1
|
Malacco NL, Michi AN, Siciliani E, Madrigal AG, Sternlieb T, Fontes G, King IL, Cestari I, Jardim A, Stevenson MM, Lopes F. Helminth-derived metabolites induce tolerogenic functional, metabolic, and transcriptional signatures in dendritic cells that attenuate experimental colitis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.01.26.525718. [PMID: 39211070 PMCID: PMC11360915 DOI: 10.1101/2023.01.26.525718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Inflammatory bowel diseases (IBD) are chronic inflammatory diseases in which abdominal pain, bloody diarrhea, weight loss, and fatigue collectively result in diminished quality of patient life. The disappearance of intestinal helminth infections in Western societies is associated with an increased prevalence of IBD and other immune-mediated inflammatory diseases. Evidence indicates that helminths induce tolerogenic dendritic cells (tolDCs), which promote intestinal tolerance and attenuate intestinal inflammation characteristic of IBD, but the exact mechanism is unclear. Helminth-derived excretory-secretory (HES) products including macromolecules, proteins, and polysaccharides have been shown to modulate the antigen presenting function of DCs with down-stream effects on effector CD4 + T cells. Previous studies indicate that DCs in helminth-infected animals induce tolerance to unrelated antigens and DCs exposed to HES display phenotypic and functional features of tolDCs. Here, we identify that nonpolar metabolites (HnpM) produced by a helminth, the murine gastrointestinal nematode Heligmosomoides polygyrus bakeri (Hpb), induce tolDCs as evidenced by decreased LPS-induced TNF and increased IL-10 secretion and reduced expression of MHC-II, CD86, and CD40. Furthermore, these DCs inhibited OVA-specific CD4 + T cell proliferation and induced CD4 + Foxp3 + regulatory T cells. Adoptive transfer of HnpM-induced tolDCs attenuated DSS-induced intestinal inflammation characteristic of IBD. Mechanistically, HnpM induced metabolic and transcriptional signatures in BMDCs consistent with tolDCs. Collectively, our findings provide groundwork for further investigation into novel mechanisms regulating DC tolerance and the role of helminth secreted metabolites in attenuating intestinal inflammation associated with IBD. Summary Sentence: Metabolites produced by Heligmosomoides polygyrus induce metabolic and transcriptional changes in DCs consistent with tolDCs, and adoptive transfer of these DCs attenuated DSS-induced intestinal inflammation.
Collapse
|
2
|
Arai T, Lopes F. Potential of human helminth therapy for resolution of inflammatory bowel disease: The future ahead. Exp Parasitol 2021; 232:108189. [PMID: 34848244 DOI: 10.1016/j.exppara.2021.108189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/06/2021] [Accepted: 11/24/2021] [Indexed: 12/23/2022]
Abstract
Inflammatory bowel disease (IBD) is associated with a dysregulated mucosal immune response in the gastrointestinal tract. The number of patients with IBD has increased worldwide, especially in highly industrialized western societies. The population of patients with IBD in North America is forecasted to reach about four million by 2030; meanwhile, there is no definitive therapy for IBD. Current anti-inflammatory, immunosuppressive, or biological treatment may induce and maintain remission, but not all patients respond to these treatments. Recent studies explored parasitic helminths as a novel modality of therapy due to their potent immunoregulatory properties in humans. Research using IBD animal models infected with a helminth or administered helminth-derived products such as excretory-secretory products has been promising, and helminth-microbiota interactions exert their anti-inflammatory effects by modulating the host immunity. Recent studies also indicate that evidence that helminth-derived metabolites may play a role in anticolitic effects. Thus, the helminth shows a potential benefit for treatment against IBD. Here we review the current feasibility of "helminth therapy" from the laboratory for application in IBD management.
Collapse
Affiliation(s)
- Toshio Arai
- Institution of Parasitology, McGill University, Quebec, Canada; Department of Gastroenterology, Hashimoto Municipal Hospital, Wakayama, Japan
| | - Fernando Lopes
- Institution of Parasitology, McGill University, Quebec, Canada.
| |
Collapse
|
3
|
Li S, Rajeev S, Wang A, McKay DM. Infection with Hymenolepis diminuta Blocks Colitis and Hastens Recovery While Colitis Has Minimal Impact on Expulsion of the Cestode from the Mouse Host. Pathogens 2021; 10:pathogens10080994. [PMID: 34451458 PMCID: PMC8401575 DOI: 10.3390/pathogens10080994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/29/2021] [Accepted: 08/02/2021] [Indexed: 12/16/2022] Open
Abstract
Two experimental paradigms were adopted to explore host-helminth interactions involved in the regulation of colitis and to understand if colitis affects the outcome of helminth infection. First, male BALB/c mice infected with H. diminuta were challenged 4 days later with dinitrobenzene sulphonic acid (DNBS) and necropsied 3 days later. Second, mice were infected with H. diminuta 3 days after DNBS treatment and necropsied 11 or 14 days post-DNBS. Mice were assessed for colitic disease severity and infectivity with H. diminuta upon necropsy. Supporting the concept of helminth therapy, mice are protected from DNBS-colitis when infected with H. diminuta only 4 days previously, along with parallel increases in splenic production of Th2 cytokines. In the treatment regimen, H. diminuta infection produced a subtle, statistically significant, enhanced recovery from DNBS. Mice regained body weight quicker, had normalized colon lengths, and showed no overt signs of disease, in comparison to the DNBS-only mice, some of which displayed signs of mild disease at 14 days post-DNBS. Unexpectedly, colitis did not affect the hosts' anti-worm response. The impact of inflammatory disease on helminth infection is deserving of study in a variety of models as auto-inflammatory diseases emerge in world regions where parasitic helminths are endemic.
Collapse
|
4
|
Jin X, Bai X, Zhao Y, Dong Z, Pang J, Liu M, Liu X. Nrf2 Participates in M2 Polarization by Trichinella spiralis to Alleviate TNBS-Induced Colitis in Mice. Front Immunol 2021; 12:698494. [PMID: 34249002 PMCID: PMC8261282 DOI: 10.3389/fimmu.2021.698494] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/09/2021] [Indexed: 12/26/2022] Open
Abstract
Trichinella spiralis induced alternative activated macrophages (M2), leading to protect against Crohn's disease, known as Th1 -related inflammation, which enhances oxidative stress in the host. However, the relationship of oxidative stress and T. spiralis -mediated immune response is still unknown. In our study, we showed that nuclear factor erythroid 2-related factor-2 (Nrf2), a key transcription factor in antioxidant, participated in M2 polarization induced by T. spiralis muscle larval excretory/secretory (ES) products in vitro. ES -treated M2 were injected intravenously after TNBS challenge and we demonstrated that ES-M could alleviate the severity of the colitis in mice. Adoptive transfer of ES -treated M2 decreased the level of IFN-γ and increased the levels of IL-4 and IL-10 in vivo. However, the capacity of ES -treated Nrf2 KO macrophages to treat colitis was dramatically impaired. ES -treated Nrf2 KO macrophages was insufficient to result in the elevated levels of IL-4 and IL-10. These findings indicate that Nrf2 was required for M2 polarization induced by T. spiralis ES to alleviate colitis in mice.
Collapse
Affiliation(s)
- Xuemin Jin
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xue Bai
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Ying Zhao
- Department of Nephrology, First Hospital of Jilin University, Changchun, China
| | - Zijian Dong
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jianda Pang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Mingyuan Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Xiaolei Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
5
|
Axelrad JE, Cadwell KH, Colombel JF, Shah SC. Systematic review: gastrointestinal infection and incident inflammatory bowel disease. Aliment Pharmacol Ther 2020; 51:1222-1232. [PMID: 32372471 PMCID: PMC7354095 DOI: 10.1111/apt.15770] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/24/2020] [Accepted: 04/14/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND The initiating events of chronic gastrointestinal (GI) inflammation in Crohn's disease (CD) and ulcerative colitis (UC) are not well-defined, but GI infections are implicated. AIMS To define the role of GI infections in risk of incident inflammatory bowel disease (IBD) and synthesise the current body of relevant translational data to provide biological context for associations between GI infections and IBD risk. METHODS We systematically reviewed electronic databases through February 2020. Clinical studies that provided risk estimates of the association between GI infections and incident IBD were included. Inclusion criteria were broader for translational studies aiming to define mechanisms of GI infections and predisposition to or protection from IBD. RESULTS Of the studies identified, 63 met full inclusion criteria. Among studies of clinical gastroenteritis, bacteria-specifically, Salmonella species, Campylobacter species and Clostridioides difficile-demonstrated consistent positive associations with risk of incident IBD. Of viruses, norovirus was associated with increased risk of incident CD. Regarding inverse associations with incident IBD, Helicobacter pylori and helminth infections were associated with a generally consistent reduced risk of IBD. Based on a qualitative analysis of the translational data, putative mechanisms involve multiple microbial and immunologic pathways. CONCLUSIONS Based on this systematic review, certain enteric pathogens are associated with an increased risk of incident IBD, while others are potentially protective. Prospective studies are required to clarify the clinical implications of these enteric pathogens on the risk and course of IBD, and possible therapeutic or preventative benefit.
Collapse
Affiliation(s)
- Jordan E Axelrad
- Division of Gastroenterology, Department of Medicine, NYU School of Medicine, New York, NY, USA
| | - Ken H Cadwell
- Division of Gastroenterology, Department of Medicine, NYU School of Medicine, New York, NY, USA
- Department of Microbiology, NYU School of Medicine, New York, NY, USA
| | - Jean-Frederic Colombel
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shailja C Shah
- Division of Gastroenterology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
6
|
Perturbed Mitochondrial Dynamics Is a Novel Feature of Colitis That Can Be Targeted to Lessen Disease. Cell Mol Gastroenterol Hepatol 2020; 10:287-307. [PMID: 32298841 PMCID: PMC7327843 DOI: 10.1016/j.jcmgh.2020.04.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 04/03/2020] [Accepted: 04/06/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Mitochondria exist in a constantly remodelling network, and excessive fragmentation can be pathophysiological. Mitochondrial dysfunction can accompany enteric inflammation, but any contribution of altered mitochondrial dynamics (ie, fission/fusion) to gut inflammation is unknown. We hypothesized that perturbed mitochondrial dynamics would contribute to colitis. METHODS Quantitative polymerase chain reaction for markers of mitochondrial fission and fusion was applied to tissue from dextran sodium sulfate (DSS)-treated mice. An inhibitor of mitochondrial fission, P110 (prevents dynamin related protein [Drp]-1 binding to mitochondrial fission 1 protein [Fis1]) was tested in the DSS and di-nitrobenzene sulfonic acid (DNBS) models of murine colitis, and the impact of DSS ± P110 on intestinal epithelial and macrophage mitochondria was assessed in vitro. RESULTS Analysis of colonic tissue from mice with DSS-colitis revealed increased mRNA for molecules associated with mitochondrial fission (ie, Drp1, Fis1) and fusion (optic atrophy factor 1) and increased phospho-Drp1 compared with control. Systemic delivery of P110 in prophylactic or treatment regimens reduced the severity of DSS- or DNBS-colitis and the subsequent hyperalgesia in DNBS-mice. Application of DSS to epithelial cells or macrophages caused mitochondrial fragmentation. DSS-evoked perturbation of epithelial cell energetics and mitochondrial fragmentation, but not cell death, were ameliorated by in vitro co-treatment with P110. CONCLUSIONS We speculate that the anti-colitic effect of systemic delivery of the anti-fission drug, P110, works at least partially by maintaining enterocyte and macrophage mitochondrial networks. Perturbed mitochondrial dynamics can be a feature of intestinal inflammation, the suppression of which is a potential novel therapeutic direction in inflammatory bowel disease.
Collapse
|
7
|
Dendritic cells treated by Trichinella spiralis muscle larval excretory/secretory products alleviate TNBS-induced colitis in mice. Int Immunopharmacol 2019; 70:378-386. [PMID: 30852293 DOI: 10.1016/j.intimp.2019.02.028] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 02/13/2019] [Accepted: 02/14/2019] [Indexed: 12/24/2022]
Abstract
BACKGROUND Therapeutic potential of helminth have been shown to have a protective effect on immune-mediated diseases such as Crohn's disease (CD), which is associated with increased production of T helper cell type 1. However, helminth therapy is unacceptable to patients due to side-effects and the fear of parasites. As helminths regulate the cellular immune responses through innate cells such as dendritic cells (DCs), cellular immunotherapy has been considered a therapeutic option to treat CD. METHODS Bone marrow-dendritic cells were generated, enriched and treated with Trichinella spiralis muscle larval excretory/secretory products (Ts-MLES). DCs maturation was measured by flow cytometry and cytokine production of DCs were measured by ELISA. Colitis was generated by intrarectal administration of 2,4,6-trinitrobenzene sulfonic acid (TNBS) solution. For adoptive transfer, Ts-MLES treated-DCs injected intravenously 24 h prior to TNBS challenge. Disease activity index (DAI) including weight loss, diarrhea, and bloody stool were measured. Colon segments were stained with hematoxylin and eosin (H.E.) and periodic acid schiff (PAS) staining for histological damage scoring. The relative mRNA expression of cytokines in colon was analyzed by RT-PCR. Cytokine production in colon was measured by ELISA. Splenocytes were separated and cytokine profiles including Th1 (IFN-γ), Th2 (IL-4, IL-13), and Treg subsets (IL-10, TGF-β) were analyzed by flow cytometry. RESULTS Ts-MLES regulated the maturation and cytokine production of DCs. Ts-MLES -DC ameliorated the severity of the TNBS-induced colitis. In the colon and the spleen, Ts-MLES-DC decreased IFN-γ (Th1) significantly and increased Th2 (IL-4, IL-13)- and Treg (IL-10, TGF-β)- related cytokines. CONCLUSIONS Ts-MLES-DC ameliorated the severity of the TNBS-induced colitis through decreasing IFN-γ. Ts-MLES-DC skewed the Th1-mediated response toward the Th2 type and regulatory T cell response.
Collapse
|
8
|
Kapczuk P, Kosik-Bogacka D, Łanocha-Arendarczyk N, Gutowska I, Kupnicka P, Chlubek D, Baranowska-Bosiacka I. Selected Molecular Mechanisms Involved in the Parasite⁻Host System Hymenolepis diminuta⁻Rattus norvegicus. Int J Mol Sci 2018; 19:ijms19082435. [PMID: 30126154 PMCID: PMC6121280 DOI: 10.3390/ijms19082435] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 08/02/2018] [Accepted: 08/15/2018] [Indexed: 01/27/2023] Open
Abstract
The rat tapeworm Hymenolepis diminuta is a parasite of the small intestine of rodents (mainly mice and rats), and accidentally humans. It is classified as a non-invasive tapeworm due to the lack of hooks on the tapeworm’s scolex, which could cause mechanical damage to host tissues. However, many studies have shown that metabolites secreted by H. diminuta interfere with the functioning of the host’s gastrointestinal tract, causing an increase in salivary secretion, suppression of gastric acid secretion, and an increase in the trypsin activity in the duodenum chyme. Our work presents the biochemical and molecular mechanisms of a parasite-host interaction, including the influence on ion transport and host intestinal microflora, morphology and biochemical parameters of blood, secretion of antioxidant enzymes, expression of Toll-like receptors, mechanisms of immune response, as well as the expression and activity of cyclooxygenases. We emphasize the interrelations between the parasite and the host at the cellular level resulting from the direct impact of the parasite as well as host defense reactions that lead to changes in the host’s tissues and organs.
Collapse
Affiliation(s)
- Patrycja Kapczuk
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland.
| | - Danuta Kosik-Bogacka
- Department of Biology and Medical Parasitology, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland.
| | - Natalia Łanocha-Arendarczyk
- Department of Biology and Medical Parasitology, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland.
| | - Izabela Gutowska
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University, Broniewskiego 24, 71-460 Szczecin, Poland.
| | - Patrycja Kupnicka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland.
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland.
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland.
| |
Collapse
|