1
|
Manuel RSJ, Rundquist A, Ambrogi M, Scharpf BR, Peterson NT, Sandhu JK, Chandrashekar S, Ridlon M, Crawford LK, Keil-Stietz KP, Peterson RE, Vezina CM. The aryl hydrocarbon receptor agonist ITE reduces inflammation and urinary dysfunction in a mouse model of autoimmune prostatitis. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2024; 12:149-161. [PMID: 39308590 PMCID: PMC11411176 DOI: 10.62347/pegk4888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/26/2024] [Indexed: 09/25/2024]
Abstract
OBJECTIVES Prostate inflammation is linked to lower urinary tract dysfunction and is a key factor in chronic prostatitis/chronic pelvic pain syndrome. Autoimmunity was recently identified as a driver of prostate inflammation. Agonists of the aryl hydrocarbon receptor (AHR), a ligand-activated transcription factor, have been used to suppress autoimmunity in mouse models of colitis, rhinitis, and dermatitis, but whether AHR agonists suppress prostate autoimmunity has not been examined. Here, we test whether ITE (2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester), an AHR agonist, suppresses inflammation, allodynia, and urinary dysfunction in a mouse model of experimental autoimmune prostatitis (EAP). METHODS C57BL/6J adult male mice were immunized with rat prostate antigen to induce EAP or TiterMax Gold® adjuvant (uninflamed control). Mice were also treated with ITE (10 mg/kg/day IP) or DMSO (vehicle, 5 mg/kg/day IP) for 6 days. Using the Nanostring nCounter Inflammation Panel, we evaluated the impact of EAP and ITE on prostatic RNA abundance. We validated EAP and ITE-mediated changes in a subset of RNAs by RT-PCR and RNAScope in situ RNA detection. RESULTS EAP appeared to heighten histological inflammation in the dorsal prostate, induced tactile allodynia, and appeared to increase the frequency of non-voiding bladder contractions. ITE mitigated some actions of EAP. EAP changed abundance of 40 inflammation-related RNAs, while ITE changed abundance of 28 inflammation-related RNAs. We identified a cluster of RNAs for which ITE protected against EAP-induced changes in the abundance of H2-Ab1, S100a8, and S100a9. ITE also increased the abundance of the AHR-responsive Cyp1a1 RNA. CONCLUSIONS These findings support the hypothesis that ITE activates the AHR in the prostate and reduces autoimmune-mediated prostatitis in mice.
Collapse
Affiliation(s)
- Robbie SJ Manuel
- Department of Comparative Biosciences, University of Wisconsin-MadisonMadison, WI, USA
- Molecular and Environmental Toxicology Graduate Program, University of Wisconsin School of Medicine and Public HealthMadison, WI, USA
- Endocrinology and Reproductive Physiology Program, University of Wisconsin School of Medicine and Public HealthMadison, WI, USA
| | - Allison Rundquist
- Department of Comparative Biosciences, University of Wisconsin-MadisonMadison, WI, USA
- Endocrinology and Reproductive Physiology Program, University of Wisconsin School of Medicine and Public HealthMadison, WI, USA
| | - Marcela Ambrogi
- Department of Comparative Biosciences, University of Wisconsin-MadisonMadison, WI, USA
- Endocrinology and Reproductive Physiology Program, University of Wisconsin School of Medicine and Public HealthMadison, WI, USA
| | - Brandon R Scharpf
- Department of Comparative Biosciences, University of Wisconsin-MadisonMadison, WI, USA
- Molecular and Environmental Toxicology Graduate Program, University of Wisconsin School of Medicine and Public HealthMadison, WI, USA
| | - Nelson T Peterson
- Department of Comparative Biosciences, University of Wisconsin-MadisonMadison, WI, USA
- Molecular and Environmental Toxicology Graduate Program, University of Wisconsin School of Medicine and Public HealthMadison, WI, USA
| | - Jaskiran K Sandhu
- Department of Comparative Biosciences, University of Wisconsin-MadisonMadison, WI, USA
| | - Sneha Chandrashekar
- Department of Comparative Biosciences, University of Wisconsin-MadisonMadison, WI, USA
| | - Monica Ridlon
- Department of Comparative Biosciences, University of Wisconsin-MadisonMadison, WI, USA
- Molecular and Environmental Toxicology Graduate Program, University of Wisconsin School of Medicine and Public HealthMadison, WI, USA
| | - Latasha K Crawford
- Department of Pathological Sciences, University of Wisconsin Madison School of Veterinary MedicineMadison, WI, USA
| | - Kimberly P Keil-Stietz
- Department of Comparative Biosciences, University of Wisconsin-MadisonMadison, WI, USA
- Molecular and Environmental Toxicology Graduate Program, University of Wisconsin School of Medicine and Public HealthMadison, WI, USA
- Endocrinology and Reproductive Physiology Program, University of Wisconsin School of Medicine and Public HealthMadison, WI, USA
| | - Richard E Peterson
- Division of Pharmaceutical Sciences, University of Wisconsin School of PharmacyMadison, WI, USA
| | - Chad M Vezina
- Department of Comparative Biosciences, University of Wisconsin-MadisonMadison, WI, USA
- Molecular and Environmental Toxicology Graduate Program, University of Wisconsin School of Medicine and Public HealthMadison, WI, USA
- Endocrinology and Reproductive Physiology Program, University of Wisconsin School of Medicine and Public HealthMadison, WI, USA
| |
Collapse
|
2
|
Heuberger CE, Janney A, Ilott N, Bertocchi A, Pott S, Gu Y, Pohin M, Friedrich M, Mann EH, Pearson C, Powrie FM, Pott J, Thornton E, Maloy KJ. MHC class II antigen presentation by intestinal epithelial cells fine-tunes bacteria-reactive CD4 T-cell responses. Mucosal Immunol 2024; 17:416-430. [PMID: 37209960 DOI: 10.1016/j.mucimm.2023.05.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/18/2023] [Accepted: 05/01/2023] [Indexed: 05/22/2023]
Abstract
Although intestinal epithelial cells (IECs) can express major histocompatibility complex class II (MHC II), especially during intestinal inflammation, it remains unclear if antigen presentation by IECs favors pro- or anti-inflammatory CD4+ T-cell responses. Using selective gene ablation of MHC II in IECs and IEC organoid cultures, we assessed the impact of MHC II expression by IECs on CD4+ T-cell responses and disease outcomes in response to enteric bacterial pathogens. We found that intestinal bacterial infections elicit inflammatory cues that greatly increase expression of MHC II processing and presentation molecules in colonic IECs. Whilst IEC MHC II expression had little impact on disease severity following Citrobacter rodentium or Helicobacter hepaticus infection, using a colonic IEC organoid-CD4+ T cell co-culture system, we demonstrate that IECs can activate antigen-specific CD4+ T cells in an MHC II-dependent manner, modulating both regulatory and effector Th cell subsets. Furthermore, we assessed adoptively transferred H. hepaticus-specific CD4+ T cells during intestinal inflammation in vivo and report that IEC MHC II expression dampens pro-inflammatory effector Th cells. Our findings indicate that IECs can function as non-conventional antigen-presenting cells and that IEC MHC II expression fine-tunes local effector CD4+ T-cell responses during intestinal inflammation.
Collapse
Affiliation(s)
- Cornelia E Heuberger
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom; Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Alina Janney
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Nicholas Ilott
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Alice Bertocchi
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Sebastian Pott
- Department of Human Genetics, University of Chicago, Chicago, United States
| | - Yisu Gu
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Mathilde Pohin
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Matthias Friedrich
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom; Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Elizabeth H Mann
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Claire Pearson
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Fiona M Powrie
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Johanna Pott
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom; Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Emily Thornton
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom; MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Kevin Joseph Maloy
- School of Infection and Immunity, University of Glasgow, Glasgow, United Kingdom.
| |
Collapse
|
3
|
Pardy RD, Walzer KA, Wallbank BA, Byerly JH, O’Dea KM, Cohn IS, Haskins BE, Roncaioli JL, Smith EJ, Buenconsejo GY, Striepen B, Hunter CA. Analysis of intestinal epithelial cell responses to Cryptosporidium highlights the temporal effects of IFN-γ on parasite restriction. PLoS Pathog 2024; 20:e1011820. [PMID: 38718306 PMCID: PMC11078546 DOI: 10.1371/journal.ppat.1011820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 04/14/2024] [Indexed: 05/12/2024] Open
Abstract
The production of IFN-γ is crucial for control of multiple enteric infections, but its impact on intestinal epithelial cells (IEC) is not well understood. Cryptosporidium parasites exclusively infect epithelial cells and the ability of interferons to activate the transcription factor STAT1 in IEC is required for parasite clearance. Here, the use of single cell RNA sequencing to profile IEC during infection revealed an increased proportion of mid-villus enterocytes during infection and induction of IFN-γ-dependent gene signatures that was comparable between uninfected and infected cells. These analyses were complemented by in vivo studies, which demonstrated that IEC expression of the IFN-γ receptor was required for parasite control. Unexpectedly, treatment of Ifng-/- mice with IFN-γ showed the IEC response to this cytokine correlates with a delayed reduction in parasite burden but did not affect parasite development. These data sets provide insight into the impact of IFN-γ on IEC and suggest a model in which IFN-γ signalling to uninfected enterocytes is important for control of Cryptosporidium.
Collapse
Affiliation(s)
- Ryan D. Pardy
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Katelyn A. Walzer
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Bethan A. Wallbank
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jessica H. Byerly
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Keenan M. O’Dea
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Ian S. Cohn
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Breanne E. Haskins
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Justin L. Roncaioli
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Eleanor J. Smith
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Gracyn Y. Buenconsejo
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Boris Striepen
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Christopher A. Hunter
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
4
|
Mennillo E, Kim YJ, Lee G, Rusu I, Patel RK, Dorman LC, Flynn E, Li S, Bain JL, Andersen C, Rao A, Tamaki S, Tsui J, Shen A, Lotstein ML, Rahim M, Naser M, Bernard-Vazquez F, Eckalbar W, Cho SJ, Beck K, El-Nachef N, Lewin S, Selvig DR, Terdiman JP, Mahadevan U, Oh DY, Fragiadakis GK, Pisco A, Combes AJ, Kattah MG. Single-cell and spatial multi-omics highlight effects of anti-integrin therapy across cellular compartments in ulcerative colitis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.01.21.525036. [PMID: 36711576 PMCID: PMC9882264 DOI: 10.1101/2023.01.21.525036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Ulcerative colitis (UC) is driven by immune and stromal subsets, culminating in epithelial injury. Vedolizumab (VDZ) is an anti-integrin antibody that is effective for treating UC. VDZ is known to inhibit lymphocyte trafficking to the intestine, but its broader effects on other cell subsets are less defined. To identify the inflammatory cells that contribute to colitis and are affected by VDZ, we performed single-cell transcriptomic and proteomic analyses of peripheral blood and colonic biopsies in healthy controls and patients with UC on VDZ or other therapies. Here we show that VDZ treatment is associated with alterations in circulating and tissue mononuclear phagocyte (MNP) subsets, along with modest shifts in lymphocytes. Spatial multi-omics of formalin-fixed biopsies demonstrates trends towards increased abundance and proximity of MNP and fibroblast subsets in active colitis. Spatial transcriptomics of archived specimens pre-treatment identifies epithelial-, MNP-, and fibroblast-enriched genes related to VDZ responsiveness, highlighting important roles for these subsets in UC.
Collapse
|
5
|
Liu W, Wang Q, Bai Y, Xiao H, Li Z, Wang Y, Wang Q, Yang J, Sun H. Potential Application of Intestinal Organoids in Intestinal Diseases. Stem Cell Rev Rep 2024; 20:124-137. [PMID: 37938407 DOI: 10.1007/s12015-023-10651-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2023] [Indexed: 11/09/2023]
Abstract
To accurately reveal the scenario and mecahnism of gastrointestinal diseases, the establishment of in vitro models of intestinal diseases and drug screening platforms have become the focus of attention. Over the past few decades, animal models and immortalized cell lines have provided valuable but limited insights into gastrointestinal research. In recent years, the development of intestinal organoid culture system has revolutionized in vitro studies of intestinal diseases. Intestinal organoids are derived from self-renewal and self-organization intestinal stem cells (ISCs), which can replicate the genetic characteristics, functions, and structures of the original tissues. Consequently, they provide new stragety for studying various intestinal diseases in vitro. In the review, we will discuss the culture techniques of intestinal organoids and describe the use of intestinal organoids as research tools for intestinal diseases. The role of intestinal epithelial cells (IECs) played in the pathogenesis of inflammatory bowel diseases (IBD) and the treatment of intestinal epithelial dysfunction will be highlighted. Besides, we review the current knowledge on using intestinal organoids as models to study the pathogenesis of IBD caused by epithelial dysfunction and to develop new therapeutic approaches. Finally, we shed light on the current challenges of using intestinal organoids as in vitro models.
Collapse
Affiliation(s)
- Wenxiu Liu
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
- Lanzhou Huazhitiancheng Biotechnologies Co., Ltd, Lanzhou, 730000, Gansu, China
| | - Qian Wang
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Yanrui Bai
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Han Xiao
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Zhunduo Li
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Yan Wang
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Qi Wang
- Lanzhou Huazhitiancheng Biotechnologies Co., Ltd, Lanzhou, 730000, Gansu, China.
| | - Jing Yang
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China.
| | - Hui Sun
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China.
| |
Collapse
|
6
|
Hammoudi N, Hamoudi S, Bonnereau J, Bottois H, Pérez K, Bezault M, Hassid D, Chardiny V, Grand C, Gergaud B, Bonnet J, Chedouba L, Tran Minh ML, Gornet JM, Baudry C, Corte H, Maggiori L, Toubert A, McBride J, Brochier C, Neighbors M, Le Bourhis L, Allez M. Autologous organoid co-culture model reveals T cell-driven epithelial cell death in Crohn's Disease. Front Immunol 2022; 13:1008456. [PMID: 36439157 PMCID: PMC9685428 DOI: 10.3389/fimmu.2022.1008456] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 10/24/2022] [Indexed: 09/15/2023] Open
Abstract
Lympho-epithelial interactions between intestinal T resident memory cells (Trm) and the epithelium have been associated with inflammatory bowel disease (IBD) activity. We developed ex vivo autologous organoid-mucosal T cell cocultures to functionally assess lymphoepithelial interactions in Crohn's Disease (CD) patients compared to controls. We demonstrate the direct epithelial cell death induced by autologous mucosal T cells in CD patients but not in controls. These findings were positively correlated with T cell infiltration of the organoids. This potential was inhibited by limiting lympho-epithelial interactions through CD103 and NKG2D blocking antibodies. These data directly demonstrate for the first time the direct deleterious effect of mucosal T cells on the epithelium of CD patients. Such ex-vivo models are promising techniques to unravel the pathophysiology of these diseases and the potential mode of action of current and future therapies.
Collapse
Affiliation(s)
- Nassim Hammoudi
- Université de Paris, INSERM U1160, EMiLy, Institut de Recherche Saint-Louis, Paris, France
- Gastroenterology Department, AP-HP, Hôpital Saint-Louis/Lariboisière, Paris, France
| | - Sarah Hamoudi
- Université de Paris, INSERM U1160, EMiLy, Institut de Recherche Saint-Louis, Paris, France
| | - Julie Bonnereau
- Université de Paris, INSERM U1160, EMiLy, Institut de Recherche Saint-Louis, Paris, France
| | - Hugo Bottois
- Université de Paris, INSERM U1160, EMiLy, Institut de Recherche Saint-Louis, Paris, France
| | - Kevin Pérez
- Université de Paris, INSERM U1160, EMiLy, Institut de Recherche Saint-Louis, Paris, France
| | - Madeleine Bezault
- Université de Paris, INSERM U1160, EMiLy, Institut de Recherche Saint-Louis, Paris, France
| | - Déborah Hassid
- Université de Paris, INSERM U1160, EMiLy, Institut de Recherche Saint-Louis, Paris, France
- Gastroenterology Department, AP-HP, Hôpital Saint-Louis/Lariboisière, Paris, France
| | - Victor Chardiny
- Université de Paris, INSERM U1160, EMiLy, Institut de Recherche Saint-Louis, Paris, France
| | - Céline Grand
- Université de Paris, INSERM U1160, EMiLy, Institut de Recherche Saint-Louis, Paris, France
| | - Brice Gergaud
- Université de Paris, INSERM U1160, EMiLy, Institut de Recherche Saint-Louis, Paris, France
| | - Joëlle Bonnet
- Gastroenterology Department, AP-HP, Hôpital Saint-Louis/Lariboisière, Paris, France
| | - Leila Chedouba
- Gastroenterology Department, AP-HP, Hôpital Saint-Louis/Lariboisière, Paris, France
| | - My-Linh Tran Minh
- Gastroenterology Department, AP-HP, Hôpital Saint-Louis/Lariboisière, Paris, France
| | - Jean-Marc Gornet
- Gastroenterology Department, AP-HP, Hôpital Saint-Louis/Lariboisière, Paris, France
| | - Clotilde Baudry
- Gastroenterology Department, AP-HP, Hôpital Saint-Louis/Lariboisière, Paris, France
| | - Hélène Corte
- Digestive Surgery Department, AP-HP, Hôpital Saint-Louis/Lariboisière, Paris, France
| | - Léon Maggiori
- Digestive Surgery Department, AP-HP, Hôpital Saint-Louis/Lariboisière, Paris, France
| | - Antoine Toubert
- Université de Paris, INSERM U1160, EMiLy, Institut de Recherche Saint-Louis, Paris, France
| | - Jacqueline McBride
- OMNI Biomarker Development, Genentech Inc., South San Francisco, CA, United States
| | | | - Margaret Neighbors
- OMNI Biomarker Development, Genentech Inc., South San Francisco, CA, United States
| | - Lionel Le Bourhis
- Université de Paris, INSERM U1160, EMiLy, Institut de Recherche Saint-Louis, Paris, France
| | - Matthieu Allez
- Université de Paris, INSERM U1160, EMiLy, Institut de Recherche Saint-Louis, Paris, France
- Gastroenterology Department, AP-HP, Hôpital Saint-Louis/Lariboisière, Paris, France
| |
Collapse
|
7
|
Borzouei S, Gholamian-Hamadan M, Behzad M. Impact of interleukin-32α on T helper cell-related cytokines, transcription factors, and proliferation in patients with type 2 diabetes mellitus. Immunopharmacol Immunotoxicol 2022; 45:268-276. [PMID: 36263937 DOI: 10.1080/08923973.2022.2138430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVE The ability of interleukin (IL)-32α to induce T helper (Th) 1, Th17, and Treg cytokines (IFN-γ, IL-17, and IL-10, respectively), and transcription factors [(signal transducer and activator of transcription (STAT) 1 and T-box (T-bet) for Th1, STAT3 and retinoid-related orphan receptor (ROR)-γt for Th17, and STAT5 and forkhead box P3 (Foxp3) for Treg)] were investigated in type 2 diabetes mellitus (T2DM). IL-32α effects on Th cell proliferation and related factors including IL-2 and NF-κB were also explored. METHODS Serum levels of IL-32α in 31 patients and 31 healthy controls (HCs) were determined by ELISA assay. CD4+ T cells cultured with polyclonal activators in the presence and absence of recombinant IL-32α (rIL-32α). Gene expressions in cultured Th cells were assessed with real-time PCR. Cytokines in supernatants were measured with ELISA. Proliferation experiments were assessed by flow cytometry. RESULTS The patients showed significant increase in IL-32α levels compared with HCs and its levels were positively correlated with fasting plasma glucose and hemoglobin A1c. rIL-32α enhanced IL-17 and IL-2 production, increased ROR-γt and NF-κB expression, and enhanced Th proliferation in both patients and HCs. In patients, IL-17, ROR-γt, NF-κB, and proliferation levels were higher than those in HCs, in cultures with and without rIL-32α (rIL-32α+ and rIL-32α-). IL-2 levels in rIL-32α+cultures of patients were significantly higher than the HCs, and it was positively correlated with proliferation rate and NF-κB expression. CONCLUSIONS Aberrant IL-32α levels are participated in T2DM pathogenesis. IL-32α potently induces Th17-related factors and amplifies the proliferative function of T cells.
Collapse
Affiliation(s)
- Shiva Borzouei
- Department of Internal Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | - Mahdi Behzad
- Department of Immunology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
8
|
Allez M. A CEACAM5-derived Peptide Activating CD8 + Regulatory T Cells: A Future Option for Restoring Mucosal Homeostasis in Crohn's Disease? Gastroenterology 2022; 163:822-824. [PMID: 35931106 DOI: 10.1053/j.gastro.2022.07.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 12/02/2022]
Affiliation(s)
- Matthieu Allez
- Département de Gastroentérologie, Hôpital Saint-Louis, APHP, INSERM U1160, Université Paris Cité, Paris, France.
| |
Collapse
|
9
|
Inflammatory Bowel Disease in Adult HIV-Infected Patients-Is Sexually Transmitted Infections Misdiagnosis Possible? J Clin Med 2022; 11:jcm11185324. [PMID: 36142970 PMCID: PMC9506593 DOI: 10.3390/jcm11185324] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/03/2022] [Accepted: 09/04/2022] [Indexed: 11/24/2022] Open
Abstract
Background. The aim of our study was to describe 50 cases of inflammatory bowel disease (IBD) and HIV co-existence that are under medical supervision in Warsaw. Methods. This was a retrospective descriptive study. Fifty HIV-infected patients, diagnosed with IBD during the years 2001–2019, were identified. IBD was diagnosed endoscopically and then confirmed by biopsy. All data was obtained from medical records. Results. All studied patients were male with a median age of 33 years old (range 20–58 years). All, except one, were men who have sex with men (MSM). The median CD4 cell count was 482 cells/µL (range 165–1073 cells/µL). Crohn’s disease (CD) was diagnosed in 7 patients (14%), ulcerative colitis (UC) in 41 patients (82%), and 2 patients (4%) had indeterminate colitis. Forty-nine patients (98%) reported a history of unprotected receptive anal intercourse and different sexual transmitted infections (STIs). Only in 10 patients (20%) were one or more IBD relapses observed. Conclusions. We recommend HIV testing for every MSM with IBD suspicion. Moreover, STIs testing should be performed in every IBD patient with colorectal inflammation, using molecular and serological methods. Persons who reported unprotected receptive anal intercourse seem to have the biggest risk of STI-associated proctitis or proctocolitis mimicking IBD.
Collapse
|
10
|
Lefferts AR, Norman E, Claypool DJ, Kantheti U, Kuhn KA. Cytokine competent gut-joint migratory T Cells contribute to inflammation in the joint. Front Immunol 2022; 13:932393. [PMID: 36159826 PMCID: PMC9489919 DOI: 10.3389/fimmu.2022.932393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/16/2022] [Indexed: 02/01/2023] Open
Abstract
Although studies have identified the presence of gut-associated cells in the enthesis of joints affected by spondylarthritis (SpA), a direct link through cellular transit between the gut and joint has yet to be formally demonstrated. Using KikGR transgenic mice to label in situ and track cellular trafficking from the distal colon to the joint under inflammatory conditions of both the gut and joint, we demonstrate bona-fide gut-joint trafficking of T cells from the colon epithelium, also called intraepithelial lymphocytes (IELs), to distal sites including joint enthesis, the pathogenic site of SpA. Similar to patients with SpA, colon IELs from the TNFΔARE/+ mouse model of inflammatory bowel disease and SpA display heightened TNF production upon stimulation. Using ex vivo stimulation of photo-labeled gut-joint trafficked T cells from the popliteal lymph nodes of KikGR and KikGR TNFΔARE/+ we saw that the CD4+ photo-labeled population was highly enriched for IL-17 competence in healthy as well as arthritic mice, however in the TNFΔARE/+ mice these cells were additionally enriched for TNF. Using transfer of magnetically isolated IELs from TNF+/+ and TNFΔARE/+ donors into Rag1 -/- hosts, we confirmed that IELs can exacerbate inflammatory processes in the joint. Finally, we blocked IEL recruitment to the colon epithelium using broad spectrum antibiotics in TNFΔARE/+ mice. Antibiotic-treated mice had reduced gut-joint IEL migration, contained fewer Il-17A and TNF competent CD4+ T cells, and lessened joint pathology compared to untreated littermate controls. Together these results demonstrate that pro-inflammatory colon-derived IELs can exacerbate inflammatory responses in the joint through systemic trafficking, and that interference with this process through gut-targeted approaches has therapeutic potential in SpA.
Collapse
|
11
|
Darragh LB, Karam SD. Amateur antigen-presenting cells in the tumor microenvironment. Mol Carcinog 2022; 61:153-164. [PMID: 34570920 PMCID: PMC9899420 DOI: 10.1002/mc.23354] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/01/2021] [Accepted: 09/15/2021] [Indexed: 02/07/2023]
Abstract
Presentation of tumor antigens is a critical step in producing a robust antitumor immune response. Classically tumor antigens are thought to be presented to both CD8 and CD4 T cells by professional antigen-presenting cells (pAPCs) like dendritic cells using major histocompatibility complexes (MHC) I and II. But recent evidence suggests that in the tumor microenvironment (TME) cells other than pAPCs are capable of presenting tumor antigens on both MHC I and II. The evidence currently available on tumor antigen presentation by epithelial cells, vascular endothelial cells (VECs), fibroblasts, and cancer cells is reviewed herein. We refer to these cell types in the TME as "amateur" APCs (aAPCs). These aAPCs greatly outnumber pAPCs in the TME and could, potentially, play a significant role in priming an antitumor immune response. This new evidence supports a different perspective on antigen presentation and suggests new approaches that can be taken in designing immunotherapies to increase T cell priming.
Collapse
Affiliation(s)
- Laurel B. Darragh
- Department of Immunology, University of Colorado Denver–Anschutz Medical Campus, Aurora, CO, USA
| | - Sana D. Karam
- Department of Radiation Oncology, University of Colorado Denver–Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
12
|
Stephens WZ, Kubinak JL, Ghazaryan A, Bauer KM, Bell R, Buhrke K, Chiaro TR, Weis AM, Tang WW, Monts JK, Soto R, Ekiz HA, O'Connell RM, Round JL. Epithelial-myeloid exchange of MHC class II constrains immunity and microbiota composition. Cell Rep 2021; 37:109916. [PMID: 34731608 PMCID: PMC9012449 DOI: 10.1016/j.celrep.2021.109916] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/13/2021] [Accepted: 10/11/2021] [Indexed: 12/12/2022] Open
Abstract
Intestinal epithelial cells (IECs) have long been understood to express high levels of major histocompatibility complex class II (MHC class II) molecules but are not considered canonical antigen-presenting cells, and the impact of IEC-MHC class II signaling on gut homeostasis remains enigmatic. As IECs serve as the primary barrier between underlying host immune cells, we reasoned that IEC-intrinsic antigen presentation may play a role in responses toward the microbiota. Mice with an IEC-intrinsic deletion of MHC class II (IECΔMHC class II) are healthy but have fewer microbial-bound IgA, regulatory T cells (Tregs), and immune repertoire selection. This was associated with increased interindividual microbiota variation and altered proportions of two taxa in the ileum where MHC class II on IECs is highest. Intestinal mononuclear phagocytes (MNPs) have similar MHC class II transcription but less surface MHC class II and are capable of acquiring MHC class II from IECs. Thus, epithelial-myeloid interactions mediate development of adaptive responses to microbial antigens within the gastrointestinal tract.
Collapse
Affiliation(s)
- W Zac Stephens
- University of Utah School of Medicine, Department of Pathology, Division of Microbiology and Immunology, Salt Lake City, UT 84112, USA
| | - Jason L Kubinak
- University of South Carolina School of Medicine, Department of Pathology, Microbiology and Immunology, Columbia, SC 29209, USA
| | - Arevik Ghazaryan
- University of Utah School of Medicine, Department of Pathology, Division of Microbiology and Immunology, Salt Lake City, UT 84112, USA
| | - Kaylyn M Bauer
- University of Utah School of Medicine, Department of Pathology, Division of Microbiology and Immunology, Salt Lake City, UT 84112, USA
| | - Rickesha Bell
- University of Utah School of Medicine, Department of Pathology, Division of Microbiology and Immunology, Salt Lake City, UT 84112, USA
| | - Kate Buhrke
- University of Utah School of Medicine, Department of Pathology, Division of Microbiology and Immunology, Salt Lake City, UT 84112, USA
| | - Tyson R Chiaro
- University of Utah School of Medicine, Department of Pathology, Division of Microbiology and Immunology, Salt Lake City, UT 84112, USA
| | - Allison M Weis
- University of Utah School of Medicine, Department of Pathology, Division of Microbiology and Immunology, Salt Lake City, UT 84112, USA
| | - William W Tang
- University of Utah School of Medicine, Department of Pathology, Division of Microbiology and Immunology, Salt Lake City, UT 84112, USA
| | - Josh K Monts
- University of Utah School of Medicine, Flow Cytometry Core, Health Sciences Center, Salt Lake City, UT 84112, USA
| | - Ray Soto
- University of Utah School of Medicine, Department of Pathology, Division of Microbiology and Immunology, Salt Lake City, UT 84112, USA
| | - H Atakan Ekiz
- University of Utah School of Medicine, Department of Pathology, Division of Microbiology and Immunology, Salt Lake City, UT 84112, USA; Izmir Institute of Technology, Molecular Biology and Genetics Department, Gulbahce, Izmir 35430, Turkey
| | - Ryan M O'Connell
- University of Utah School of Medicine, Department of Pathology, Division of Microbiology and Immunology, Salt Lake City, UT 84112, USA.
| | - June L Round
- University of Utah School of Medicine, Department of Pathology, Division of Microbiology and Immunology, Salt Lake City, UT 84112, USA.
| |
Collapse
|
13
|
Lefferts AR, Regner EH, Stahly A, O'Rourke B, Gerich ME, Fennimore BP, Scott FI, Freeman AE, Jones K, Kuhn KA. Circulating mature granzyme B+ T cells distinguish Crohn's disease-associated axial spondyloarthritis from axial spondyloarthritis and Crohn's disease. Arthritis Res Ther 2021; 23:147. [PMID: 34022940 PMCID: PMC8140495 DOI: 10.1186/s13075-021-02531-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 05/12/2021] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Axial spondyloarthritis (axSpA) has strong connections with intestinal inflammation as occurs in Crohn's disease (CD). However, the immunologic mechanisms that distinguish axSpA, CD, and those with features of both diseases (CD-axSpA) are unknown. This study aimed to address this question by initial unbiased single cell RNA-sequencing (scRNAseq) on a pilot cohort followed by validating findings using flow cytometry and ELISA in a larger cohort. METHODS Two individuals each with CD, axSpA, CD-axSpA, and healthy controls (HC) were recruited for a pilot discovery scRNAseq cohort, and the validation cohort consisted of 18 axSpA, 24 CD, 13 CD-axSpA, and 17 HC that was evaluated by flow cytometry on PBMCs and ELISAs for plasma cytokines. RESULTS Uniquely, PBMCs from subjects with CD-axSpA demonstrated a significant increase in granzyme B+ T cells of both CD4+ and CD8+ lineages by both scRNAseq and flow cytometry. T cell maturation was also greater in those with CD-axSpA, particularly the CD4+ granzyme B+ population. Pathway analysis suggested increased interferon response genes in all immune cell populations within CD-axSpA. Although IFN-γ was elevated in the plasma of a subset of subjects with CD-axSpA, IL-6 was also significantly elevated. CONCLUSIONS Our findings support the presence of a chronic interferonopathy in subjects with CD-axSpA characterized by interferon signaling by pathway analysis and an expansion of mature, cytotoxic T cells. These data indicate fundamental immunological differences between CD-axSpA and both of the putative "parent" conditions, suggesting that it is a distinct disease with unique natural history and treatment needs.
Collapse
Affiliation(s)
- Adam R Lefferts
- Division of Rheumatology, Department of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Emilie H Regner
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
- Present Address: Division of Gastroenterology, Department of Medicine, Oregon Health Sciences University, Portland, OR, USA
| | - Andrew Stahly
- Division of Rheumatology, Department of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Becky O'Rourke
- Section of Pediatric Hematology/Oncology/Bone Marrow Transplant, Department of Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Mark E Gerich
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Blair P Fennimore
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Frank I Scott
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Alison E Freeman
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
- Present Address: Cascade Gastroenterology, Bend, OR, USA
| | - Ken Jones
- Section of Pediatric Hematology/Oncology/Bone Marrow Transplant, Department of Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
- Present Address: Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Kristine A Kuhn
- Division of Rheumatology, Department of Medicine, Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
14
|
Heuberger C, Pott J, Maloy KJ. Why do intestinal epithelial cells express MHC class II? Immunology 2020; 162:357-367. [PMID: 32966619 PMCID: PMC7968399 DOI: 10.1111/imm.13270] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 12/23/2022] Open
Abstract
Intestinal epithelial cells (IECs) constitute the border between the vast antigen load present in the intestinal lumen and the mucosal immune compartment. Their ability to express antigen processing and presentation machinery evokes the question whether IECs function as non-conventional antigen-presenting cells. Major histocompatibility complex (MHC) class II expression by non-haematopoietic cells, such as IECs, is tightly regulated by the class II transactivator (CIITA) and is classically induced by IFN-γ. As MHC class II expression by IECs is upregulated under inflammatory conditions, it has been proposed to activate effector CD4+ T (Teff) cells. However, other studies have reported contradictory results and instead suggested a suppressive role of antigen presentation by IECs, through regulatory T (Treg)-cell activation. Recent studies investigating the role of MHC class II + exosomes released by IECs also reported conflicting findings of either immune enhancing or immunosuppressive activities. Moreover, in addition to modulating inflammatory responses, recent findings suggest that MHC class II expression by intestinal stem cells may elicit crosstalk that promotes epithelial renewal. A more complete understanding of the different consequences of IEC MHC class II antigen presentation will guide future efforts to modulate this pathway to selectively invoke protective immunity while maintaining tolerance to beneficial antigens.
Collapse
Affiliation(s)
- Cornelia Heuberger
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.,Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Johanna Pott
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.,Hubrecht Organoid Technology, Utrecht, Netherlands
| | - Kevin Joseph Maloy
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.,Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| |
Collapse
|
15
|
Jamwal DR, Laubitz D, Harrison CA, da Paz VF, Cox CM, Wong R, Midura-Kiela M, Gurney MA, Besselsen DG, Setty P, Lybarger L, Bhattacharya D, Wilson JM, Ghishan FK, Kiela PR. Intestinal Epithelial Expression of MHCII Determines Severity of Chemical, T-Cell-Induced, and Infectious Colitis in Mice. Gastroenterology 2020; 159:1342-1356.e6. [PMID: 32589883 PMCID: PMC9190026 DOI: 10.1053/j.gastro.2020.06.049] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 05/14/2020] [Accepted: 06/10/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Intestinal epithelial cells (IECs) provide a barrier that separates the mucosal immune system from the luminal microbiota. IECs constitutively express low levels of major histocompatibility complex (MHC) class II proteins, which are upregulated upon exposure to interferon gamma. We investigated the effects of deleting MHCII proteins specifically in mice with infectious, dextran sodium sulfate (DSS)-, and T-cell-induced colitis. METHODS We disrupted the histocompatibility 2, class II antigen A, beta 1 gene (H2-Ab1) in IECs of C57BL/6 mice (I-AbΔIEC) or Rag1-/- mice (Rag1-/-I-AbΔIEC); we used I-AbWT mice as controls. Colitis was induced by administration of DSS, transfer of CD4+CD45RBhi T cells, or infection with Citrobacter rodentium. Colon tissues were collected and analyzed by histology, immunofluorescence, xMAP, and reverse-transcription polymerase chain reaction and organoids were generated. Microbiota (total and immunoglobulin [Ig]A-coated) in intestinal samples were analyzed by16S amplicon profiling. IgA+CD138+ plasma cells from Peyer's patches and lamina propria were analyzed by flow cytometry and IgA repertoire was determined by next-generation sequencing. RESULTS Mice with IEC-specific loss of MHCII (I-AbΔIEC mice) developed less severe DSS- or T-cell transfer-induced colitis than control mice. Intestinal tissues from I-AbΔIEC mice had a lower proportion of IgA-coated bacteria compared with control mice, and a reduced luminal concentration of secretory IgA (SIgA) following infection with C rodentium. There was no significant difference in the mucosal IgA repertoire of I-AbΔIEC vs control mice, but opsonization of cultured C rodentium by SIgA isolated from I-AbΔIEC mice was 50% lower than that of SIgA from mAbWT mice. Fifty percent of I-AbΔIEC mice died after infection with C rodentium, compared with none of the control mice. We observed a transient but significant expansion of the pathogen in the feces of I-AbΔIEC mice compared with I-AbWT mice. CONCLUSIONS In mice with DSS or T-cell-induced colitis, loss of MHCII from IECs reduces but does not eliminate mucosal inflammation. However, in mice with C rodentium-induced colitis, loss of MHCII reduces bacterial clearance by decreasing binding of IgA to commensal and pathogenic bacteria.
Collapse
Affiliation(s)
- Deepa R. Jamwal
- Department of Pediatrics, University of Arizona, Tucson, Arizona
| | - Daniel Laubitz
- Department of Pediatrics, University of Arizona, Tucson, Arizona
| | | | | | - Christopher M. Cox
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona
| | - Rachel Wong
- Department of Immunobiology, University of Arizona, Tucson, Arizona
| | | | | | | | - Prashanth Setty
- Department of Pediatrics, University of Arizona, Tucson, Arizona
| | - Lonnie Lybarger
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona
| | | | - Jean M. Wilson
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona
| | - Fayez K. Ghishan
- Department of Pediatrics, University of Arizona, Tucson, Arizona
| | - Pawel R. Kiela
- Department of Pediatrics, University of Arizona, Tucson, Arizona,Department of Immunobiology, University of Arizona, Tucson, Arizona
| |
Collapse
|
16
|
Choi KYG, Wu BC, Lee AHY, Baquir B, Hancock REW. Utilizing Organoid and Air-Liquid Interface Models as a Screening Method in the Development of New Host Defense Peptides. Front Cell Infect Microbiol 2020; 10:228. [PMID: 32509598 PMCID: PMC7251080 DOI: 10.3389/fcimb.2020.00228] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 04/23/2020] [Indexed: 12/24/2022] Open
Abstract
Host defense peptides (HDPs), also known as antimicrobial peptides, are naturally occurring polypeptides (~12–50 residues) composed of cationic and hydrophobic amino acids that adopt an amphipathic conformation upon folding usually after contact with membranes. HDPs have a variety of biological activities including immunomodulatory, anti-inflammatory, anti-bacterial, and anti-biofilm functions. Although HDPs have the potential to address the global threat of antibiotic resistance and to treat immune and inflammatory disorders, they have yet to achieve this promise. Indeed, there are several challenges associated with bringing peptide-based drug candidates from the lab bench to clinical practice, including identifying appropriate indications, stability, toxicity, and cost. These challenges can be addressed in part by the development of innate defense regulator (IDR) peptides and peptidomimetics, which are synthetic derivatives of HDPs with similar or better efficacy, increased stability, and reduced toxicity and cost of the original HDP. However, one of the largest gaps between basic research and clinical application is the validity and translatability of conventional model systems, such as cell lines and animal models, for screening HDPs and their derivatives as potential drug therapies. Indeed, such translation has often relied on animal models, which have only limited validity. Here we discuss the recent development of human organoids for disease modeling and drug screening, assisted by the use of omics analyses. Organoids, developed from primary cells, cell lines, or human pluripotent stem cells, are three-dimensional, self-organizing structures that closely resemble their corresponding in vivo organs with regards to immune responses, tissue organization, and physiological properties; thus, organoids represent a reliable method for studying efficacy, formulation, toxicity and to some extent drug stability and pharmacodynamics. The use of patient-derived organoids enables the study of patient-specific efficacy, toxicogenomics and drug response predictions. We outline how organoids and omics data analysis can be leveraged to aid in the clinical translation of IDR peptides.
Collapse
Affiliation(s)
- Ka-Yee Grace Choi
- Department of Microbiology and Immunology, Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
| | - Bing Catherine Wu
- Department of Microbiology and Immunology, Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
| | - Amy Huei-Yi Lee
- Department of Microbiology and Immunology, Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada.,Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Beverlie Baquir
- Department of Microbiology and Immunology, Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
| | - Robert E W Hancock
- Department of Microbiology and Immunology, Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
17
|
Soderholm AT, Pedicord VA. Intestinal epithelial cells: at the interface of the microbiota and mucosal immunity. Immunology 2019; 158:267-280. [PMID: 31509239 PMCID: PMC6856932 DOI: 10.1111/imm.13117] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/27/2019] [Accepted: 09/04/2019] [Indexed: 12/18/2022] Open
Abstract
The intestinal epithelium forms a barrier between the microbiota and the rest of the body. In addition, beyond acting as a physical barrier, the function of intestinal epithelial cells (IECs) in sensing and responding to microbial signals is increasingly appreciated and likely has numerous implications for the vast network of immune cells within and below the intestinal epithelium. IECs also respond to factors produced by immune cells, and these can regulate IEC barrier function, proliferation and differentiation, as well as influence the composition of the microbiota. The mechanisms involved in IEC-microbe-immune interactions, however, are not fully characterized. In this review, we explore the ability of IECs to direct intestinal homeostasis by orchestrating communication between intestinal microbes and mucosal innate and adaptive immune cells during physiological and inflammatory conditions. We focus primarily on the most recent findings and call attention to the numerous remaining unknowns regarding the complex crosstalk between IECs, the microbiota and intestinal immune cells.
Collapse
Affiliation(s)
- Amelia T. Soderholm
- Cambridge Institute of Therapeutic Immunology & Infectious DiseaseUniversity of CambridgeCambridgeUK
| | - Virginia A. Pedicord
- Cambridge Institute of Therapeutic Immunology & Infectious DiseaseUniversity of CambridgeCambridgeUK
| |
Collapse
|
18
|
Yoo JH, Donowitz M. Intestinal enteroids/organoids: A novel platform for drug discovery in inflammatory bowel diseases. World J Gastroenterol 2019; 25:4125-4147. [PMID: 31435168 PMCID: PMC6700704 DOI: 10.3748/wjg.v25.i30.4125] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/14/2019] [Accepted: 07/19/2019] [Indexed: 02/06/2023] Open
Abstract
The introduction of biologics such as anti-tumor necrosis factor (TNF) monoclonal antibodies followed by anti-integrins has dramatically changed the therapeutic paradigm of inflammatory bowel diseases (IBD). Furthermore, a newly developed anti-p40 subunit of interleukin (IL)-12 and IL-23 (ustekinumab) has been recently approved in the United States for patients with moderate to severe Crohn’s disease who have failed treatment with anti-TNFs. However, these immunosuppressive therapeutics which focus on anti-inflammatory mechanisms or immune cells still fail to achieve long-term remission in a significant percentage of patients. This strongly underlines the need to identify novel treatment targets beyond immune suppression to treat IBD. Recent studies have revealed the critical role of intestinal epithelial cells (IECs) in the pathogenesis of IBD. Physical, biochemical and immunologic driven barrier dysfunctions of epithelial cells contribute to the development of IBD. In addition, the recent establishment of adult stem cell-derived intestinal enteroid/organoid culture technology has allowed an exciting opportunity to study human IECs comprising all normal epithelial cells. This long-term epithelial culture model can be generated from endoscopic biopsies or surgical resections and recapitulates the tissue of origin, representing a promising platform for novel drug discovery in IBD. This review describes the advantages of intestinal enteroids/organoids as a research tool for intestinal diseases, introduces studies with these models in IBD, and gives a description of the current status of therapeutic approaches in IBD. Finally, we provide an overview of the current endeavors to identify a novel drug target for IBD therapy based on studies with human enteroids/organoids and describe the challenges in using enteroids/organoids as an IBD model.
Collapse
Affiliation(s)
- Jun-Hwan Yoo
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
- Digestive Disease Center, CHA Bundang Medical Center, CHA University, Seongnam 13496, South Korea
| | - Mark Donowitz
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| |
Collapse
|
19
|
Molero-Abraham M, Sanchez-Trincado JL, Gomez-Perosanz M, Torres-Gomez A, Subiza JL, Lafuente EM, Reche PA. Human Oral Epithelial Cells Impair Bacteria-Mediated Maturation of Dendritic Cells and Render T Cells Unresponsive to Stimulation. Front Immunol 2019; 10:1434. [PMID: 31316504 PMCID: PMC6611079 DOI: 10.3389/fimmu.2019.01434] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 06/07/2019] [Indexed: 01/03/2023] Open
Abstract
The oral mucosa is a first line of defense against pathogenic organisms and yet tolerates food antigens and resident bacteria. Mucosal epithelial cells are emerging as important regulators of innate and adaptive immune responses. However, the contribution of oral epithelial cells (OECs) determining oral immunity is understudied. Here, we evaluated the ability of H413 and TR146 cells, two OEC lines derived from human oral squamous cell carcinomas, and primary OECs to modulate immune responses to a cocktail of Gram+ and Gram− bacteria known as MV130. OECs expressed CD40 constitutively and class II major histocompatibility complex (MHC II) molecules when stimulated with IFNγ, but not CD80 or CD86. Dendritic cells (DCs) treated with bacteria in co-culture with OECs did not fully mature, as judged by the expression of MHC II, CD80 and CD86, and barely released IL-12 and TNFα, compared to control DCs. Furthermore, in the presence of OECs, DCs were unable to stimulate allogenic naive CD4 T cells to produce IFNγ and TNFα. Similarly, OECs in culture with total CD4 T cells or Th1 cells stimulated with anti-CD3 and anti-CD28 antibodies abrogated CD25 and CD69 expression, T cell proliferation and the release of IFNγ and TNFα. The inhibition on T cell activation by OECs was cell-contact dependent, TGFβ independent and largely irreversible. Overall, this behavior of OECs is likely key to avoid immune system over-reaction against resident bacteria.
Collapse
Affiliation(s)
| | - Jose L Sanchez-Trincado
- Department of Immunology, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Marta Gomez-Perosanz
- Department of Immunology, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Alvaro Torres-Gomez
- Department of Immunology, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | | | - Esther M Lafuente
- Department of Immunology, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Pedro A Reche
- Department of Immunology, School of Medicine, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
20
|
Wosen JE, Mukhopadhyay D, Macaubas C, Mellins ED. Epithelial MHC Class II Expression and Its Role in Antigen Presentation in the Gastrointestinal and Respiratory Tracts. Front Immunol 2018; 9:2144. [PMID: 30319613 PMCID: PMC6167424 DOI: 10.3389/fimmu.2018.02144] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 08/30/2018] [Indexed: 12/13/2022] Open
Abstract
As the primary barrier between an organism and its environment, epithelial cells are well-positioned to regulate tolerance while preserving immunity against pathogens. Class II major histocompatibility complex molecules (MHC class II) are highly expressed on the surface of epithelial cells (ECs) in both the lung and intestine, although the functional consequences of this expression are not fully understood. Here, we summarize current information regarding the interactions that regulate the expression of EC MHC class II in health and disease. We then evaluate the potential role of EC as non-professional antigen presenting cells. Finally, we explore future areas of study and the potential contribution of epithelial surfaces to gut-lung crosstalk.
Collapse
Affiliation(s)
- Jonathan E Wosen
- Program in Immunology, Department of Pediatrics, Stanford University, Stanford, CA, United States
| | - Dhriti Mukhopadhyay
- Program in Immunology, Department of Pediatrics, Stanford University, Stanford, CA, United States
| | - Claudia Macaubas
- Program in Immunology, Department of Pediatrics, Stanford University, Stanford, CA, United States
| | - Elizabeth D Mellins
- Program in Immunology, Department of Pediatrics, Stanford University, Stanford, CA, United States
| |
Collapse
|
21
|
Zundler S, Neurath MF. Pathogenic T cell subsets in allergic and chronic inflammatory bowel disorders. Immunol Rev 2017; 278:263-276. [DOI: 10.1111/imr.12544] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Sebastian Zundler
- Department of Medicine 1; University of Erlangen-Nuremberg; Kussmaul Campus for Medical Research & Translational Research Center; Erlangen Germany
| | - Markus F. Neurath
- Department of Medicine 1; University of Erlangen-Nuremberg; Kussmaul Campus for Medical Research & Translational Research Center; Erlangen Germany
| |
Collapse
|
22
|
Sasidharan S, Yajnik V, Khalili H, Garber J, Xavier R, Ananthakrishnan AN. Genetic risk factors for serious infections in inflammatory bowel diseases. Scand J Gastroenterol 2017; 52:570-576. [PMID: 28162010 PMCID: PMC5642969 DOI: 10.1080/00365521.2017.1286381] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
INTRODUCTION Immunosuppression, the cornerstone of management of Crohn's disease (CD) and ulcerative colitis (UC) (inflammatory bowel diseases; IBD) is associated with an increased risk of serious infections that is inadequately predicted by clinical risk factors. The role of genetics in determining susceptibility to infections is unknown. METHODS From a prospective-consented patient registry, we identified IBD patients with serious infections requiring hospitalization. Analysis was performed to identify IBD-related and non-IBD related immune response loci on the Immunochip that were associated with serious infections and a genetic risk score (GRS) representing the cumulative burden of the identified single nucleotide polymorphisms was calculated. Multivariable logistic regression used to identify effect of clinical and genetic factors. RESULTS The study included 1333 IBD patients (795 CD, 538 UC) with median disease duration of 13 years. A total of 133 patients (10%) had a serious infection requiring hospitalization. Patients with infections were more likely to have CD and had shorter disease duration. The most common infections were skin and soft-tissue, respiratory and urinary tract infections. Eight IBD risk loci and two other polymorphisms were significantly associations with serious infections. Each one point increase in the infection GRS was associated with a 50% increase in risk of infections (OR = 1.53, 95% CI = 1.37-1.70) (p = 1 × 10-14), confirmed on multivariable analysis. Genetic risk factors improved performance of a model predicting infections over clinical covariates alone (p < 0.001). CONCLUSIONS Genetic risk factors may predict susceptibility to infections in patients with IBD.
Collapse
Affiliation(s)
- Saranya Sasidharan
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School
| | - Vijay Yajnik
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School
| | - Hamed Khalili
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School
| | - John Garber
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School
| | - Ramnik Xavier
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School
| | | |
Collapse
|
23
|
Földes A, Kádár K, Kerémi B, Zsembery Á, Gyires K, S Zádori Z, Varga G. Mesenchymal Stem Cells of Dental Origin-Their Potential for Antiinflammatory and Regenerative Actions in Brain and Gut Damage. Curr Neuropharmacol 2017; 14:914-934. [PMID: 26791480 PMCID: PMC5333580 DOI: 10.2174/1570159x14666160121115210] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 12/14/2015] [Accepted: 01/20/2016] [Indexed: 02/07/2023] Open
Abstract
Alzheimer’s disease, Parkinson’s disease, traumatic brain and spinal cord injury and neuroinflammatory multiple sclerosis are diverse disorders of the central nervous system. However, they are all characterized by various levels of inappropriate inflammatory/immune response along with tissue destruction. In the gastrointestinal system, inflammatory bowel disease (IBD) is also a consequence of tissue destruction resulting from an uncontrolled inflammation. Interestingly, there are many similarities in the immunopathomechanisms of these CNS disorders and the various forms of IBD. Since it is very hard or impossible to cure them by conventional manner, novel therapeutic approaches such as the use of mesenchymal stem cells, are needed. Mesenchymal stem cells have already been isolated from various tissues including the dental pulp and periodontal ligament. Such cells possess transdifferentiating capabilities for different tissue specific cells to serve as new building blocks for regeneration. But more importantly, they are also potent immunomodulators inhibiting proinflammatory processes and stimulating anti-inflammatory mechanisms. The present review was prepared to compare the immunopathomechanisms of the above mentioned neurodegenerative, neurotraumatic and neuroinflammatory diseases with IBD. Additionally, we considered the potential use of mesenchymal stem cells, especially those from dental origin to treat such disorders. We conceive that such efforts will yield considerable advance in treatment options for central and peripheral disorders related to inflammatory degeneration.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Gábor Varga
- Departments of Oral Biology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
24
|
Arebro J, Tengroth L, Razavi R, Kumlien Georén S, Winqvist O, Cardell LO. Antigen-presenting epithelial cells can play a pivotal role in airway allergy. J Allergy Clin Immunol 2015; 137:957-60.e7. [PMID: 26560042 PMCID: PMC7112366 DOI: 10.1016/j.jaci.2015.08.053] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 07/25/2015] [Accepted: 08/17/2015] [Indexed: 01/22/2023]
Affiliation(s)
- Julia Arebro
- Division of ENT Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden; Department of ENT Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Lotta Tengroth
- Division of ENT Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Ronia Razavi
- Division of ENT Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Susanna Kumlien Georén
- Division of ENT Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Ola Winqvist
- Department of Medicine, Unit of Translational Immunology, Karolinska Institutet, Stockholm, Sweden
| | - Lars-Olaf Cardell
- Division of ENT Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden; Department of ENT Diseases, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
25
|
Th17 Cells as Potential Probiotic Therapeutic Targets in Inflammatory Bowel Diseases. Int J Mol Sci 2015; 16:20841-58. [PMID: 26340622 PMCID: PMC4613231 DOI: 10.3390/ijms160920841] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 08/19/2015] [Accepted: 08/25/2015] [Indexed: 12/19/2022] Open
Abstract
Inflammatory bowel diseases (IBD) are characterized by wasting and chronic intestinal inflammation triggered by various cytokine-mediated pathways. In recent years, it was shown that T helper 17 (Th17) cells are involved in the pathogenesis of IBD, which makes them an attractive therapeutic target. Th17 cells preferentially produce interleukin (IL)-17A–F as signature cytokines. The role of the interplay between host genetics and intestinal microbiota in the pathogenesis of IBD was demonstrated. Probiotics are live microorganisms that when orally ingested in adequate amounts, confer a health benefit to the host by modulating the enteric flora or by stimulating the local immune system. Several studies indicated the effectiveness of probiotics in preventing and treating IBD (ulcerative colitis, and Crohn’s disease). Furthermore, there is mounting evidence of probiotics selectively targeting the Th17 lineage in the prevention and management of inflammatory and autoimmune diseases such as IBD. This review highlights critical roles of Th17 cells in the pathogenesis of IBD and the rationale for using probiotics as a novel therapeutic approach for IBD through manipulation of Th17 cells. The potential molecular mechanisms by which probiotics modulate Th17 cells differentiation and production are also discussed.
Collapse
|
26
|
Rogoz A, Reis BS, Karssemeijer RA, Mucida D. A 3-D enteroid-based model to study T-cell and epithelial cell interaction. J Immunol Methods 2015; 421:89-95. [PMID: 25841547 DOI: 10.1016/j.jim.2015.03.014] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 03/19/2015] [Accepted: 03/26/2015] [Indexed: 11/24/2022]
Abstract
The constant interaction between intestinal epithelial cells (IECs) and intraepithelial lymphocytes (IELs) is thought to regulate mucosal barrier function and immune responses against invading pathogens. IELs represent a heterogeneous population of mostly activated and antigen-experienced T cells, but the biological function of IELs and their relationship with IECs is still poorly understood. Here, we describe a method to study T-cell-epithelial cell interactions using a recently established long-term intestinal "enteroid" culture system. This system allowed the study of peripheral T cell survival, proliferation, differentiation and behavior during long-term co-cultures with crypt-derived 3-D enteroids. Peripheral T cells activated in the presence of enteroids acquire several features of IELs, including morphology, membrane markers and movement in the epithelial layer. This co-culture system may facilitate the investigation of complex interactions between intestinal epithelial cells and immune cells, particularly allowing long term-cultures and studies targeting specific pathways in IEC or immune cell compartments.
Collapse
Affiliation(s)
- Aneta Rogoz
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA
| | - Bernardo S Reis
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA
| | - Roos A Karssemeijer
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA
| | - Daniel Mucida
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
27
|
Bach H. What Role Does Mycobacterium avium subsp. paratuberculosis Play in Crohn's Disease? Curr Infect Dis Rep 2015; 17:463. [PMID: 25754452 DOI: 10.1007/s11908-015-0463-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Crohn's disease (CD) is a chronic, debilitating inflammatory bowel disease with no etiological agent yet identified. Studies have demonstrated that the bacterium Mycobacterium avium subsp. paratuberculosis (MAP) is present in a high percentage of CD patients. Although MAP has been isolated from human specimens, current techniques fail to show the presence of MAP in 100 % of tissues or biopsies obtained from CD patient lesions, and thus MAP cannot meet Koch's postulate as the etiological agent of CD. In this report, the effect of genetic and immune factors as well as the presence of MAP as a potential environmental factor is analyzed.
Collapse
Affiliation(s)
- Horacio Bach
- Division of Infectious Diseases, Department of Medicine, University of British Columbia, 410-2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada,
| |
Collapse
|
28
|
|
29
|
Abstract
Inflammatory bowel disease (IBD) is a group of chronic non-specific inflammatory disease with unknown etiology; it is associated with genetic factors, immune factors, intestinal flora, infection, and other factors. In recent years, mesenchymal stem cells (MSCs) have attracted more and more attention in the treatment of IBD, and the therapeutic effects may be associated with their antiinflammatory and immunomodulatory effects as well as intestinal epithelium reconstruction. In this article, we will review the causes of IBD and possible mechanisms of MSCs in treating IBD.
Collapse
|
30
|
Interferon-γ induces expression of MHC class II on intestinal epithelial cells and protects mice from colitis. PLoS One 2014; 9:e86844. [PMID: 24489792 PMCID: PMC3904943 DOI: 10.1371/journal.pone.0086844] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 12/13/2013] [Indexed: 12/12/2022] Open
Abstract
Immune responses against intestinal microbiota contribute to the pathogenesis of inflammatory bowel diseases (IBD) and involve CD4+ T cells, which are activated by major histocompatibility complex class II (MHCII) molecules on antigen-presenting cells (APCs). However, it is largely unexplored how inflammation-induced MHCII expression by intestinal epithelial cells (IEC) affects CD4+ T cell-mediated immunity or tolerance induction in vivo. Here, we investigated how epithelial MHCII expression is induced and how a deficiency in inducible epithelial MHCII expression alters susceptibility to colitis and the outcome of colon-specific immune responses. Colitis was induced in mice that lacked inducible expression of MHCII molecules on all nonhematopoietic cells, or specifically on IECs, by continuous infection with Helicobacter hepaticus and administration of interleukin (IL)-10 receptor-blocking antibodies (anti-IL10R mAb). To assess the role of interferon (IFN)-γ in inducing epithelial MHCII expression, the T cell adoptive transfer model of colitis was used. Abrogation of MHCII expression by nonhematopoietic cells or IECs induces colitis associated with increased colonic frequencies of innate immune cells and expression of proinflammatory cytokines. CD4+ T-helper type (Th)1 cells - but not group 3 innate lymphoid cells (ILCs) or Th17 cells - are elevated, resulting in an unfavourably altered ratio between CD4+ T cells and forkhead box P3 (FoxP3)+ regulatory T (Treg) cells. IFN-γ produced mainly by CD4+ T cells is required to upregulate MHCII expression by IECs. These results suggest that, in addition to its proinflammatory roles, IFN-γ exerts a critical anti-inflammatory function in the intestine which protects against colitis by inducing MHCII expression on IECs. This may explain the failure of anti-IFN-γ treatment to induce remission in IBD patients, despite the association of elevated IFN-γ and IBD.
Collapse
|
31
|
Duraes FV, Thelemann C, Sarter K, Acha-Orbea H, Hugues S, Reith W. Role of major histocompatibility complex class II expression by non-hematopoietic cells in autoimmune and inflammatory disorders: facts and fiction. ACTA ACUST UNITED AC 2014; 82:1-15. [PMID: 23745569 DOI: 10.1111/tan.12136] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
It is well established that interactions between CD4(+) T cells and major histocompatibility complex class II (MHCII) positive antigen-presenting cells (APCs) of hematopoietic origin play key roles in both the maintenance of tolerance and the initiation and development of autoimmune and inflammatory disorders. In sharp contrast, despite nearly three decades of intensive research, the functional relevance of MHCII expression by non-hematopoietic tissue-resident cells has remained obscure. The widespread assumption that MHCII expression by non-hematopoietic APCs has an impact on autoimmune and inflammatory diseases has in most instances neither been confirmed nor excluded by indisputable in vivo data. Here we review and put into perspective conflicting in vitro and in vivo results on the putative impact of MHCII expression by non-hematopoietic APCs--in both target organs and secondary lymphoid tissues--on the initiation and development of representative autoimmune and inflammatory disorders. Emphasis will be placed on the lacunar status of our knowledge in this field. We also discuss new mouse models--developed on the basis of our understanding of the molecular mechanisms that regulate MHCII expression--that constitute valuable tools for filling the severe gaps in our knowledge on the functions of non-hematopoietic APCs in inflammatory conditions.
Collapse
Affiliation(s)
- F V Duraes
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | | | | | | | | | |
Collapse
|
32
|
Miyauchi E, Ogita T, Miyamoto J, Kawamoto S, Morita H, Ohno H, Suzuki T, Tanabe S. Bifidobacterium longum alleviates dextran sulfate sodium-induced colitis by suppressing IL-17A response: involvement of intestinal epithelial costimulatory molecules. PLoS One 2013; 8:e79735. [PMID: 24255712 PMCID: PMC3821848 DOI: 10.1371/journal.pone.0079735] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 09/24/2013] [Indexed: 12/19/2022] Open
Abstract
Although some bacterial strains show potential to prevent colitis, their mechanisms are not fully understood. Here, we investigated the anti-colitic mechanisms of Bifidobacterium longum subsp. infantis JCM 1222T, focusing on the relationship between interleukin (IL)-17A secreting CD4+ T cells and intestinal epithelial costimulatory molecules in mice. Oral administration of JCM 1222T to mice alleviated dextran sulfate sodium (DSS)-induced acute colitis. The expression of type 1 helper T (Th1)- and IL-17 producing helper T (Th17)-specific cytokines and transcriptional factors was suppressed by JCM 1222T treatment. Intestinal epithelial cells (IECs) from colitic mice induced IL-17A production from CD4+ T cells in a cell-cell contact-dependent manner, and this was suppressed by oral treatment with JCM 1222T. Using blocking antibodies for costimulatory molecules, we revealed that epithelial costimulatory molecules including CD80 and CD40, which were highly expressed in IECs from colitic mice, were involved in IEC-induced IL-17A response. Treatment of mice and intestinal epithelial cell line Colon-26 cells with JCM 1222T decreased the expression of CD80 and CD40. Collectively, these data indicate that JCM 1222T negatively regulate epithelial costimulatory molecules, and this effect might be attributed, at least in part, to suppression of IL-17A in DSS-induced colitis.
Collapse
Affiliation(s)
- Eiji Miyauchi
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences (IMS-RCAI), Yokohama, Kanagawa, Japan
| | - Tasuku Ogita
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Junki Miyamoto
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Seiji Kawamoto
- Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Hidetoshi Morita
- School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, Japan
| | - Hiroshi Ohno
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences (IMS-RCAI), Yokohama, Kanagawa, Japan
| | - Takuya Suzuki
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Soichi Tanabe
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
- * E-mail:
| |
Collapse
|
33
|
Bamias G, Dahman MI, Arseneau KO, Guanzon M, Gruska D, Pizarro TT, Cominelli F. Intestinal-specific TNFα overexpression induces Crohn's-like ileitis in mice. PLoS One 2013; 8:e72594. [PMID: 23977323 PMCID: PMC3748077 DOI: 10.1371/journal.pone.0072594] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Accepted: 07/18/2013] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND AND AIM Human and animal studies have clearly established tumor necrosis factor (TNF)α as an important mediator of Crohn's disease pathogenesis. However, whether systemic or only local TNFα overproduction is required for the development of chronic intestinal inflammation and Crohn's disease remains unclear. The aim of this study was to assess the contribution of intestinal epithelial-derived TNFα to the development of murine Crohn's-like ileitis. METHODS We adapted the well-established TNF(∆ARE/+) mouse model of Crohn's disease (which systemically overexpresses TNFα) to generate a homozygous mutant strain that overexpress TNFα only within the intestinal epithelium. Intestinal-specific TNF(i∆ARE/i∆ARE) mice were examined for histopathological signs of gut inflammation and extraintestinal manifestations of Crohn's disease. The mucosal immune phenotype was characterized, and the contribution of specific lymphocyte populations to the pathogenesis of TNF(i∆ARE/i∆ARE) ileitis was assessed. RESULTS TNF(i∆ARE/i∆ARE) mice had increased mucosal and systemic TNFα levels compared to wild-type controls (P<0.001), as well as severe chronic ileitis with increased neutrophil infiltration and villous distortion, but no extraintestinal manifestations (P<0.001 vs. wild-type controls). The gut mucosal lymphocytic compartment was also expanded in TNF(i∆ARE/i∆ARE) mice (P<0.05), consisting of activated CD69(+) and CD4(+)CD62L(-) lymphocytes (P<0.05). FasL expression was significantly elevated in the mesenteric lymph nodes of TNF(i∆ARE/i∆ARE) mice (P<0.05). Adoptive transfer of mucosal TNF(i∆ARE/i∆ARE) lymphocytes resulted in ileitis in immunologically naïve severe combined immunodeficiency recipients (P<0.05 vs. wild-type controls), indicating an effector phenotype that was associated with increased production of both Th1 (IFNγ) and Th2 (IL-5, IL-13) cytokines. CONCLUSION Intestinal epithelial-derived TNFα is sufficient for the induction of Crohn's-like ileitis, but not for the occurrence of extraintestinal manifestations, in TNF(i∆ARE/i∆ARE) mice. These effects were associated with generation of effector lymphocytes within the intestinal mucosa and dysregulated apoptosis. Thus, targeted intestinal blockade of TNFα may provide an effective means to neutralize gut-derived TNFα with reduced side effects.
Collapse
Affiliation(s)
- Giorgos Bamias
- 1st Department of Gastroenterology, Ethnikon & Kapodistriakon University of Athens, Laikon Hospital, Athens, Greece
| | - Mohamed I. Dahman
- Department of Surgery, Mercy Health System, Fairfield, Ohio, United States of America
| | - Kristen O. Arseneau
- Departments of Medicine and Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
- Digestive Health Research Center, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Mitchell Guanzon
- Departments of Medicine and Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
- Digestive Health Research Center, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Dennis Gruska
- Departments of Medicine and Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
- Digestive Health Research Center, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Theresa T. Pizarro
- Departments of Medicine and Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
- Digestive Health Research Center, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Fabio Cominelli
- Departments of Medicine and Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
- Digestive Health Research Center, Case Western Reserve University, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
34
|
Ellinghaus D, Zhang H, Zeissig S, Lipinski S, Till A, Jiang T, Stade B, Bromberg Y, Ellinghaus E, Keller A, Rivas MA, Skieceviciene J, Doncheva NT, Liu X, Liu Q, Jiang F, Forster M, Mayr G, Albrecht M, Häsler R, Boehm BO, Goodall J, Berzuini CR, Lee J, Andersen V, Vogel U, Kupcinskas L, Kayser M, Krawczak M, Nikolaus S, Weersma RK, Ponsioen CY, Sans M, Wijmenga C, Strachan DP, McArdle WL, Vermeire S, Rutgeerts P, Sanderson JD, Mathew CG, Vatn MH, Wang J, Nöthen MM, Duerr RH, Büning C, Brand S, Glas J, Winkelmann J, Illig T, Latiano A, Annese V, Halfvarson J, D’Amato M, Daly MJ, Nothnagel M, Karlsen TH, Subramani S, Rosenstiel P, Schreiber S, Parkes M, Franke A. Association between variants of PRDM1 and NDP52 and Crohn's disease, based on exome sequencing and functional studies. Gastroenterology 2013; 145:339-47. [PMID: 23624108 PMCID: PMC3753067 DOI: 10.1053/j.gastro.2013.04.040] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 03/26/2013] [Accepted: 04/17/2013] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Genome-wide association studies (GWAS) have identified 140 Crohn's disease (CD) susceptibility loci. For most loci, the variants that cause disease are not known and the genes affected by these variants have not been identified. We aimed to identify variants that cause CD through detailed sequencing, genetic association, expression, and functional studies. METHODS We sequenced whole exomes of 42 unrelated subjects with CD and 5 healthy subjects (controls) and then filtered single nucleotide variants by incorporating association results from meta-analyses of CD GWAS and in silico mutation effect prediction algorithms. We then genotyped 9348 subjects with CD, 2868 subjects with ulcerative colitis, and 14,567 control subjects and associated variants analyzed in functional studies using materials from subjects and controls and in vitro model systems. RESULTS We identified rare missense mutations in PR domain-containing 1 (PRDM1) and associated these with CD. These mutations increased proliferation of T cells and secretion of cytokines on activation and increased expression of the adhesion molecule L-selectin. A common CD risk allele, identified in GWAS, correlated with reduced expression of PRDM1 in ileal biopsy specimens and peripheral blood mononuclear cells (combined P = 1.6 × 10(-8)). We identified an association between CD and a common missense variant, Val248Ala, in nuclear domain 10 protein 52 (NDP52) (P = 4.83 × 10(-9)). We found that this variant impairs the regulatory functions of NDP52 to inhibit nuclear factor κB activation of genes that regulate inflammation and affect the stability of proteins in Toll-like receptor pathways. CONCLUSIONS We have extended the results of GWAS and provide evidence that variants in PRDM1 and NDP52 determine susceptibility to CD. PRDM1 maps adjacent to a CD interval identified in GWAS and encodes a transcription factor expressed by T and B cells. NDP52 is an adaptor protein that functions in selective autophagy of intracellular bacteria and signaling molecules, supporting the role of autophagy in the pathogenesis of CD.
Collapse
Affiliation(s)
- David Ellinghaus
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Hu Zhang
- Addenbrooke’s Hospital, University of Cambridge, Gastroenterology Research Unit, Cambridge, UK
- Department of Gastroenterology & State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Sebastian Zeissig
- Department of Internal Medicine, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Simone Lipinski
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Andreas Till
- Section of Molecular Biology, University of California San Diego & San Diego Center for Systems Biology (SDCSB), La Jolla, California, USA
| | | | - Björn Stade
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Yana Bromberg
- Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, New York, USA
| | - Eva Ellinghaus
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Andreas Keller
- Department of Human Genetics, Saarland University, Homburg, Germany
| | - Manuel A Rivas
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Jurgita Skieceviciene
- Institute for Digestive Research, Lithuanian University of Health Sciences, Department of Gastroenterology, Kaunas University of Medicine, Kaunas, Lithuania
| | | | | | | | | | - Michael Forster
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Gabriele Mayr
- Max-Planck Institute for Informatics, Saarbrücken, Germany
| | - Mario Albrecht
- Max-Planck Institute for Informatics, Saarbrücken, Germany
- Department of Bioinformatics, Institute of Biometrics and Medical Informatics, University Medicine Greifswald, Germany
| | - Robert Häsler
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Bernhard O Boehm
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Medical Center Ulm and Center of Excellence “Metabolic Disorders” Baden-Württemberg, Ulm, Germany
| | - Jane Goodall
- Department of Medicine, University of Cambridge, UK
| | - Carlo R Berzuini
- Statistical Laboratory, Centre for Mathematical Sciences, University of Cambridge, Cambridge, UK
| | - James Lee
- Addenbrooke’s Hospital, University of Cambridge, Gastroenterology Research Unit, Cambridge, UK
| | - Vibeke Andersen
- Viborg Regional Hospital, Medical Department, Viborg, Denmark
- Aabenraa SHS, Medical Department, Aabenraa, Denmark
| | - Ulla Vogel
- National Research Centre for Working Environment, Copenhagen, Denmark
| | - Limas Kupcinskas
- Institute for Digestive Research, Lithuanian University of Health Sciences, Department of Gastroenterology, Kaunas University of Medicine, Kaunas, Lithuania
| | - Manfred Kayser
- Department of Forensic Molecular Biology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Michael Krawczak
- Institute of Medical Informatics and Statistics, Christian-Albrechts University of Kiel, Kiel, Germany
- PopGen Biobank, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Susanna Nikolaus
- Department of Internal Medicine, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Rinse K Weersma
- University Medical Center Groningen, Department of Gastroenterology, Groningen, The Netherlands
| | - Cyriel Y Ponsioen
- Department of Gastroenterology and Hepatology, Amsterdam Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Miquel Sans
- Service of Digestive Diseases, Centro Médico Teknon, Barcelona, Spain
| | - Cisca Wijmenga
- University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - David P Strachan
- Division of Population Health Sciences and Education, St George’s, University of London, London, UK
| | - Wendy L McArdle
- Avon Longitudinal Study of Parents and Children (ALSPAC) Laboratory, Department of Social and Community Medicine, University of Bristol, Bristol, UK
| | - Séverine Vermeire
- University Hospital Gasthuisberg, Division of Gastroenterology, Leuven, Belgium
| | - Paul Rutgeerts
- University Hospital Gasthuisberg, Division of Gastroenterology, Leuven, Belgium
| | - Jeremy D Sanderson
- Department of Gastroenterology, Guy’s & St. Thomas’ National Health Service Foundation Trust, London, UK
| | | | - Morten H Vatn
- Rikshospitalet University Hospital, Medical Department, Oslo, Norway
| | | | - Markus M Nöthen
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
- Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Richard H Duerr
- University of Pittsburgh School of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Pittsburgh, Pennsylvania, USA
- University of Pittsburgh Graduate School of Public Health, Department of Human Genetics, Pittsburgh, Pennsylvania, USA
| | - Carsten Büning
- Department of Gastroenterology, Hepatology and Endocrinology, Charité, Campus Mitte, Berlin, Germany
| | - Stephan Brand
- Department of Medicine II - Grosshadern, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Jürgen Glas
- Department of Medicine II - Grosshadern, Ludwig-Maximilians-University (LMU), Munich, Germany
- Department of Preventive Dentistry and Periodontology, LMU, Munich, Germany
- Department of Human Genetics, Rheinisch-Westfälische Technische Hochschule (RWTH), Aachen, Germany
| | - Juliane Winkelmann
- Institute of Human Genetics, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Human Genetics, MRI, Technische Universität München, Munich, Germany
- Departement of Neurology, MRI, Technische Universität München, Munich, Germany
| | - Thomas Illig
- Research Unit of Molecular Epidemiology, Helmholtz Center Munich - German Research Center for Environmental Health, Neuherberg, Germany
- Hannover Unified Biobank, Hannover Medical School, Hannover, Germany
| | - Anna Latiano
- Division of Gastroenterology, Istituto di Ricovero e Cura a Carattere Scientifico-Casa Sollievo della Sofferenza (IRCCS-CSS) Hospital, San Giovanni Rotondo, Italy
| | - Vito Annese
- Division of Gastroenterology, Istituto di Ricovero e Cura a Carattere Scientifico-Casa Sollievo della Sofferenza (IRCCS-CSS) Hospital, San Giovanni Rotondo, Italy
- Azienda Ospedaliero Universitaria (AOU) Careggi, Unit of Gastroenterology SOD2, Florence, Italy
| | - Jonas Halfvarson
- Division of Gastroenterology, Örebro University Hospital and School of Health and Medical Sciences, Örebro University, Örebro, Sweden
| | - Mauro D’Amato
- Karolinska Institute, Department of Biosciences and Nutrition, Stockholm, Sweden
| | - Mark J Daly
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Michael Nothnagel
- Institute of Medical Informatics and Statistics, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Tom H Karlsen
- Norwegian PSC Research Center, Division of Cancer, Surgery and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Institute of Medicine, Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway
| | - Suresh Subramani
- Section of Molecular Biology, University of California San Diego & San Diego Center for Systems Biology (SDCSB), La Jolla, California, USA
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Stefan Schreiber
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
- Department of Internal Medicine, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Miles Parkes
- Addenbrooke’s Hospital, University of Cambridge, Gastroenterology Research Unit, Cambridge, UK
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| |
Collapse
|
35
|
Bär F, Sina C, Hundorfean G, Pagel R, Lehnert H, Fellermann K, Büning J. Inflammatory bowel diseases influence major histocompatibility complex class I (MHC I) and II compartments in intestinal epithelial cells. Clin Exp Immunol 2013; 172:280-9. [PMID: 23574324 DOI: 10.1111/cei.12047] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2012] [Indexed: 12/19/2022] Open
Abstract
Antigen presentation by intestinal epithelial cells (IEC) is crucial for intestinal homeostasis. Disturbances of major histocompatibility complex class I (MHC I)- and II-related presentation pathways in IEC appear to be involved in an altered activation of CD4(+) and CD8(+) T cells in inflammatory bowel disease. However, a comprehensive analysis of MHC I- and II-enriched compartments in IEC of the small and large bowel in the healthy state as opposed to inflammatory bowel diseases is lacking. The aim of this study was to characterize the subcellular expression of MHC I and II in the endocytic pathway of IEC throughout all parts of the intestinal tract, and to identify differences between the healthy state and inflammatory bowel diseases. Biopsies were taken by endoscopy from the duodenum, jejunum, ileum and colon in healthy individuals (n = 20). In Crohn's disease (CD), biopsies were obtained from the ileum and colon and within the colon from ulcerative colitis (UC) patients (n = 15). Analysis of IEC was performed by immunoelectron microscopy. MHC I and II were identified in early endosomes and multi-vesicular, multi-lamellar, electrondense and vacuolar late endosomes. Both molecules were enriched in multi-vesicular bodies. No differences were found between the distinct parts of the gut axis. In CD and UC the expression of MHC I and II showed a shift from multi-vesicular bodies towards the basolateral membranes. Within the multi-vesicular bodies, MHC I and II moved from internal vesicles to the limiting membranes upon inflammation in CD and UC. MHC I- and II-enriched compartments in IEC were identical in all parts of the small and large bowel. CD and UC appear to modulate the MHC I- and II-related presentation pathways of exogenous antigens in IEC.
Collapse
Affiliation(s)
- F Bär
- Department of Internal Medicine I, University Hospital of Schleswig-Holstein, Institute of Anatomy, University of Lübeck, Lübeck, Germany
| | | | | | | | | | | | | |
Collapse
|
36
|
Hatano R, Yamada K, Iwamoto T, Maeda N, Emoto T, Shimizu M, Totsuka M. Antigen presentation by small intestinal epithelial cells uniquely enhances IFN-γ secretion from CD4+ intestinal intraepithelial lymphocytes. Biochem Biophys Res Commun 2013; 435:592-6. [PMID: 23684621 DOI: 10.1016/j.bbrc.2013.05.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 05/06/2013] [Indexed: 11/18/2022]
Abstract
Small intestinal epithelial cells (sIECs) express major histocompatibility complex class II molecules even in a normal condition, and are known to function as antigen presenting cells (APCs) at least in vitro. These findings raised the possibility that sIECs play an important role in inducing immune responses against luminal antigens, especially those of intestinal intraepithelial lymphocytes (IELs) and lamina propria lymphocytes (LPLs). We herein showed that antigenic stimulation with sIECs induced markedly greater secretion of interferon-gamma (IFN-γ) by CD4(+) IELs, but not interleukin (IL)-4, IL-10 and IL-17 although the proliferative response was prominently lower than that with T cell-depleted splenic APCs. In contrast, no enhanced IFN-γ secretion by CD4(+) LPLs and primed splenic CD4(+) T cells was observed when stimulated with sIECs. Taken together, these results suggest that sIECs uniquely activate CD4(+) IELs and induce remarkable IFN-γ secretion upon antigenic stimulation in vivo.
Collapse
Affiliation(s)
- Ryo Hatano
- Department of Applied Biological Chemistry, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
The epithelium of the gastrointestinal tract, which represents the largest surface area of the body, is constantly exposed to the contents of its surrounding environment. The intestinal epithelium forms barriers that are essential in maintaining equilibrium within the human body. This barrier supports nutrient and water transport while preventing microbial invasion. Intestinal epithelial cells (IECs) sit at the interface between an antigen-rich lumen and a lymphocyte-rich lamina propria (LP). IECs have the capability to discriminate between "peaceful" and "harmful" antigens. The epithelium is constantly sampling luminal contents and making molecular adjustments accordingly. These molecular changes influence the actions of innate and adaptive immune cells. The crosstalk that occurs between the epithelium and the immune compartments serves to maintain intestinal homeostasis. A better understanding of the nature of the interactions between normal LP lymphocytes (LPLs) and IECs will ultimately provide insights into the defects occurring in inflammatory bowel disease patients.
Collapse
|
38
|
Maggio-Price L, Seamons A, Bielefeldt-Ohmann H, Zeng W, Brabb T, Ware C, Lei M, Hershberg RM. Lineage targeted MHC-II transgenic mice demonstrate the role of dendritic cells in bacterial-driven colitis. Inflamm Bowel Dis 2013; 19:174-84. [PMID: 22619032 PMCID: PMC3427724 DOI: 10.1002/ibd.23000] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Inflammatory bowel disease (IBD) pathogenesis involves an inadequately controlled immune reaction to intestinal microbiota, and CD4(+) T cells, dependent on MHC class II (MHC-II) processing and presentation by antigen-presenting cells (APC), play important roles. The role of professional APC (macrophages and dendritic cells [DCs]) and nonprofessional APC (intestinal epithelial cells [IECs]) in microbial-driven intestinal inflammation remains controversial. METHODS We generated transgenic animals on an MHC-II(-/-) genetic background in which MHC-II is expressed on 1) DC via the CD11c promoter (CD11cTg) or 2) IEC via the fatty acid binding protein (liver) promoter (EpithTg). These mice were crossed with Rag2(-/-) mice to eliminate T and B cells (CD11cTg/Rag2(-/-) and EpithTg/Rag2(-/-)). Helicobacter bilis (Hb) infection and adoptive transfer (AT) of naïve CD4 T cells were used to trigger IBD. RESULTS CD11cTg/Rag2(-/-) mice infected with Hb+AT developed severe colitis within 3 weeks post-AT, similar to disease in positive control Rag2(-/-) mice infected with Hb+AT. CD11cTg/Rag2(-/-) mice given AT alone or Hb alone had significantly less severe colitis. In contrast, EpithTg/Rag2(-/-) mice infected with Hb+AT developed mild colitis by 3 weeks and even after 16 weeks post-AT had only mild lesions. CONCLUSIONS MHC-II expression restricted to DCs is sufficient to induce severe colitis in the presence of T cells and a microorganism such as Hb within 3 weeks of AT. Expression of MHC-II solely on IEC in the presence of a microbial trigger and T cells was insufficient to trigger severe colitis.
Collapse
Affiliation(s)
| | - Audrey Seamons
- Department of Comparative Medicine, University of Washington, Seattle, WA
| | | | - Weiping Zeng
- Department of Comparative Medicine, University of Washington, Seattle, WA
| | - Thea Brabb
- Department of Comparative Medicine, University of Washington, Seattle, WA
| | - Carol Ware
- Department of Comparative Medicine, University of Washington, Seattle, WA
| | - Mingzu Lei
- Department of Comparative Medicine, University of Washington, Seattle, WA
| | | |
Collapse
|
39
|
Himmel ME, Yao Y, Orban PC, Steiner TS, Levings MK. Regulatory T-cell therapy for inflammatory bowel disease: more questions than answers. Immunology 2012; 136:115-22. [PMID: 22348589 DOI: 10.1111/j.1365-2567.2012.03572.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
T regulatory (Treg) cells are critical for maintaining immune homeostasis and establishing tolerance to foreign, non-pathogenic antigens including those found in commensal bacteria and food. Because of their multiple suppressive mechanisms, Tregs represent a promising strategy for engineering tolerance to self and non-self antigens in chronic inflammatory diseases. Already in clinical trials in the transplantation setting, the question remains whether this therapy would be effective for the treatment of mucosal inflammatory diseases that do not pose an immediate threat to life. In this review we will discuss evidence from both animal models and patients suggesting that Treg therapy would be beneficial in the context of inflammatory bowel disease (IBD). We will examine the role of T-cell versus Treg dysfunction in IBD and discuss the putative antigens that could be potential targets of antigen-directed Treg therapy. Finally, the challenges of using Treg therapy in IBD will be discussed, with a specific emphasis on the role that the microbiota may play in the outcome of this treatment. As Treg therapy becomes a bedside reality in the field of transplantation, there is great hope that it will soon also be deployed in the setting of IBD and ultimately prove more effective than the current non-specific immunosuppressive therapies.
Collapse
Affiliation(s)
- Megan E Himmel
- Department of Surgery, University of British Columbia & Child and Family Research Centre, Vancouver, BC, Canada
| | | | | | | | | |
Collapse
|
40
|
Himmel ME, Yao Y, Orban PC, Steiner TS, Levings MK. Regulatory T-cell therapy for inflammatory bowel disease: more questions than answers. Immunology 2012. [PMID: 22348589 DOI: 10.1111/j.1365-2567.2012.03572.x.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
T regulatory (Treg) cells are critical for maintaining immune homeostasis and establishing tolerance to foreign, non-pathogenic antigens including those found in commensal bacteria and food. Because of their multiple suppressive mechanisms, Tregs represent a promising strategy for engineering tolerance to self and non-self antigens in chronic inflammatory diseases. Already in clinical trials in the transplantation setting, the question remains whether this therapy would be effective for the treatment of mucosal inflammatory diseases that do not pose an immediate threat to life. In this review we will discuss evidence from both animal models and patients suggesting that Treg therapy would be beneficial in the context of inflammatory bowel disease (IBD). We will examine the role of T-cell versus Treg dysfunction in IBD and discuss the putative antigens that could be potential targets of antigen-directed Treg therapy. Finally, the challenges of using Treg therapy in IBD will be discussed, with a specific emphasis on the role that the microbiota may play in the outcome of this treatment. As Treg therapy becomes a bedside reality in the field of transplantation, there is great hope that it will soon also be deployed in the setting of IBD and ultimately prove more effective than the current non-specific immunosuppressive therapies.
Collapse
Affiliation(s)
- Megan E Himmel
- Department of Surgery, University of British Columbia & Child and Family Research Centre, Vancouver, BC, Canada
| | | | | | | | | |
Collapse
|
41
|
Funakoshi T, Yamashita K, Ichikawa N, Fukai M, Suzuki T, Goto R, Oura T, Kobayashi N, Katsurada T, Ichihara S, Ozaki M, Umezawa K, Todo S. A novel NF-κB inhibitor, dehydroxymethylepoxyquinomicin, ameliorates inflammatory colonic injury in mice. J Crohns Colitis 2012; 6:215-25. [PMID: 22325176 DOI: 10.1016/j.crohns.2011.08.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 06/26/2011] [Accepted: 08/12/2011] [Indexed: 02/08/2023]
Abstract
BACKGROUND In inflammatory bowel disease (IBD), gut inflammation is associated with the activation of nuclear factor kappa B (NF-κB), a key pro-inflammatory transcription factor. AIM To investigate the therapeutic potential of a novel, specific NF-κB inhibitor, dehydroxymethylepoxyquinomicin (DHMEQ), we examined its effect on IBD using murine experimental colitis models. METHODS The in vitro effect of DHMEQ was evaluated by inflammatory cytokine production and p65 immunostaining using HT-29 and RAW264.7 cells. The in vivo therapeutic effect of DHMEQ was studied in colitis induced by dextran sulphate sodium (DSS) and trinitrobenzenesulphonic acid (TNBS). In these, progression and severity of colitis was mainly assessed by the disease activity index (DAI), histopathology, cellular infiltration, and mRNA expression levels of pro-inflammatory cytokines in the colonic tissues. RESULTS In RAW264.7 cells, DHMEQ significantly inhibited tumour necrosis factor (TNF)-α and interleukin (IL)-6 production induced by LPS in a dose-dependent manner by blocking the nuclear translocation of NF-κB. In addition, DHMEQ inhibited IL-8 production induced by LPS in HT-29 cells. DHMEQ significantly ameliorated DSS colitis as assessed by DAI scores, colonic oedema, and histological scores. Immunohistochemistry revealed that DHMEQ inhibited colonic infiltration of nuclear p65(+) cells, CD4(+) lymphocytes, and F4/80(+) macrophages. mRNA expression levels of the pro-inflammatory cytokines, such as IL-1β, TNF-α, IL-6, IL-12p40, IL-17, and MCP-1 were also suppressed by DHMEQ administration. Furthermore, DHMEQ significantly ameliorated TNBS colitis as assessed by body-weight changes and histological scores. CONCLUSION DHMEQ ameliorated experimental colitis in mice. These results indicate that DHMEQ appears to be an attractive therapeutic agent for IBD.
Collapse
Affiliation(s)
- Tohru Funakoshi
- Department of General Surgery, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
McDonald V. Cryptosporidiosis: host immune responses and the prospects for effective immunotherapies. Expert Rev Anti Infect Ther 2012; 9:1077-86. [PMID: 22029525 DOI: 10.1586/eri.11.123] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cryptosporidium spp. that develop in intestinal epithelial cells are responsible for the diarrhoeal disease cryptosporidiosis, which is common in humans of all ages and in neonatal livestock. Following infection, parasite reproduction increases for a number of days before it is blunted and then impeded by innate and adaptive immune responses. Immunocompromised hosts often cannot establish strong immunity and develop chronic infections that can lead to death. Few drugs consistently inhibit parasite reproduction in the host, and chemotherapy might be ineffective in immunodeficient hosts. Future options for prevention or treatment of cryptosporidiosis might include vaccines or recombinant immunological molecules, but this will probably require a better understanding of both the mucosal immune system and intestinal immune responses to the parasite.
Collapse
Affiliation(s)
- Vincent McDonald
- Barts and the London School of Medicine and Dentistry, Centre for Digestive Diseases, Blizard Institute of Cell and Molecular Science, Queen Mary College University of London, Newark Street, London E1 2AT, UK.
| |
Collapse
|
43
|
Midura-Kiela MT, Radhakrishnan VM, Larmonier CB, Laubitz D, Ghishan FK, Kiela PR. Curcumin inhibits interferon-γ signaling in colonic epithelial cells. Am J Physiol Gastrointest Liver Physiol 2012; 302:G85-96. [PMID: 22038826 PMCID: PMC3345961 DOI: 10.1152/ajpgi.00275.2011] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Curcumin (diferulolylmethane) is an anti-inflammatory phenolic compound found effective in preclinical models of inflammatory bowel diseases (IBD) and in ulcerative colitis patients. Pharmacokinetics of curcumin and its poor systemic bioavailability suggest that it targets preferentially intestinal epithelial cells. The intestinal epithelium, an essential component of the gut innate defense mechanisms, is profoundly affected by IFN-γ, which can disrupt the epithelial barrier function, prevent epithelial cell migration and wound healing, and prime epithelial cells to express major histocompatibility complex class II (MHC-II) molecules and to serve as nonprofessional antigen-presenting cells. In this report we demonstrate that curcumin inhibits IFN-γ signaling in human and mouse colonocytes. Curcumin inhibited IFN-γ-induced gene transcription, including CII-TA, MHC-II genes (HLA-DRα, HLA-DPα1, HLA-DRβ1), and T cell chemokines (CXCL9, 10, and 11). Acutely, curcumin inhibited Stat1 binding to the GAS cis-element, prevented Stat1 nuclear translocation, and reduced Jak1 phosphorylation and phosphorylation of Stat1 at Tyr(701). Longer exposure to curcumin led to endocytic internalization of IFNγRα followed by lysosomal fusion and degradation. In summary, curcumin acts as an IFN-γ signaling inhibitor in colonocytes with biphasic mechanisms of action, a phenomenon that may partially account for the beneficial effects of curcumin in experimental colitis and in human IBD.
Collapse
Affiliation(s)
| | | | | | - Daniel Laubitz
- 1Department of Pediatrics, Steele Children's Research Center and ,2Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw, Poland; and
| | - Fayez K. Ghishan
- 1Department of Pediatrics, Steele Children's Research Center and
| | - Pawel R. Kiela
- 1Department of Pediatrics, Steele Children's Research Center and ,3Department of Immunobiology, University of Arizona Health Sciences Center, Tucson, Arizona
| |
Collapse
|
44
|
Tasdemir S, Parlakpinar H, Vardi N, Kaya E, Acet A. Effect of endogen-exogenous melatonin and erythropoietin on dinitrobenzene sulfonic acid-induced colitis. Fundam Clin Pharmacol 2011; 27:299-307. [PMID: 22151426 DOI: 10.1111/j.1472-8206.2011.01016.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Inflammatory bowel disease has been linked to elevated T cells. Excessive production of reactive oxygen species and apoptosis are known to be accompanied by intestinal inflammation. This study was designed to investigate the effects of melatonin (MEL) and erythropoietin (EPO), which is a known anti-inflammatory and antiapoptotic agent, in dinitrobenzene sulfonic acid (DNBS)-induced colitis in pinealectomized (Px) rats. In microscopically results, epithelial and goblet cell loss, absence of crypts, and increased colonic caspase-3 activity were observed in the DNBS group. Also, in flow cytometric analysis, the percentage of CD4+ T cells was highest in the DNBS group. Treatment with MEL or EPO had a curative effect on DNBS-induced colitis. The MEL + EPO groups showed significantly greater improvement when compared with the other treatment groups. Our results indicate that the combination of EPO and MEL may exert more beneficial effects than either agent used alone.
Collapse
Affiliation(s)
- Seda Tasdemir
- Department of Pharmacology, Inonu University, Medical Faculty, Malatya, Turkey.
| | | | | | | | | |
Collapse
|
45
|
Olivares-Villagómez D, Algood HMS, Singh K, Parekh VV, Ryan KE, Piazuelo MB, Wilson KT, Van Kaer L. Intestinal epithelial cells modulate CD4 T cell responses via the thymus leukemia antigen. THE JOURNAL OF IMMUNOLOGY 2011; 187:4051-60. [PMID: 21900182 DOI: 10.4049/jimmunol.1101052] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The intestinal epithelium is comprised of a monolayer of intestinal epithelial cells (IEC), which provide, among other functions, a physical barrier between the high Ag content of the intestinal lumen and the sterile environment beyond the epithelium. IEC express a nonclassical MHC class I molecule known as the thymus leukemia (TL) Ag. TL is known to interact with CD8αα-expressing cells, which are abundant in the intestinal intraepithelial lymphocyte compartment. In this report, we provide evidence indicating that expression of TL by IEC modulates the cytokine profile of CD4(+) T cells favoring IL-17 production. We show in an adoptive transfer model of colitis that donor-derived cells become more pathogenic when TL is expressed on IEC in recipient animals. Moreover, TL(+)IEC promote development of IL-17-mediated responses capable of protecting mice from Citrobacter rodentium infection. We also show that modulation of IL-17-mediated responses by TL(+)IEC is controlled by the expression of CD8α on CD4(+) T cells. Overall, our results provide evidence for an important interaction between IEC and CD4(+) T cells via TL, which modulates mucosal immune responses.
Collapse
Affiliation(s)
- Danyvid Olivares-Villagómez
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
The immunomodulatory properties of viable Lactobacillus salivarius ssp. salivarius CECT5713 are not restricted to the large intestine. Eur J Nutr 2011; 51:365-74. [DOI: 10.1007/s00394-011-0221-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Accepted: 06/07/2011] [Indexed: 01/19/2023]
|
47
|
Werner L, Elad H, Brazowski E, Tulchinsky H, Vigodman S, Kopylov U, Halpern Z, Guzner-Gur H, Dotan I. Reciprocal regulation of CXCR4 and CXCR7 in intestinal mucosal homeostasis and inflammatory bowel disease. J Leukoc Biol 2011; 90:583-90. [PMID: 21628333 DOI: 10.1189/jlb.0111101] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
IBDs are characterized by increased influx of immune cells to the mucosa of genetically susceptible persons. Cellular migration to injury sites is mediated by chemokines. CXCL12 is a ubiquitous, constitutive chemokine that participates in stem cell proliferation and migration and mediates T lymphocyte migration to inflamed tissues. We have recently reported that CXCL12 and its receptor, CXCR4, are expressed in normal and more prominently, inflamed human intestinal mucosa. However, the interactions and roles of CXCL12 and its receptors, CXCR4 and the recently discovered CXCR7, in intestinal inflammation have not been defined. In the present study, we further dissected the effects of CXCL12 on lymphocytes in intestinal homeostasis and inflammation and delineated the interplay between CXCL12 and its receptors CXCR4 and CXCR7. To that end, fresh mononuclear cells were isolated from mucosa and PB of healthy or IBD patients. Phenotypical and functional assays were conducted using flow cytometry, Transwell migration chambers, and ELISA. The data show that CXCL12-mediated migration of T cells is CXCR4- but not CXCR7-dependent. T cell activation reciprocally regulates CXCR7 and CXCR4 expression and migratory capacity. IBD PBTs expressed more CXCR7 than normal PBTs. Finally, T cells attracted by CXCL12 are mostly of a memory phenotype. In conclusion, the present study suggests that the interplay between CXCL12 and its receptors affects homeostasis and inflammation in the intestinal mucosa.
Collapse
Affiliation(s)
- Lael Werner
- Department of Gastroenterology and Liver Diseases, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Mulder DJ, Pooni A, Mak N, Hurlbut DJ, Basta S, Justinich CJ. Antigen presentation and MHC class II expression by human esophageal epithelial cells: role in eosinophilic esophagitis. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:744-53. [PMID: 21281807 DOI: 10.1016/j.ajpath.2010.10.027] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Revised: 10/14/2010] [Accepted: 10/28/2010] [Indexed: 12/13/2022]
Abstract
Professional antigen-presenting cells (APCs) play a crucial role in initiating immune responses. Under pathological conditions, epithelial cells at mucosal surfaces act as nonprofessional APCs, thereby regulating immune responses at the site of exposure. Epithelial cells in the esophagus may contribute to the pathogenesis of eosinophilic esophagitis (EoE) by presenting antigens on the major histocompatibility complex (MHC) class II. Our goal was to demonstrate the ability of esophageal epithelial cells to process and present antigens on the MHC class II system and to investigate the contribution of epithelial cell antigen presentation to EoE. Immunohistochemistry detected HLA-DR, CD80, and CD86 expression and enzyme-linked immunosorbent assay detected interferon-γ (IFNγ) in esophageal biopsies. Antigen presentation was studied using the human esophageal epithelial cell line HET-1A by reverse transcriptase-PCR, flow cytometry, and confocal microscopy. T helper cell lymphocyte proliferation was assessed by flow cytometry and IL-2 secretion. IFNγ and MHC class II were increased in mucosa of patients with EoE. IFNγ increased mRNA of HLA-DP, HLA-DQ, HLA-DR, and CIITA in HET-1A cells. HET-1A engulfed cell debris and processed ovalbumin. HET-1A cells expressed HLA-DR after IFNγ treatment. HET-1A stimulated T helper cell activation. In this study, we demonstrated the ability of esophageal epithelial cells to act as nonprofessional APCs in the presence of IFNγ. Esophageal epithelial cell antigen presentation may contribute to the pathophysiology of eosinophilic esophagitis.
Collapse
Affiliation(s)
- Daniel J Mulder
- Department of Anatomy and Cell Biology, Queen's University, Kingston, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
49
|
Gut microbiota, probiotics and inflammatory bowel disease. Arch Immunol Ther Exp (Warsz) 2011; 59:161-77. [PMID: 21445715 DOI: 10.1007/s00005-011-0122-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Accepted: 12/13/2010] [Indexed: 02/07/2023]
Abstract
The colonization of humans with commensals is critical for our well-being. This tightly regulated symbiotic relationship depends on the flora and an intact mucosal immune system. A disturbance of either compound can cause intestinal inflammation. This review summarizes extrinsic and intrinsic factors contributing to intestinal dysbiosis and inflammatory bowel disease.
Collapse
|
50
|
Henderson P, van Limbergen JE, Schwarze J, Wilson DC. Function of the intestinal epithelium and its dysregulation in inflammatory bowel disease. Inflamm Bowel Dis 2011; 17:382-95. [PMID: 20645321 DOI: 10.1002/ibd.21379] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The intestinal epithelium not only acts as a physical barrier to commensal bacteria and foreign antigens but is also actively involved in antigen processing and immune cell regulation. The inflammatory bowel diseases (IBDs) are characterized by inflammation at this mucosal surface with well-recognized defects in barrier and secretory function. In addition to this, defects in intraepithelial lymphocytes, chemokine receptors, and pattern recognition receptors promote an abnormal immune response, with increased differentiation of proinflammatory cells and a dysregulated relationship with professional antigen-presenting cells. This review focuses on recent developments in the structure of the epithelium, including a detailed account of the apical junctional complex in addition to the role of the enterocyte in antigen recognition, uptake, processing, and presentation. Recently described cytokines such as interleukin-22 and interleukin-31 are highlighted as is the dysregulation of chemokines and secretory IgA in IBD. Finally, the effect of the intestinal epithelial cell on T effector cell proliferation and differentiation are examined in the context of IBD with particular focus on T regulatory cells and the two-way interaction between the intestinal epithelial cell and certain immune cell populations.
Collapse
Affiliation(s)
- Paul Henderson
- Department of Child Life and Health, University of Edinburgh, Edinburgh, UK.
| | | | | | | |
Collapse
|