1
|
Yaribeygi H, Ramezani M, Katsiki N, Mirmohammadkhani M, Tabaei NS. Efficacy of Adding Sitagliptin to Ongoing Metformin on Metabolic Profile, Triglyceride-Glucose Index, Vitamin D3, and Liver Tests in Patients Type 2 Diabetes Mellitus and Nonalcoholic Fatty Liver Disease: A Double-Blind Randomized Clinical Trial. CURRENT THERAPEUTIC RESEARCH 2024; 101:100764. [PMID: 39582742 PMCID: PMC11584711 DOI: 10.1016/j.curtheres.2024.100764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 10/04/2024] [Indexed: 11/26/2024]
Abstract
Background Dipeptidyl peptidase-4 inhibitors provide potent antidiabetic effects in patients with type 2 diabetes mellitus (T2DM), but their role in the presence of nonalcoholic fatty liver disease (NAFLD) is not well-known. Objective The aim of this clinical trial was to evaluate the effects of sitagliptin on the metabolic profile and liver test results in metformin-treated patients with T2DM and NAFLD. Methods This was a prospective, 12-week, single-center, comparative randomized clinical trial enrolling 66 adult patients with T2DM and NAFLD (diagnosed by ultrasound). Patients were randomly assigned to either metformin (2000 mg/d, n = 33) or sitagliptin + metformin (100 and 2000 mg/d, respectively, n = 33), administered orally. Certain metabolic parameters, that is, fasting blood sugar (FBS), glycosylated hemoglobin, triglycerides (TGs), total cholesterol (TC), low-density lipoprotein cholesterol, vitamin D3 (vitD3), alkaline phosphatase, alanine aminotransferase (SGPT), and aspartate aminotransferase, were measured at baseline and after 12 weeks. Triglyceride-glucose (TG-G) index was also calculated. Results All biochemical variables decreased by a greater extent in the sitagliptin + metformin group than in the metformin group, with differences in FBS (P = 0.030), TC (P = 0.017), TG (P = 0.008), SGPT (P = 0.018), and vitD3 (P = 0.001) reaching statistical significance. Furthermore, the mean reduction of the TG-G index was significantly greater in the sitagliptin + metformin group than in the metformin group (0.67 vs 0.21, respectively; P = 0.017). Conclusions Sitagliptin + metformin therapy led to significantly greater improvements in FBS, TC, TG, SGPT, vitD3, and TG-G compared with the metformin monotherapy group. Other biomarkers also decreased more in the sitagliptin + metformin group than in the metformin group, but these differences did not reach statistical significance. The present findings should be interpreted with caution, although they suggest certain metabolic benefits after sitagliptin addition in metformin-treated patients with T2DM and NAFLD. Further studies are required to elucidate these effects and provide strong evidence for safe conclusions.
Collapse
Affiliation(s)
- Habib Yaribeygi
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Majid Ramezani
- Department of Internal Medicine, School of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Niki Katsiki
- Department of Nutritional Sciences and Dietetics, International Hellenic University, Thessaloniki, Greece
- School of Medicine, European University Cyprus, Nicosia, Cyprus
| | - Majid Mirmohammadkhani
- Social Determinants of Health Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Narges Sadat Tabaei
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
2
|
Sun J, Jin X, Li Y. Current strategies for nonalcoholic fatty liver disease treatment (Review). Int J Mol Med 2024; 54:88. [PMID: 39129305 PMCID: PMC11335354 DOI: 10.3892/ijmm.2024.5412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/23/2024] [Indexed: 08/13/2024] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), the most common chronic hepatic disease, has become a leading health problem worldwide. The present review summarized the methods and mechanisms to treat NAFLD, including the Mediterranean diet, physical activity and exercise, bariatric surgery and specific therapeutic agents, including statins, peroxisome proliferator‑activated receptor agonists, cenicriviroc and farnesoid X receptor agonists. Biologically active substances, such as peptides, alkaloids, polyphenolic compounds, silymarin, antibiotics, fatty acids, vitamins, probiotics, synbiotics and lamiaceae have also demonstrated actions that combat NAFLD. Considering their different mechanisms of action, combining some of them may prove an efficacious treatment for NAFLD. In this light, the present review describes recent progress and future prospects in treating NAFLD.
Collapse
Affiliation(s)
- Jing Sun
- Department of Gastroenterology, The First Hospital of China Medical University, Shenyang, Liaoning 110002, P.R. China
| | - Xiuli Jin
- Department of Gastroenterology, The First Hospital of China Medical University, Shenyang, Liaoning 110002, P.R. China
| | - Yiling Li
- Department of Gastroenterology, The First Hospital of China Medical University, Shenyang, Liaoning 110002, P.R. China
| |
Collapse
|
3
|
Aggeletopoulou I, Tsounis EP, Triantos C. Vitamin D and Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD): Novel Mechanistic Insights. Int J Mol Sci 2024; 25:4901. [PMID: 38732118 PMCID: PMC11084591 DOI: 10.3390/ijms25094901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/23/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is an increasingly prevalent condition characterized by abnormal fat accumulation in the liver, often associated with metabolic disorders. Emerging evidence suggests a potential link between vitamin D deficiency and the development and progression of MASLD. The current review provides a concise overview of recent studies uncovering novel mechanistic insights into the interplay between vitamin D and MASLD. Several epidemiological studies have highlighted a significant association between low vitamin D levels and an increased risk of MASLD. Vitamin D, traditionally known for its role in bone health, has now been recognized as a key player in various physiological processes, including immune regulation and inflammation. Experimental studies using animal models have demonstrated that vitamin D deficiency exacerbates liver steatosis and inflammation, suggesting a potential protective role against MASLD. Mechanistically, vitamin D appears to modulate MASLD through multiple pathways. Firstly, the vitamin D receptor (VDR) is abundantly expressed in liver cells, indicating a direct regulatory role in hepatic function. Activation of the VDR has been shown to suppress hepatic lipid accumulation and inflammation, providing a mechanistic basis for the observed protective effects. Additionally, vitamin D influences insulin sensitivity, a critical factor in MASLD pathogenesis. Improved insulin sensitivity may mitigate the excessive accumulation of fat in the liver, thus attenuating MASLD progression. In parallel, vitamin D exhibits anti-inflammatory properties by inhibiting pro-inflammatory cytokines implicated in MASLD pathophysiology. Experimental evidence suggests that the immunomodulatory effects of vitamin D extend to the liver, reducing inflammation and oxidative stress, key drivers of MASLD, and the likelihood of hepatocyte injury and fibrosis. Understanding the complex interplay between vitamin D and MASLD provides a basis for exploring targeted therapeutic strategies and preventive interventions. As vitamin D deficiency is a modifiable risk factor, addressing this nutritional concern may prove beneficial in mitigating the burden of MASLD and associated metabolic disorders.
Collapse
Affiliation(s)
| | | | - Christos Triantos
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, 26504 Patras, Greece; (I.A.); (E.P.T.)
| |
Collapse
|
4
|
Yang J, Chen X, Liu T, Shi Y. Potential role of bile acids in the pathogenesis of necrotizing enterocolitis. Life Sci 2024; 336:122279. [PMID: 37995935 DOI: 10.1016/j.lfs.2023.122279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023]
Abstract
Necrotizing enterocolitis (NEC) is one of the most common acute gastrointestinal diseases in preterm infants. Recent studies have found that NEC is not only caused by changes in the intestinal environment but also by the failure of multiple systems and organs, including the liver. The accumulation of bile acids (BAs) in the ileum and the disorder of ileal BA transporters are related to the ileum injury of NEC. Inflammatory factors such as tumor necrosis factor (TNF)-α and interleukin (IL)-18 secreted by NEC also play an important role in regulating intrahepatic BA transporters. As an important link connecting the liver and intestinal circulation, the bile acid metabolic pathway plays an important role in the regulation of intestinal microbiota, cell proliferation, and barrier protection. In this review, we focus on how bile acids explore the dynamic changes of bile acid metabolism in necrotizing enterocolitis and the potential therapeutic value of targeting the bile acid signaling pathways.
Collapse
Affiliation(s)
- Jiahui Yang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Xiaoyu Chen
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Tianjing Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Yongyan Shi
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| |
Collapse
|
5
|
Di Giulio F, Castellini C, Tienforti D, Felzani G, Baroni MG, Barbonetti A. Independent association of hypovitaminosis d with non-alcoholic fatty liver disease in people with chronic spinal cord injury: a cross-sectional study. J Endocrinol Invest 2024; 47:79-89. [PMID: 37273143 DOI: 10.1007/s40618-023-02124-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 05/27/2023] [Indexed: 06/06/2023]
Abstract
PURPOSE Non-alcoholic fatty liver disease (NAFLD) and hypovitaminosis D are highly prevalent in people with spinal cord injury (SCI) and could exert an unfavorable influence on cardiovascular profile and rehabilitation outcomes. We aimed to assess the independent association between low 25-hydroxy vitamin D (25(OH)D) levels and NAFLD in people with chronic (> 1 year) SCI. METHODS One hundred seventy-three consecutive patients with chronic SCI (132 men and 41 women) admitted to a rehabilitation program underwent clinical/biochemical evaluations and liver ultrasonography. RESULTS NAFLD was found in 105 patients (60.7% of the study population). They were significantly older and exhibited a poorer leisure time physical activity (LTPA) and functional independence in activities of daily living, a greater number of comorbidities and a higher prevalence of metabolic syndrome (MetS) and its correlates, including lower HDL and higher values of body mass index (BMI), systolic blood pressure, HOMA-index of insulin resistance and triglycerides. 25(OH)D levels were significantly lower in NAFLD (median: 10.6 ng/ml, range: 2.0-31.0) than in non-NAFLD group (22.5 ng/ml, 4.2-51.6). When all these variables were included in a multiple logistic regression analysis, a significant independent association with NAFLD only persisted for lower 25(OH)D levels, a greater number of comorbidities and a poorer LTPA. The ROC analysis revealed that 25(OH)D levels < 18.25 ng/ml discriminated patients with NAFLD with a sensitivity of 89.0% and a specificity of 73.0% (AUC: 85.7%; 95%CI: 79.6-91.7%). NAFLD was exhibited by 83.9% of patients with 25(OH)D levels < 18.25 ng/ml and by 18% of those with 25(OH)D levels ≥ 18.25 ng/ml (p < 0.0001). CONCLUSION In people with chronic SCI, 25(OH)D levels < 18.25 ng/ml may represent a marker of NAFLD independent of MetS-related features. Further studies are warranted to define the cause-effect relationships of this association.
Collapse
Affiliation(s)
- F Di Giulio
- Andrology Unit, Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - C Castellini
- Andrology Unit, Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - D Tienforti
- Andrology Unit, Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - G Felzani
- Spinal Unit, San Raffaele Sulmona Institute, Sulmona, Italy
| | - M G Baroni
- Andrology Unit, Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
- Neuroendocrinology and Metabolic Diseases, IRCCS Neuromed, Pozzilli, Italy
| | - A Barbonetti
- Andrology Unit, Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy.
| |
Collapse
|
6
|
Abdelrahman BA, Hammam OA, El-Khatib AS, Attia YM. The role of vitamin D3 in modulating the interplay between NLRP3 inflammasome and autophagy in NASH. Biochem Biophys Res Commun 2023; 688:149122. [PMID: 37951152 DOI: 10.1016/j.bbrc.2023.149122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/26/2023] [Accepted: 10/15/2023] [Indexed: 11/13/2023]
Abstract
Damage-associated molecular patterns released upon hepatocyte injury ensuing non-alcoholic steatohepatitis (NASH) can stimulate innate immunity by activating NOD-like receptor family pyrin domain-containing protein 3 (NLRP3) inflammasome, thereby triggering pro-inflammatory cascades in the liver. Aberrant NLRP3 activation allied to compromised autophagic clearance of its components contributes to the progression of multiple inflammatory diseases. Such intricate interplay, however, was not fully deciphered in NASH. Prior studies have illuminated the ability of vitamin D3 to temper inflammasome activation in several contexts, prompting us to probe the impact of vitamin D3, particularly its active form, calcitriol (CAL), on NLRP3 overactivation in a high-fat diet (HFD)-based NASH model and its potential dependence on autophagy. Hydroxychloroquine (HCQ), an autophagy inhibitor, was co-administered with CAL to examine the likely modulation of the NLRP3/autophagy crosstalk. Our results showed that treatment with CAL countervailed the histopathological derangement reported in the livers of HFD-fed mice that paralleled a restoration of vitamin D receptor gene expression and reduction in sterol regulatory element binding protein 1c levels. Moreover, p62 was curtailed with CAL treatment indicating autophagy induction. CAL also prompted a reduction in NLRP3, caspase-1, gasdermin D, and IL-18 protein levels along with the apoptosis-associated speck-like protein (ASC) gene expression. Treatment with CAL also reduced IL-1β and caspase-3 immunoreactivities compared to control. Intriguingly, CAL modulatory effects on inflammasome activation were curbed in the group that received HCQ, suggesting a potential autophagy dependency. Accordingly, the current study suggests that CAL was capable of ameliorating NASH via inhibiting NLRP3 inflammasome activation in an autophagy-dependent manner.
Collapse
Affiliation(s)
- Basma A Abdelrahman
- Pharmacology Department, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt; The Center for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Olfat A Hammam
- Pathology Department, Theodor Bilharz Research Institute, Cairo, Egypt
| | - Aiman S El-Khatib
- Pharmacology Department, Faculty of Pharmacy, Cairo University, Egypt.
| | - Yasmeen M Attia
- Pharmacology Department, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt; The Center for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| |
Collapse
|
7
|
Li Y, Si H, Ma Y, Li S, Gao L, Liu K, Liu X. Vitamin D3 affects the gut microbiota in an LPS-stimulated systemic inflammation mouse model. Microbes Infect 2023; 25:105180. [PMID: 37419238 DOI: 10.1016/j.micinf.2023.105180] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 06/08/2023] [Accepted: 06/29/2023] [Indexed: 07/09/2023]
Abstract
Although gut dysbiosis contributes to systemic inflammation, the counteractive effect of systemic inflammation on gut microbiota is unknown. Vitamin D may exert anti-inflammatory effects against systemic inflammation, but its regulation of the gut microbiota is poorly understood. In this study, mice were intraperitoneally injected with lipopolysaccharide (LPS) to create a systemic inflammation model and received vitamin D3 treatment orally for 18 continuous days. Then, body weight, morphological changes in the colon epithelium, and gut microbiota (n = 3) were evaluated. We verified that LPS stimulation caused inflammatory changes in the colon epithelium, which could be obviously attenuated by vitamin D3 treatment (10 μg/kg/day) in mice. Then, 16S rRNA gene sequencing of the gut microbiota first revealed that LPS stimulation induced a large number of operational taxonomic units, and vitamin D3 treatment reduced the number. In addition, vitamin D3 had distinctive effects on the community structure of the gut microbiota, which was obviously changed after LPS stimulation. However, neither LPS nor vitamin D3 affected the alpha and beta diversity of the gut microbiota. Furthermore, statistical analysis of differential microorganisms showed that the relative abundance of microorganisms in the phylum Spirochaetes decreased, the family Micrococcaceae increased, the genus [Eubacterium]_brachy_group decreased, the genus Pseudarthrobacter increased, and the species Clostridiales_bacterium_CIEAF_020 decreased under LPS stimulation, but vitamin D3 treatment significantly reversed the LPS-induced changes in the relative abundance of these microorganisms. In conclusion, vitamin D3 treatment affected the gut microbiota and alleviated inflammatory changes in the colon epithelium in the LPS-stimulated systemic inflammation mouse model.
Collapse
Affiliation(s)
- Yanning Li
- Center for Drug Discovery Innovation, College of Life Science, Hebei Normal University, Shijiazhuang 050024, Hebei, PR China; Department of Molecular Biology, Hebei Key Lab of Laboratory Animal Science, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - Hongbo Si
- Department of Molecular Biology, Hebei Key Lab of Laboratory Animal Science, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - Yujie Ma
- Department of Molecular Biology, Hebei Key Lab of Laboratory Animal Science, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - Shuang Li
- Center for Drug Discovery Innovation, College of Life Science, Hebei Normal University, Shijiazhuang 050024, Hebei, PR China
| | - Lijie Gao
- Center for Drug Discovery Innovation, College of Life Science, Hebei Normal University, Shijiazhuang 050024, Hebei, PR China
| | - Kun Liu
- Department of Molecular Biology, Hebei Key Lab of Laboratory Animal Science, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - Xifu Liu
- Center for Drug Discovery Innovation, College of Life Science, Hebei Normal University, Shijiazhuang 050024, Hebei, PR China.
| |
Collapse
|
8
|
Shemtov SJ, Emani R, Bielska O, Covarrubias AJ, Verdin E, Andersen JK, Winer DA. The intestinal immune system and gut barrier function in obesity and ageing. FEBS J 2023; 290:4163-4186. [PMID: 35727858 PMCID: PMC9768107 DOI: 10.1111/febs.16558] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 04/29/2022] [Accepted: 06/20/2022] [Indexed: 08/13/2023]
Abstract
Obesity and ageing predispose to numerous, yet overlapping chronic diseases. For example, metabolic abnormalities, including insulin resistance (IR) and type 2 diabetes (T2D) are important causes of morbidity and mortality. Low-grade chronic inflammation of tissues, such as the liver, visceral adipose tissue and neurological tissues, is considered a significant contributor to these chronic diseases. Thus, it is becoming increasingly important to understand what drives this inflammation in affected tissues. Recent evidence, especially in the context of obesity, suggests that the intestine plays an important role as the gatekeeper of inflammatory stimuli that ultimately fuels low-grade chronic tissue inflammation. In addition to metabolic diseases, abnormalities in the intestinal mucosal barrier have been linked to a range of other chronic inflammatory conditions, such as neurodegeneration and ageing. The flow of inflammatory stimuli from the gut is in part controlled by local immunological inputs impacting the intestinal barrier. Here, we will review the impact of obesity and ageing on the intestinal immune system and its downstream consequences on gut barrier function, which is strongly implicated in the pathogenesis of obesity and age-related diseases. In particular, we will discuss the effects of age-related intestinal dysfunction on neurodegenerative diseases.
Collapse
Affiliation(s)
- Sarah J. Shemtov
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, USA
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Rohini Emani
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Olga Bielska
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Anthony J. Covarrubias
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095 USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, 90095 USA
| | - Eric Verdin
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Julie K. Andersen
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Daniel A. Winer
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, USA
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
- Division of Cellular & Molecular Biology, Diabetes Research Group, Toronto General Research Institute (TGRI), University Health Network, 101 College Street, Toronto, ON, M5G 1L7, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King’s College Circle, Toronto, ON, M5S 1A8, Canada
- Department of Immunology, University of Toronto, 1 King’s College Circle, Toronto, ON, M5S 1A8, Canada
| |
Collapse
|
9
|
Tabassum A, Ali A, Zahedi FD, Ismail NAS. Immunomodulatory Role of Vitamin D on Gut Microbiome in Children. Biomedicines 2023; 11:biomedicines11051441. [PMID: 37239112 DOI: 10.3390/biomedicines11051441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/12/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Vitamin D plays a role in regulating the immune system and can be linked to the alteration of the gut microbiome, which leads to several immunological diseases. This systematic review aims to explore the relationship between Vitamin D and children's gut microbiome, as well as its impact towards the immune system. We have systematically collated relevant studies from different databases concerning changes in the gut microbiome of children from infants to 18 years old associated with Vitamin D and the immunological pathways. The studies utilized 16S rRNA sequencing analysis of fecal matter with or without Vitamin D supplementation and Vitamin D levels. Ten studies were selected for the review, among which eight studies showed significant alterations in the gut microbiome related to Vitamin D supplementation or Vitamin D levels. The taxa of the phylum Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria are the most altered in these studies. The alteration of the taxa alters the Th1 and Th2 pathways and changes the immune response. We will discuss how Vitamin D may contribute to the activation of immune pathways via its effects on intestinal barrier function, microbiome composition, and/or direct effects on immune responses. In conclusion, the studies examined in this review have provided evidence that Vitamin D levels may have an impact on the composition of children's gut microbiomes.
Collapse
Affiliation(s)
- Anika Tabassum
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Adli Ali
- Department of Pediatric, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Farah Dayana Zahedi
- Department of Otorhinolaryngology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Noor Akmal Shareela Ismail
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
10
|
Prevention of Metabolic Syndrome by Phytochemicals and Vitamin D. Int J Mol Sci 2023; 24:ijms24032627. [PMID: 36768946 PMCID: PMC9917154 DOI: 10.3390/ijms24032627] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/24/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
In recent years, attention has focused on the roles of phytochemicals in fruits and vegetables in maintaining and improving the intestinal environment and preventing metabolic syndrome. A high-fat and high-sugar diet, lack of exercise, and excess energy accumulation in the body can cause metabolic syndrome and induce obesity, diabetes, and disorders of the circulatory system and liver. Therefore, the prevention of metabolic syndrome is important. The current review shows that the simultaneous intake of phytochemicals contained in citruses and grapes together with vitamin D improves the state of gut microbiota and immunity, preventing metabolic syndrome and related diseases. Phytochemicals contained in citruses include polyphenols such as hesperidin, rutin, and naringin; those in grapes include quercetin, procyanidin, and oleanolic acid. The intake of these phytochemicals and vitamin D, along with prebiotics and probiotics, nurture good gut microbiota. In general, Firmicutes are obese-prone gut microbiota and Bacteroidetes are lean-prone gut microbiota; good gut microbiota nurture regulatory T cells, which suppress inflammatory responses and upregulate immunity. Maintaining good gut microbiota suppresses TNF-α, an inflammatory cytokine that is also considered to be a pathogenic contributor adipokine, and prevents chronic inflammation, thereby helping to prevent metabolic syndrome. Maintaining good gut microbiota also enhances adiponectin, a protector adipokine that prevents metabolic syndrome. For the prevention of metabolic syndrome and the reduction of various disease risks, the intake of phytochemicals and vitamin D will be important for human health in the future.
Collapse
|
11
|
Filardy AA, Ferreira JRM, Rezende RM, Kelsall BL, Oliveira RP. The intestinal microenvironment shapes macrophage and dendritic cell identity and function. Immunol Lett 2023; 253:41-53. [PMID: 36623708 PMCID: PMC9907447 DOI: 10.1016/j.imlet.2023.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 12/12/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023]
Abstract
The gut comprises the largest body interface with the environment and is continuously exposed to nutrients, food antigens, and commensal microbes, as well as to harmful pathogens. Subsets of both macrophages and dendritic cells (DCs) are present throughout the intestinal tract, where they primarily inhabit the gut-associate lymphoid tissue (GALT), such as Peyer's patches and isolated lymphoid follicles. In addition to their role in taking up and presenting antigens, macrophages and DCs possess extensive functional plasticity and these cells play complementary roles in maintaining immune homeostasis in the gut by preventing aberrant immune responses to harmless antigens and microbes and by promoting host defense against pathogens. The ability of macrophages and DCs to induce either inflammation or tolerance is partially lineage imprinted, but can also be dictated by their activation state, which in turn is determined by their specific microenvironment. These cells express several surface and intracellular receptors that detect danger signals, nutrients, and hormones, which can affect their activation state. DCs and macrophages play a fundamental role in regulating T cells and their effector functions. Thus, modulation of intestinal mucosa immunity by targeting antigen presenting cells can provide a promising approach for controlling pathological inflammation. In this review, we provide an overview on the characteristics, functions, and origins of intestinal macrophages and DCs, highlighting the intestinal microenvironmental factors that influence their functions during homeostasis. Unraveling the mechanisms by which macrophages and DCs regulate intestinal immunity will deepen our understanding on how the immune system integrates endogenous and exogenous signals in order to maintain the host's homeostasis.
Collapse
Affiliation(s)
- Alessandra A Filardy
- Laboratório de Imunologia Celular, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Brazil.
| | - Jesuino R M Ferreira
- Laboratório de Imunologia Celular, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Brazil
| | - Rafael M Rezende
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, USA
| | - Brian L Kelsall
- Laboratory of Molecular Immunology, NIAID, National Institutes of Health, USA
| | | |
Collapse
|
12
|
Chen Y, Feng S, Chang Z, Zhao Y, Liu Y, Fu J, Liu Y, Tang S, Han Y, Zhang S, Fan Z. Higher Serum 25-Hydroxyvitamin D Is Associated with Lower All-Cause and Cardiovascular Mortality among US Adults with Nonalcoholic Fatty Liver Disease. Nutrients 2022; 14:nu14194013. [PMID: 36235666 PMCID: PMC9571761 DOI: 10.3390/nu14194013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/23/2022] [Accepted: 09/24/2022] [Indexed: 11/26/2022] Open
Abstract
Aims: We aimed to assess the association between serum 25-hydroxyvitamin D (25(OH)D) levels with all-cause and cardiovascular mortality in patients with nonalcoholic fatty liver disease (NAFLD). Methods: We performed a retrospective cohort study based on the US National Health and Nutrition Examination Survey 2001–2016 on adults aged ≥20 years. NAFLD was determined as a US Fatty Liver Index score ≥ 30 in the absence of other liver conditions. Weighted Cox proportional hazards regression models were applied to explore the relationship between serum 25(OH)D levels and mortality. Results: 898 all-cause deaths and 305 cardiovascular deaths were recorded over a median follow-up of 8.7 years. Compared with those in the severe deficiency group (below 25.0 nmol/L), the fully adjusted HRs and 95% CIs of NAFLD patients with sufficient serum 25(OH)D concentrations (≥75.0 nmol/L) were 0.36 (0.22, 0.60) for all-cause mortality and 0.14 (0.07, 0.29) for cardiovascular mortality. Each one-unit increase in the natural log-transformed serum 25(OH)D concentration was related to a 41% lower risk for all-cause deaths (HR = 0.59, 95% CI: 0.46, 0.77) and a 65% lower risk for cardiovascular deaths (HR = 0.35, 95% CI: 0.22, 0.58). Conclusions: Among NAFLD patients, increased serum 25(OH)D levels were independently associated with reduced risk for all-cause and cardiovascular deaths.
Collapse
|
13
|
Zhou X, Zou Y, Xu Y, Zhang Z, Wu Y, Cao J, Qiu B, Qin X, Han D, Piao X, Wang J, Zhao J. Dietary Supplementation of 25-Hydroxyvitamin D 3 Improves Growth Performance, Antioxidant Capacity and Immune Function in Weaned Piglets. Antioxidants (Basel) 2022; 11:1750. [PMID: 36139824 PMCID: PMC9495450 DOI: 10.3390/antiox11091750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 11/22/2022] Open
Abstract
This study was conducted to evaluate the effects of 25-hydroxyvitamin D3 (25(OH)VD3) and Vitamin D3 (VD3) supplemented in the diet of weaned piglets on their growth performance, bone quality, intestinal integrity, immune function and antioxidant capacity. A total of 192 weaned piglets were allocated into four groups and they were fed a control diet containing 2000 IU VD3 (negative control, NC), NC + 100 ppm colistin sulfate (positive control, PC), NC + 2000 IU VD3 (VD3) and NC + 2000 IU 25(OH)VD3 (25(OH)VD3). The results showed that 25(OH)VD3 improved the growth performance, bone quality and antioxidase activity of piglets compared with the other groups. Meanwhile, 25(OH)VD3 up-regulated ileal mRNA expressions of tight junction proteins and host defense peptides. The VD3 group had an increased intestinal sIgA content and mRNA expression of pBD-1 compared with the NC group. Both groups of VD3 and 25(OH)VD3 altered the microbial β-diversity compared with the NC group, and 25(OH)VD3 increased ileal concentrations of acetate and butyrate. In conclusion, our findings indicated that a regular dosage of 2000 IU VD3 in the weaned piglets' diet did not achieve optimal antioxidant capacity and immune function. 25(OH)VD3 had better growth performance than VD3 at the same inclusion level, which is associated with the improved intestinal integrity and antioxidant capacity.
Collapse
Affiliation(s)
- Xingjian Zhou
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Youwei Zou
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Youhan Xu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zeyu Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yujun Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jindang Cao
- Shandong Haineng Bioengineering Co., Ltd., Rizhao 276800, China
| | - Baoqin Qiu
- Shandong Haineng Bioengineering Co., Ltd., Rizhao 276800, China
| | - Xiaoyu Qin
- Shandong Haineng Bioengineering Co., Ltd., Rizhao 276800, China
| | - Dandan Han
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xiangshu Piao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jinbiao Zhao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
14
|
Aggeletopoulou I, Thomopoulos K, Mouzaki A, Triantos C. Vitamin D–VDR Novel Anti-Inflammatory Molecules—New Insights into Their Effects on Liver Diseases. Int J Mol Sci 2022; 23:ijms23158465. [PMID: 35955597 PMCID: PMC9369388 DOI: 10.3390/ijms23158465] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 02/05/2023] Open
Abstract
There is consistent evidence that vitamin D deficiency is strongly associated with liver dysfunction, disease severity, and poor prognosis in patients with liver disease. Vitamin D and its receptor (VDR) contribute to the regulation of innate and adaptive immune responses. The presence of genetic variants of vitamin D- and VDR-associated genes has been associated with liver disease progression. In our recent work, we summarized the progress in understanding the molecular mechanisms involved in vitamin D–VDR signaling and discussed the functional significance of VDR signaling in specific cell populations in liver disease. The current review focuses on the complex interaction between immune and liver cells in the maintenance of liver homeostasis and the development of liver injury, the interplay of vitamin D and VDR in the development and outcome of liver disease, the role of vitamin D- and VDR-associated genetic variants in modulating the occurrence and severity of liver disease, and the therapeutic value of vitamin D supplementation in various liver diseases. The association of the vitamin D–VDR complex with liver dysfunction shows great potential for clinical application and supports its use as a prognostic index and diagnostic tool.
Collapse
Affiliation(s)
- Ioanna Aggeletopoulou
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, GR-26504 Patras, Greece; (I.A.); (C.T.)
- Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, GR-26504 Patras, Greece;
| | - Konstantinos Thomopoulos
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, GR-26504 Patras, Greece; (I.A.); (C.T.)
- Correspondence:
| | - Athanasia Mouzaki
- Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, GR-26504 Patras, Greece;
| | - Christos Triantos
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, GR-26504 Patras, Greece; (I.A.); (C.T.)
| |
Collapse
|
15
|
Wu H, Lei Y, Mao J. Non-alcoholic fatty liver disease and intestinal immune status: a narrative review. Scand J Gastroenterol 2022:1-8. [PMID: 35188038 DOI: 10.1080/00365521.2022.2032320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/05/2022] [Accepted: 01/16/2022] [Indexed: 02/04/2023]
Abstract
Background and objectives: Non-alcoholic fatty liver disease (NAFLD) interacts with the gut immunity. However, the mechanisms underlying alternations of intestinal immune system in NAFLD remains unclear. To date, no effective medical interventions exist that completely reverse the disease. In this review, we mainly elaborates on the impact of NAFLD on intestinal immune cells and briefly summarize the new treatment methods for NAFLD targeting at intestinal immune cells.Methods: We searched MEDLINE, EMBASE and Web of Science for English-language sources. The preferred citations were meta-analyses and systematic or narrative reviews. Citation tracking was completed for all identified studies included in the refined library, using Google Scholar. No restriction was placed on the year of publication for the included reports.Results: The intestinal immune imbalance promotes liver inflammation and fibrosis in the process of NAFLD, and meanwhile, NAFLD influences disorders of immune cells in the liver and intestinal tract. Biological agents targeting at intestinal immunity has been shown in preclinical studies to be an effective method for systemic immune modulation and alleviates immune-mediated injury.Conclusions: Intestinal immune disorder plays an important role in triggering and amplifying hepatic inflammation in NAFLD. Advances in knowledge of the gut-liver axis are driving the development of diagnostic, prognostic and therapeutic tools based on intestine immunity for the management of NAFLD.
Collapse
Affiliation(s)
- Hao Wu
- Department of Gastroenterology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Yalan Lei
- Department of Gastroenterology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Department of Gastroenterology, The First People's Hospital of Chenzhou, Chenzhou, Hunan, China
| | - Jingwei Mao
- Department of Gastroenterology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
16
|
White JH. Emerging Roles of Vitamin D-Induced Antimicrobial Peptides in Antiviral Innate Immunity. Nutrients 2022; 14:284. [PMID: 35057465 PMCID: PMC8779757 DOI: 10.3390/nu14020284] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/04/2022] [Accepted: 01/08/2022] [Indexed: 02/06/2023] Open
Abstract
Vitamin D deficiency, characterized by low circulating levels of calcifediol (25-hydroxyvitamin D, 25D) has been linked to increased risk of infections of bacterial and viral origin. Innate immune cells produce hormonal calcitriol (1,25-dihydroxyvitamin D, 1,25D) locally from circulating calcifediol in response to pathogen threat and an immune-specific cytokine network. Calcitriol regulates gene expression through its binding to the vitamin D receptor (VDR), a ligand-regulated transcription factor. The hormone-bound VDR induces the transcription of genes integral to innate immunity including pattern recognition receptors, cytokines, and most importantly antimicrobial peptides (AMPs). Transcription of the human AMP genes β-defensin 2/defensin-β4 (HBD2/DEFB4) and cathelicidin antimicrobial peptide (CAMP) is stimulated by the VDR bound to promoter-proximal vitamin D response elements. HDB2/DEFB4 and the active form of CAMP, the peptide LL-37, which form amphipathic secondary structures, were initially characterized for their antibacterial actively. Notably, calcitriol signaling induces secretion of antibacterial activity in vitro and in vivo, and low circulating levels of calcifediol are associated with diverse indications characterized by impaired antibacterial immunity such as dental caries and urinary tract infections. However, recent work has also provided evidence that the same AMPs are components of 1,25D-induced antiviral responses, including those against the etiological agent of the COVID-19 pandemic, the SARS-CoV2 coronavirus. This review surveys the evidence for 1,25D-induced antimicrobial activity in vitro and in vivo in humans and presents our current understanding of the potential mechanisms by which CAMP and HBD2/DEFB4 contribute to antiviral immunity.
Collapse
Affiliation(s)
- John H White
- Department of Physiology, McGill University, Montreal, QC H3G 1Y6, Canada
| |
Collapse
|
17
|
Ding R, Xiao Z, Jiang Y, Yang Y, Ji Y, Bao X, Xing K, Zhou X, Zhu S. Calcitriol ameliorates damage in high-salt diet-induced hypertension: Evidence of communication with the gut-kidney axis. Exp Biol Med (Maywood) 2021; 247:624-640. [PMID: 34894804 DOI: 10.1177/15353702211062507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Several studies have established a link between high-salt diet, inflammation, and hypertension. Vitamin D supplementation has shown anti-inflammatory effects in many diseases; gut microbiota is also associated with a wide variety of cardiovascular diseases, but potential role of vitamin D and gut microbiota in high-salt diet-induced hypertension remains unclear. Therefore, we used rats with hypertension induced by a high-salt diet as the research object and analyzed the transcriptome of their tissues (kidney and colon) and gut microbiome to conduct an overall analysis of the gut-kidney axis. We aimed to confirm the effects of high salt and calcitriol on the gut-kidney immune system and the composition of the intestinal flora. We demonstrate that consumption of a high-salt diet results in hypertension and inflammation in the colon and kidney and alteration of gut microbiota composition and function. High-salt diet-induced hypertension was found to be associated with seven microbial taxa and mainly associated with reduced production of the protective short-chain fatty acid butyrate. Calcitriol can reduce colon and kidney inflammation, and there are gene expression changes consistent with restored intestinal barrier function. The protective effect of calcitriol may be mediated indirectly by immunological properties. Additionally, the molecular pathways of the gut microbiota-mediated blood pressure regulation may be related to circadian rhythm signals, which needs to be further investigated. An innovative association analysis of the microbiota may be a key strategy to understanding the association between gene patterns and host.
Collapse
Affiliation(s)
- Ruifeng Ding
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Zilong Xiao
- Department of Cardiology, Zhongshan Hospital of Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Yufeng Jiang
- Department of Nephrology, 66329Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200021, China.,Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, Shanghai 201203, China
| | - Yi Yang
- Shanghai Cinoasia Institute, Shanghai 200438, China
| | - Yang Ji
- School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Xunxia Bao
- Shanghai Cinoasia Institute, Shanghai 200438, China
| | - Kaichen Xing
- Shanghai Cinoasia Institute, Shanghai 200438, China
| | - Xinli Zhou
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Sibo Zhu
- School of Life Sciences, Fudan University, Shanghai 200438, China
| |
Collapse
|
18
|
Keikha M, Karbalaei M. Probiotics as the live microscopic fighters against Helicobacter pylori gastric infections. BMC Gastroenterol 2021; 21:388. [PMID: 34670526 PMCID: PMC8527827 DOI: 10.1186/s12876-021-01977-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/15/2021] [Indexed: 02/07/2023] Open
Abstract
Background Helicobacter pylori (H. pylori) is the causative agent of stomach diseases such as duodenal ulcer and gastric cancer, in this regard incomplete eradication of this bacterium has become to a serious concern. Probiotics are a group of the beneficial bacteria which increase the cure rate of H. pylori infections through various mechanisms such as competitive inhibition, co-aggregation ability, enhancing mucus production, production of bacteriocins, and modulating immune response. Result In this study, according to the received articles, the anti-H. pylori activities of probiotics were reviewed. Based on studies, administration of standard antibiotic therapy combined with probiotics plays an important role in the effective treatment of H. pylori infection. According to the literature, Lactobacillus casei, Lactobacillus reuteri, Lactobacillus rhamnosus GG, and Saccharomyces boulardii can effectively eradicate H. pylori infection. Our results showed that in addition to decrease gastrointestinal symptoms, probiotics can reduce the side effects of antibiotics (especially diarrhea) by altering the intestinal microbiome. Conclusion Nevertheless, antagonist activities of probiotics are H. pylori strain-specific. In general, these bacteria can be used for therapeutic purposes such as adjuvant therapy, drug-delivery system, as well as enhancing immune system against H. pylori infection.
Collapse
Affiliation(s)
- Masoud Keikha
- Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Karbalaei
- Department of Microbiology and Virology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran.
| |
Collapse
|
19
|
Classic and Non-Classic Effects of the Duration of Supplementation of 25-Hydroxicholecalciferol in Broiler Chicken Diets. Animals (Basel) 2021; 11:ani11102971. [PMID: 34679990 PMCID: PMC8532758 DOI: 10.3390/ani11102971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/09/2021] [Accepted: 10/13/2021] [Indexed: 01/10/2023] Open
Abstract
Simple Summary Genetic programs of modern commercial-type broiler chickens are based on growth performance parameters associated with muscular growth, feed efficiency, and meat and breast yield. Therefore, highly bioavailable vitamin D3 to sustain optimal muscle and bone development is necessary. In the present study the effect of different durations of supplementing of 25-hydroxycholecalciferol (25(OH)D3) in broiler chickens was evaluated. Growth performance response, carcass and cuts yield, bone resistance, plasma concentration of 25(OH)D3, and expression of the mTOR gene were evaluated. The use of 25(OH)D3 in the diets for broilers during different feeding periods did not influence growth performance but increased the plasma concentration of 25(OH)D3, and increased breast yield as the duration of the supplementation was extended. The supplementation of 25(OH)D3 increased breast yield and protein deposition in the breast muscle which may have been a result of the epigenetic changes caused by this vitamin D (Vit D) metabolite. Abstract The present study aimed to determine the effect of different times of supplementation of 25-hydroxycholecalciferol (25(OH)D3) in broiler chickens on the performance, carcass and cuts yield, bone resistance, plasma concentration of 25(OH)D3, and expression of the mTOR gene. The treatments were a control diet (CD) supplemented with 3000 IU vitamin D3/kg of feed from 1 to 46 d, or the CD + 2760 IU (69 mcg) of 25(OH)D3/kg of feed from 1 to 21 d, from 1 to 35 d, or from 1 to 46 d. The period of supplementation of 25(OH)D3 did not affect the growth performance of broilers, but the breast meat yield was linearly increased in response to increasing days of supplementation (p < 0.05). Birds supplemented with 25(OH)D3 at the time of the analysis showed an increase (p < 0.05) in the plasma concentration of 25(OH)D3 when compared to non-supplemented birds. The mTOR gene expression (p < 0.05), and breast protein deposition (p < 0.05) presented a quadratic response related to the supplementation period of 25(OH)D3. The fat content of the breast linearly decreased (p < 0.05) as the period of supplementation was extended. The results also showed a positive linear correlation between mTOR expression and 25(OH)D3 plasma levels (r = 0.593; p < 0.05).
Collapse
|
20
|
Lipid Disorders in NAFLD and Chronic Kidney Disease. Biomedicines 2021; 9:biomedicines9101405. [PMID: 34680522 PMCID: PMC8533451 DOI: 10.3390/biomedicines9101405] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/19/2021] [Accepted: 09/30/2021] [Indexed: 12/19/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver dysfunction and is characterized by exaggerated lipid accumulation, inflammation and even fibrosis. It has been shown that NAFLD increases the risk of other chronic diseases, particularly chronic kidney disease (CKD). Lipid in excess could lead to liver and kidney lesions and even end-stage disease through diverse pathways. Dysregulation of lipid uptake, oxidation or de novo lipogenesis contributes to the toxic effects of ectopic lipids which promotes the development and progression of NAFLD and CKD via triggering oxidative stress, apoptosis, pro-inflammatory and profibrotic responses. Importantly, dyslipidemia and release of pro-inflammatory cytokines caused by NAFLD (specifically, nonalcoholic steatohepatitis) are considered to play important roles in the pathological progression of CKD. Growing evidence of similarities between the pathogenic mechanisms of NAFLD and those of CKD has attracted attention and urged researchers to discover their common therapeutic targets. Here, we summarize the current understanding of molecular aberrations underlying the lipid metabolism of NAFLD and CKD and clinical evidence that suggests the relevance of these pathways in humans. This review also highlights the orchestrated inter-organ cross-talk in lipid disorders, as well as therapeutic options and opportunities to counteract NAFLD and CKD.
Collapse
|
21
|
Duan L, An X, Zhang Y, Jin D, Zhao S, Zhou R, Duan Y, Zhang Y, Liu X, Lian F. Gut microbiota as the critical correlation of polycystic ovary syndrome and type 2 diabetes mellitus. Biomed Pharmacother 2021; 142:112094. [PMID: 34449321 DOI: 10.1016/j.biopha.2021.112094] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 08/05/2021] [Accepted: 08/20/2021] [Indexed: 12/16/2022] Open
Abstract
Gut microbiota forms a symbiotic relationship with the host and maintains the ecological balance of the internal and external environment of the human body. However, dysbiosis of the gut microbiota and immune deficiency, as well as environmental changes, can destroy the host-microbial balance, leading to the occurrence of a variety of diseases, such as polycystic ovary syndrome (PCOS), type 2 diabetes mellitus (T2DM), and obesity. Meanwhile, diseases can also affect gut microbiota, forming a vicious cycle. The role of the intestinal microbiota in different diseases have been proven by several studies; however, as a common target of PCOS and T2DM, there are few reports on the treatment of different diseases through the regulation of intestinal microbiota as the critical correlation. This review analyzed the common mechanisms of intestinal microbiota in PCOS and T2DM, including the dysbiosis of gut microbiota, endotoxemia, short-chain fatty acids, biotransformation of bile acids, and synthesis of amino acid in regulating insulin resistance, obesity, chronic inflammation, and mitochondrial dysfunction. The possible therapeutic effects of probiotics and/or prebiotics, fecal microbiota transplantation, bariatric surgery, dietary intervention, drug treatment, and other treatments targeted at regulating intestinal microbiota were also elucidated.
Collapse
Affiliation(s)
- Liyun Duan
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xuedong An
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yuehong Zhang
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - De Jin
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Shenghui Zhao
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Beijing University of Chinese Medicine, Beijing 100029, China
| | - Rongrong Zhou
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yingying Duan
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yuqing Zhang
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xinmin Liu
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| | - Fengmei Lian
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| |
Collapse
|
22
|
Džopalić T, Božić-Nedeljković B, Jurišić V. The role of vitamin A and vitamin D in modulation of the immune response with a focus on innate lymphoid cells. Cent Eur J Immunol 2021; 46:264-269. [PMID: 34764797 PMCID: PMC8568032 DOI: 10.5114/ceji.2021.103540] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 01/03/2021] [Indexed: 01/21/2023] Open
Abstract
The immune system with its numerous and complex interactions helps to protect the host from pathogenic microorganisms, and enables cleaning of damaged tissues. It is also associated with constant "monitoring" of the appearance of malignant cells and their elimination that can occur in the human body. Such a role depends on many factors including adequate intake of nutrients, including vitamins. The effect of vitamin supplementation on the modulation of the immune response has always been the focus of numerous studies. Vitamins A and D have been shown to have the greatest immune-modulatory effect. In this review, we discuss and consider the possible roles of vitamins A and D on the immune response through innate and adaptive immune cells, with special focus on the cell population recently characterized as innate lymphoid cells. Recent literature data indicate that vitamin A and its metabolites modulate the balance between Th1 and Th2 immunity. In addition, vitamin D expresses protective effects on the innate immune system and inhibitory effects on adaptive immunity.
Collapse
Affiliation(s)
- Tanja Džopalić
- Department of Immunology, University of Niš, Medical Faculty, Niš, Serbia
| | - Biljana Božić-Nedeljković
- Institute for Physiology and Biochemistry “Ivan Djaja” Belgrade, Faculty of Biology, University of Belgrade, Serbia
| | - Vladimir Jurišić
- Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| |
Collapse
|
23
|
Vitamin D and Metabolic Dysfunction-Associated Fatty Liver Disease (MAFLD): An Update. Nutrients 2020; 12:nu12113302. [PMID: 33126575 PMCID: PMC7693133 DOI: 10.3390/nu12113302] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 02/07/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the first cause of chronic liver disease worldwide; it ranges from simple steatosis to steatohepatitis (NASH) and, potentially, cirrhosis and hepatocarcinoma. NAFLD is also an independent risk factor for type 2 diabetes, cardiovascular diseases, and mortality. As it is largely associated with insulin resistance and related disorders, NAFLD has been recently re-named as Metabolic dysfunction-Associated Fatty Liver Disease (MAFLD). At present, there are no approved pharmacological treatments for this condition. Vitamin D is a molecule with extensive anti-fibrotic, anti-inflammatory, and insulin-sensitizing properties, which have been proven also in hepatic cells and is involved in immune-metabolic pathways within the gut–adipose tissue–liver axis. Epidemiological data support a relationship hypovitaminosis D and the presence of NAFLD and steatohepatitis (NASH); however, results from vitamin D supplementation trials on liver outcomes are controversial. This narrative review provides an overview of the latest evidence on pathophysiological pathways connecting vitamin D to NAFLD, with emphasis on the effects of vitamin D treatment in MAFLD by a nonsystematic literature review of PubMed published clinical trials. This article conforms to the Scale for Assessment of Narrative Review Articles (SANRA) guidelines. Evidence so far available supports the hypothesis of potential benefits of vitamin D supplementation in selected populations of NAFLD patients, as those with shorter disease duration and mild to moderate liver damage.
Collapse
|
24
|
Ye Q, Shao X, Shen R, Chen D, Shen J. Changes in the human gut microbiota composition caused by Helicobacter pylori eradication therapy: A systematic review and meta-analysis. Helicobacter 2020; 25:e12713. [PMID: 32515529 DOI: 10.1111/hel.12713] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/10/2020] [Accepted: 05/17/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND The short-term and long-term effect of Helicobacter pylori (H pylori) eradication on the gut microbiota is controversial; hence, this study aimed to clarify changes in the gut microbiome and microbial diversity after H pylori eradication. MATERIALS AND METHODS Articles published in PubMed, MEDLINE, and EMBASE were searched up to March 20, 2020, with English-language restriction. The outcomes including gut microbiota and alpha diversity were extracted to analysis. And then, Review Manager 5.3 software was used to conduct the data analysis. RESULTS At phylum level, next-generation sequencing was performed. Meta-analysis results showed that Actinobacteria decreased compared with baseline throughout the follow-up period. Proteobacteria increased during short-term follow-up and then returned to normal. In addition, Bacteroidetes decreased and Firmicutes increased only during long-term follow-up. At family or genus level, conventional microbiological culturing was performed. Enterobacteriaceae and Enterococcus both increased during the short-term and interim follow-up. In addition, Lactobacillus only showed a decreasing trend during short-term follow-up, but it appeared statistical decreasing during interim follow-up. Moreover, relatively sufficient evidence showed that alpha diversity decreased during short-term follow-up, and no reliable data were obtained to confirm the change of alpha diversity during interim and long-term follow-up. CONCLUSION In different follow-up periods after H pylori eradication, changes in gut microbiota were inconsistent. Microbial diversity decreased in the short-term follow-up, while there was no data to confirm subsequent alterations. The results provided a basis for the rational selection of probiotics in the eradication process. However, further studies are needed to obtain more clues.
Collapse
Affiliation(s)
- Qunqun Ye
- Department of Gastroenterology, Ningbo Medical Center Lihuili Hospital, Ningbo, China
| | - Xiaona Shao
- Department of Gastroenterology, Ningbo Medical Center Lihuili Hospital, Ningbo, China
| | - Ruiwei Shen
- Department of Gastroenterology, Ningbo Medical Center Lihuili Hospital, Ningbo, China
| | - Dawei Chen
- Department of Gastroenterology, Ningbo Medical Center Lihuili Hospital, Ningbo, China
| | - Jianwei Shen
- Department of Gastroenterology, Ningbo Medical Center Lihuili Hospital, Ningbo, China
| |
Collapse
|