA: 229] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Asthma is a common, disabling inflammatory respiratory disease that has increased in frequency and severity in developed nations. We review studies of murine allergic airway disease (MAAD) and human asthma that evaluate the importance of Th2 cytokines, Th2 response-promoting cytokines, IL-17, and proinflammatory and anti-inflammatory cytokines in MAAD and human asthma. We discuss murine studies that directly stimulate airways with specific cytokines or delete, inactivate, neutralize, or block specific cytokines or their receptors, as well as controversial issues including the roles of IL-5, IL-17, and IL-13Ralpha2 in MAAD and IL-4Ralpha expression by specific cell types. Studies of human asthmatic cytokine gene and protein expression, linkage of cytokine polymorphisms to asthma, cytokine responses to allergen stimulation, and clinical responses to cytokine antagonists are discussed as well. Results of these analyses establish the importance of specific cytokines in MAAD and human asthma and have therapeutic implications.
Collapse
Affiliation(s)
- Fred D Finkelman
- Department of Medicine, Cincinnati Veterans Affairs Medical Center, Cincinnati, OH 45220, USA.
| | | | | | | | | |
Collapse
|
22
|
Mizutani T, Akiho H, Khan WI, Murao H, Ogino H, Kanayama K, Nakamura K, Takayanagi R. Persistent gut motor dysfunction in a murine model of T-cell-induced enteropathy. Neurogastroenterol Motil 2010; 22:196-203, e65. [PMID: 19735478 DOI: 10.1111/j.1365-2982.2009.01396.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND Inflammatory bowel disease (IBD) patients in remission often experience irritable bowel syndrome (IBS)-like symptoms. We investigated the mechanism for intestinal muscle hypercontractility seen in T-cell-induced enteropathy in recovery phase. METHODS BALB/c mice were treated with an anti-CD3 antibody (100 microg per mouse) and euthanized at varying days post-treatment to investigate the histological changes, longitudinal smooth muscle cell contraction, cytokines (Th1, Th2 cytokines, TNF-alpha) and serotonin (5-HT)-expressing enterochromaffin cell numbers in the small intestine. The role of 5-HT in anti-CD3 antibody-induced intestinal muscle function in recovery phase was assessed by inhibiting 5-HT synthesis using 4-chloro-DL-phenylalanine (PCPA). KEY RESULTS Small intestinal tissue damage was observed from 24 h after the anti-CD3 antibody injection, but had resolved by day 5. Carbachol-induced smooth muscle cell contractility was significantly increased from 4 h after injection, and this muscle hypercontractility was evident in recovery phase (at day 7). Th2 cytokines (IL-4, IL-13) were significantly increased from 4 h to day 7. 5-HT-expressing cells in the intestine were increased from day 1 to day 7. The 5-HT synthesis inhibitor PCPA decreased the anti-CD3 antibody-induced muscle hypercontractility in recovery phase. CONCLUSIONS & INFERENCES Intestinal muscle hypercontractility in remission is maintained at the smooth muscle cell level. Th2 cytokines and 5-HT in the small intestine contribute to the maintenance of the altered muscle function in recovery phase.
Collapse
Affiliation(s)
- T Mizutani
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Hu W, Li F, Mahavadi S, Murthy KS. Upregulation of RGS4 expression by IL-1beta in colonic smooth muscle is enhanced by ERK1/2 and p38 MAPK and inhibited by the PI3K/Akt/GSK3beta pathway. Am J Physiol Cell Physiol 2009; 296:C1310-20. [PMID: 19369446 DOI: 10.1152/ajpcell.00573.2008] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Initial Ca(2+)-dependent contraction of intestinal smooth muscle is inhibited upon IL-1beta treatment. The decrease in contraction reflects the upregulation of regulator of G protein signaling-4 (RGS4) via the canonical inhibitor of NF-kappaB kinase-2 (IKK2)/IkappaB-alpha/NF-kappaB pathway. Here, we show that the activation of various protein kinases, including ERK1/2, p38 MAPK, and phosphoinositide 3-kinase (PI3K), differentially modulates IL-1beta-induced upregulation of RGS4 in rabbit colonic muscle cells. IL-1beta treatment caused a transient phosphorylation of ERK1/2 and p38 MAPK. It also caused the phosphorylation of Akt and glycogen synthase kinase-3beta (GSK3beta), sequential downstream effectors of PI3K. Pretreatment with PD-98059 (an ERK inhibitor) and SB-203580 (a p38 MAPK inhibitor) significantly inhibited IL-1beta-induced RGS4 expression. In contrast, LY-294002 (a PI3K inhibitor) augmented, whereas GSK3beta inhibitors inhibited, IL-1beta-induced RGS4 expression. PD-98059 blocked IL-1beta-induced phosphorylation of IKK2, degradation of IkappaB-alpha, and phosphorylation and nuclear translocation of NF-kappaB subunit p65, whereas SB-203580 had a marginal effect, implying that the effect of ERK1/2 is exerted on the canonical IKK2/IkappaB-alpha/p65 pathway of NF-kappaB activation but that the effect of p38 MAPK may not predominantly involve NF-kappaB signaling. The increase in RGS4 expression enhanced by LY-294002 was accompanied by an increase in the phosphorylation of IKK2/IkappaB-alpha/p65 and blocked by pretreatment with inhibitors of IKK2 (IKK2-IV) and IkappaB-alpha (MG-132). Inhibition of GSK3beta abolished IL-1beta-induced phosphorylation of IKK2/p65. These findings suggest that ERK1/2 and p38 MAPK enhance IL-1beta-induced upregulation of RGS4; the effect of ERK1/2 reflects its ability to promote IKK2 phosphorylation and increase NF-kappaB activity. GSK3beta acts normally to augment the activation of the canonical NF-kappaB signaling. The PI3K/Akt/GSK3beta pathway attenuates IL-1beta-induced upregulation of RGS4 expression by inhibiting NF-kappaB activation.
Collapse
Affiliation(s)
- Wenhui Hu
- Department of Physiology and Biophysics, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia, USA.
| | | | | | | |
Collapse
|
24
|
Chiba Y, Todoroki M, Nishida Y, Tanabe M, Misawa M. A novel STAT6 inhibitor AS1517499 ameliorates antigen-induced bronchial hypercontractility in mice. Am J Respir Cell Mol Biol 2009; 41:516-24. [PMID: 19202006 DOI: 10.1165/rcmb.2008-0163oc] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Interleukin-13 (IL-13) is one of the central mediators for development of airway hyperresponsiveness in asthma. The signal transducer and activation of transcription 6 (STAT6) is one of the major signal transducers activated by IL-13, and a possible involvement of IL-13/STAT6 pathway in the augmented bronchial smooth muscle (BSM) contraction has been suggested. In the present study, the effect of a novel STAT6 inhibitor, AS1517499, on the development of antigen-induced BSM hyperresponsiveness was investigated. In cultured human BSM cells, IL-13 (100 ng/ml) caused a phosphorylation of STAT6 and an up-regulation of RhoA, a monomeric GTPase responsible for Ca2+ sensitization of smooth muscle contraction: both events were inhibited by co-incubation with AS1517499 (100 nM). In BALB/c mice that were actively sensitized and repeatedly challenged with ovalbumin antigen, an increased IL-13 level in bronchoalveolar lavage fluids and a phosphorylation of STAT6 in bronchial tissues were observed after the last antigen challenge. These mice had an augmented BSM contractility to acetylcholine together with an up-regulation of RhoA in bronchial tissues. Intraperitoneal injections of AS1517499 (10 mg/kg) 1 hour before each ovalbumin exposure inhibited both the antigen-induced up-regulation of RhoA and BSM hyperresponsiveness, almost completely. A partial but significant inhibition of antigen-induced production of IL-13 was also found. These findings suggest that the inhibitory effects of STAT6 inhibitory agents, such as AS1517499, both on RhoA and IL-13 up-regulations might be useful for asthma treatment.
Collapse
Affiliation(s)
- Yoshihiko Chiba
- Department of Pharmacology, School of Pharmacy, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan.
| | | | | | | | | |
Collapse
|
25
|
Ohama T, Hori M, Fujisawa M, Kiyosue M, Hashimoto M, Ikenoue Y, Jinno Y, Miwa H, Matsumoto T, Murata T, Ozaki H. Downregulation of CPI-17 contributes to dysfunctional motility in chronic intestinal inflammation model mice and ulcerative colitis patients. J Gastroenterol 2009; 43:858-65. [PMID: 19012039 DOI: 10.1007/s00535-008-2241-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Accepted: 06/26/2008] [Indexed: 02/04/2023]
Abstract
BACKGROUND Chronic intestinal inflammation is frequently accompanied by motility disorders. We previously reported that proinflammatory cytokines, such as tumor necrosis factor alpha and interleukin (IL)-1beta downregulate CPI-17, an endogenous inhibitor of serine/threonine protein phosphatase in smooth-muscle cells, which results in the inhibition of myosin light chain phosphorylation and contractility. However, its clinical relevance has not been clarified. METHODS The present study examined the changes in CPI-17 expression in chronic intestinal inflammation using smooth-muscle tissues from IL-10 knockout mice and from patients with ulcerative colitis (UC). RESULTS The IL-10 knockout mice developed spontaneous and chronic colitis accompanied by immune cell infiltration, submucosal fibrosis, and thickening of the muscularis externa. The expression of alpha-smooth muscle actin protein in the smooth-muscle layer did not change, whereas that of CPI-17 protein was decreased by about 40% compared with healthy wild-type controls. Consistent with this observation, smooth-muscle contractile force and myosin light chain phosphorylation induced by a muscarinic agonist were reduced in the knockout mice. Moreover, we observed that CPI-17 protein expression was decreased in smooth-muscle tissues from patients with UC compared with controls. CONCLUSIONS CPI-17 downregulation might contribute to the decreased motor function in chronic inflammatory bowel diseases.
Collapse
Affiliation(s)
- Takashi Ohama
- Department of Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Ihara E, Beck PL, Chappellaz M, Wong J, Medlicott SA, MacDonald JA. Mitogen-activated protein kinase pathways contribute to hypercontractility and increased Ca2+ sensitization in murine experimental colitis. Mol Pharmacol 2009; 75:1031-41. [PMID: 19190174 DOI: 10.1124/mol.108.049858] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Inflammatory bowel disease (IBD) is associated with intestinal smooth muscle dysfunction. Many smooth muscle contractile events are associated with alterations in Ca(2+)-sensitizing pathways. The aim of the present study was to assess the effect of colitis on Ca(2+) sensitization and the signaling pathways responsible for contractile dysfunction in murine experimental colitis. Colitis was induced in BALB/c mice by providing 5% dextran sulfate sodium (DSS) in drinking water for 7 days. Contractile responses of colonic circular smooth muscle strips to 118 mM K(+) and carbachol (CCh) were assessed. DSS induced a T(H)2 colitis [increased interleukin (IL)-4 and IL-6] with no changes in T(H)1 cytokines. Animals exposed to DSS had increased CCh-induced contraction (3.5-fold) and CCh-induced Ca(2+)-sensitization (2.2-fold) responses in intact and alpha-toxin permeabilized colonic smooth muscle, respectively. The contributions of extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinase (MAPK) to CCh-induced contractions were significantly increased during colitis. Ca(2+)-independent contraction induced by microcystin was potentiated (1.5-fold) in mice with colitis. ERK and p38MAPK (but not Rho-associated kinase) contributed to this potentiation. ERK1/2 and p38MAPK expression were increased in the muscularis propria of colonic tissue from both DSS-treated mice and patients with IBD (ulcerative colitis >> Crohn's disease). Murine T(H)2 colitis resulted in colonic smooth muscle hypercontractility with increased Ca(2+) sensitization. Both ERK and p38MAPK pathways contributed to this contractile dysfunction, and expression of these molecules was altered in patients with IBD.
Collapse
Affiliation(s)
- Eikichi Ihara
- Department of Biochemistry and Molecular Biology, University of Calgary, Faculty of Medicine, Calgary, Alberta, Canada
| | | | | | | | | | | |
Collapse
|
27
|
Brandt EB, Munitz A, Orekov T, Mingler MK, McBride M, Finkelman FD, Rothenberg ME. Targeting IL-4/IL-13 signaling to alleviate oral allergen-induced diarrhea. J Allergy Clin Immunol 2008; 123:53-8. [PMID: 18996576 DOI: 10.1016/j.jaci.2008.10.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Revised: 09/07/2008] [Accepted: 10/01/2008] [Indexed: 02/09/2023]
Abstract
BACKGROUND Intestinal anaphylaxis (manifested by acute diarrhea) is dependent on IgE and mast cells. OBJECTIVE We aimed to define the respective roles of IL-4 and IL-13 and their receptors in disease pathogenesis. METHODS Wild-type mice and mice deficient in IL-4, IL-13, and IL-13 receptor (IL-13R) alpha1 (part of the type 2 IL-4 receptor [IL-4R]) were sensitized with ovalbumin (OVA)/aluminum potassium sulfate and subsequently given repeated intragastric OVA exposures. The IL-4R alpha chain was targeted with anti-IL-4R alpha mAb before or after intragastric OVA exposures. RESULTS IL4(-/-) (and IL4/IL13(-/-)) mice produced almost no IgE and were highly resistant to OVA-induced diarrhea, whereas allergic diarrhea was only partially impaired in IL13(-/-) and IL13Ralpha1(-/-) mice. IL13Ralpha1-deficient mice had decreased IgE levels, despite having normal baseline IL-4 levels. Intestinal mast cell accumulation and activation also depended mainly on IL-4 and, to a lesser extent, on IL-13. Prophylactic anti-IL-4R alpha mAb treatment, which blocks all IL-4 and IL-13 signaling, suppressed development of allergic diarrhea. However, treatment with anti-IL-4R alpha mAb for 7 days only partially suppressed IgE and did not prevent intestinal diarrhea. CONCLUSION Endogenously produced IL-13 supplements the ability of IL-4 to induce allergic diarrhea by promoting oral allergen sensitization rather than the effector phase of intestinal anaphylaxis.
Collapse
Affiliation(s)
- Eric B Brandt
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Chiba Y, Nakazawa S, Todoroki M, Shinozaki K, Sakai H, Misawa M. Interleukin-13 augments bronchial smooth muscle contractility with an up-regulation of RhoA protein. Am J Respir Cell Mol Biol 2008; 40:159-67. [PMID: 18688040 DOI: 10.1165/rcmb.2008-0162oc] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Interleukin-13 (IL-13) is one of the central mediators for development of airway hyperresponsiveness in asthma. However, its effect on bronchial smooth muscle (BSM) is not well known. Recent studies revealed an involvement of RhoA/Rho-kinase in BSM contraction, and this pathway has now been proposed as a new target for asthma therapy. To elucidate the role of IL-13 on the induction of BSM hyperresponsiveness, effects of IL-13 on contractility and RhoA expression in BSMs were investigated. Male BALB/c mice were sensitized and repeatedly challenged with ovalbumin antigen. In the repeatedly antigen-challenged mice, marked airway inflammation and BSM hyperresponsiveness with an up-regulation of IL-13 in bronchoalveolar lavage fluids were observed. In cultured human BSM cells, IL-13 caused an up-regulation of RhoA. The IL-13-induced up-regulation of RhoA was inhibited by leflunomide, an inhibitor of signal transducer and activator of transcription 6 (STAT6). In isolated BSM tissues of naive mice, the contractility was significantly enhanced by organ culture in the presence of IL-13. Moreover, in vivo treatment of airways with IL-13 by intranasal instillation caused a BSM hyperresponsiveness with an up-regulation of RhoA in naive mice. These findings suggest that IL-13/STAT6 signaling is critical for development of antigen-induced BSM hyperresponsiveness and that agents that specifically inhibit this pathway in BSM may provide a novel strategy for the treatment of asthma.
Collapse
Affiliation(s)
- Yoshihiko Chiba
- Department of Pharmacology, School of Pharmacy, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan.
| | | | | | | | | | | |
Collapse
|
29
|
De Schepper HU, De Man JG, Moreels TG, Pelckmans PA, De Winter BY. Review article: gastrointestinal sensory and motor disturbances in inflammatory bowel disease - clinical relevance and pathophysiological mechanisms. Aliment Pharmacol Ther 2008; 27:621-37. [PMID: 18221407 DOI: 10.1111/j.1365-2036.2008.03624.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND It is well known that inflammation has a profound impact on the neuromuscular apparatus of the gastrointestinal tract during the inflammatory insult and in periods of remission, at the site of inflammation and at distance from this site. The importance of this interaction is illustrated by the higher prevalence of functional gut disorders in patients with inflammatory bowel disease. AIMS To document the epidemiological and clinical significance of functional alterations of gut motility and sensitivity in patients with inflammatory bowel disease and to formulate potential pathophysiological mechanisms. RESULTS AND CONCLUSIONS Functional gut disorders occur frequently in patients with inflammatory bowel disease, both during inflammatory episodes and in periods of remission, and have a major impact on their quality of life. The clinical manifestations of these motility and sensitivity disorders vary and are often difficult to treat, mainly because therapeutic guidelines and specific diagnostic tests to distinguish inflammatory bowel disease from functional gut disorders are lacking. Chronic bowel inflammation results in a complicated interaction between neuroendocrine serotonin-predominant cells of the mucosa, inflammatory cells (particularly mast cells) in the submucosa, the intrinsic and extrinsic innervation and the muscular apparatus including the interstitial cells of Cajal. The outcome of this interaction is a perturbation of gastrointestinal motor function, both locally and at distance from the site of inflammation and during both acute inflammation and remission.
Collapse
Affiliation(s)
- H U De Schepper
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology, University of Antwerp, Antwerp, Belgium
| | | | | | | | | |
Collapse
|
30
|
Ren Z, Turton J, Borody T, Pang G, Clancy R. Selective Th2 pattern of cytokine secretion in Mycobacterium avium subsp. paratuberculosis infected Crohn's disease. J Gastroenterol Hepatol 2008; 23:310-4. [PMID: 18289359 DOI: 10.1111/j.1440-1746.2007.04865.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND AND AIMS The pathogenesis of Crohn's disease (CD) remains unclear. A major controversy has been whether infection with Mycobacterium avium subspecies paratuberculosis (MAP) plays a significant role. Current support for a role of MAP is largely based on epidemiological data. The aim of this study was to determine whether MAP detection in gut biopsies is associated with a different cytokine secretion profile as observed in whole blood culture. METHODS A whole blood culture system was employed to measure cytokine secretion, using an ELISA assay, in subjects with CD (n = 46), ulcerative colitis (n = 30), irritable bowel syndrome (n = 22) and normal controls (n = 18). MAP status was defined by nested PCR using an IS900 sequence unique to MAP. RESULTS Significantly higher levels of interleukin (IL)-4 (P < 0.05) and IL-2 (P < 0.05) were found in MAP+ CD compared to MAP- CD. This was selective, as MAP+ subjects in both normal and disease controls had similar levels of IL-4 and IL-2 to those with no detectable MAP. IL-4 secretion was correlated with IL-2 production in blood cultures in CD (P < 0.01), consistent with a skewed Th2 immune response. CONCLUSIONS This data set provides the first evidence of altered T cell function linked to MAP infection in CD, and provides a link between detection of MAP and disease. The pattern of cytokine shift in CD is consistent with the concept that the increasing incidence of CD is in part related to the hygiene theory.
Collapse
Affiliation(s)
- Zhigang Ren
- Discipline of Immunology and Microbiology, School of Biomedical Sciences, University of Newcastle, Newcastle, New South Wales, Australia
| | | | | | | | | |
Collapse
|
31
|
Hu W, Mahavadi S, Li F, Murthy KS. Upregulation of RGS4 and downregulation of CPI-17 mediate inhibition of colonic muscle contraction by interleukin-1beta. Am J Physiol Cell Physiol 2007; 293:C1991-2000. [PMID: 17959727 PMCID: PMC4123227 DOI: 10.1152/ajpcell.00300.2007] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The pro-inflammatory cytokine IL-1beta contributes to the reduced contractile responses of gut smooth muscle observed in both animal colitis models and human inflammatory bowel diseases. However, the mechanisms are not well understood. The effects of IL-1beta on the signaling targets mediating acetylcholine (ACh)-induced initial and sustained contraction were examined using rabbit colonic circular muscle strips and cultured muscle cells. The contraction was assessed through cell length decrease, myosin light chain (MLC(20)) phosphorylation, and activation of PLC-beta and Rho kinase. Expression levels of the signaling targets were determined by Western blot analysis and real-time RT-PCR. Short interfering RNAs (siRNAs) for regulator of G protein signaling 4 (RGS4) were used to silence endogenous RGS4 in muscle strips or cultured muscle cells. IL-1beta treatment of muscle strips inhibited both initial and sustained contraction and MLC(20) phosphorylation in isolated muscle cells. IL-1beta treatment increased RGS4 expression but had no effect on muscarinic receptor binding or Galpha(q) expression. In contrast, IL-1beta decreased the expression and phosphorylation of CPI-17 but had no effect on RhoA expression or ACh-induced Rho kinase activity. Upregulation of RGS4 and downregulation of CPI-17 by IL-1beta in muscle strips were corroborated in cultured muscle cells. Knockdown of RGS4 by siRNA in both muscle strips and cultured muscle cells blocked the inhibitory effect of IL-1beta on initial contraction and PLC-beta activation, whereas overexpression of RGS4 inhibited PLC-beta activation. These data suggest that IL-1beta upregulates RGS4 expression, resulting in the inhibition of initial contraction and downregulation of CPI-17 expression during sustained contraction in colonic smooth muscle.
Collapse
Affiliation(s)
- Wenhui Hu
- Department of Physiology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298, USA.
| | | | | | | |
Collapse
|
32
|
Ohama T, Hori M, Ozaki H. Mechanism of abnormal intestinal motility in inflammatory bowel disease: how smooth muscle contraction is reduced? J Smooth Muscle Res 2007; 43:43-54. [PMID: 17598957 DOI: 10.1540/jsmr.43.43] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Intestinal inflammation alters the contractile activity of intestinal smooth muscle. Motility disorders of the gastrointestinal tract are clinically important symptoms, because they are often associated with severe interstitial inflammation. In addition, the motility disorders secondarily induce abnormal growth of the intestinal flora, and the resulting disturbance of this flora aggravates the pathogenesis of mucosal inflammation. This in turn aggravates the intestinal dysmotility; i.e., it is an inflammatory spiral. Therefore, it is important to elucidate the mechanisms involved in the changes in motor function which occur in intestinal inflammation. Recent studies have revealed several molecular mechanisms responsible for the decreased motility which occurs in an inflamed gastrointestinal tract. In the present review, we discuss the functional failure of smooth muscle cells, including changes in the activity of muscarinic receptors, ion channels and the endogenous myosin phosphatase inhibitor CPI-17.
Collapse
Affiliation(s)
- Takashi Ohama
- Department of Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | | | | |
Collapse
|
33
|
Horsnell WGC, Cutler AJ, Hoving CJ, Mearns H, Myburgh E, Arendse B, Finkelman FD, Owens GK, Erle D, Brombacher F. Delayed goblet cell hyperplasia, acetylcholine receptor expression, and worm expulsion in SMC-specific IL-4Ralpha-deficient mice. PLoS Pathog 2007; 3:e1. [PMID: 17222057 PMCID: PMC1769405 DOI: 10.1371/journal.ppat.0030001] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2006] [Accepted: 11/22/2006] [Indexed: 11/19/2022] Open
Abstract
Interleukin 4 receptor alpha (IL-4Ralpha) is essential for effective clearance of gastrointestinal nematode infections. Smooth muscle cells are considered to play a role in the type 2 immune response-driven expulsion of gastrointestinal nematodes. Previous studies have shown in vitro that signal transducer and activator of transcription 6 signaling in response to parasitic nematode infection significantly increases smooth muscle cell contractility. Inhibition of the IL-4Ralpha pathway inhibits this response. How this response manifests itself in vivo is unknown. In this study, smooth muscle cell IL-4Ralpha-deficient mice (SM-MHC(Cre)IL-4Ralpha(-/lox)) were generated and characterized to uncover any role for IL-4/IL-13 in this non-immune cell type in response to Nippostrongylus brasiliensis infection. IL-4Ralpha was absent from alpha-actin-positive smooth muscle cells, while other cell types showed normal IL-4Ralpha expression, thus demonstrating efficient cell-type-specific deletion of the IL-4Ralpha gene. N. brasiliensis-infected SM-MHC(Cre)IL-4Ralpha(-/lox) mice showed delayed ability to resolve infection with significantly prolonged fecal egg recovery and delayed worm expulsion. The delayed expulsion was related to a delayed intestinal goblet cell hyperplasia, reduced T helper 2 cytokine production in the mesenteric lymph node, and reduced M3 muscarinic receptor expression during infection. Together, these results demonstrate that in vivo IL-4Ralpha-responsive smooth muscle cells are beneficial for N. brasiliensis expulsion by coordinating T helper 2 cytokine responses, goblet hyperplasia, and acetylcholine responsiveness, which drive smooth muscle cell contractions.
Collapse
Affiliation(s)
- William G. C Horsnell
- Division of Immunology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Antony J Cutler
- Division of Immunology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Claire J Hoving
- Division of Immunology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Helen Mearns
- Division of Immunology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Elmarie Myburgh
- Division of Immunology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Berenice Arendse
- Division of Immunology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Fred D Finkelman
- Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Gary K Owens
- Department of Molecular Physiology and Biological Physics, University of Virginia Health Sciences Center, Charlottesville, Virginia, United States of America
| | - Dave Erle
- Lung Biology Center, Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Frank Brombacher
- Division of Immunology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
34
|
Vallance BA, Radojevic N, Hogaboam CM, Deng Y, Gauldie J, Collins SM. IL-4 gene transfer to the small bowel serosa leads to intestinal inflammation and smooth muscle hyperresponsiveness. Am J Physiol Gastrointest Liver Physiol 2007; 292:G385-94. [PMID: 17215437 DOI: 10.1152/ajpgi.00065.2006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Intestinal mucosal inflammation can lead to altered function of the underlying smooth muscle, which becomes hyperreactive to most contractile stimuli. Through nematode parasite infection models, T helper type 2 (Th2) cytokines have been implicated in intestinal muscle dysfunction; however, the mechanisms involved and the relevance of these findings to other forms of intestinal inflammation are unclear. Through gene transfer, we explored whether the Th2 cytokine IL-4 can mediate changes in longitudinal muscle function in the context of an adenoviral infection. Following abdominal surgery on mice, control beta-galactosidase-encoding recombinant adenoviruses and IL-4-encoding adenoviruses were applied to the serosal surface of the jejunum, leading to infection of cells in the serosa and in the mesentery. Marker transgene expression lasted for 3 wk and was accompanied by the recruitment of macrophages, lymphocytes, and neutrophils into the peritoneal cavity and mild inflammation at the site of infection. IL-4 transgene expression led to a stronger inflammatory response characterized by tissue eosinophilia and increased numbers of peritoneal mast cells and plasma cells. Whereas control virus infection had no effect on intestinal muscle function, infection with the IL-4 virus led to significant jejunal muscle hypercontractility, evident by day 7 postinfection. This modulation of smooth muscle function was shown to be IL-4 specific, since the application of an IL-5-encoding adenovirus induced tissue eosinophilia but did not alter muscle function. These results highlight an important causal role for IL-4 in the pathological regulation of enteric smooth muscle function and identify a novel strategy for gene transfer to the intestine.
Collapse
Affiliation(s)
- Bruce A Vallance
- Division of Gastroenterology, British Columbia's Children's Hospital, ACB, Rm. K4-188, 4480 Oak St., Vancouver, BC, Canada V6H 3V4.
| | | | | | | | | | | |
Collapse
|
35
|
Demedts I, Geboes K, Kindt S, Vanden Berghe P, Andrioli A, Janssens J, Tack J. Neural mechanisms of early postinflammatory dysmotility in rat small intestine. Neurogastroenterol Motil 2006; 18:1102-11. [PMID: 17109694 DOI: 10.1111/j.1365-2982.2006.00857.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Although human postinflammatory dysmotility is known, so far animal studies have primarily investigated changes during inflammation. Here, we focused on postinflammatory changes in rat jejunal myenteric plexus and jejunal motility. Evolution of ethanol/2,4,6-tri-nitrobenzene sulphonic acid (TNBS)-induced inflammation was assessed histologically and by measuring myeloperoxidase activity (MPO). Electromyography and immunohistochemistry were performed 1 week after ethanol/TNBS and also after N(G)-nitro-L-arginine methyl ester (L-NAME) administration. Ethanol/TNBS induced a transient inflammation, with normalization of MPO and histological signs of an early phase of recovery after 1 week. The number of cholinergic neurones was not altered, but myenteric neuronal nitric oxide synthase (nNOS)-immunoreactivity was significantly lower in the early phase of recovery after TNBS compared with water (1.8 +/- 0.2 vs 3.5 +/- 0.2 neurones ganglion(-1), P < 0.001). Interdigestive motility was disrupted with a loss of phase 1 quiescence, an increase of migrating myoelectric complex cycle length, a higher number of non-propagated activity fronts and a decrease of adequately propagated phase 3 s after TNBS. Administration of L-NAME resulted in a similar disruption of interdigestive motility patterns. In the early phase of recovery after ethanol/TNBS-induced jejunal inflammation, a loss of motor inhibition occurs due to a decrease of myenteric nNOS activity. These observations may provide a model for early postinflammatory dysmotility syndromes.
Collapse
Affiliation(s)
- I Demedts
- Center for Gastroenterological Research, Catholic University Leuven, Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
PURPOSE OF REVIEW Irritable bowel syndrome patients form a heterogeneous group with a variable contribution of central and peripheral components. The peripheral component is prominent in irritable bowel syndrome developing after infection (post-infectious irritable bowel syndrome) and this has proved a profitable area of research. RECENT FINDINGS Recent studies have overthrown the dogma that irritable bowel syndrome is characterized by no abnormality of structure by demonstrating low-grade lymphocytic infiltration in the gut mucosa, increased permeability and increases in other inflammatory components including enterochromaffin and mast cells. Furthermore, increased inflammatory cytokines in both mucosa and blood have been demonstrated in irritable bowel syndrome. While steroid treatment has proved ineffective, preliminary studies with probiotics exerting an anti-inflammatory effect have shown benefit. SUMMARY The study of post-infectious irritable bowel syndrome has revealed the importance of low-grade inflammation in causing irritable bowel syndrome symptoms. It has suggested novel approaches to irritable bowel syndrome including studies of serotonin and histamine metabolism which may be relevant to other subtypes of the disease.
Collapse
Affiliation(s)
- Robin Spiller
- Wolfson Digestive Diseases Centre, University Hospital, Nottingham, UK.
| | | |
Collapse
|