1
|
Atanga R, Appell LL, Thompson MN, Lauer FT, Brearley A, Campen MJ, Castillo EF, In JG. Single Cell Analysis of Human Colonoids Exposed to Uranium-Bearing Dust. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:57006. [PMID: 38771937 PMCID: PMC11108582 DOI: 10.1289/ehp13855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 04/23/2024] [Accepted: 04/30/2024] [Indexed: 05/23/2024]
Abstract
BACKGROUND Uranium exposure remains an important environmental legacy and physiological health concern, with hundreds of abandoned uranium mines located in the Southwestern United States largely impacting underserved indigenous communities. The negative effects of heavy metals on barrier permeability and inhibition of intestinal epithelial healing have been described; however, transcriptomic changes within the intestinal epithelial cells and impacts on lineage differentiation are largely unknown. OBJECTIVES Herein, we sought to determine the molecular and cellular changes that occur in the colon in response to uranium bearing dust (UBD) exposure. METHODS Human colonoids from three biologically distinct donors were acutely exposed to UBD then digested for single cell RNA sequencing to define the molecular changes that occur to specific identities of colonic epithelial cells. Validation in colonoids was assessed using morphological and imaging techniques. RESULTS Human colonoids acutely exposed to UBD exhibited disrupted proliferation and hyperplastic differentiation of the secretory lineage cell, enteroendocrine cells (EEC). Single-cell RNA sequencing also showed more EEC subtypes present in UBD-exposed colonoids. DISCUSSION These findings highlight the significance of crypt-based proliferative cells and secretory cell differentiation using human colonoids to model major colonic responses to uranium-bearing particulate dust exposure. https://doi.org/10.1289/EHP13855.
Collapse
Affiliation(s)
- Roger Atanga
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Lidia L. Appell
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Myranda N. Thompson
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Fredine T. Lauer
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Adrian Brearley
- Department of Earth and Planetary Sciences, College of Arts and Sciences, University of New Mexico, Albuquerque, New Mexico, USA
| | - Matthew J. Campen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Eliseo F. Castillo
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
- Autophagy, Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Julie G. In
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
- Autophagy, Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| |
Collapse
|
2
|
Jurkiewicz K, Miciak M, Kaliszewski K. Gastro-entero-pancreatic neuroendocrine neoplasms (GEP-NENs) - Current literature review of diagnostics and therapy. What has changed in the management? POLISH JOURNAL OF SURGERY 2024; 96:58-66. [PMID: 39138986 DOI: 10.5604/01.3001.0054.4169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
<b>Introduction:</b> Gastro-entero-pancreatic neuroendocrine neoplasms (GEP-NENs) are malignancies originating from cells of the diffuse endocrine system. They are rare and localize in the upper and lower parts of the gastrointestinal tract and in the pancreas. Despite such a varied location, GEP-NENs are considered a common group of neoplasms due to the fact of their similar morphology and ability to secrete peptide hormones and biologically active amines. They are associated with clinical manifestations specific to the substances produced by a particular neoplasm. The classification of GEP-NENs is constantly systematized and updated based on their differentiation and grading. The development of available diagnostic and treatment methods for these tumors has made significant progress over the past 10 years and is still ongoing.<b>Aim:</b> In the following paper, we review the diagnostics and treatment of GEP-NENs, taking into account the latest molecular, immunological, or gene-based methods. Imaging methods using markers for receptors allow for high diagnostic sensitivity<b>Methods:</b> Medical databases were searched for the latest information. The authors also sought confirmation of the content of a particular publication in another publications, so as to present the most reliable information possible.<b>Results:</b> Research results revealed that the diagnostics and treatment of GEP-NENs have significantly advanced in recent years. Surgical interventions, especially minimally invasive techniques, have shown efficacy in treating GEP-NENs, with specific therapies such as somatostatin analogs, chemotherapy, and peptide receptor radionuclide therapy demonstrating promising outcomes. The evolution of diagnostic methods, including imaging techniques and biomarker testing, has contributed to improved patient care and prognosis.<b>Conclusions:</b> The increasing incidence of GEP-NENs is attributed to enhanced diagnostic capabilities rather than a rise in population prevalence. The study emphasizes the importance of ongoing research to identify specific markers for early detection and targeted therapies to further enhance the effectiveness of treating these rare and heterogeneous malignancies. The findings suggest a positive trajectory in the management of GEP-NENs, with future prospects focused on personalized and targeted treatment approaches.
Collapse
Affiliation(s)
- Krzysztof Jurkiewicz
- Department of General, Minimally Invasive and Endocrine Surgery, Wroclaw Medical University, Poland
| | - Michał Miciak
- Department of General, Minimally Invasive and Endocrine Surgery, Wroclaw Medical University, Poland
| | - Krzysztof Kaliszewski
- Department of General, Minimally Invasive and Endocrine Surgery, Wroclaw Medical University, Poland
| |
Collapse
|
3
|
Tang D, Lim R, Korman L, Forbes J, Ellsbury K, Auh S, Trivedi A, Chen CC, Hughes M, Wank S. Performance of capsule endoscopy for the detection of small intestinal neuroendocrine tumors in familial carcinoid: a prospective single-site study. Gastrointest Endosc 2024; 99:227-236. [PMID: 37838323 DOI: 10.1016/j.gie.2023.08.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 10/16/2023]
Abstract
BACKGROUND AND AIMS Small-bowel neuroendocrine tumors (NETs) are slow growing, clinically silent tumors whose prognosis depends on disease stage. Members of kindreds with a familial form of small intestinal NETs (SI-NETs) represent a high-risk population for whom early detection improves disease outcome. Our aim was to determine the utility of small-bowel capsule endoscopy (SB-CE) for screening high-risk asymptomatic relatives from kindreds with familial carcinoid. METHODS One hundred seventy-four asymptomatic subjects with a family history (≥2 family members) of SI-NETs were screened under Protocol NCT00646022, Natural History of Familial Carcinoid Tumor at the National Institutes of Health. All patients were imaged with SB-CE and 18fluoro-dihydroxphenylalanine (18F-DOPA) positron emission tomography (PET)/CT, and results were independently analyzed. Patients with a positive imaging study underwent surgical exploration. RESULTS Thirty-five of 174 asymptomatic subjects screened for SI-NETs were positive on either SB-CE or 18F-DOPA PET. Thirty-two of 35 patients with a positive study were confirmed at surgery. SB-CE was positive in 28 of 32 patients with confirmed tumors for a per-patient sensitivity of 87.5%. SB-CE had a specificity of 97.3% and a negative predictive value of 96.5%. The average tumor number and size were 7.7 and 5.0 mm, respectively, and 81.2% of patients had multiple tumors. 18F-DOPA PET/CT had a similar sensitivity of 84% versus surgery. CONCLUSIONS SB-CE is a sensitive and specific method comparable with 18F-DOPA PET/CT for screening high-risk patients with familial SI-NET. (Clinical trial registration number: NCT00646022.).
Collapse
Affiliation(s)
- Derek Tang
- Digestive Disease Branch, National Institutes of Health, Bethesda, Maryland, USA; Kaiser Permanente, Anaheim, California, USA
| | - Ramona Lim
- Digestive Disease Branch, National Institutes of Health, Bethesda, Maryland, USA; Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, Boston, Massachusetts, USA; Division of Population Sciences, Dana-Farber Cancer Institute, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA
| | - Louis Korman
- Digestive Disease Branch, National Institutes of Health, Bethesda, Maryland, USA
| | - Joanne Forbes
- Digestive Disease Branch, National Institutes of Health, Bethesda, Maryland, USA
| | - Kristen Ellsbury
- Digestive Disease Branch, National Institutes of Health, Bethesda, Maryland, USA
| | - Sungyoung Auh
- Office of the Clinical Director, National Institutes of Health, Bethesda, Maryland, USA
| | - Apurva Trivedi
- Digestive Disease Branch, National Institutes of Health, Bethesda, Maryland, USA; Hospital at Westlake Medical Center, Austin, Texas, USA
| | - Clara C Chen
- National Institute of Diabetes and Digestive and Kidney Diseases, Nuclear Medicine Division, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Marybeth Hughes
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA; Surgical Oncology, East Virginia Medical School, Norfolk, Virginia, USA
| | - Stephen Wank
- Digestive Disease Branch, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
4
|
Quintero M, Bangi E. Disruptions in cell fate decisions and transformed enteroendocrine cells drive intestinal tumorigenesis in Drosophila. Cell Rep 2023; 42:113370. [PMID: 37924517 PMCID: PMC10841758 DOI: 10.1016/j.celrep.2023.113370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/11/2023] [Accepted: 10/18/2023] [Indexed: 11/06/2023] Open
Abstract
Most epithelial tissues are maintained by stem cells that produce the different cell lineages required for proper tissue function. Constant communication between different cell types ensures precise regulation of stem cell behavior and cell fate decisions. These cell-cell interactions are often disrupted during tumorigenesis, but mechanisms by which they are co-opted to support tumor growth in different genetic contexts are poorly understood. Here, we introduce PromoterSwitch, a genetic platform we established to generate large, transformed clones derived from individual adult Drosophila intestinal stem/progenitor cells. We show that cancer-driving genetic alterations representing common colon tumor genome landscapes disrupt cell fate decisions within transformed tissue and result in the emergence of abnormal cell fates. We also show that transformed enteroendocrine cells, a differentiated, hormone-secreting cell lineage, support tumor growth by regulating intestinal stem cell proliferation through multiple genotype-dependent mechanisms, which represent potential vulnerabilities that could be exploited for therapy.
Collapse
Affiliation(s)
- Maria Quintero
- Department of Biological Science, Florida State University, Tallahassee, FL 32304, USA
| | - Erdem Bangi
- Department of Biological Science, Florida State University, Tallahassee, FL 32304, USA.
| |
Collapse
|
5
|
Giri AK, Aavikko M, Wartiovaara L, Lemmetyinen T, Karjalainen J, Mehtonen J, Palin K, Välimäki N, Tamlander M, Saikkonen R, Karhu A, Morgunova E, Sun B, Runz H, Palta P, Luo S, Joensuu H, Mäkelä TP, Kostiainen I, Schalin-Jäntti C, FinnGen, Palotie A, Aaltonen LA, Ollila S, Daly MJ. Genome-Wide Association Study Identifies 4 Novel Risk Loci for Small Intestinal Neuroendocrine Tumors Including a Missense Mutation in LGR5. Gastroenterology 2023; 165:861-873. [PMID: 37453564 DOI: 10.1053/j.gastro.2023.06.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 05/07/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND & AIMS Small intestinal neuroendocrine tumor (SI-NET) is a rare disease, but its incidence has increased over the past 4 decades. Understanding the genetic risk factors underlying SI-NETs can help in disease prevention and may provide clinically beneficial markers for diagnosis. Here the results of the largest genome-wide association study of SI-NETs performed to date with 405 cases and 614,666 controls are reported. METHODS Samples from 307 patients with SI-NETs and 287,137 controls in the FinnGen study were used for the identification of SI-NET risk-associated genetic variants. The results were also meta-analyzed with summary statistics from the UK Biobank (n = 98 patients with SI-NET and n = 327,529 controls). RESULTS We identified 6 genome-wide significant (P < 5 × 10-8) loci associated with SI-NET risk, of which 4 (near SEMA6A, LGR5, CDKAL1, and FERMT2) are novel and 2 (near LTA4H-ELK and in KIF16B) have been reported previously. Interestingly, the top hit (rs200138614; P = 1.80 × 10-19) was a missense variant (p.Cys712Phe) in the LGR5 gene, a bona-fide marker of adult intestinal stem cells and a potentiator of canonical WNT signaling. The association was validated in an independent Finnish collection of 70 patients with SI-NETs, as well as in the UK Biobank exome sequence data (n = 92 cases and n = 392,814 controls). Overexpression of LGR5 p.Cys712Phe in intestinal organoids abolished the ability of R-Spondin1 to support organoid growth, indicating that the mutation perturbed R-Spondin-LGR5 signaling. CONCLUSIONS Our study is the largest genome-wide association study to date on SI-NETs and reported 4 new associated genome-wide association study loci, including a novel missense mutation (rs200138614, p.Cys712Phe) in LGR5, a canonical marker of adult intestinal stem cells.
Collapse
Affiliation(s)
- Anil K Giri
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland; Foundation for the Finnish Cancer Institute, Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Mervi Aavikko
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland; Department of Medical and Clinical Genetics and Applied Tumor Genomics Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Linnea Wartiovaara
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Toni Lemmetyinen
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Juha Karjalainen
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland; Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts; Program in Medical and Population Genetics, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts; Stanley Center for Psychiatric Research, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Juha Mehtonen
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Kimmo Palin
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland; Department of Medical and Clinical Genetics and Applied Tumor Genomics Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Niko Välimäki
- Department of Medical and Clinical Genetics and Applied Tumor Genomics Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Max Tamlander
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Riikka Saikkonen
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Auli Karhu
- Department of Medical and Clinical Genetics and Applied Tumor Genomics Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Ekaterina Morgunova
- Karolinska Institute, Department of Medical Biochemistry and Biophysics, Stockholm, Sweden
| | - Benjamin Sun
- Translational Biology, Research and Development, Biogen Inc, Cambridge, Massachusetts
| | - Heiko Runz
- Translational Biology, Research and Development, Biogen Inc, Cambridge, Massachusetts
| | - Priit Palta
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland; Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Shuang Luo
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Heikki Joensuu
- Department of Oncology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Tomi P Mäkelä
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Iiro Kostiainen
- Endocrinology, Abdominal Center, University of Helsinki, Helsinki University Hospital, Helsinki, Finland
| | - Camilla Schalin-Jäntti
- Endocrinology, Abdominal Center, University of Helsinki, Helsinki University Hospital, Helsinki, Finland
| | - FinnGen
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Aarno Palotie
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland; Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts; Stanley Center for Psychiatric Research, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Lauri A Aaltonen
- Department of Medical and Clinical Genetics and Applied Tumor Genomics Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Saara Ollila
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Mark J Daly
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland; Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts; Program in Medical and Population Genetics, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts; Stanley Center for Psychiatric Research, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts.
| |
Collapse
|
6
|
Atanga R, Appell LL, Lauer FT, Brearley A, Campen MJ, Castillo EF, In JG. Uranium-bearing dust induces differentiation and expansion of enteroendocrine cells in human colonoids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.10.552796. [PMID: 37609291 PMCID: PMC10441413 DOI: 10.1101/2023.08.10.552796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Chronic exposure to environmental toxins and heavy metals has been associated with intestinal inflammation, increased susceptibility to pathogen-induced diseases, and higher incidences of colorectal cancer, all of which have been steadily increasing in prevalence for the past 40 years. The negative effects of heavy metals on barrier permeability and inhibition of intestinal epithelial healing have been described; however, transcriptomic changes within the intestinal epithelial cells and impacts on lineage differentiation are largely unknown. Uranium exposure remains an important environmental legacy and physiological health concern, with hundreds of abandoned uranium mines located in the Southwestern United States largely impacting underserved indigenous communities. Herein, using human colonoids, we defined the molecular and cellular changes that occur in response to uranium bearing dust (UBD) exposure. We used single cell RNA sequencing to define the molecular changes that occur to specific identities of colonic epithelial cells. We demonstrate that this environmental toxicant disrupts proliferation and induces hyperplastic differentiation of secretory lineage cells, particularly enteroendocrine cells (EEC). EECs respond to UBD exposure with increased differentiation into de novo EEC sub-types not found in control colonoids. This UBD-induced EEC differentiation does not occur via canonical transcription factors NEUROG3 or NEUROD1. These findings highlight the significance of crypts-based proliferative cells and secretory cell differentiation as major colonic responses to heavy metal-induced injury.
Collapse
Affiliation(s)
- Roger Atanga
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Lidia L. Appell
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Fredine T. Lauer
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Adrian Brearley
- Department of Earth and Planetary Sciences, College of Arts and Sciences, University of New Mexico, Albuquerque, NM
| | - Matthew J. Campen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Eliseo F. Castillo
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM
- Autophagy, Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Julie G. In
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM
- Autophagy, Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM
| |
Collapse
|
7
|
Atanga R, Singh V, In JG. Intestinal Enteroendocrine Cells: Present and Future Druggable Targets. Int J Mol Sci 2023; 24:ijms24108836. [PMID: 37240181 DOI: 10.3390/ijms24108836] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/03/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Enteroendocrine cells are specialized secretory lineage cells in the small and large intestines that secrete hormones and peptides in response to luminal contents. The various hormones and peptides can act upon neighboring cells and as part of the endocrine system, circulate systemically via immune cells and the enteric nervous system. Locally, enteroendocrine cells have a major role in gastrointestinal motility, nutrient sensing, and glucose metabolism. Targeting the intestinal enteroendocrine cells or mimicking hormone secretion has been an important field of study in obesity and other metabolic diseases. Studies on the importance of these cells in inflammatory and auto-immune diseases have only recently been reported. The rapid global increase in metabolic and inflammatory diseases suggests that increased understanding and novel therapies are needed. This review will focus on the association between enteroendocrine changes and metabolic and inflammatory disease progression and conclude with the future of enteroendocrine cells as potential druggable targets.
Collapse
Affiliation(s)
- Roger Atanga
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Varsha Singh
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Julie G In
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|
8
|
Sei Y, Feng J, Zhao X, Dagur P, McCoy JP, Merchant JL, Wank SA. Tissue- and cell-specific properties of enterochromaffin cells affect the fate of tumorigenesis toward nonendocrine adenocarcinoma of the small intestine. Am J Physiol Gastrointest Liver Physiol 2023; 324:G177-G189. [PMID: 36537709 PMCID: PMC9925174 DOI: 10.1152/ajpgi.00205.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/16/2022] [Accepted: 12/14/2022] [Indexed: 01/31/2023]
Abstract
Small intestinal neuroendocrine tumors (SI-NETs) are serotonin-secreting well-differentiated neuroendocrine tumors of putative enterochromaffin (EC) cell origin. However, EC cell-derived tumorigenesis remains poorly understood. Here, we examined whether the gain of Myc and the loss of RB1 and Trp53 function in EC cells result in SI-NET using tryptophan hydroxylase 1 (TPH1) Cre-ERT2-driven RB1fl Trp53fl MycLSL (RPM) mice. TPH1-Cre-induced gain of Myc and loss of RB1 and Trp53 function resulted in endocrine or neuronal tumors in pancreas, lung, enteric neurons, and brain. Lineage tracing indicated that the cellular origin for these tumors was TPH1-expressing neuroendocrine, neuronal, or their precursor cells in these organs. However, despite that TPH1 is most highly expressed in EC cells of the small intestine, we observed no incidence of EC cell tumors. Instead, the tumor of epithelial cell origin in the intestine was exclusively nonendocrine adenocarcinoma, suggesting dedifferentiation of EC cells into intestinal stem cells (ISCs) as a cellular mechanism. Furthermore, ex vivo organoid studies indicated that loss of functions of Rb1 and Trp53 accelerated dedifferentiation of EC cells that were susceptible to apoptosis with expression of activated MycT58A, suggesting that the rare dedifferentiating cells escaping cell death went on to develop adenocarcinomas. Lineage tracing demonstrated that EC cells in the small intestine were short-lived compared with neuroendocrine or neuronal cells in other organs. In contrast, EC cell-derived ISCs were long-lasting and actively cycling and thus susceptible to transformation. These results suggest that tissue- and cell-specific properties of EC cells such as rapid cell turnover and homeostatic dedifferentiation, affect the fate and rate of tumorigenesis induced by genetic alterations and provide important insights into EC cell-derived tumorigenesis.NEW & NOTEWORTHY Small intestinal neuroendocrine tumors are of putative enterochromaffin (EC) cell origin and are the most common malignancy in the small intestine, followed by adenocarcinoma. However, the tumorigenesis of these tumor types remains poorly understood. The present lineage tracing studies showed that tissue- and cell-specific properties of EC cells such as rapid cell turnover and homeostatic dedifferentiation affect the fate and rate of tumorigenesis induced by genetic alterations toward a rare occurrence of adenocarcinoma.
Collapse
Affiliation(s)
- Yoshitatsu Sei
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Jianying Feng
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Xilin Zhao
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Pradeep Dagur
- Flow Cytometry Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - J Philip McCoy
- Flow Cytometry Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Juanita L Merchant
- Department of Internal Medicine-Gastroenterology, University of Arizona, Tuscan, Arizona
| | - Stephen A Wank
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
9
|
Sei Y, Forbes J, Da B, Chitsaz E, Feng J, Zhao X, Hughes MS, Wank SA. Diagnostic value of whole-mount crypt analysis of ileal biopsy specimens for the patients with familial small intestinal neuroendocrine tumors. Ther Adv Med Oncol 2023; 15:17588359231156871. [PMID: 36936198 PMCID: PMC10014972 DOI: 10.1177/17588359231156871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 01/27/2023] [Indexed: 03/14/2023] Open
Abstract
Background and Aims Early-stage small intestinal neuroendocrine tumors (SI-NETs) are generally asymptomatic and difficult to diagnose. As a result, patients often present with late-stage incurable disease. SI-NETs originate from enterochromaffin (EC) cells, which develop enteroendocrine cell (EEC) clusters consisting of a subset of EC cells at the crypt bottom at an early stage of tumor progression. In a familial form of SI-NET, EEC clusters arise in a multifocal and polyclonal fashion. We sought to determine whether early detection and analysis of cryptal EEC clusters could provide insight into the development of SI-NETs and allow successful pre-symptomatic screening for at risk family members of patients with SI-NETs. Methods Isolated crypts from endoscopic ileal biopsies or surgically removed specimens from 43 patients with familial SI-NET and 20 controls were formalin-fixed, immunostained for chromogranin A, and examined by confocal three-dimensional analysis for the presence of EEC cluster formations. Results Examination of multiple areas of macroscopic tumor-free mucosa in surgically resected specimens from patients with familial SI-NET revealed widely distributed, independent, multifocal EEC micro-tumor formations of varying sizes. Consistent with this finding, randomly sampled ileal biopsy specimens identified aberrant crypt containing endocrine cell clusters (ACECs) in patients. ACECs were found exclusively in patients (23/43, 53%) and not in controls (0/20). Furthermore, analysis of positions and numbers of EECs in crypts and ACECs indicated significant increases in EECs at the crypt bottom, predominantly at positions 0 and 1' (p < 0.0001 compared to controls), suggesting the progression of EEC accumulation below +4 position as the early process of ACEC formation. These findings also suggested that ACECs were precursors in the development of micro-tumors and subsequent macro-tumors. Conclusion This study indicates that SI-NETs develop from deep crypt EC cells to become ACECs, micro-tumors, and ultimately gross tumors. This process occurs widely throughout the distal small intestine in patients with familial SI-NETs consistent with but not exclusively explained by germline disease. Finally, analysis of crypts from ileal biopsies could contribute in part to earlier diagnostic screening processes avoiding late-stage presentation of incurable disease.
Collapse
Affiliation(s)
- Yoshitatsu Sei
- Digestive Diseases Branch, National Institute
of Diabetes and Digestive and Kidney Diseases, National Institutes of
Health, Bethesda, MD, USA
| | - Joanne Forbes
- Digestive Diseases Branch, National Institute
of Diabetes and Digestive and Kidney Diseases, National Institutes of
Health, Bethesda, MD, USA
| | - Ben Da
- Digestive Diseases Branch, National Institute
of Diabetes and Digestive and Kidney Diseases, National Institutes of
Health, Bethesda, MD, USA
| | - Ehsan Chitsaz
- Digestive Diseases Branch, National Institute
of Diabetes and Digestive and Kidney Diseases, National Institutes of
Health, Bethesda, MD, USA
| | - Jianying Feng
- Digestive Diseases Branch, National Institute
of Diabetes and Digestive and Kidney Diseases, National Institutes of
Health, Bethesda, MD, USA
| | - Xilin Zhao
- Digestive Diseases Branch, National Institute
of Diabetes and Digestive and Kidney Diseases, National Institutes of
Health, Bethesda, MD, USA
| | - Marybeth S. Hughes
- Surgery Branch, National Cancer Institute,
National Institutes of Health, Bethesda, MD, USA
- Current Address: Surgical Oncology, East
Virginia Medical School, Norfolk, VA
| | | |
Collapse
|
10
|
Guo X, Lv J, Xi R. The specification and function of enteroendocrine cells in Drosophila and mammals: a comparative review. FEBS J 2021; 289:4773-4796. [PMID: 34115929 DOI: 10.1111/febs.16067] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/26/2021] [Accepted: 06/09/2021] [Indexed: 12/13/2022]
Abstract
Enteroendocrine cells (EECs) in both invertebrates and vertebrates derive from intestinal stem cells (ISCs) and are scattered along the digestive tract, where they function in sensing various environmental stimuli and subsequently secrete neurotransmitters or neuropeptides to regulate diverse biological and physiological processes. To fulfill these functions, EECs are specified into multiple subtypes that occupy specific gut regions. With advances in single-cell technology, organoid culture experimental systems, and CRISPR/Cas9-mediated genomic editing, rapid progress has been made toward characterization of EEC subtypes in mammals. Additionally, studies of genetic model organisms-especially Drosophila melanogaster-have also provided insights about the molecular processes underlying EEC specification from ISCs and about the establishment of diverse EEC subtypes. In this review, we compare the regulation of EEC specification and function in mammals and Drosophila, with a focus on EEC subtype characterization, on how internal and external regulators mediate EEC subtype specification, and on how EEC-mediated intra- and interorgan communications affect gastrointestinal physiology and pathology.
Collapse
Affiliation(s)
- Xingting Guo
- National Institute of Biological Sciences, Beijing, China
| | - Jiaying Lv
- National Institute of Biological Sciences, Beijing, China.,School of Life Sciences, Tsinghua University, Beijing, China
| | - Rongwen Xi
- National Institute of Biological Sciences, Beijing, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| |
Collapse
|
11
|
Towards Understanding of Gastric Cancer Based upon Physiological Role of Gastrin and ECL Cells. Cancers (Basel) 2020; 12:cancers12113477. [PMID: 33266504 PMCID: PMC7700139 DOI: 10.3390/cancers12113477] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/19/2020] [Accepted: 11/21/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Generally, we know that cancers represent genetic changes in tumour cells, but we most often do not know the causes of cancers or how they develop. Our knowledge of the regulation of gastric acid secretion is well known, with the gastric hormone gastrin maintaining gastric acidity by stimulation of the enterochromaffin-like (ECL) cell to release histamine, which subsequently augments acid secretion. Furthermore, it seems to be a general principle that stimulation of function (which, for the ECL cell, is release of histamine) in a parallel way stimulates the proliferation of the same cell. Long-term hyperstimulation of cell division predisposes to genetic changes and, thus, development of tumours. All conditions with reduced gastric acidity result in an increased risk of gastric tumours due to elevated gastrin in order to restore gastric acidity. It is probable that Helicobacter pylori infection (the most important cause of gastric cancer), as well as drugs inhibiting gastric acid secretion induce gastric cancer in the long-term, due to an elevation of gastrin caused by reduced gastric acidity. Gastric carcinomas have been shown to express ECL cell markers, further strengthening this relationship. Abstract The stomach is an ideal organ to study because the gastric juice kills most of the swallowed microbes and, thus, creates rather similar milieu among individuals. Combined with a rather easy access to gastric juice, gastric physiology was among the first areas to be studied. During the last century, a rather complete understanding of the regulation of gastric acidity was obtained, establishing the central role of gastrin and the histamine producing enterochromaffin-like (ECL) cell. Similarly, the close connection between regulation of function and proliferation became evident, and, furthermore, that chronic overstimulation of a cell with the ability to proliferate, results in tumour formation. The ECL cell has long been acknowledged to give rise to neuroendocrine tumours (NETs), but not to play any role in carcinogenesis of gastric adenocarcinomas. However, when examining human gastric adenocarcinomas with the best methods presently available (immunohistochemistry with increased sensitivity and in-situ hybridization), it became clear that many of these cancers expressed neuroendocrine markers, suggesting that some of these tumours were of neuroendocrine, and more specifically, ECL cell origin. Thus, the ECL cell and its main regulator, gastrin, are central in human gastric carcinogenesis, which make new possibilities in prevention, prophylaxis, and treatment of this cancer.
Collapse
|