1
|
Jia F, Chang Y, Li Y, Li F, Chen X, Liu X, Li W, Cui J. Urinary phthalate metabolites associated with increased prevalence of gallstone disease in U.S. adults: data from the NHANES study. BMC Public Health 2025; 25:231. [PMID: 39833743 PMCID: PMC11744960 DOI: 10.1186/s12889-025-21417-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/10/2025] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Phthalate exposure has been hypothesized to influence cholesterol metabolism and gallstone pathogenesis, but previous studies are limited. We aimed to examine the associations between urinary phthalate metabolites and prevalence of gallstone disease in a nationally representative sample. METHODS We analyzed data on 1,696 adults aged ≥ 30 years from the National Health and Nutrition Examination Survey (NHANES) 2017-2018. Gallstone disease was defined based on self-reported physician-diagnosis. Exposure was measured by urinary concentrations of 10 phthalate metabolites. Multivariable logistic regression model was to assess individual exposure-effect associations. Weighted quantile sum (WQS) regression, Quantile g-computation (Qgcomp) analysis and Bayesian kernel machine regression (BKMR) assessed metabolite mixtures in relation to gallstones. RESULTS In the multivariable logistic regression model, compared to the lowest quartile (Q1) of urinary mono (2-ethyl-5-carboxypentyl) phthalate (MECPP), the highest quartile (Q4) was associated with an 82% increased risk of gallstone formation (OR: 1.82, 95% CI: 1.17, 2.85). Similarly, for mono(3-carboxypropyl) phthalate (MCPP), the risk increased by 78% in the Q4 group compared to Q1 (OR: 1.78, 95% CI: 1.02, 3.14). The WQS index exhibited a significant positive association with gallstone prevalence (OR: 1.37, 95%CI: 1.02, 1.84). In the Qgcomp model, four urinary phthalate metabolites, including MECPP, MCPP, mono benzyl phthalate (MBzP) and mono-carboxynonyl phthalate (MCNP), were positively associated with an increased risk of gallstones. BKMR identified exposure-response trends for MECPP, MCPP, and MBzP. CONCLUSION Higher urinary phthalate metabolite concentrations were associated with increased gallstone risk. These novel findings suggest phthalate exposure may contribute to lithogenic pathogenesis. Future prospective and mechanistic research is warranted.
Collapse
Affiliation(s)
- Feng Jia
- The First Hospital of Jilin University, No.1 Xinmin Street, Changchun, 130012, China
| | - Yu Chang
- The First Hospital of Jilin University, No.1 Xinmin Street, Changchun, 130012, China
| | - Yuguang Li
- The First Hospital of Jilin University, No.1 Xinmin Street, Changchun, 130012, China
| | - Fangqi Li
- The First Hospital of Jilin University, No.1 Xinmin Street, Changchun, 130012, China
| | - Xinqiao Chen
- The First Hospital of Jilin University, No.1 Xinmin Street, Changchun, 130012, China
| | - Xiangliang Liu
- The First Hospital of Jilin University, No.1 Xinmin Street, Changchun, 130012, China.
| | - Wei Li
- The First Hospital of Jilin University, No.1 Xinmin Street, Changchun, 130012, China.
| | - Jiuwei Cui
- The First Hospital of Jilin University, No.1 Xinmin Street, Changchun, 130012, China.
| |
Collapse
|
2
|
Kastrinou-Lampou V, Rodríguez-Pérez R, Poller B, Huth F, Schadt HS, Kullak-Ublick GA, Arand M, Camenisch G. Drug-induced cholestasis (DIC) predictions based on in vitro inhibition of major bile acid clearance mechanisms. Arch Toxicol 2025; 99:377-391. [PMID: 39542928 DOI: 10.1007/s00204-024-03895-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 10/17/2024] [Indexed: 11/17/2024]
Abstract
Drug-induced cholestasis (DIC) is recognized as a major safety concern in drug development, as it represents one of the three types of drug-induced liver injury (DILI). Cholestasis is characterized by the disruption of bile flow, leading to intrahepatic accumulation of toxic bile acids. Bile acid regulation is a multifarious process, orchestrated by several hepatic mechanisms, namely sinusoidal uptake and efflux, canalicular secretion and intracellular metabolism. In the present study, we developed a prediction model of DIC using in vitro inhibition data for 47 marketed drugs on nine transporters and five enzymes known to regulate bile acid homeostasis. The resulting model was able to distinguish between drugs with or without DILI concern (p-value = 0.039) and demonstrated a satisfactory predictive performance, with the area under the precision-recall curve (PR AUC) measured at 0.91. Furthermore, we simplified the model considering only two processes, namely reversible inhibition of OATP1B1 and time-dependent inhibition of CYP3A4, which provided an enhanced performance (PR AUC = 0.95). Our study supports literature findings suggesting a contribution not only from a single process inhibition, but a rather synergistic effect of the key bile acid clearance processes in the development of cholestasis. The use of a quantitative model in the preclinical investigations of DIC is expected to reduce attrition rate in advanced development programs and guide the discovery and development of safe medicines.
Collapse
Affiliation(s)
- Vlasia Kastrinou-Lampou
- Pharmacokinetic Sciences, BioMedical Research, Novartis, Basel, Switzerland
- Preclinical Safety, BioMedical Research, Novartis, Basel, Switzerland
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | | | - Birk Poller
- Pharmacokinetic Sciences, BioMedical Research, Novartis, Basel, Switzerland
| | - Felix Huth
- Pharmacokinetic Sciences, BioMedical Research, Novartis, Basel, Switzerland
| | - Heiko S Schadt
- Preclinical Safety, BioMedical Research, Novartis, Basel, Switzerland
| | - Gerd A Kullak-Ublick
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Mechanistic Safety, CMO and Patient Safety, Global Drug Development, Novartis, Basel, Switzerland
| | - Michael Arand
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Gian Camenisch
- Pharmacokinetic Sciences, BioMedical Research, Novartis, Basel, Switzerland.
| |
Collapse
|
3
|
Kastrinou-Lampou V, Rodríguez-Pérez R, Poller B, Huth F, Gáborik Z, Mártonné-Tóth B, Temesszentandrási-Ambrus C, Schadt HS, Kullak-Ublick GA, Arand M, Camenisch G. Identification of reversible OATP1B1 and time-dependent CYP3A4 inhibition as the major risk factors for drug-induced cholestasis (DIC). Arch Toxicol 2024; 98:3409-3424. [PMID: 39023798 DOI: 10.1007/s00204-024-03794-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 05/22/2024] [Indexed: 07/20/2024]
Abstract
Hepatic bile acid regulation is a multifaceted process modulated by several hepatic transporters and enzymes. Drug-induced cholestasis (DIC), a main type of drug-induced liver injury (DILI), denotes any drug-mediated condition in which hepatic bile flow is impaired. Our ability in translating preclinical toxicological findings to human DIC risk is currently very limited, mainly due to important interspecies differences. Accordingly, the anticipation of clinical DIC with available in vitro or in silico models is also challenging, due to the complexity of the bile acid homeostasis. Herein, we assessed the in vitro inhibition potential of 47 marketed drugs with various degrees of reported DILI severity towards all metabolic and transport mechanisms currently known to be involved in the hepatic regulation of bile acids. The reported DILI concern and/or cholestatic annotation correlated with the number of investigated processes being inhibited. Furthermore, we employed univariate and multivariate statistical methods to determine the important processes for DILI discrimination. We identified time-dependent inhibition (TDI) of cytochrome P450 (CYP) 3A4 and reversible inhibition of the organic anion transporting polypeptide (OATP) 1B1 as the major risk factors for DIC among the tested mechanisms related to bile acid transport and metabolism. These results were consistent across multiple statistical methods and DILI classification systems applied in our dataset. We anticipate that our assessment of the two most important processes in the development of cholestasis will enable a risk assessment for DIC to be efficiently integrated into the preclinical development process.
Collapse
Affiliation(s)
- Vlasia Kastrinou-Lampou
- Pharmacokinetic Sciences, BioMedical Research, Novartis, Basel, Switzerland
- Preclinical Safety, BioMedical Research, Novartis, Basel, Switzerland
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | | | - Birk Poller
- Pharmacokinetic Sciences, BioMedical Research, Novartis, Basel, Switzerland
| | - Felix Huth
- Pharmacokinetic Sciences, BioMedical Research, Novartis, Basel, Switzerland
| | - Zsuzsanna Gáborik
- SOLVO Biotechnology, Charles River Laboratories Hungary, 1117, Budapest, Hungary
| | - Beáta Mártonné-Tóth
- SOLVO Biotechnology, Charles River Laboratories Hungary, 1117, Budapest, Hungary
| | | | - Heiko S Schadt
- Preclinical Safety, BioMedical Research, Novartis, Basel, Switzerland
| | - Gerd A Kullak-Ublick
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Mechanistic Safety, CMO & Patient Safety, Global Drug Development, Novartis, Basel, Switzerland
| | - Michael Arand
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Gian Camenisch
- Pharmacokinetic Sciences, BioMedical Research, Novartis, Basel, Switzerland.
| |
Collapse
|
4
|
Kim M, Han KD, Ko SH, Woo Y, Han JH. Effect of smoking on the risk of gastrointestinal cancer after cholecystectomy: A national population-based cohort study. World J Gastrointest Surg 2024; 16:2796-2807. [PMID: 39351570 PMCID: PMC11438817 DOI: 10.4240/wjgs.v16.i9.2796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/04/2024] [Accepted: 07/31/2024] [Indexed: 09/18/2024] Open
Abstract
BACKGROUND The role of smoking in the incidence of colorectal cancer (CRC) or gastric cancer (GC) in populations undergoing cholecystectomy has not been investigated. AIM To evaluate the effect of smoking on CRC or GC development in cholecystectomy patients. METHODS A total of 174874 patients who underwent cholecystectomy between January 1, 2010 and December 31, 2017 were identified using the Korean National Health Insurance Service claims database. These patients were matched 1:1 with members of a healthy population according to age and sex. CRC or GC risk after cholecystectomy and the association between smoking and CRC or GC risk in cholecystectomy patients were evaluated using adjusted hazard ratios (HRs) and 95%CIs. RESULTS The risks of CRC (adjusted HR: 1.15; 95%CI: 1.06-1.25; P = 0.0013) and GC (adjusted HR: 1.11; 95%CI: 1.01-1.22; P = 0.0027) were significantly higher in cholecystectomy patients. In the population who underwent cholecystectomy, both CRC and GC risk were higher in those who had smoked compared to those who had never smoked. For both cancers, the risk tended to increase in the order of non-smokers, ex-smokers, and current smokers. In addition, a positive correlation was observed between the amount of smoking and the risks of both CRC and GC. CONCLUSION Careful follow-up and screening should be performed, focusing on the increased risk of gastrointestinal cancer in the cholecystectomy group, particularly considering the individual smoking habits.
Collapse
Affiliation(s)
- Minseob Kim
- Department of Surgery, Graduate School of Medicine, The Catholic University of Korea, Seoul 06591, South Korea
| | - Kyung-Do Han
- Department of Statistics and Actuarial Science, Soongsil University, Seoul 06978, South Korea
| | - Seung-Hyun Ko
- Division of Endocrinology and Metabolism, Department of Internal Medicine, St Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Suwon 16247, South Korea
| | - Yoonkyung Woo
- Division of Hepatobiliary-Pancreas Surgery and Liver Transplantation, Department of Surgery, St Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Suwon 16247, South Korea
| | - Jae Hyun Han
- Division of Hepatobiliary-Pancreas Surgery and Liver Transplantation, Department of Surgery, St Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Suwon 16247, South Korea
| |
Collapse
|
5
|
Xiong A, Lu L, Jiang K, Wang X, Chen Y, Wang X, Zhang W, Zhuge Y, Huang W, Li L, Liao Q, Yang F, Liu P, Ding L, Wang Z, Yang L. Functional metabolomics characterizes the contribution of farnesoid X receptor in pyrrolizidine alkaloid-induced hepatic sinusoidal obstruction syndrome. Arch Toxicol 2024; 98:2557-2576. [PMID: 38703205 DOI: 10.1007/s00204-024-03762-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 04/10/2024] [Indexed: 05/06/2024]
Abstract
Consumption of herbal products containing pyrrolizidine alkaloids (PAs) is one of the major causes for hepatic sinusoidal obstruction syndrome (HSOS), a deadly liver disease. However, the crucial metabolic variation and biomarkers which can reflect these changes remain amphibious and thus to result in a lack of effective prevention, diagnosis and treatments against this disease. The aim of the study was to determine the impact of HSOS caused by PA exposure, and to translate metabolomics-derived biomarkers to the mechanism. In present study, cholic acid species (namely, cholic acid, taurine conjugated-cholic acid, and glycine conjugated-cholic acid) were identified as the candidate biomarkers (area under the ROC curve 0.968 [95% CI 0.908-0.994], sensitivity 83.87%, specificity 96.55%) for PA-HSOS using two independent cohorts of patients with PA-HSOS. The increased primary bile acid biosynthesis and decreased liver expression of farnesoid X receptor (FXR, which is known to inhibit bile acid biosynthesis in hepatocytes) were highlighted in PA-HSOS patients. Furtherly, a murine PA-HSOS model induced by senecionine (50 mg/kg, p.o.), a hepatotoxic PA, showed increased biosynthesis of cholic acid species via inhibition of hepatic FXR-SHP singling and treatment with the FXR agonist obeticholic acid restored the cholic acid species to the normal levels and protected mice from senecionine-induced HSOS. This work elucidates that increased levels of cholic acid species can serve as diagnostic biomarkers in PA-HSOS and targeting FXR may represent a therapeutic strategy for treating PA-HSOS in clinics.
Collapse
Affiliation(s)
- Aizhen Xiong
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China.
- Shanghai R & D Center for Standardization of Traditional Chinese Medicines, Shanghai, 201210, China.
| | - Longhui Lu
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China
| | - Kaiyuan Jiang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China
| | - Xiaoning Wang
- E-Institute of Shanghai Municipal Education Committee, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yan Chen
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China
| | - Xunjiang Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China
| | - Wei Zhang
- Department of Gastroenterology, The Drum Tower Hospital of Nanjing, Affiliated to Nanjing University Medical School, Nanjing, 210008, Jiangsu, China
| | - Yuzheng Zhuge
- Department of Gastroenterology, The Drum Tower Hospital of Nanjing, Affiliated to Nanjing University Medical School, Nanjing, 210008, Jiangsu, China
| | - Wendong Huang
- Department of Diabetes Complications and Metabolism, Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Lujin Li
- Center for Drug of Clinical Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China
| | - Qi Liao
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China
| | - Fan Yang
- Department of Obstetrics and Gynecology, and Shanghai Key Laboratory of Gynecologic Oncology Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Ping Liu
- E-Institute of Shanghai Municipal Education Committee, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Lili Ding
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China.
- Shanghai R & D Center for Standardization of Traditional Chinese Medicines, Shanghai, 201210, China.
| | - Zhengtao Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China.
- Shanghai R & D Center for Standardization of Traditional Chinese Medicines, Shanghai, 201210, China.
| | - Li Yang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China.
- Shanghai R & D Center for Standardization of Traditional Chinese Medicines, Shanghai, 201210, China.
| |
Collapse
|
6
|
Sánchez MC, Herráiz A, Ciudad MJ, Arias M, Alonso R, Doblas C, Llama-Palacios A, Collado L. Metabolomics and Biochemical Benefits of Multivitamin and Multimineral Supplementation in Healthy Individuals: A Pilot Study. Foods 2024; 13:2207. [PMID: 39063291 PMCID: PMC11275291 DOI: 10.3390/foods13142207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/06/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Scientific evidence regarding the effectiveness of vitamin and mineral supplements in healthy individuals remains scarce. In a randomized, double-blind study, 30 healthy individuals were assigned to receive a single daily dose of multivitamin and multimineral supplementation or a double daily dose for 30 days. Before and after the intake, an untargeted metabolomics assay for serum metabolites was conducted by hydrophilic interaction liquid chromatography-mass spectrometry, and clinical assessments of peripheral blood samples were performed. A paired t-test for metabolic analysis, adjusted using the false discovery rate (FDR) and p-value correction method (rate of change > 2 and FDR < 0.05), the Shapiro-Wilk test, Student's t-test, and the Mann-Whitney U test were applied depending on the variable, with a 5% significance level. An impact on oxidative stress was observed, with a significant reduction in homocysteine levels and an increment of pyridoxic acid (vitamin B6). The effect on energy metabolism was shown by a significant increase in diverse metabolites, such as linoleoylcarnitine. Serum iron and calcium levels were also impacted. Overall, we observed a nutritional balance compatible with a good state of health. In conclusion, beneficial effects on adult health were demonstrated in relation to oxidative stress, energy metabolism, and nutritional balance.
Collapse
Affiliation(s)
- María C. Sánchez
- Department of Medicine, Faculty of Medicine, University Complutense, 28040 Madrid, Spain; (M.C.S.); (A.H.); (A.L.-P.); (L.C.)
- GINTRAMIS Research Group (Translational Research Group on Microbiota and Health), Faculty of Medicine, University Complutense, 28040 Madrid, Spain
| | - Ana Herráiz
- Department of Medicine, Faculty of Medicine, University Complutense, 28040 Madrid, Spain; (M.C.S.); (A.H.); (A.L.-P.); (L.C.)
| | - María J. Ciudad
- Department of Medicine, Faculty of Medicine, University Complutense, 28040 Madrid, Spain; (M.C.S.); (A.H.); (A.L.-P.); (L.C.)
- GINTRAMIS Research Group (Translational Research Group on Microbiota and Health), Faculty of Medicine, University Complutense, 28040 Madrid, Spain
| | - Marta Arias
- Occupational Medicine Service, Faculty of Medicine, University Complutense, 28040 Madrid, Spain; (M.A.); (R.A.)
| | - Raquel Alonso
- Occupational Medicine Service, Faculty of Medicine, University Complutense, 28040 Madrid, Spain; (M.A.); (R.A.)
| | - Carmen Doblas
- Human Nutrition and Dietetics, Faculty of Medicine, University Complutense, 28040 Madrid, Spain;
| | - Arancha Llama-Palacios
- Department of Medicine, Faculty of Medicine, University Complutense, 28040 Madrid, Spain; (M.C.S.); (A.H.); (A.L.-P.); (L.C.)
- GINTRAMIS Research Group (Translational Research Group on Microbiota and Health), Faculty of Medicine, University Complutense, 28040 Madrid, Spain
| | - Luis Collado
- Department of Medicine, Faculty of Medicine, University Complutense, 28040 Madrid, Spain; (M.C.S.); (A.H.); (A.L.-P.); (L.C.)
- GINTRAMIS Research Group (Translational Research Group on Microbiota and Health), Faculty of Medicine, University Complutense, 28040 Madrid, Spain
| |
Collapse
|
7
|
Zhao X, Wang Y, Wang L, Sun S, Li C, Zhang X, Chen L, Tian Y. Differences of serum glucose and lipid metabolism and immune parameters and blood metabolomics regarding the transition cows in the antepartum and postpartum period. Front Vet Sci 2024; 11:1347585. [PMID: 38371596 PMCID: PMC10869552 DOI: 10.3389/fvets.2024.1347585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/10/2024] [Indexed: 02/20/2024] Open
Abstract
This study aims to investigate differences in metabolism regarding the transition cows. Eight cows were selected for the test. Serum was collected on antepartum days 14th (ap14) and 7th (ap7) and postpartum days 1st (pp1), 7th (pp7), and 14th (pp14) to detect biochemical parameters. The experiment screened out differential metabolites in the antepartum (ap) and postpartum (pp) periods and combined with metabolic pathway analysis to study the relationship and role between metabolites and metabolic abnormalities. Results: (1) The glucose (Glu) levels in ap7 were significantly higher than the other groups (p < 0.01). The insulin (Ins) levels of ap7 were significantly higher than pp7 (p = 0.028) and pp14 (p < 0.01), and pp1 was also significantly higher than pp14 (p = 0.016). The insulin resistance (HOMA-IR) levels of ap7 were significantly higher than ap14, pp7, and pp14 (p < 0.01). The cholestenone (CHO) levels of ap14 and pp14 were significantly higher than pp1 (p < 0.01). The CHO levels of pp14 were significantly higher than pp7 (p < 0.01). The high density lipoprotein cholesterol (DHDL) levels of pp1 were significantly lower than ap14 (p = 0.04), pp7 (p < 0.01), and pp14 (p < 0.01), and pp14 was also significantly higher than ap14 and ap7 (p < 0.01). (2) The interferon-gamma (IFN-γ) and tumor necrosis factor α (TNF-α) levels of ap7 were significantly higher than pp1 and pp7 (p < 0.01); the immunoglobulin A (IgA) levels of pp1 were significantly higher than ap7 and pp7 (p < 0.01); the interleukin-4 (IL-4) levels of pp7 were significantly higher than ap7 and pp1 (p < 0.01), the interleukin-6 (IL-6) levels of ap7 and pp1 were significantly higher than pp7 (p < 0.01). (3) Metabolomics identified differential metabolites mainly involved in metabolic pathways, such as tryptophan metabolism, alpha-linolenic acid metabolism, tyrosine metabolism, and lysine degradation. The main relevant metabolism was concentrated in lipid and lipid-like molecules, organic heterocyclic compounds, organic acids, and their derivatives. The results displayed the metabolic changes in the transition period, which laid a foundation for further exploring the mechanism of metabolic abnormalities in dairy cows in the transition period.
Collapse
Affiliation(s)
- Xinya Zhao
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| | - Yuxin Wang
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| | - Luyao Wang
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| | - Shouqiang Sun
- Tianjin Jialihe Animal Husbandry Group Co., Ltd., Tianjin, China
| | - Chaoyue Li
- Tianjin Jialihe Animal Husbandry Group Co., Ltd., Tianjin, China
| | - Xuewei Zhang
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| | - Long Chen
- Beijing Dongfang Lianming Technology Development Co., Ltd., Beijing, China
| | - Yujia Tian
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| |
Collapse
|
8
|
Zhang Z, Zhang Q, Zhang Y, Lou Y, Ge L, Zhang W, Zhang W, Song F, Huang P. Role of sodium taurocholate cotransporting polypeptide (NTCP) in HBV-induced hepatitis: Opportunities for developing novel therapeutics. Biochem Pharmacol 2024; 219:115956. [PMID: 38049009 DOI: 10.1016/j.bcp.2023.115956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 12/06/2023]
Abstract
Hepatitis B is an infectious disease caused by the HBV virus. It presents a significant challenge for treatment due to its chronic nature and the potential for developing severe complications, including hepatocirrhosis and hepatocellular carcinoma. These complications not only cause physical and psychological distress to patients but also impose substantial economic and social burdens on both individuals and society as a whole. The internalization of HBV relies on endocytosis and necessitates the involvement of various proteins, including heparin sulfate proteoglycans, epidermal growth factor receptors, and NTCP. Among these proteins, NTCP is pivotal in HBV internalization and is primarily located in the liver's basement membrane. As a transporter of bile acids, NTCP also serves as a receptor facilitating HBV entry into cells. Numerous molecules have been identified to thwart HBV infection by stifling NTCP activity, although only a handful exhibit low IC50 values. In this systematic review, our primary focus dwells on the structure and regulation of NTCP, as well as the mechanism involved in HBV internalization. We underscore recent drug breakthroughs that specifically target NTCP to combat HBV infection. By shedding light on these advances, this review contributes novel insights into developing effective anti-HBV medications.
Collapse
Affiliation(s)
- Zhentao Zhang
- Department of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Qi Zhang
- Department of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Yiwen Zhang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, China
| | - Yutao Lou
- Department of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Luqi Ge
- Department of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Wanli Zhang
- Department of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Wen Zhang
- Department of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Feifeng Song
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, China.
| | - Ping Huang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
9
|
Jin Y, Chi J, LoMonaco K, Boon A, Gu H. Recent Review on Selected Xenobiotics and Their Impacts on Gut Microbiome and Metabolome. Trends Analyt Chem 2023; 166:117155. [PMID: 37484879 PMCID: PMC10361410 DOI: 10.1016/j.trac.2023.117155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
As it is well known, the gut is one of the primary sites in any host for xenobiotics, and the many microbial metabolites responsible for the interactions between the gut microbiome and the host. However, there is a growing concern about the negative impacts on human health induced by toxic xenobiotics. Metabolomics, broadly including lipidomics, is an emerging approach to studying thousands of metabolites in parallel. In this review, we summarized recent advancements in mass spectrometry (MS) technologies in metabolomics. In addition, we reviewed recent applications of MS-based metabolomics for the investigation of toxic effects of xenobiotics on microbial and host metabolism. It was demonstrated that metabolomics, gut microbiome profiling, and their combination have a high potential to identify metabolic and microbial markers of xenobiotic exposure and determine its mechanism. Further, there is increasing evidence supporting that reprogramming the gut microbiome could be a promising approach to the intervention of xenobiotic toxicity.
Collapse
Affiliation(s)
- Yan Jin
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
| | - Jinhua Chi
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
| | - Kaelene LoMonaco
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
| | - Alexandria Boon
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
| | - Haiwei Gu
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
| |
Collapse
|
10
|
Xiang F, Niu H, Yao L, Yang J, Cheng S, Zhou Z, Saimaiti R, Matnur Y, Talifu A, Zhou W, Zeper A. Exploring the effect of the Uyghur medicine Munziq Balgam on a collagen-induced arthritis rat model by UPLC-MS/MS-based metabolomics approach. JOURNAL OF ETHNOPHARMACOLOGY 2023; 310:116437. [PMID: 36977448 DOI: 10.1016/j.jep.2023.116437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Munziq Balgam (MBm) is a classic preparation of a traditional Uyghur medicine used for many years to treat abnormal body fluid diseases. The formula, as an in-hospital preparation, has already been used in the Hospital of Xinjiang Traditional Uyghur Medicine to treat rheumatoid arthritis (RA) with significant clinical effects. AIM OF THE STUDY This study intends to reveal the intervention effect of MBm on collagen-induced arthritis (CIA) rats, discover the potential biomarkers with efficacy, and explore the mechanisms of metabolic regulation by using metabolomics method. MATERIAL AND METHODS Sprague Dawley (SD) rats were randomly divided into five groups: blank group, CIA model group, Munziq Balgam nomal-dosage, Munziq Balgam high-dosage group and control group. Body weight, paw swelling, arthritis index, immune indices and histopathological experiments were carried out. Plasma from rats were detected by UPLC-MS/MS. Metabolomics of plasma was performed to analyze metabolic profiles, potential biomarkers, and metabolic pathways of MBm for CIA rats. The main metabolic result of Uyghur medicine MBm was compared with that of Zhuang medicine Longzuantongbi granules (LZTBG) to explore the characteristics of two ethnic medicines from different regions for RA. RESULTS MBm could significantly alleviate symptoms of CIA rats by relieving arthritis symptoms on paw redness and swelling, inflammatory cell infiltration, synovial hyperplasia, pannus, cartilage and bone tissue destruction, as well as inhibiting the expression of IL-1β, IL-6, TNF-α, UA and ALP. Linoleic acid, alpha-linolenic acid, pantothenate and CoA biosynthesis, achidonic acid, gycerophospholipid, sphingolipid metabolism, primary bile acid biosynthesis, porphyrin and chlorophyll metabolism and fatty acid degradation served as the main nine pathways of the interventional effect of MBm on CIA rats. Twenty-three different metabolites were screened out and strongly associated with the indicator makes of RA. Eight potential efficacy-related biomarkers were finally discovered in metabolic pathway network (phosphatidylcholine, bilirubin, sphinganine 1-phosphate, phytosphingosine, SM (d18:1/16:0), pantothenic acid, l-palmitoylcarnitine, chenodeoxycholate). Three metabolites (chenodeoxycholate, hyodeoxycholic acid and O-palmitoleoylcarnitine) were changed in both the metabolic study of MBm and LZTBG intervention effects on CIA rats. Additionally, MBm and LZTBG shared the same 6 metabolic pathways including linoleic acid, alpha-linolenic acid, pantothenate and CoA biosynthesis, achidonic acid, gycerophospholipid, and primary bile acid biosynthesis. CONCLUSION The study suggested that MBm may effectively alleviate RA by regulating inflammation, immunity-related pathways and multiple targets. Metabolomics analysis showed that MBm (Xinjiang, the north of China) and LZTBG (Guangxi, the south of China), two ethnic medicines from different regions in China, share common metabolites and pathways but also have distinct differences in their interventions for RA.
Collapse
Affiliation(s)
- Fangfang Xiang
- School of Pharmacy, Minzu University of China, Beijing, 100081, China
| | - Hongjuan Niu
- School of Pharmacy, Minzu University of China, Beijing, 100081, China
| | - Lan Yao
- School of Pharmacy, Minzu University of China, Beijing, 100081, China
| | - Jing Yang
- School of Pharmacy, Minzu University of China, Beijing, 100081, China
| | - Shuohan Cheng
- School of Pharmacy, Minzu University of China, Beijing, 100081, China
| | - Zhi Zhou
- Key Laboratory of Ethnomedicine of Ministry of Education, Minzu University of China, 100081, Beijing, China; Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing, 100081, China
| | - Refuhati Saimaiti
- Hospital of Xinjiang Traditional Uyghur Medicine, Urumqi, 830049, China
| | - Yusup Matnur
- Hospital of Xinjiang Traditional Uyghur Medicine, Urumqi, 830049, China
| | - Ainiwaer Talifu
- Hospital of Xinjiang Traditional Uyghur Medicine, Urumqi, 830049, China
| | - Wenbin Zhou
- School of Pharmacy, Minzu University of China, Beijing, 100081, China; Key Laboratory of Ethnomedicine of Ministry of Education, Minzu University of China, 100081, Beijing, China; Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing, 100081, China.
| | - Abliz Zeper
- School of Pharmacy, Minzu University of China, Beijing, 100081, China; Key Laboratory of Ethnomedicine of Ministry of Education, Minzu University of China, 100081, Beijing, China; Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing, 100081, China.
| |
Collapse
|
11
|
He Y, Li Y, Pan Y, Li A, Huang Y, Mi Q, Zhao S, Zhang C, Ran J, Hu H, Pan H. Correlation analysis between jejunum metabolites and immune function in Saba and Landrace piglets. Front Vet Sci 2023; 10:1069809. [PMID: 37008364 PMCID: PMC10060822 DOI: 10.3389/fvets.2023.1069809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 02/28/2023] [Indexed: 03/18/2023] Open
Abstract
The immune function of the intestinal mucosa plays a crucial role in the intestinal health of hosts. As signaling molecules and precursors of metabolic reactions, intestinal chyme metabolites are instrumental in maintaining host immune homeostasis. Saba (SB) pigs, a unique local pig species in central Yunnan Province, China. However, research on jejunal metabolites in this species is limited. Here, we used immunohistochemistry and untargeted metabolomics by liquid chromatography mass spectrometry (LC-MS/MS) to study differences in jejunal immunophenotypes and metabolites between six Landrace (LA) and six SB piglets (35 days old). The results showed that the levels of the anti-inflammatory factor interleukin 10 (IL-10) were markedly higher in SB piglets than in LA piglets (P < 0.01), while the levels of the proinflammatory factors IL-6, IL-1β, and Toll-like receptor 2 (TLR-2) were markedly lower (P < 0.01). Furthermore, the levels of mucin 2 (MUC2) and zona occludens (ZO-1), which are related to mucosal barrier function, were significantly higher in SB piglets than in LA piglets (P < 0.01), as were villus height, villus height/crypt depth ratio, and goblet cell number (P < 0.05). Differences in jejunal chyme metabolic patterns were observed between the two piglets. In the negative ion mode, cholic acid metabolites ranked in the top 20 and represented 25% of the total. Taurodeoxycholic acid (TDCA) content was significantly higher in SB piglets than in LA piglets (P < 0.01). TDCA positively correlated with ZO-1, villus height, villus height/crypt depth ratio, and goblet cell number. These results suggest that SB pigs have a strong jejunal immune function and that TDCA was positively regulates jejunal immunity and mucosal barrier function. Our findings provide a reference for understanding intestinal immune function in different pig breeds and for the discovery of potential biomarkers to help solve health issues related to pig production.
Collapse
Affiliation(s)
- Yang He
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Yongxiang Li
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Yangsu Pan
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Anjian Li
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Ying Huang
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Qianhui Mi
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Sumei Zhao
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Chunyong Zhang
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Jinming Ran
- College of Modern Agriculture, Dazhou Vocational and Technical College, Dazhou, China
| | - Hong Hu
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
- Hong Hu
| | - Hongbin Pan
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
- *Correspondence: Hongbin Pan
| |
Collapse
|
12
|
Teng T, Sun G, Song X, Shi B. The early faecal microbiota transfer alters bile acid circulation and amino acid transport of the small intestine in piglets. J Anim Physiol Anim Nutr (Berl) 2023; 107:564-573. [PMID: 35668615 DOI: 10.1111/jpn.13739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/03/2022] [Accepted: 05/13/2022] [Indexed: 01/01/2023]
Abstract
The purpose of this study was to investigate the effects of faecal microbiota transfer (FMT) with lactation Min sows as faecal donor on blood immunity, small intestine amino acid transport capacity, bile acid circulation, and colon microbiota of recipient piglets. From Days 1 to 10, the recipient group (R group) was orally inoculated with a faecal suspension. The control group (Con group) was orally inoculated with sterile physiological saline. On Day 21, the results showed that the immunoglobulin A (IgA) concentration in plasma of the R group was increased (p < 0.05). The expression of 4F2hc in the jejunal mucosa and ileum mucosa of the R group was ameliorated (p < 0.05). The relative abundance of Synergistetes in the colon of the R group was increased, Proteobacteria was diminished by FMT (p < 0.05). On Day 40, the concentrations of IgA, IgG, and interleukin-2 detected in the plasma of the R group were increased (p < 0.05). FXR and fibroblast growth factor 19 gene expression was upregulated in ileum mucosa, CYP7A1 and Na+ taurocholate cotransporter polypeptide gene expression were downregulated in the liver and organic solute transporters α/β was downregulated in colonic mucosa (p < 0.05). The relative abundance of Proteobacteria and Spirochaetes in the colon of the R group was decreased (p < 0.05). In conclusion, an early FMT with lactation Min sows as faecal donors can alter the small intestine amino acid transport capacity, bile acid circulation, and colonic microbiota of recipient piglets during lactation and after weaning.
Collapse
Affiliation(s)
- Teng Teng
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Guodong Sun
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Xin Song
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Baoming Shi
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| |
Collapse
|
13
|
Liu D, Li G, Liu D, Shi W, Wang H, Zhang Q, Shen M, Huang X, Lin H. Quantitative Detection of 15 Serum Bile Acid Metabolic Products by LC/MS/MS in the Diagnosis of Primary Biliary Cholangitis. Chem Biodivers 2023; 20:e202200720. [PMID: 36802162 DOI: 10.1002/cbdv.202200720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 02/12/2023] [Accepted: 02/13/2023] [Indexed: 02/20/2023]
Abstract
To determine 15 bile acid metabolic products in human serum by liquid chromatography-tandem mass spectrometry (LC/MS/MS) and value their diagnostic outcome in primary biliary cholangitis (PBC). Serum from 20 healthy controls and 26 patients with PBC were collected and went LC/MS/MS analysis of 15 bile acid metabolic products. The test results were analyzed by bile acid metabolomics, and the potential biomarkers were screened and their diagnostic performance was judged by statistical methods such as principal component and partial least squares discriminant analysis and area under curve (AUC). 8 differential metabolites can be screened out: Deoxycholic acid (DCA), Glycine deoxycholic acid (GDCA), Lithocholic acid (LCA), Glycine ursodeoxycholic acid (GUDCA), Taurolithocholic acid (TLCA), Tauroursodeoxycholic acid (TUDCA), Taurodeoxycholic acid (TDCA), Glycine chenodeoxycholic acid (GCDCA). The performance of the biomarkers was evaluated by the AUC, specificity and sensitivity. In conclusion, DCA, GDCA, LCA, GUDCA, TLCA, TUDCA, TDCA and GCDCA were identified as eight potential biomarkers to distinguish between healthy people and PBC patients by multivariate statistical analysis, which provided reliable experimental basis for clinical practice.
Collapse
Affiliation(s)
- Dan Liu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, 510000, Guangzhou, China
- Department of Laboratory Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), 510000, Guangzhou, China
| | - Guo Li
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, 510000, Guangzhou, China
- Department of Laboratory Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), 510000, Guangzhou, China
| | - Dongdong Liu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, 510000, Guangzhou, China
- Department of Laboratory Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), 510000, Guangzhou, China
| | - Wen Shi
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, 510000, Guangzhou, China
- Department of Laboratory Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), 510000, Guangzhou, China
| | - Huimin Wang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, 510000, Guangzhou, China
- Department of Laboratory Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), 510000, Guangzhou, China
| | - Qiaoxuan Zhang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, 510000, Guangzhou, China
- Department of Laboratory Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), 510000, Guangzhou, China
| | - Min Shen
- MedicalSystem Biotechnology Co., Ltd, Reference Laboratory, 315100, Ningbo, China
| | - Xianzhang Huang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, 510000, Guangzhou, China
- Department of Laboratory Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), 510000, Guangzhou, China
| | - Haibiao Lin
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, 510000, Guangzhou, China
- Department of Laboratory Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), 510000, Guangzhou, China
| |
Collapse
|
14
|
Lawitz EJ, Bhandari BR, Ruane PJ, Kohli A, Harting E, Ding D, Chuang JC, Huss RS, Chung C, Myers RP, Loomba R. Fenofibrate Mitigates Hypertriglyceridemia in Nonalcoholic Steatohepatitis Patients Treated With Cilofexor/Firsocostat. Clin Gastroenterol Hepatol 2023; 21:143-152.e3. [PMID: 34999207 DOI: 10.1016/j.cgh.2021.12.044] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/21/2021] [Accepted: 12/24/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Patients with advanced fibrosis due to nonalcoholic steatohepatitis (NASH) are at high risk of morbidity and mortality. We previously found that a combination of the farnesoid X receptor agonist cilofexor (CILO) and the acetyl-CoA carboxylase inhibitor firsocostat (FIR) improved liver histology and biomarkers in NASH with advanced fibrosis but was associated with hypertriglyceridemia. We evaluated the safety and efficacy of icosapent ethyl (Vascepa) and fenofibrate to mitigate triglyceride elevations in patients with NASH treated with CILO and FIR. METHODS Patients with NASH with elevated triglycerides (≥150 and <500 mg/dL) were randomized to Vascepa 2 g twice daily (n = 33) or fenofibrate 145 mg daily (n = 33) for 2 weeks, followed by the addition of CILO 30 mg and FIR 20 mg daily for 6 weeks. Safety, lipids, and liver biochemistry were monitored. RESULTS All treatments were well-tolerated; most treatment-emergent adverse events were Grade 1 to 2 severity, and there were no discontinuations due to adverse events. At baseline, median (interquartile range [IQR]) triglycerides were similar in the Vascepa and fenofibrate groups (median, 177 [IQR, 154-205] vs 190 [IQR, 144-258] mg/dL, respectively). Median changes from baseline in triglycerides for Vascepa vs fenofibrate after 2 weeks of pretreatment were -12 mg/dL (IQR, -33 to 7 mg/dL; P = .09) vs -32 mg/dL (IQR, -76 to 6 mg/dL; P = .012) and at 6 weeks were +41 mg/dL (IQR, 16-103 mg/dL; P < .001) vs -2 mg/dL (IQR, -42 to 54 mg/dL; P = .92). In patients with baseline triglycerides <250 mg/dL, fenofibrate was more effective vs Vascepa in mitigating triglyceride increases after 6 weeks of combination treatment (+6 vs +39 mg/dL); similar trends were observed in patients with baseline triglycerides ≥250 mg/d (-61 vs +99 mg/dL). CONCLUSIONS In patients with NASH with hypertriglyceridemia treated with CILO and FIR, fenofibrate was safe and effectively mitigated increases in triglycerides associated with acetyl-CoA carboxylase inhibition. CLINICALTRIALS gov, Number: NCT02781584.
Collapse
Affiliation(s)
- Eric J Lawitz
- Texas Liver Institute and University of Texas Health, San Antonio, Texas
| | | | - Peter J Ruane
- Ruane Clinical Research Group, Inc, Los Angeles, California
| | | | | | - Dora Ding
- Gilead Sciences, Inc, Foster City, California
| | | | - Ryan S Huss
- Gilead Sciences, Inc, Foster City, California
| | | | | | | |
Collapse
|
15
|
Zhang L, Tang J, Wang Y, Wang X, Wang F. Association of CYP7A1 and CYP2E1 Polymorphisms with Type 2 Diabetes in the Chinese Han Populations. Pharmgenomics Pers Med 2022; 15:843-855. [PMID: 36168322 PMCID: PMC9509678 DOI: 10.2147/pgpm.s367806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 08/30/2022] [Indexed: 11/23/2022] Open
Abstract
Background Type 2 diabetes mellitus (T2DM) is caused by diverse environmental and genetic risk factors. Previous studies have reported that cytochrome P450 (CYP) is a promising gene for T2DM. Therefore, we aimed to determine the effects of CYP7A1 and CYP2E1 polymorphisms on T2DM susceptibility among the Chinese Han population. Methods A case-control study was conducted to assess the potential relationship of four polymorphisms (rs8192879, rs12542233, rs2070672 and rs2515641) with T2DM susceptibility in the Chinese population, involving 512 T2DM patients and 515 age- and gender-matched healthy individuals. We used the Agena MassARRAY platform to detect CYP7A1 and CYP2E1 polymorphisms. The relationship between genetic polymorphisms and T2DM risk was evaluated using odds ratios (ORs) and 95% confidence intervals (CIs) in various genetic models. Results After adjusting for age and gender, rs12542233 in the CYP7A1 gene was significantly associated with decreased T2DM risk (recessive: OR = 0.67, 95% CI = 0.49–0.91, p = 0.012; after FDR correction, p = 0.048). The CYP7A1 rs12542233 was associated with a reduced risk of T2DM in people over 59 years of age (p = 0.010). In the population with BMI ≤ 24 kg/m2, CYP7A1 rs12542233 was associated with an increased risk of T2DM (p < 0.05). In the population with BMI > 24 kg/m2, CYP2E1 rs2515641 can significantly reduce the risk of T2DM (p < 0.05). And rs8192879, rs2070672 and rs2515641 could significantly increase the risk of diabetes retinopathy in T2DM patients (p < 0.05). Furthermore, the Trs8192879Crs12542233 haplotype was significantly associated with T2DM (p = 0.019). Conclusion CYP7A1 and CYP2E1 polymorphisms may contribute to T2DM susceptibility in the Chinese Han population, especially in stratified analysis.
Collapse
Affiliation(s)
- Lihong Zhang
- Department of Endocrinology, Xi’an Central Hospital Affiliated to Xi’an Jiaotong University, Xi’an, 710003, People’s Republic of China
| | - Jingjing Tang
- Department of Endocrinology, Xi’an Central Hospital Affiliated to Xi’an Jiaotong University, Xi’an, 710003, People’s Republic of China
| | - Yindi Wang
- Department of Endocrinology, Xi’an Central Hospital Affiliated to Xi’an Jiaotong University, Xi’an, 710003, People’s Republic of China
| | - Xiang Wang
- Department of Endocrinology, Xi’an Central Hospital Affiliated to Xi’an Jiaotong University, Xi’an, 710003, People’s Republic of China
| | - Fang Wang
- Department of Endocrinology, Xi’an Central Hospital Affiliated to Xi’an Jiaotong University, Xi’an, 710003, People’s Republic of China
- Correspondence: Fang Wang, Department of Endocrinology, Xi’an central hospital affiliated to Xi’an Jiaotong University, No. 185, Houzaimen, Xincheng District, Xi’an, Shaanxi Province, People’s Republic of China, Tel/Fax +86 18681809668, Email
| |
Collapse
|
16
|
Guo X, Okpara ES, Hu W, Yan C, Wang Y, Liang Q, Chiang JYL, Han S. Interactive Relationships between Intestinal Flora and Bile Acids. Int J Mol Sci 2022; 23:8343. [PMID: 35955473 PMCID: PMC9368770 DOI: 10.3390/ijms23158343] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 02/01/2023] Open
Abstract
The digestive tract is replete with complex and diverse microbial communities that are important for the regulation of multiple pathophysiological processes in humans and animals, particularly those involved in the maintenance of intestinal homeostasis, immunity, inflammation, and tumorigenesis. The diversity of bile acids is a result of the joint efforts of host and intestinal microflora. There is a bidirectional relationship between the microbial community of the intestinal tract and bile acids in that, while the microbial flora tightly modulates the metabolism and synthesis of bile acids, the bile acid pool and composition affect the diversity and the homeostasis of the intestinal flora. Homeostatic imbalances of bile acid and intestinal flora systems may lead to the development of a variety of diseases, such as inflammatory bowel disease (IBD), colorectal cancer (CRC), hepatocellular carcinoma (HCC), type 2 diabetes (T2DM), and polycystic ovary syndrome (PCOS). The interactions between bile acids and intestinal flora may be (in)directly involved in the pathogenesis of these diseases.
Collapse
Affiliation(s)
- Xiaohua Guo
- Department of Hepatobiliary Surgery, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; (X.G.); (E.S.O.); (C.Y.)
| | - Edozie Samuel Okpara
- Department of Hepatobiliary Surgery, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; (X.G.); (E.S.O.); (C.Y.)
| | - Wanting Hu
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China; (W.H.); (Y.W.); (Q.L.)
| | - Chuyun Yan
- Department of Hepatobiliary Surgery, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; (X.G.); (E.S.O.); (C.Y.)
| | - Yu Wang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China; (W.H.); (Y.W.); (Q.L.)
| | - Qionglin Liang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China; (W.H.); (Y.W.); (Q.L.)
| | - John Y. L. Chiang
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Shuxin Han
- Department of Hepatobiliary Surgery, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; (X.G.); (E.S.O.); (C.Y.)
| |
Collapse
|
17
|
Zhang W, Cui Y, Zhang J. Multi metabolomics-based analysis of application of Astragalus membranaceus in the treatment of hyperuricemia. Front Pharmacol 2022; 13:948939. [PMID: 35935868 PMCID: PMC9355468 DOI: 10.3389/fphar.2022.948939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 06/29/2022] [Indexed: 11/15/2022] Open
Abstract
Hyperuricemia (HUA) is a common metabolic disease that is an independent risk factor for comorbidities such as hypertension, chronic kidney disease, and coronary artery disease. The prevalence of HUA has increased over the last several decades with improved living standards and increased lifespans. Metabolites are considered the most direct reflection of individual physiological and pathological conditions, and represent attractive candidates to provide deep insights into disease phenotypes. Metabolomics, a technique used to profile metabolites in biofluids and tissues, is a powerful tool for identification of novel biomarkers, and can be used to provide valuable insights into the etiopathogenesis of metabolic diseases and to evaluate the efficacy of drugs. In this study, multi metabolomics-based analysis of the blood, urine, and feces of rats with HUA showed that HUA significantly altered metabolite profiles. Astragalus membranaceus (AM) and benbromomalone significantly mitigated these changes in blood and feces, but not in urine. Some crucial metabolic pathways including lipid metabolism, lipid signaling, hormones synthesis, unsaturated fatty acid (UFAs) absorption, and tryptophan metabolism, were seriously disrupted in HUA rats. In addition, AM administration exerted better treatment effects on HUA than benbromomalone. Furthermore, additional supplementation with UFAs and tryptophan may also induce therapeutic effects against HUA.
Collapse
Affiliation(s)
- Wenwen Zhang
- The School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Yifang Cui
- The School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jiayu Zhang
- The School of Pharmacy, Binzhou Medical University, Yantai, China
- *Correspondence: Jiayu Zhang,
| |
Collapse
|
18
|
Sun F, Sun J, Zhao Q. A deep learning method for predicting metabolite-disease associations via graph neural network. Brief Bioinform 2022; 23:6640005. [PMID: 35817399 DOI: 10.1093/bib/bbac266] [Citation(s) in RCA: 162] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/04/2022] [Accepted: 06/06/2022] [Indexed: 12/15/2022] Open
Abstract
Metabolism is the process by which an organism continuously replaces old substances with new substances. It plays an important role in maintaining human life, body growth and reproduction. More and more researchers have shown that the concentrations of some metabolites in patients are different from those in healthy people. Traditional biological experiments can test some hypotheses and verify their relationships but usually take a considerable amount of time and money. Therefore, it is urgent to develop a new computational method to identify the relationships between metabolites and diseases. In this work, we present a new deep learning algorithm named as graph convolutional network with graph attention network (GCNAT) to predict the potential associations of disease-related metabolites. First, we construct a heterogeneous network based on known metabolite-disease associations, metabolite-metabolite similarities and disease-disease similarities. Metabolite and disease features are encoded and learned through the graph convolutional neural network. Then, a graph attention layer is used to combine the embeddings of multiple convolutional layers, and the corresponding attention coefficients are calculated to assign different weights to the embeddings of each layer. Further, the prediction result is obtained by decoding and scoring the final synthetic embeddings. Finally, GCNAT achieves a reliable area under the receiver operating characteristic curve of 0.95 and the precision-recall curve of 0.405, which are better than the results of existing five state-of-the-art predictive methods in 5-fold cross-validation, and the case studies show that the metabolite-disease correlations predicted by our method can be successfully demonstrated by relevant experiments. We hope that GCNAT could be a useful biomedical research tool for predicting potential metabolite-disease associations in the future.
Collapse
Affiliation(s)
- Feiyue Sun
- School of Computer Science and Software Engineering, University of Science and Technology Liaoning, Anshan, 114051, China
| | - Jianqiang Sun
- School of Automation and Electrical Engineering, Linyi University, Linyi, 276000, China
| | - Qi Zhao
- School of Computer Science and Software Engineering, University of Science and Technology Liaoning, Anshan, 114051, China
| |
Collapse
|
19
|
Song X, Wang Y, Guan R, Ma N, Yin L, Zhong M, Wang T, Shi L, Geng Y. Effects of pine pollen wall on gut microbiota and biomarkers in mice with dyslipidemia. Phytother Res 2021; 35:2057-2073. [PMID: 33210367 DOI: 10.1002/ptr.6952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/02/2020] [Accepted: 11/03/2020] [Indexed: 01/08/2023]
Abstract
Pinus yunnanensis pollen is rich in various physiological functions. However, whether the pine pollen wall (PW) plays a beneficial role in the body has not been studied. In this work, we have analyzed its effects on the metabolism and gut microbiota of mouse models of dyslipidemia. We found that the intake of pine PW prevents the liver pathologic changes and reduce the concentrations of TNF-α, IL-6, TC, and high-density lipoprotein cholesterol. Moreover, it can regulate bile acid and fat metabolism, SCFAs content, and the structure of the gut microbiota. According to the change of carbohydrate metabolites, we speculated that cellulose should be the main component to play the above beneficial role, and sporopollenin cannot be utilized in the intestine. Therefore, we consider this study of great significance as it gives a description of biological effects of the pine PW and paves the road to its use in health products.
Collapse
Affiliation(s)
- Xiao Song
- Key Laboratory of Food Nutrition and Safety of SDNU, Provincial Key Laboratory of Animal Resistant Biology, College of Life Science, Shandong Normal University, Jinan, China
| | - Yali Wang
- Key Laboratory of Food Nutrition and Safety of SDNU, Provincial Key Laboratory of Animal Resistant Biology, College of Life Science, Shandong Normal University, Jinan, China
| | - Rui Guan
- Key Laboratory of Food Nutrition and Safety of SDNU, Provincial Key Laboratory of Animal Resistant Biology, College of Life Science, Shandong Normal University, Jinan, China
| | - Ning Ma
- Key Laboratory of Food Nutrition and Safety of SDNU, Provincial Key Laboratory of Animal Resistant Biology, College of Life Science, Shandong Normal University, Jinan, China
| | - Lei Yin
- Research and Development Center, Yantai New Era Health Industry Co., Ltd., Yantai, China
| | - Micun Zhong
- Research and Development Center, Yantai New Era Health Industry Co., Ltd., Yantai, China
| | - Tong Wang
- Research and Development Center, Yantai New Era Health Industry Co., Ltd., Yantai, China
| | - Lihua Shi
- Research and Development Center, Yantai New Era Health Industry Co., Ltd., Yantai, China
| | - Yue Geng
- Key Laboratory of Food Nutrition and Safety of SDNU, Provincial Key Laboratory of Animal Resistant Biology, College of Life Science, Shandong Normal University, Jinan, China
| |
Collapse
|
20
|
Apte U. Bile Acids: Connecting Link Between Autophagy and Gut Microbiome. Cell Mol Gastroenterol Hepatol 2021; 11:1209-1210. [PMID: 33577897 PMCID: PMC8053690 DOI: 10.1016/j.jcmgh.2021.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 12/10/2022]
Affiliation(s)
- Udayan Apte
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas.
| |
Collapse
|
21
|
Gong X, Zhang Q, Ruan Y, Hu M, Liu Z, Gong L. Chronic Alcohol Consumption Increased Bile Acid Levels in Enterohepatic Circulation and Reduced Efficacy of Irinotecan. Alcohol Alcohol 2021; 55:264-277. [PMID: 32232424 DOI: 10.1093/alcalc/agaa005] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/10/2020] [Accepted: 01/21/2020] [Indexed: 12/13/2022] Open
Abstract
AIMS To investigate the effect of ethanol intake on the whole enterohepatic circulation (EHC) of bile acids (BAs) and, more importantly, on pharmacokinetics of irinotecan. METHODS The present study utilized a mouse model administered by gavage with 0 (control), 240 mg/100 g (30%, v/v) and 390 mg/100 g (50%, v/v) ethanol for 6 weeks, followed by BA profiles in the whole EHC (including liver, gallbladder, intestine and plasma) and colon using ultra-high performance liquid chromatography with tandem mass spectrometry analysis. Pharmacokinetic parameters of irinotecan were measured after administration of irinotecan (i.v. 5 mg/kg) on alcohol-treated mice. RESULTS The results showed that compared with the control group, concentrations of most free-BAs, total amount of the three main forms of BAs (free-BA, taurine-BA and glycine-BA) and total BAs (TBAs) in 50% ethanol intake group were significantly increased, which are mostly attributed to the augmentation of free-BAs and taurine-BAs. Additionally, the TBAs in liver and gallbladder and the BA pool were markedly increased in the 30% ethanol intake group. Importantly, ethanol intake upregulated the expression of BA-related enzymes (Cyp7a1, Cyp27a1, Cyp8b1 and Baat) and transporters (Bsep, Mrp2, P-gp and Asbt) and downregulated the expression of transporter Ntcp and nuclear receptor Fxr in the liver and ileum, respectively. Additionally, 50% ethanol intake caused fairly distinct liver injury. Furthermore, the AUC0-24 h of irinotecan and SN38 were significantly reduced but their clearance was significantly increased in the disrupted EHC of BA by 50% ethanol intake. CONCLUSIONS The present study demonstrated that ethanol intake altered the expression of BA-related synthetases and transporters. The BA levels, especially the toxic BAs (chenodeoxycholic acid, deoxycholic acid and lithocholic acid), in the whole EHC were significantly increased by ethanol intake, which may provide a potential explanation to illuminate the pathogenesis of alcoholic liver injury. Most importantly, chronic ethanol consumption had a significant impact on the pharmacokinetics (AUC0-24 h and clearance) of irinotecan and SN38; hence colon cancer patients with chronic alcohol consumption treated with irinotecan deserve our close attention.
Collapse
Affiliation(s)
- Xia Gong
- 232 Waihuan Donglu, Guangzhou Daxuecheng, Panyu District, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, PR China
| | - Qisong Zhang
- 232 Waihuan Donglu, Guangzhou Daxuecheng, Panyu District, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, PR China
| | - Yanjiao Ruan
- 232 Waihuan Donglu, Guangzhou Daxuecheng, Panyu District, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, PR China
| | - Ming Hu
- 232 Waihuan Donglu, Guangzhou Daxuecheng, Panyu District, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, PR China.,Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Huston, 1441 Moursund St., Houston, TX 77030, USA
| | - Zhongqiu Liu
- 232 Waihuan Donglu, Guangzhou Daxuecheng, Panyu District, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, PR China
| | - Lingzhi Gong
- 232 Waihuan Donglu, Guangzhou Daxuecheng, Panyu District, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, PR China
| |
Collapse
|
22
|
Ahmad MI, Ijaz MU, Hussain M, Haq IU, Zhao D, Li C. High-Fat Proteins Drive Dynamic Changes in Gut Microbiota, Hepatic Metabolome, and Endotoxemia-TLR-4-NFκB-Mediated Inflammation in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:11710-11725. [PMID: 33034193 DOI: 10.1021/acs.jafc.0c02570] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The responses of gut microbiota to dietary proteins have been studied previously. However, the effects of dietary proteins supplemented with a high-fat diet (HFD) on the metabolite biomarkers associated with non-alcoholic fatty liver disease (NAFLD) are not well understood. To understand the underlying mechanisms, C57BL/6J mice were fed with either a low-fat diet with casein (LFC) or an HFD with casein (HFC), fish (HFF), or mutton proteins (HFM), and their cecal microbiota and liver metabolites were analyzed. At the phylum level, the HFD group had a relatively higher abundance of Firmicutes compared to the LFC-diet group. At the genus level, the HFF-diet group had the highest abundance of Lactobacillus and Akkermansia compared to the HFC- and HFM-diet groups. Furthermore, mice fed with the HFF diet had significantly reduced levels of hepatic metabolites involved in oxidative stress and bile acid metabolism. Thus, meat proteins in HFD interact in the host to create distinct responses in the gut microbiota and its metabolites.
Collapse
Affiliation(s)
- Muhammad Ijaz Ahmad
- Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MARA; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, China
| | - Muhammad Umair Ijaz
- Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MARA; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, China
| | - Muzhair Hussain
- Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MARA; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, China
| | - Ijaz Ul Haq
- Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MARA; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, China
| | - Di Zhao
- Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MARA; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, China
| | - Chunbao Li
- Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MARA; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, China
| |
Collapse
|
23
|
Comparative Untargeted Metabolomics Analysis of the Psychostimulants 3,4-Methylenedioxy-Methamphetamine (MDMA), Amphetamine, and the Novel Psychoactive Substance Mephedrone after Controlled Drug Administration to Humans. Metabolites 2020; 10:metabo10080306. [PMID: 32726975 PMCID: PMC7465486 DOI: 10.3390/metabo10080306] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/06/2020] [Accepted: 07/18/2020] [Indexed: 12/29/2022] Open
Abstract
Psychoactive stimulants are a popular drug class which are used recreationally. Over the last decade, large numbers of new psychoactive substances (NPS) have entered the drug market and these pose a worldwide problem to human health. Metabolomics approaches are useful tools for simultaneous detection of endogenous metabolites affected by drug use. They allow identification of pathways or characteristic metabolites, which might support the understanding of pharmacological actions or act as indirect biomarkers of consumption behavior or analytical detectability. Herein, we performed a comparative metabolic profiling of three psychoactive stimulant drugs 3,4-methylenedioxymethamphetamine (MDMA), amphetamine and the NPS mephedrone by liquid chromatography-high resolution mass spectrometry (LC-HRMS) in order to identify common pathways or compounds. Plasma samples were obtained from controlled administration studies to humans. Various metabolites were identified as increased or decreased based on drug intake, mainly belonging to energy metabolism, steroid biosynthesis and amino acids. Linoleic acid and pregnenolone-sulfate changed similarly in response to intake of all drugs. Overall, mephedrone produced a profile more similar to that of amphetamine than MDMA in terms of affected energy metabolism. These data can provide the basis for further in-depth targeted metabolome studies on pharmacological actions and search for biomarkers of drug use.
Collapse
|
24
|
Shah V, Mittal R, Shahal D, Sinha P, Bulut E, Mittal J, Eshraghi AA. Evaluating the Efficacy of Taurodeoxycholic Acid in Providing Otoprotection Using an in vitro Model of Electrode Insertion Trauma. Front Mol Neurosci 2020; 13:113. [PMID: 32760249 PMCID: PMC7372968 DOI: 10.3389/fnmol.2020.00113] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/02/2020] [Indexed: 12/13/2022] Open
Abstract
Cochlear implants (CIs) are widely used to provide auditory rehabilitation to individuals having severe to profound sensorineural hearing loss (SNHL). However, insertion of electrode leads to inner trauma and activation of inflammatory and apoptotic signaling cascades resulting in loss of residual hearing in implanted individuals. Pharmaceutical interventions that can target these signaling cascades hold great potential for preserving residual hearing by preventing sensory cell damage. Bile salts have shown efficacy in various regions of the body as powerful antioxidants and anti-inflammatory agents. However, their efficacy against inner ear trauma has never been explored. The objective of this study was to determine whether taurodeoxycholic acid (TDCA), a bile salt derivative, can prevent sensory cell damage employing an in vitro model of electrode insertion trauma (EIT). The organ of Corti (OC) explants were dissected from postnatal day 3 (P-3) rats and placed in serum-free media. Explants were divided into control and experimental groups: (1) untreated controls; (2) EIT; (3) EIT+ TDCA (different concentrations). Hair cell (HC) density, analyses of apoptosis pathway (cleaved caspase 3), levels of reactive oxygen species (ROS) as well as inducible nitric oxide synthase (iNOS) activity and Mitochondrial Membrane Potential (MMP) were assayed. Treatment with TDCA provided significant otoprotection against HC loss in a dose-dependent manner. The molecular mechanisms underlying otoprotection involved decreasing oxidative stress, lowering levels of iNOS, and abrogating generation of cleaved caspase 3. The results of the present study suggest that TDCA provides efficient otoprotection against EIT, in vitro and should be explored for developing pharmaceutical interventions to preserve residual hearing post-cochlear implantation.
Collapse
Affiliation(s)
- Viraj Shah
- Cochlear Implant and Hearing Research Laboratory, Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Rahul Mittal
- Cochlear Implant and Hearing Research Laboratory, Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - David Shahal
- Cochlear Implant and Hearing Research Laboratory, Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Priyanka Sinha
- Cochlear Implant and Hearing Research Laboratory, Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Erdogan Bulut
- Cochlear Implant and Hearing Research Laboratory, Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Jeenu Mittal
- Cochlear Implant and Hearing Research Laboratory, Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Adrien A Eshraghi
- Cochlear Implant and Hearing Research Laboratory, Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, United States.,Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, United States.,Department of Biomedical Engineering, University of Miami, Coral Gables, FL, United States
| |
Collapse
|
25
|
Role of Baicalin and Liver X Receptor Alpha in the Formation of Cholesterol Gallstones in Mice. Gastroenterol Res Pract 2020; 2020:1343969. [PMID: 32382260 PMCID: PMC7191361 DOI: 10.1155/2020/1343969] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 02/17/2020] [Accepted: 03/28/2020] [Indexed: 12/23/2022] Open
Abstract
This study was aimed at investigating the effect of baicalin on experimental cholesterol gallstones in mice. The mouse gallstone model was induced by feeding with a lithogenic diet, and cholesterol stones were found in the gallbladder. The lithogenic diet caused elevation of triglycerides, cholesterol, and low-density lipoprotein concentrations and descent of high-density lipoprotein concentration in serum. Hyperplasia and inflammatory infiltration were observed in the gallbladder wall of lithogenic diet-fed mice. We also found the increase of cholesterol content and the decrease of bile acid in bile. Real-time PCR and western blot results demonstrated that the expression levels of two enzymes (cholesterol 7α-hydroxylase (CYP7a1) and sterol 12α-hydroxylase (CYP8b1)) to catalyze the synthesis of bile acid from cholesterol were decreased and that two cholesterol transporters (ATP-binding cassette transporter G5/G8 (ABCG5/8)) were increased in the liver of lithogenic diet-fed mice. The lithogenic diet also led to enhanced activity of alanine aminotransferase and aspartate aminotransferase in serum; increased concentrations of tumor necrosis factor-α, interleukin- (IL-) 1β, IL-6, and malondialdehyde; and decreased superoxide dismutase activity in the liver, suggesting inflammatory and oxidative stress. In addition, liver X receptor alpha (LXRα) was increased in the liver. After gavage of baicalin, the lithogenic diet-induced gallstones, hyperlipidemia, gallbladder hyperplasia, inflammation, and oxidative stress in liver and cholesterol metabolism disorders were all alleviated to some degree. The expression of LXRα in the liver was inhibited by baicalin. In addition, the LXRα agonist T0901317 aggravated lithogenic diet-induced harmful symptoms in mice, including the increase of gallstone formation, hyperlipidemia, hepatic injury, inflammation, and oxidative stress. In conclusion, we demonstrated that baicalin played a protective role in a lithogenic diet-induced gallstone mouse model, which may be mediated by inhibition of LXRα activity. These findings may provide novel insights for prevention and therapy of gallstones in the clinic.
Collapse
|
26
|
Garzel B, Zhang L, Huang SM, Wang H. A Change in Bile Flow: Looking Beyond Transporter Inhibition in the Development of Drug-induced Cholestasis. Curr Drug Metab 2020; 20:621-632. [PMID: 31288715 DOI: 10.2174/1389200220666190709170256] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/22/2019] [Accepted: 06/12/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Drug-induced Liver Injury (DILI) has received increasing attention over the past decades, as it represents the leading cause of drug failure and attrition. One of the most prevalent and severe forms of DILI involves the toxic accumulation of bile acids in the liver, known as Drug-induced Cholestasis (DIC). Traditionally, DIC is studied by exploring the inhibition of hepatic transporters such as Bile Salt Export Pump (BSEP) and multidrug resistance-associated proteins, predominantly through vesicular transport assays. Although this approach has identified numerous drugs that alter bile flow, many DIC drugs do not demonstrate prototypical transporter inhibition, but rather are associated with alternative mechanisms. METHODS We undertook a focused literature search on DIC and biliary transporters and analyzed peer-reviewed publications over the past two decades or so. RESULTS We have summarized the current perception regarding DIC, biliary transporters, and transcriptional regulation of bile acid homeostasis. A growing body of literature aimed to identify alternative mechanisms in the development of DIC has been evaluated. This review also highlights current in vitro approaches used for prediction of DIC. CONCLUSION Efforts have continued to focus on BSEP, as it is the primary route for hepatic biliary clearance. In addition to inhibition, drug-induced BSEP repression or the combination of these two has emerged as important alternative mechanisms leading to DIC. Furthermore, there has been an evolution in the approaches to studying DIC including 3D cell cultures and computational modeling.
Collapse
Affiliation(s)
- Brandy Garzel
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, MD 20993, United States.,Becton Dickinson, 54 Loveton Circle, Sparks, MD 21152, United States
| | - Lei Zhang
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, MD 20993, United States.,Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, FDA, Silver Spring, MD 20993, United States
| | - Shiew-Mei Huang
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, MD 20993, United States
| | - Hongbing Wang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, United States
| |
Collapse
|
27
|
Dalili N, Chashmniam S, Khoormizi SMH, Salehi L, Jamalian SA, Nafar M, Kalantari S. Urine and serum NMR-based metabolomics in pre-procedural prediction of contrast-induced nephropathy. Intern Emerg Med 2020; 15:95-103. [PMID: 31201681 DOI: 10.1007/s11739-019-02128-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 05/06/2019] [Accepted: 06/06/2019] [Indexed: 12/30/2022]
Abstract
Contrast induced nephropathy (CIN) has been reported to be the third foremost cause of acute renal failure. Metabolomics is a robust technique that has been used to identify potential biomarkers for the prediction of renal damage. We aim to analyze the serum and urine metabolites changes, before and after using contrast for coronary angiography, to determine if metabolomics can predict early development of CIN. 66 patients undergoing elective coronary angiography were eligible for enrollment. Urine and serum samples were collected prior to administration of CM and 72 h post procedure and analyzed by nuclear magnetic resonance. The significant differential metabolites between patients who develop CIN and patients who have stable renal function after angiography were identified using U test and receiver operating characteristic analysis was performed for each metabolite candidate. Potential susceptible pathways to cytotoxic effect of CM were investigated by pathway analysis. A predictive panel composed of six urinary metabolites had the best area under the curve. Glutamic acid, uridine diphosphate, glutamine and tyrosine were the most important serum predictive biomarkers. Several pathways related to amino acid and nicotinamide metabolism were suggested as impaired pathways in CIN prone patients. Changes exist in urine and serum metabolomics patterns in patients who do and do not develop CIN after coronary angiography hence metabolites may be potential predictive identifiers of CIN.
Collapse
Affiliation(s)
- Nooshin Dalili
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeed Chashmniam
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Seyed Mojtaba Heydari Khoormizi
- Chronic Kidney Disease Research Center, Shahid Labbafinejad Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Lida Salehi
- Chronic Kidney Disease Research Center, Shahid Labbafinejad Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Mohsen Nafar
- Chronic Kidney Disease Research Center, Shahid Labbafinejad Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shiva Kalantari
- Chronic Kidney Disease Research Center, Shahid Labbafinejad Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
28
|
Lickteig AJ, Zhang Y, Klaassen CD, Csanaky IL. Effects of Absence of Constitutive Androstane Receptor (CAR) on Bile Acid Homeostasis in Male and Female Mice. Toxicol Sci 2019; 171:132-145. [PMID: 31225615 PMCID: PMC6735724 DOI: 10.1093/toxsci/kfz143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 05/22/2019] [Accepted: 05/28/2019] [Indexed: 01/05/2023] Open
Abstract
Accumulation of BAs in hepatocytes has a role in liver disease and also in drug-induced liver injury. The Constitutive Androstane Receptor (CAR) has been shown to protect against BA-induced liver injury. The polymorphism of CAR has recently been shown to modify the pharmacokinetics and pharmacodynamics of various drugs. Thus it was hypothesized that polymorphism of CAR may also influence BA homeostasis. Using CAR-null and WT mice, this study modeled the potential consequences of CAR polymorphism on BA homeostasis. Our previous study showed that chemical activation of CAR decreases the total BA concentrations in livers of mice. Surprisingly the absence of CAR also decreased the BA concentrations in livers of mice, but to a lesser extent than in CAR-activated mice. Neither CAR activation nor elimination of CAR altered the biliary excretion of total BAs, but CAR activation increased the proportion of 6-OH BAs (TMCA), whereas the lack of CAR increased the excretion of TCA, TCDCA and TDCA. Serum BA concentrations did not parallel the decrease in BA concentrations in the liver in either the mice after CAR activation or mice lacking CAR. Gene expression of BA synthesis, transporter and regulator genes were mainly similar in livers of CAR-null and WT mice. In summary, CAR activation decreases primarily the 12-OH BA concentrations in liver, whereas lack of CAR decreases the concentrations of 6-OH BAs in liver. In bile, CAR activation increases the biliary excretion of 6-OH BAs, whereas absence of CAR increases the biliary excretion of 12-OH BAs and TCDCA.
Collapse
Affiliation(s)
- Andrew J Lickteig
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Youcai Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, P. R. China
| | - Curtis D Klaassen
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Iván L Csanaky
- Division of Clinical Pharmacology, Toxicology, and Therapeutic Innovation, Division of Gastroenterology, Children's Mercy Hospital, Kansas City, Missouri, USA.,Department of Pediatrics, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
29
|
Sissung TM, Rajan A, Blumenthal GM, Liewehr DJ, Steinberg SM, Berman A, Giaccone G, Figg WD. Reproducibility of pharmacogenetics findings for paclitaxel in a heterogeneous population of patients with lung cancer. PLoS One 2019; 14:e0212097. [PMID: 30817750 PMCID: PMC6394902 DOI: 10.1371/journal.pone.0212097] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 01/28/2019] [Indexed: 12/12/2022] Open
Abstract
Pharmacogenetics studies have identified several allelic variants with the potential to reduce toxicity and improve treatment outcome. The present study was designed to determine if such findings are reproducible in a heterogenous population of patients with lung cancer undergoing therapy with paclitaxel. We designed a prospective multi-institutional study that recruited n = 103 patients receiving paclitaxel therapy with a 5-year follow up. All patients were genotyped using the Drug Metabolizing Enzymes and Transporters (DMET) platform, which ascertains 1931 genotypes in 235 genes. Progression-free survival (PFS) of paclitaxel therapy and clinically-significant paclitaxel toxicities were classified and compared according to genotype. Initial screening revealed eleven variants that are associated with PFS. Of these, seven variants in ABCB11 (rs4148768), ABCC3 (rs1051640), ABCG1 (rs1541290), CYP8B1 (rs735320), NR3C1 (rs6169), FMO6P (rs7889839), and GSTM3 (rs7483) were associated with paclitaxel PFS in a multivariate analysis accounting for clinical covariates. Multivariate analysis revealed four SNPs in VKORC1 (rs2884737), SLC22A14 (rs4679028), GSTA2 (rs6577), and DCK (rs4643786) were associated with paclitaxel toxicities. With the exception of a variant in VKORC1, the present study did not find the same genetic outcome associations of other published research on pharmacogenetics variants that affect paclitaxel outcomes. This finding suggests that prior pharmacogenomics research findings may not be reproduced in the most frequently-diagnosed malignancy, lung cancer.
Collapse
Affiliation(s)
- Tristan M. Sissung
- Clinical Pharmacology Program, Office of the Clinical Director, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Arun Rajan
- Thoracic and Gastrointestinal Oncology Branch, Office of the Clinical Director, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Gideon M. Blumenthal
- Thoracic and Gastrointestinal Oncology Branch, Office of the Clinical Director, National Cancer Institute, Bethesda, Maryland, United States of America
| | - David J. Liewehr
- Biostatistics and Data Management Section, Office of the Clinical Director, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Seth M. Steinberg
- Biostatistics and Data Management Section, Office of the Clinical Director, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Arlene Berman
- Office of Research Nursing in the Office of the Clinical Director, Office of the Clinical Director, National Cancer Institute, Bethesda, MD, United States of America
| | - Giuseppe Giaccone
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, D.C., United States of America
| | - William D. Figg
- Clinical Pharmacology Program, Office of the Clinical Director, National Cancer Institute, Bethesda, Maryland, United States of America
| |
Collapse
|
30
|
Jia C, Xu H, Xu Y, Xu Y, Shi Q. Serum metabolomics analysis of patients with polycystic ovary syndrome by mass spectrometry. Mol Reprod Dev 2019; 86:292-297. [PMID: 30624822 DOI: 10.1002/mrd.23104] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 12/07/2018] [Indexed: 01/01/2023]
Abstract
Polycystic ovary syndrome (PCOS) is a set of symptoms caused by elevated androgens (male hormones) in females. PCOS is the most common endocrine disorder among women between 18 and 44 years. Currently, the pathogenesis of PCOS remains unclear. Liquid chromatography-mass spectrometry (LC/MS)-based metabolomics is becoming more and more useful for medical research, especially in revealing the mechanism of the disease. The aim of this study was to investigate the difference of serum metabolic profiles in patients with PCOS and healthy control to better understand the mechanism of this disease. Ten patients with PCOS and 10 healthy people were recruited for this study. The serum samples were collected for LC/MS analysis. Multivariate statistical analysis was performed to discover and identify the potential biomarkers. Six biomarkers were found and identified. The biomarkers belonged to different metabolic pathway including lipid metabolism, carnitine metabolism, androgen metabolism, and bile acid metabolism. Those biomarkers also played different roles in disease progression. Metabolomics is a powerful tool used in research of the mechanism involved in this disease to provide useful information for better understanding of PCOS.
Collapse
Affiliation(s)
- Chunshu Jia
- Centre for Reproductive Medicine, Centre for Prenatal Diagnosis, First Hospital of Jilin University, Changchun, China
| | - Hongmei Xu
- Department of Obstetrics, First Hospital of Jilin University, Changchun, China
| | - Ying Xu
- Department of Obstetrics and Gynecology, Second Hospital of Jilin University, Changchun, China
| | - Ying Xu
- Department of Nephrology, First Hospital of Jilin University, China
| | - Qingyang Shi
- Centre for Reproductive Medicine, Centre for Prenatal Diagnosis, First Hospital of Jilin University, Changchun, China
| |
Collapse
|
31
|
Eller C, Heydmann L, Colpitts CC, Verrier ER, Schuster C, Baumert TF. The functional role of sodium taurocholate cotransporting polypeptide NTCP in the life cycle of hepatitis B, C and D viruses. Cell Mol Life Sci 2018; 75:3895-3905. [PMID: 30097692 PMCID: PMC7613421 DOI: 10.1007/s00018-018-2892-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/02/2018] [Accepted: 07/25/2018] [Indexed: 12/11/2022]
Abstract
Chronic hepatitis B, C and D virus (HBV, HCV and HDV) infections are a major cause of liver disease and cancer worldwide. Despite employing distinct replication strategies, the three viruses are exclusively hepatotropic, and therefore depend on hepatocyte-specific host factors. The sodium taurocholate co-transporting polypeptide (NTCP), a transmembrane protein highly expressed in human hepatocytes that mediates the transport of bile acids, plays a key role in HBV and HDV entry into hepatocytes. Recently, NTCP has been shown to modulate HCV infection of hepatocytes by regulating innate antiviral immune responses in the liver. Here, we review the current knowledge of the functional role and the molecular and cellular biology of NTCP in the life cycle of the three major hepatotropic viruses, highlight the impact of NTCP as an antiviral target and discuss future avenues of research.
Collapse
Affiliation(s)
- Carla Eller
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 3 Rue Koeberlé, 67000, Strasbourg, France
- Université de Strasbourg, 67000, Strasbourg, France
| | - Laura Heydmann
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 3 Rue Koeberlé, 67000, Strasbourg, France
- Université de Strasbourg, 67000, Strasbourg, France
| | - Che C Colpitts
- Division of Infection and Immunity, University College London, London, UK
| | - Eloi R Verrier
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 3 Rue Koeberlé, 67000, Strasbourg, France
- Université de Strasbourg, 67000, Strasbourg, France
| | - Catherine Schuster
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 3 Rue Koeberlé, 67000, Strasbourg, France
- Université de Strasbourg, 67000, Strasbourg, France
| | - Thomas F Baumert
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 3 Rue Koeberlé, 67000, Strasbourg, France.
- Université de Strasbourg, 67000, Strasbourg, France.
- Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Nouvel Hôpital Civil, 67000, Strasbourg, France.
| |
Collapse
|
32
|
Protective Effects of Yinchenhao Decoction on Cholesterol Gallstone in Mice Fed a Lithogenic Diet by Regulating LXR, CYP7A1, CYP7B1, and HMGCR Pathways. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:8134918. [PMID: 30310412 PMCID: PMC6166389 DOI: 10.1155/2018/8134918] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/28/2018] [Accepted: 07/22/2018] [Indexed: 12/16/2022]
Abstract
The study attempted to elucidate whether lipid genes are closely associated with lipid metabolic abnormalities during the lithogenic time and how Yinchenhao Decoction (YCHD) works on the transcriptions of lipid genes against cholesterol gallstone model. C57BL/6J mice fed on lithogenic diet (LD) were used for model establishment and randomized into 5 groups. All groups received LD for different weeks with isometrically intragastric administration of YCHD or NS. Biochemical tests were measured and liver tissues were harvested for histological and genetic detection. It was found that all groups with increasing LD showed a following tendency of gallstone incidence, bile cholesterol, phospholipids, total bile acid, and cholesterol saturation index (CSI). Conversely, YCHD could significantly normalize the levels of gallstone incidence, bile lipids, and CSI (CSI<1). As lithogenic time progressed, ABCG5, ABCG8, PPAR-α, and ABCB4 were upregulated, and SREBP2, CYP7A1, and CYP7B1 were downregulated, while CYP7A1, CYP7B1, LXR, and HMGCR mRNA were increased 3-fold under the administration of YCHD. It was concluded that abnormal expressions of the mentioned genes may eventually progress to cholesterol gallstone. CYP7A1, CYP7B1, LXR, and HMGCR mRNA may be efficient targets of YCHD, which may be a preventive drug to reverse liver injury, normalize bile lipids, facilitate gallstone dissolution, and attenuate gallstone formation.
Collapse
|
33
|
Li CY, Dempsey JL, Wang D, Lee S, Weigel KM, Fei Q, Bhatt DK, Prasad B, Raftery D, Gu H, Cui JY. PBDEs Altered Gut Microbiome and Bile Acid Homeostasis in Male C57BL/6 Mice. Drug Metab Dispos 2018; 46:1226-1240. [PMID: 29769268 PMCID: PMC6053593 DOI: 10.1124/dmd.118.081547] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 05/11/2018] [Indexed: 12/14/2022] Open
Abstract
Polybrominated diphenyl ethers (PBDEs) are persistent environmental contaminants with well characterized toxicities in host organs. Gut microbiome is increasingly recognized as an important regulator of xenobiotic biotransformation; however, little is known about its interactions with PBDEs. Primary bile acids (BAs) are metabolized by the gut microbiome into more lipophilic secondary BAs that may be absorbed and interact with certain host receptors. The goal of this study was to test our hypothesis that PBDEs cause dysbiosis and aberrant regulation of BA homeostasis. Nine-week-old male C57BL/6 conventional (CV) and germ-free (GF) mice were orally gavaged with corn oil (10 mg/kg), BDE-47 (100 μmol/kg), or BDE-99 (100 μmol/kg) once daily for 4 days (n = 3-5/group). Gut microbiome was characterized using 16S rRNA sequencing of the large intestinal content in CV mice. Both BDE-47 and BDE-99 profoundly decreased the alpha diversity of gut microbiome and differentially regulated 45 bacterial species. Both PBDE congeners increased Akkermansia muciniphila and Erysipelotrichaceae Allobaculum spp., which have been reported to have anti-inflammatory and antiobesity functions. Targeted metabolomics of 56 BAs was conducted in serum, liver, and small and large intestinal content of CV and GF mice. BDE-99 increased many unconjugated BAs in multiple biocompartments in a gut microbiota-dependent manner. This correlated with an increase in microbial 7α-dehydroxylation enzymes for secondary BA synthesis and increased expression of host intestinal transporters for BA absorption. Targeted proteomics showed that PBDEs downregulated host BA-synthesizing enzymes and transporters in livers of CV but not GF mice. In conclusion, there is a novel interaction between PBDEs and the endogenous BA-signaling through modification of the "gut-liver axis".
Collapse
Affiliation(s)
- Cindy Yanfei Li
- Departments of Environmental and Occupational Health Sciences (C.Y.F., J.L.D., S.L., K.M.W., J.Y.C.) and Pharmaceutics (D.K.B., B.P.) and Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine (D.W., Q.F., D.R.), University of Washington, Seattle, Washington; Arizona Metabolomics Laboratory, Center for Metabolic and Vascular Biology, School of Nutrition and Health Promotion, College of Health Solutions, Arizona State University, Phoenix, Arizona (H.G.); Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, P. R. China (D.W.); and Department of Chemistry, Jilin University, Changchun, Jilin Province, P. R. China (Q.F.)
| | - Joseph L Dempsey
- Departments of Environmental and Occupational Health Sciences (C.Y.F., J.L.D., S.L., K.M.W., J.Y.C.) and Pharmaceutics (D.K.B., B.P.) and Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine (D.W., Q.F., D.R.), University of Washington, Seattle, Washington; Arizona Metabolomics Laboratory, Center for Metabolic and Vascular Biology, School of Nutrition and Health Promotion, College of Health Solutions, Arizona State University, Phoenix, Arizona (H.G.); Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, P. R. China (D.W.); and Department of Chemistry, Jilin University, Changchun, Jilin Province, P. R. China (Q.F.)
| | - Dongfang Wang
- Departments of Environmental and Occupational Health Sciences (C.Y.F., J.L.D., S.L., K.M.W., J.Y.C.) and Pharmaceutics (D.K.B., B.P.) and Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine (D.W., Q.F., D.R.), University of Washington, Seattle, Washington; Arizona Metabolomics Laboratory, Center for Metabolic and Vascular Biology, School of Nutrition and Health Promotion, College of Health Solutions, Arizona State University, Phoenix, Arizona (H.G.); Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, P. R. China (D.W.); and Department of Chemistry, Jilin University, Changchun, Jilin Province, P. R. China (Q.F.)
| | - SooWan Lee
- Departments of Environmental and Occupational Health Sciences (C.Y.F., J.L.D., S.L., K.M.W., J.Y.C.) and Pharmaceutics (D.K.B., B.P.) and Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine (D.W., Q.F., D.R.), University of Washington, Seattle, Washington; Arizona Metabolomics Laboratory, Center for Metabolic and Vascular Biology, School of Nutrition and Health Promotion, College of Health Solutions, Arizona State University, Phoenix, Arizona (H.G.); Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, P. R. China (D.W.); and Department of Chemistry, Jilin University, Changchun, Jilin Province, P. R. China (Q.F.)
| | - Kris M Weigel
- Departments of Environmental and Occupational Health Sciences (C.Y.F., J.L.D., S.L., K.M.W., J.Y.C.) and Pharmaceutics (D.K.B., B.P.) and Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine (D.W., Q.F., D.R.), University of Washington, Seattle, Washington; Arizona Metabolomics Laboratory, Center for Metabolic and Vascular Biology, School of Nutrition and Health Promotion, College of Health Solutions, Arizona State University, Phoenix, Arizona (H.G.); Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, P. R. China (D.W.); and Department of Chemistry, Jilin University, Changchun, Jilin Province, P. R. China (Q.F.)
| | - Qiang Fei
- Departments of Environmental and Occupational Health Sciences (C.Y.F., J.L.D., S.L., K.M.W., J.Y.C.) and Pharmaceutics (D.K.B., B.P.) and Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine (D.W., Q.F., D.R.), University of Washington, Seattle, Washington; Arizona Metabolomics Laboratory, Center for Metabolic and Vascular Biology, School of Nutrition and Health Promotion, College of Health Solutions, Arizona State University, Phoenix, Arizona (H.G.); Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, P. R. China (D.W.); and Department of Chemistry, Jilin University, Changchun, Jilin Province, P. R. China (Q.F.)
| | - Deepak Kumar Bhatt
- Departments of Environmental and Occupational Health Sciences (C.Y.F., J.L.D., S.L., K.M.W., J.Y.C.) and Pharmaceutics (D.K.B., B.P.) and Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine (D.W., Q.F., D.R.), University of Washington, Seattle, Washington; Arizona Metabolomics Laboratory, Center for Metabolic and Vascular Biology, School of Nutrition and Health Promotion, College of Health Solutions, Arizona State University, Phoenix, Arizona (H.G.); Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, P. R. China (D.W.); and Department of Chemistry, Jilin University, Changchun, Jilin Province, P. R. China (Q.F.)
| | - Bhagwat Prasad
- Departments of Environmental and Occupational Health Sciences (C.Y.F., J.L.D., S.L., K.M.W., J.Y.C.) and Pharmaceutics (D.K.B., B.P.) and Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine (D.W., Q.F., D.R.), University of Washington, Seattle, Washington; Arizona Metabolomics Laboratory, Center for Metabolic and Vascular Biology, School of Nutrition and Health Promotion, College of Health Solutions, Arizona State University, Phoenix, Arizona (H.G.); Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, P. R. China (D.W.); and Department of Chemistry, Jilin University, Changchun, Jilin Province, P. R. China (Q.F.)
| | - Daniel Raftery
- Departments of Environmental and Occupational Health Sciences (C.Y.F., J.L.D., S.L., K.M.W., J.Y.C.) and Pharmaceutics (D.K.B., B.P.) and Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine (D.W., Q.F., D.R.), University of Washington, Seattle, Washington; Arizona Metabolomics Laboratory, Center for Metabolic and Vascular Biology, School of Nutrition and Health Promotion, College of Health Solutions, Arizona State University, Phoenix, Arizona (H.G.); Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, P. R. China (D.W.); and Department of Chemistry, Jilin University, Changchun, Jilin Province, P. R. China (Q.F.)
| | - Haiwei Gu
- Departments of Environmental and Occupational Health Sciences (C.Y.F., J.L.D., S.L., K.M.W., J.Y.C.) and Pharmaceutics (D.K.B., B.P.) and Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine (D.W., Q.F., D.R.), University of Washington, Seattle, Washington; Arizona Metabolomics Laboratory, Center for Metabolic and Vascular Biology, School of Nutrition and Health Promotion, College of Health Solutions, Arizona State University, Phoenix, Arizona (H.G.); Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, P. R. China (D.W.); and Department of Chemistry, Jilin University, Changchun, Jilin Province, P. R. China (Q.F.)
| | - Julia Yue Cui
- Departments of Environmental and Occupational Health Sciences (C.Y.F., J.L.D., S.L., K.M.W., J.Y.C.) and Pharmaceutics (D.K.B., B.P.) and Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine (D.W., Q.F., D.R.), University of Washington, Seattle, Washington; Arizona Metabolomics Laboratory, Center for Metabolic and Vascular Biology, School of Nutrition and Health Promotion, College of Health Solutions, Arizona State University, Phoenix, Arizona (H.G.); Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, P. R. China (D.W.); and Department of Chemistry, Jilin University, Changchun, Jilin Province, P. R. China (Q.F.)
| |
Collapse
|
34
|
Metabolomics signatures associated with an oral glucose challenge in pregnant women. DIABETES & METABOLISM 2018; 45:39-46. [PMID: 29395809 DOI: 10.1016/j.diabet.2018.01.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 12/14/2017] [Accepted: 01/03/2018] [Indexed: 12/12/2022]
Abstract
AIM The oral glucose tolerance test (OGTT), widely used as a gold standard for gestational diabetes mellitus (GDM) diagnosis, provides a broad view of glucose pathophysiology in response to a glucose challenge. We conducted the present study to evaluate metabolite changes before and after an oral glucose challenge in pregnancy; and to examine the extent to which metabolites may serve to predict GDM diagnosis in pregnant women. METHODS Peruvian pregnant women (n=100) attending prenatal clinics (mean gestation 25 weeks) participated in the study with 23% of them having GDM diagnosis. Serum samples were collected immediately prior to and 2-hours after administration of a 75-g OGTT. Targeted metabolic profiling was performed using a LC-MS based metabolomics platform. Changes in metabolite levels were evaluated using paired Student's t-tests and the change patterns were examined at the level of pathways. Multivariate regression procedures were used to examine metabolite pairwise differences associated with subsequent GDM diagnosis. RESULTS Of the 306 metabolites detected, the relative concentration of 127 metabolites were statistically significantly increased or decreased 2-hours after the oral glucose load (false discovery rate [FDR] corrected P-value<0.001). We identified relative decreases in metabolites in acylcarnitines, fatty acids, and diacylglycerols while relative increases were noted among bile acids. In addition, we found that C58:10 triacylglycerol (β=-0.08, SE=0.04), C58:9 triacylglycerol (β=-0.07, SE=0.03), adenosine (β=0.70, SE=0.32), methionine sulfoxide (β=0.36, SE=0.13) were significantly associated with GDM diagnosis even after adjusting for age and body mass index. CONCLUSIONS We identified alterations in maternal serum metabolites, representing distinct cellular and metabolic pathways including fatty acid metabolism, in response to an oral glucose challenge. These findings offer novel perspectives on the pathophysiological mechanisms underlying GDM.
Collapse
|
35
|
Mostarda S, Passeri D, Carotti A, Cerra B, Colliva C, Benicchi T, Macchiarulo A, Pellicciari R, Gioiello A. Synthesis, physicochemical properties, and biological activity of bile acids 3-glucuronides: Novel insights into bile acid signalling and detoxification. Eur J Med Chem 2017; 144:349-358. [PMID: 29275233 DOI: 10.1016/j.ejmech.2017.12.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 11/29/2017] [Accepted: 12/11/2017] [Indexed: 12/21/2022]
Abstract
Glucuronidation is considered an important detoxification pathway of bile acids especially in cholestatic conditions. Glucuronides are less toxic than the parent free forms and are more easily excreted in urine. However, the pathophysiological significance of bile acid glucuronidation is still controversial and debated among the scientific community. Progress in this field has been strongly limited by the lack of appropriate methods for the preparation of pure glucuronides in the amount needed for biological and pharmacological studies. In this work, we have developed a new synthesis of bile acid C3-glucuronides enabling the convenient preparation of gram-scale quantities. The synthesized compounds have been characterized in terms of physicochemical properties and abilities to modulate key nuclear receptors including the farnesoid X receptor (FXR). In particular, we found that C3-glucuronides of chenodeoxycholic acid and lithocholic acid, respectively the most abundant and potentially cytotoxic species formed in patients affected by cholestasis, behave as FXR agonists and positively regulate the gene expression of transporter proteins, the function of which is critical in human conditions related to imbalances of bile acid homeostasis.
Collapse
Affiliation(s)
- Serena Mostarda
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo, 1, 06123 Perugia, Italy
| | | | - Andrea Carotti
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo, 1, 06123 Perugia, Italy
| | - Bruno Cerra
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo, 1, 06123 Perugia, Italy
| | | | | | - Antonio Macchiarulo
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo, 1, 06123 Perugia, Italy
| | | | - Antimo Gioiello
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo, 1, 06123 Perugia, Italy.
| |
Collapse
|
36
|
Li L, Chuan-Jian L, Ling H, Jing-Wen D, Ze-Hui H, Yu-Hong Y, Zhong-Zhao Z. Untargeted serum metabonomics study of psoriasis vulgaris based on ultra-performance liquid chromatography coupled to mass spectrometry. Oncotarget 2017; 8:95931-95944. [PMID: 29221177 PMCID: PMC5707071 DOI: 10.18632/oncotarget.21562] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 08/29/2017] [Indexed: 12/11/2022] Open
Abstract
Psoriasis is a common, chronic, systemic inflammatory skin disease, the etiology and pathogenesis is unclear. An untargeted high-throughput metabonomics method based on liquid chromatography coupled to mass spectrometry was applied to study the serum metabolic changes in psoriasis vulgaris patients, and to discover serum potential biomarkers for identification, diagnosis and exploring pathogenesis of psoriasis. The serum metabolic profiles from 150 subjects (75 psoriasis patients and 75 healthy controls) were acquired, the raw spectrometric data were processed by multivariate statistical analysis, and 44 potential biomarkers were screened out and identified. The potential biomarkers were mainly involved in glycerophospholipid metabolism, sphingolipid metabolism, arachidonic acid metabolism, bile acid biosynthesis, indicated the pathogenesis of psoriasis may be related to the disturbed metabolic pathways.
Collapse
Affiliation(s)
- Li Li
- Molecular Biology and Systems Biology Team of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou 510120, China
| | - Lu Chuan-Jian
- Department of Dermatology, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou 510120, China
| | - Han Ling
- Molecular Biology and Systems Biology Team of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou 510120, China
| | - Deng Jing-Wen
- Department of Dermatology, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou 510120, China
| | - He Ze-Hui
- Large Data Research Team of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou 510120, China
| | - Yan Yu-Hong
- Department of Dermatology, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou 510120, China
| | - Zhang Zhong-Zhao
- Department of Dermatology, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou 510120, China
| |
Collapse
|
37
|
Poša M, Popović K. Structure-Property Relationships in Sodium Muricholate Derivative (Bile Salts) Micellization: The Effect of Conformation of Steroid Skeleton on Hydrophobicity and Micelle Formation-Pattern Recognition and Potential Membranoprotective Properties. Mol Pharm 2017; 14:3343-3355. [PMID: 28863265 DOI: 10.1021/acs.molpharmaceut.7b00375] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
It is known that β-muricholic acid anions prevent membrane toxicity of hydrophobic bile acids, which are being used in therapy for solubilization of the cholesterol type bile stone. Better knowledge of these derivative micelles is very important for understanding their physiological and pharmacological effects. β-Axial (a) oriented hydroxyl group from the steroid skeleton decreases the hydrophobic surface of the convex side of the steroid skeleton. Therefore, the critical micellization concentration (CMC) for steroid surfactants with β-a-OH group should increase, but in the case of OH groups of different orientations forming H-bonds in the hydrophobic phase of the micelle, it has the opposite effect; the CMC decreses, and aggregation is more favored. The set of muricholic acids (MCs) is composed by α-MC, β-MC, γ-MC, and ω-MC, where α-MC and β-MC have β-axial-OH groups. The aggregation numbers (n) are determined using the Moroi-Matsuoka-Sugioka thermodynamic method. CMC, enthalpy of demicellization, and ΔCp are determined by isothermal titration calorimetry (ITC). This report pioneers in the study of MC derivatives micellization. Micelles of β-MC and γ-MC belong to the linear congeneric group (LCG) and their micelles above 85 mM have constant aggregation numbers n = 4-5. Micelles of α-MC and ω-MC are outliers in relation to the LCG, their aggregation number constantly increases; at 85 mM n = 6.8 (α-MC) and 6.5 (ω-MC). In micelles of derivatives β-MC and γ-MC, there is a low probability for the existence of hydrogen bonds. A micelle of α-MC probably has hydrogen bonds in its hydrophobic domain.
Collapse
Affiliation(s)
- Mihalj Poša
- Faculty of Medicine, Department of Pharmacy, University of Novi Sad , Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| | - Kosta Popović
- Faculty of Medicine, Department of Pharmacy, University of Novi Sad , Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| |
Collapse
|
38
|
Chow ECY, Quach HP, Zhang Y, Wang JZY, Evans DC, Li AP, Silva J, Tirona RG, Lai Y, Pang KS. Disrupted Murine Gut-to-Human Liver Signaling Alters Bile Acid Homeostasis in Humanized Mouse Liver Models. J Pharmacol Exp Ther 2017; 360:174-191. [PMID: 27789682 DOI: 10.1124/jpet.116.236935] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 10/25/2016] [Indexed: 03/08/2025] Open
Abstract
The humanized liver mouse model is being exploited increasingly for human drug metabolism studies. However, its model stability, intercommunication between human hepatocytes and mouse nonparenchymal cells in liver and murine intestine, and changes in extrahepatic transporter and enzyme expressions have not been investigated. We examined these issues in FRGN [fumarylacetoacetate hydrolase (Fah-/-), recombination activating gene 2 (Rag2-/-), and interleukin 2 receptor subunit gamma (IL-2rg -/-) triple knockout] on nonobese diabetic (NOD) background] and chimeric mice: mFRGN and hFRGN (repopulated with mouse or human hepatocytes, respectively). hFRGN mice showed markedly higher levels of liver cholesterol, biliary bilirubin, and bile acids (liver, bile, and plasma; mainly human forms, but also murine bile acids) but lower transforming growth factor beta receptor 2 (TGFBR2) mRNA expression levels (10%) in human hepatocytes and other proliferative markers in mouse nonparenchymal cells (Tgf-β1) and cholangiocytes [plasma membrane-bound, G protein-coupled receptor for bile acids (Tgr5)], suggestive of irregular regeneration processes in hFRGN livers. Changes in gene expression in murine intestine, kidney, and brain of hFRGN mice, in particular, induction of intestinal farnesoid X receptor (Fxr) genes: fibroblast growth factor 15 (Fgf15), mouse ileal bile acid binding protein (Ibabp), small heterodimer partner (Shp), and the organic solute transporter alpha (Ostα), were observed. Proteomics revealed persistence of remnant murine proteins (cyotchrome P450 7α-hydroxylase (Cyp7a1) and other enzymes and transporters) in hFRGN livers and suggest the likelihood of mouse activity. When compared with normal human liver tissue, hFRGN livers showed lower SHP mRNA and higher CYP7A1 (300%) protein expression, consequences of tβ- and tα-muricholic acid-mediated inhibition of the FXR-SHP cascade and miscommunication between intestinal Fgf15 and human liver fibroblast growth factor receptor 4 (FGFR4), as confirmed by the unchanged hepatic pERK/total ERK ratio. Dysregulation of hepatocyte proliferation and bile acid homeostasis in hFRGN livers led to hepatotoxicity, gallbladder distension, liver deformity, and other extrahepatic changes, making questionable the use of the preparation for drug metabolism studies.
Collapse
Affiliation(s)
- Edwin C Y Chow
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada (E.C.Y.C., H.P.Q., J.Z.Y.W., K.S.P.); Bristol Myers Squibb, Pharmaceutical Candidate Optimization Department, Princeton, New Jersey (Y.Z., Y.L.); Pharmacokinetics, Dynamics, and Metabolism, Janssen Research and Development, LLC, Spring House, Pennsylvania (D.C.E., J.S.); In Vitro ADMET Laboratories, Columbia, Maryland (A.P.L.); Department of Physiology and Pharmacology and Medicine, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada (R.G.T.)
| | - Holly P Quach
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada (E.C.Y.C., H.P.Q., J.Z.Y.W., K.S.P.); Bristol Myers Squibb, Pharmaceutical Candidate Optimization Department, Princeton, New Jersey (Y.Z., Y.L.); Pharmacokinetics, Dynamics, and Metabolism, Janssen Research and Development, LLC, Spring House, Pennsylvania (D.C.E., J.S.); In Vitro ADMET Laboratories, Columbia, Maryland (A.P.L.); Department of Physiology and Pharmacology and Medicine, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada (R.G.T.)
| | - Yueping Zhang
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada (E.C.Y.C., H.P.Q., J.Z.Y.W., K.S.P.); Bristol Myers Squibb, Pharmaceutical Candidate Optimization Department, Princeton, New Jersey (Y.Z., Y.L.); Pharmacokinetics, Dynamics, and Metabolism, Janssen Research and Development, LLC, Spring House, Pennsylvania (D.C.E., J.S.); In Vitro ADMET Laboratories, Columbia, Maryland (A.P.L.); Department of Physiology and Pharmacology and Medicine, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada (R.G.T.)
| | - Jason Z Y Wang
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada (E.C.Y.C., H.P.Q., J.Z.Y.W., K.S.P.); Bristol Myers Squibb, Pharmaceutical Candidate Optimization Department, Princeton, New Jersey (Y.Z., Y.L.); Pharmacokinetics, Dynamics, and Metabolism, Janssen Research and Development, LLC, Spring House, Pennsylvania (D.C.E., J.S.); In Vitro ADMET Laboratories, Columbia, Maryland (A.P.L.); Department of Physiology and Pharmacology and Medicine, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada (R.G.T.)
| | - David C Evans
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada (E.C.Y.C., H.P.Q., J.Z.Y.W., K.S.P.); Bristol Myers Squibb, Pharmaceutical Candidate Optimization Department, Princeton, New Jersey (Y.Z., Y.L.); Pharmacokinetics, Dynamics, and Metabolism, Janssen Research and Development, LLC, Spring House, Pennsylvania (D.C.E., J.S.); In Vitro ADMET Laboratories, Columbia, Maryland (A.P.L.); Department of Physiology and Pharmacology and Medicine, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada (R.G.T.)
| | - Albert P Li
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada (E.C.Y.C., H.P.Q., J.Z.Y.W., K.S.P.); Bristol Myers Squibb, Pharmaceutical Candidate Optimization Department, Princeton, New Jersey (Y.Z., Y.L.); Pharmacokinetics, Dynamics, and Metabolism, Janssen Research and Development, LLC, Spring House, Pennsylvania (D.C.E., J.S.); In Vitro ADMET Laboratories, Columbia, Maryland (A.P.L.); Department of Physiology and Pharmacology and Medicine, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada (R.G.T.)
| | - Jose Silva
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada (E.C.Y.C., H.P.Q., J.Z.Y.W., K.S.P.); Bristol Myers Squibb, Pharmaceutical Candidate Optimization Department, Princeton, New Jersey (Y.Z., Y.L.); Pharmacokinetics, Dynamics, and Metabolism, Janssen Research and Development, LLC, Spring House, Pennsylvania (D.C.E., J.S.); In Vitro ADMET Laboratories, Columbia, Maryland (A.P.L.); Department of Physiology and Pharmacology and Medicine, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada (R.G.T.)
| | - Rommel G Tirona
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada (E.C.Y.C., H.P.Q., J.Z.Y.W., K.S.P.); Bristol Myers Squibb, Pharmaceutical Candidate Optimization Department, Princeton, New Jersey (Y.Z., Y.L.); Pharmacokinetics, Dynamics, and Metabolism, Janssen Research and Development, LLC, Spring House, Pennsylvania (D.C.E., J.S.); In Vitro ADMET Laboratories, Columbia, Maryland (A.P.L.); Department of Physiology and Pharmacology and Medicine, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada (R.G.T.)
| | - Yurong Lai
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada (E.C.Y.C., H.P.Q., J.Z.Y.W., K.S.P.); Bristol Myers Squibb, Pharmaceutical Candidate Optimization Department, Princeton, New Jersey (Y.Z., Y.L.); Pharmacokinetics, Dynamics, and Metabolism, Janssen Research and Development, LLC, Spring House, Pennsylvania (D.C.E., J.S.); In Vitro ADMET Laboratories, Columbia, Maryland (A.P.L.); Department of Physiology and Pharmacology and Medicine, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada (R.G.T.)
| | - K Sandy Pang
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada (E.C.Y.C., H.P.Q., J.Z.Y.W., K.S.P.); Bristol Myers Squibb, Pharmaceutical Candidate Optimization Department, Princeton, New Jersey (Y.Z., Y.L.); Pharmacokinetics, Dynamics, and Metabolism, Janssen Research and Development, LLC, Spring House, Pennsylvania (D.C.E., J.S.); In Vitro ADMET Laboratories, Columbia, Maryland (A.P.L.); Department of Physiology and Pharmacology and Medicine, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada (R.G.T.)
| |
Collapse
|
39
|
|
40
|
Bile acids in drug induced liver injury: Key players and surrogate markers. Clin Res Hepatol Gastroenterol 2016; 40:257-266. [PMID: 26874804 DOI: 10.1016/j.clinre.2015.12.017] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 12/21/2015] [Accepted: 12/27/2015] [Indexed: 02/04/2023]
Abstract
Bile acid research has gained great momentum since the role of bile acids as key signaling molecules in the enterohepatic circulation was discovered. Their physiological function in regulating their own homeostasis, as well as energy and lipid metabolism make them interesting targets for the pharmaceutical industry in the context of diseases such as bile acid induced diarrhea, bile acid induced cholestasis or nonalcoholic steatohepatitis. Changes in bile acid homeostasis are also linked to various types of drug-induced liver injury (DILI). However, the key question whether bile acids are surrogate markers for monitoring DILI or key pathogenic players in the onset and progression of DILI is under intense investigation. The purpose of this review is to summarize the different facets of bile acids in the context of normal physiology, hereditary defects of bile acid transport and DILI.
Collapse
|
41
|
Lickteig AJ, Csanaky IL, Pratt-Hyatt M, Klaassen CD. Activation of Constitutive Androstane Receptor (CAR) in Mice Results in Maintained Biliary Excretion of Bile Acids Despite a Marked Decrease of Bile Acids in Liver. Toxicol Sci 2016; 151:403-18. [PMID: 26984780 DOI: 10.1093/toxsci/kfw054] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Activation of Constitutive Androstane Receptor (CAR) protects against bile acid (BA)-induced liver injury. This study was performed to determine the effect of CAR activation on bile flow, BA profile, as well as expression of BA synthesis and transport genes. Synthetic CAR ligand 1,4-bis-[2-(3,5-dichloropyridyloxy)]benzene (TCPOBOP) was administered to mice for 4 days. BAs were quantified by UPLC-MS/MS (ultraperformance liquid chromatography-tandem mass spectrometry). CAR activation decreases total BAs in livers of male (49%) and female mice (26%), largely attributable to decreases of the 12α-hydroxylated BA taurocholic acid (T-CA) (males (M) 65%, females (F) 45%). Bile flow in both sexes was increased by CAR activation, and the increases were BA-independent. CAR activation did not alter biliary excretion of total BAs, but overall BA composition changed. Excretion of muricholic (6-hydroxylated) BAs was increased in males (101%), and the 12α-OH proportion of biliary BAs was decreased in both males (37%) and females (28%). The decrease of T-CA in livers of males and females correlates with the decreased mRNA of the sterol 12α-hydroxylase Cyp8b1 in males (71%) and females (54%). As a response to restore BAs to physiologic concentrations in liver, mRNA of Cyp7a1 is upregulated following TCPOBOP (males 185%, females 132%). In ilea, mRNA of the negative feedback regulator Fgf15 was unaltered by CAR activation, indicating biliary BA excretion was sufficient to maintain concentrations of total BAs in the small intestine. In summary, the effects of CAR activation on BAs in male and female mice are quite similar, with a marked decrease in the major BA T-CA in the liver.
Collapse
Affiliation(s)
- Andrew J Lickteig
- *Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Iván L Csanaky
- *Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160; Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Children's Mercy Hospital & Clinics, Kansas City, Missouri 64108; Department of Pediatrics, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Matthew Pratt-Hyatt
- *Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Curtis D Klaassen
- *Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160; *Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160;
| |
Collapse
|
42
|
Qiu X, Zhang Y, Liu T, Shen H, Xiao Y, Bourner MJ, Pratt JR, Thompson DC, Marathe P, Humphreys WG, Lai Y. Disruption of BSEP Function in HepaRG Cells Alters Bile Acid Disposition and Is a Susceptive Factor to Drug-Induced Cholestatic Injury. Mol Pharm 2016; 13:1206-16. [PMID: 26910619 DOI: 10.1021/acs.molpharmaceut.5b00659] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the present study, we characterized in vitro biosynthesis and disposition of bile acids (BAs) as well as hepatic transporter expression followed by ABCB11 (BSEP) gene knockout in HepaRG cells (HepaRG-KO cells). BSEP KO in HepaRG cells led to time-dependent BA accumulation, resulting in reduced biosynthesis of BAs and altered BA disposition. In HepaRG-KO cells, the expression of NTCP, OATP1B1, OATP2B1, BCRP, P-gp, and MRP2 were reduced, whereas MRP3 and OCT1 were up-regulated. As a result, BSEP KO altered the disposition of BAs and subsequently underwent adaptive regulations of BA synthesis and homeostasis to enable healthy growth of the cells. Although BSEP inhibitors caused no or slight increase of BAs in HepaRG wild type cells (HepaRG-WT cells), excessive intracellular accumulation of BAs was observed in HepaRG-KO cells exposed to bosentan and troglitazone, but not dipyridamole. LDH release in the medium was remarkably increased in HepaRG-KO cultures exposed to troglitazone (50 μM), suggesting drug-induced cellular injury. The results revealed that functional impairment of BSEP predisposes the cells to altered BA disposition and is a susceptive factor to drug-induced cholestatic injury. In total, BSEP inhibition might trigger the processes but is not a sole determinant of cholestatic cellular injury. As intracellular BA accumulation is determined by BSEP function and the subsequent adaptive gene regulation, assessment of intracellular BA accumulation in HepaRG-KO cells could be a useful approach to evaluate drug-induced liver injury (DILI) potentials of drugs that could disrupt other BA homeostasis pathways beyond BSEP inhibition.
Collapse
Affiliation(s)
| | | | | | | | - Yongling Xiao
- Life Science and Technology Center, Sigma-Aldrich , St. Louis, Missouri 63103, United States
| | - Maureen J Bourner
- Life Science and Technology Center, Sigma-Aldrich , St. Louis, Missouri 63103, United States
| | - Jennifer R Pratt
- Life Science and Technology Center, Sigma-Aldrich , St. Louis, Missouri 63103, United States
| | - David C Thompson
- Life Science and Technology Center, Sigma-Aldrich , St. Louis, Missouri 63103, United States
| | | | | | | |
Collapse
|
43
|
Hwang D, Jo SP, Lee J, Kim JK, Kim KH, Lim YH. Antihyperlipidaemic effects of oxyresveratrol-containing Ramulus mori ethanol extract in rats fed a high-cholesterol diet. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.09.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
44
|
Song Y, Zhao M, Zhang H, Zhang X, Zhao J, Xu J, Gao L. THYROID-STIMULATING HORMONE LEVELS ARE INVERSELY ASSOCIATED WITH SERUM TOTAL BILE ACID LEVELS: A CROSS-SECTIONAL STUDY. Endocr Pract 2015; 22:420-6. [PMID: 26606535 DOI: 10.4158/ep15844.or] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
OBJECTIVE Bile acids (BAs) synthesized from cholesterol play a critical role in eliminating excess cholesterol to maintain cholesterol homeostasis. BAs are also signaling molecules that are involved in the regulation of lipid, glucose, and energy metabolism. Thyroid-stimulating hormone (TSH) has been found to decrease liver BA synthesis via a sterol regulatory element-binding protein 2/hepatocyte nuclear factor 4 alpha/cholesterol 7α-hydroxylase (SREBP-2/HNF-4α/CYP7A1) pathway in vivo and in vitro. However, the relationship between serum TSH and total BA levels in humans is still unclear. METHODS This was a single-center cross-sectional study of 339 subclinical hypothyroidism (SCH) patients and an equal number of controls matched by age and sex from 11,000 subjects. RESULTS Serum total BA levels significantly decreased (3.11 ± 2.05 vs. 5.87 ± 2.39, P<.01), while total cholesterol (TC) levels increased (5.02 ± 0.65 vs. 4.88 ± 0.63, P<.01) in subclinical hypothyroidism (SCH) patients compared to control subjects. Serum TSH and BA levels were significantly and negatively correlated in subclinical hypothyroid patients who were also hypercholesterolemic (rs = -0.189, P = .004). Each 1 μIU/mL increase in TSH level was associated with a decrease in log-transformed values of total BAs (logTBAs) by 0.182 after controlling for confounding factors relevant to BA metabolism. The relationship between TSH and serum total BAs was more significant in subjects younger than 65 years. CONCLUSION Our results suggested that TSH is correlated with the total BA level in SCH patients independent of thyroid hormone, which suggests a potential physiological role of TSH and the importance of maintaining normal range TSH in SCH patients.
Collapse
|
45
|
Sarafian MH, Lewis MR, Pechlivanis A, Ralphs S, McPhail MJW, Patel VC, Dumas ME, Holmes E, Nicholson JK. Bile Acid Profiling and Quantification in Biofluids Using Ultra-Performance Liquid Chromatography Tandem Mass Spectrometry. Anal Chem 2015; 87:9662-70. [DOI: 10.1021/acs.analchem.5b01556] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Magali H. Sarafian
- Imperial College of London, Division of Computational
Systems Medicine, Department of Surgery and Cancer, Sir Alexander Building, Exhibition Road, South Kensington, London SW7 2AZ, United Kingdom
| | - Matthew R. Lewis
- Imperial College of London, Division of Computational
Systems Medicine, Department of Surgery and Cancer, Sir Alexander Building, Exhibition Road, South Kensington, London SW7 2AZ, United Kingdom
- Imperial College of London, MRC-NHR National Phenome
Centre, Department of Surgery and Cancer, IRDB building, Du Cane Road, London W12 0NN, United Kingdom
| | - Alexandros Pechlivanis
- Imperial College of London, Division of Computational
Systems Medicine, Department of Surgery and Cancer, Sir Alexander Building, Exhibition Road, South Kensington, London SW7 2AZ, United Kingdom
| | - Simon Ralphs
- Imperial College of London, Department of Hepatology,
St. Mary’s Hospital, Paddington, London, United Kingdom
| | - Mark J. W. McPhail
- Imperial College of London, Department of Hepatology,
St. Mary’s Hospital, Paddington, London, United Kingdom
| | - Vishal C. Patel
- King’s College London, Institute of Liver Sciences,
Hospital NHS Foundation Trust, Division of Transplantation Immunology
and Mucosal Biology, MRC Centre for Transplantation, London, United Kingdom
| | - Marc-Emmanuel Dumas
- Imperial College of London, Division of Computational
Systems Medicine, Department of Surgery and Cancer, Sir Alexander Building, Exhibition Road, South Kensington, London SW7 2AZ, United Kingdom
| | - Elaine Holmes
- Imperial College of London, Division of Computational
Systems Medicine, Department of Surgery and Cancer, Sir Alexander Building, Exhibition Road, South Kensington, London SW7 2AZ, United Kingdom
| | - Jeremy K. Nicholson
- Imperial College of London, Division of Computational
Systems Medicine, Department of Surgery and Cancer, Sir Alexander Building, Exhibition Road, South Kensington, London SW7 2AZ, United Kingdom
| |
Collapse
|
46
|
Cholestatic liver (dys)function during sepsis and other critical illnesses. Intensive Care Med 2015; 42:16-27. [DOI: 10.1007/s00134-015-4054-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 09/06/2015] [Indexed: 01/05/2023]
|
47
|
Lai YS, Chen WC, Kuo TC, Ho CT, Kuo CH, Tseng YJ, Lu KH, Lin SH, Panyod S, Sheen LY. Mass-Spectrometry-Based Serum Metabolomics of a C57BL/6J Mouse Model of High-Fat-Diet-Induced Non-alcoholic Fatty Liver Disease Development. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:7873-7884. [PMID: 26262841 DOI: 10.1021/acs.jafc.5b02830] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Obesity, dyslipidemia, insulin resistance, oxidative stress, and inflammation are key clinical risk factors for the progression of non-alcoholic fatty liver disease (NAFLD). Currently, there is no comprehensive metabolic profile of a well-established animal model that effectively mimics the etiology and pathogenesis of NAFLD in humans. Here, we report the pathophysiological and metabolomic changes associated with NAFLD development in a C57BL/6J mouse model in which NAFLD was induced by feeding a high-fat diet (HFD) for 4, 8, 12, and 16 weeks. Serum metabolomic analysis was conducted using ultrahigh-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS) and gas chromatography-mass spectrometry (GC-MS) to establish a metabolomic profile. Analysis of the metabolomic profile in combination with principal component analysis revealed marked differences in metabolites between the control and HFD group depending upon NAFLD severity. A total of 30 potential biomarkers were strongly associated with the development of NAFLD. Among these, 11 metabolites were mainly related to carbohydrate metabolism, hepatic biotransformation, collagen synthesis, and gut microbial metabolism, which are characteristics of obesity, as well as significantly increased serum glucose, total cholesterol, and hepatic triglyceride levels during the onset of NAFLD (4 weeks). At 8 weeks, 5 additional metabolites that are chiefly involved in perturbation of lipid metabolism and insulin secretion were found to be associated with hyperinsulinemia, hyperlipidemia, and hepatic steatosis in the mid-term of NAFLD progression. At the end of 12 and 16 weeks, 14 additional metabolites were predominantly correlated to abnormal bile acid synthesis, oxidative stress, and inflammation, representing hepatic inflammatory infiltration during NAFLD development. These results provide potential biomarkers for early risk assessment of NAFLD and further insights into NAFLD development.
Collapse
Affiliation(s)
| | | | | | - Chi-Tang Ho
- Department of Food Science, Rutgers University , New Brunswick, New Jersey 08901, United States
| | | | | | | | | | | | | |
Collapse
|
48
|
Li T, Apte U. Bile Acid Metabolism and Signaling in Cholestasis, Inflammation, and Cancer. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2015; 74:263-302. [PMID: 26233910 DOI: 10.1016/bs.apha.2015.04.003] [Citation(s) in RCA: 213] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Bile acids are synthesized from cholesterol in the liver. Some cytochrome P450 (CYP) enzymes play key roles in bile acid synthesis. Bile acids are physiological detergent molecules, so are highly cytotoxic. They undergo enterohepatic circulation and play important roles in generating bile flow and facilitating biliary secretion of endogenous metabolites and xenobiotics and intestinal absorption of dietary fats and lipid-soluble vitamins. Bile acid synthesis, transport, and pool size are therefore tightly regulated under physiological conditions. In cholestasis, impaired bile flow leads to accumulation of bile acids in the liver, causing hepatocyte and biliary injury and inflammation. Chronic cholestasis is associated with fibrosis, cirrhosis, and eventually liver failure. Chronic cholestasis also increases the risk of developing hepatocellular or cholangiocellular carcinomas. Extensive research in the last two decades has shown that bile acids act as signaling molecules that regulate various cellular processes. The bile acid-activated nuclear receptors are ligand-activated transcriptional factors that play critical roles in the regulation of bile acid, drug, and xenobiotic metabolism. In cholestasis, these bile acid-activated receptors regulate a network of genes involved in bile acid synthesis, conjugation, transport, and metabolism to alleviate bile acid-induced inflammation and injury. Additionally, bile acids are known to regulate cell growth and proliferation, and altered bile acid levels in diseased conditions have been implicated in liver injury/regeneration and tumorigenesis. We will cover the mechanisms that regulate bile acid homeostasis and detoxification during cholestasis, and the roles of bile acids in the initiation and regulation of hepatic inflammation, regeneration, and carcinogenesis.
Collapse
Affiliation(s)
- Tiangang Li
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas, USA.
| | - Udayan Apte
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
49
|
Song Y, Xu C, Shao S, Liu J, Xing W, Xu J, Qin C, Li C, Hu B, Yi S, Xia X, Zhang H, Zhang X, Wang T, Pan W, Yu C, Wang Q, Lin X, Wang L, Gao L, Zhao J. Thyroid-stimulating hormone regulates hepatic bile acid homeostasis via SREBP-2/HNF-4α/CYP7A1 axis. J Hepatol 2015; 62:1171-9. [PMID: 25533663 DOI: 10.1016/j.jhep.2014.12.006] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 12/03/2014] [Accepted: 12/03/2014] [Indexed: 12/16/2022]
Abstract
BACKGROUND & AIMS Bile acids (BAs) play a crucial role in dietary fat digestion and in the regulation of lipid, glucose, and energy metabolism. Thyroid-stimulating hormone (TSH) is a hormone produced by the anterior pituitary gland that directly regulates several metabolic pathways. However, the impact of TSH on BA homeostasis remains largely unknown. METHODS We analyzed serum BA and TSH levels in healthy volunteers under strict control of caloric intake. Thyroidectomized rats were administered thyroxine and injected with different doses of TSH. Tshr(-/-) mice were supplemented with thyroxine, and C57BL/6 mice were injected with Tshr-siRNA via the tail vein. The serum BA levels, BA pool size, and fecal BA excretion rate were measured. The regulation of SREBP-2, HNF-4α, and CYP7A1 by TSH were analyzed using luciferase reporter, RNAi, EMSA, and CHIP assays. RESULTS A negative correlation was observed between the serum levels of TSH and the serum BA levels in healthy volunteers. TSH administration led to a decrease in BA content and CYP7A1 activity in thyroidectomized rats supplemented with thyroxine. When Tshr was silenced in mice, the BA pool size, fecal BA excretion rate, and serum BA levels all increased. Additionally, we found that HNF-4α acts as a critical molecule through which TSH represses CYP7A1 activity. We further confirmed that the accumulation of mature SREBP-2 protein could impair the capacity of nuclear HNF-4α to bind to the CYP7A1 promoter, a mechanism that appears to mediate the effects of TSH. CONCLUSIONS TSH represses hepatic BA synthesis via a SREBP-2/HNF-4α/CYP7A1 signaling pathway. This finding strongly supports the notion that TSH is an important pathophysiological regulator of liver BA homeostasis independently of thyroid hormones.
Collapse
Affiliation(s)
- Yongfeng Song
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong 250021, China; Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong 250021, China
| | - Chao Xu
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong 250021, China; Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong 250021, China
| | - Shanshan Shao
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong 250021, China; Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong 250021, China
| | - Jun Liu
- Department of Organ Transplantation Surgery, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong 250021, China
| | - Wanjia Xing
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong 250021, China; Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong 250021, China
| | - Jin Xu
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong 250021, China; Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong 250021, China
| | - Chengkun Qin
- Department of General Surgery, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong 250021, China
| | - Chunyou Li
- Department of Organ Transplantation Surgery, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong 250021, China
| | - Baoxiang Hu
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong 250021, China; Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong 250021, China
| | - Shounan Yi
- Center for Transplant and Renal Research, Westmead Millennium Institute, University of Sydney at Westmead Hospital, Sydney, Australia
| | - Xuefeng Xia
- Genomic Medicine and Center for Diabetes Research, The Methodist Hospital Research Institute, Weill Cornell Medical College, Houston, TX 77030, USA
| | - Haiqing Zhang
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong 250021, China; Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong 250021, China
| | - Xiujuan Zhang
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong 250021, China; Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong 250021, China
| | - Tingting Wang
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong 250021, China; Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong 250021, China
| | - Wenfei Pan
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong 250021, China; Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong 250021, China
| | - Chunxiao Yu
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong 250021, China; Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong 250021, China
| | - Qiangxiu Wang
- Department of Pathology, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong 250021, China
| | - Xiaoyan Lin
- Department of Pathology, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong 250021, China
| | - Laicheng Wang
- Scientific Center, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong 250021, China
| | - Ling Gao
- Scientific Center, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong 250021, China; Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong 250021, China.
| | - Jiajun Zhao
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong 250021, China; Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong 250021, China.
| |
Collapse
|
50
|
Benet M, Guzmán C, Pisonero-Vaquero S, García-Mediavilla MV, Sánchez-Campos S, Martínez-Chantar ML, Donato MT, Castell JV, Jover R. Repression of the nuclear receptor small heterodimer partner by steatotic drugs and in advanced nonalcoholic fatty liver disease. Mol Pharmacol 2015; 87:582-94. [PMID: 25576488 DOI: 10.1124/mol.114.096313] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The small heterodimer partner (SHP) (NR0B2) is an atypical nuclear receptor that lacks a DNA-binding domain. It interacts with and inhibits many transcription factors, affecting key metabolic processes, including bile acid, cholesterol, fatty acid, and drug metabolism. Our aim was to determine the influence of steatotic drugs and nonalcoholic fatty liver disease (NAFLD) on SHP expression and investigate the potential mechanisms. SHP was found to be repressed by steatotic drugs (valproate, doxycycline, tetracycline, and cyclosporin A) in cultured hepatic cells and the livers of different animal models of NAFLD: iatrogenic (tetracycline-treated rats), genetic (glycine N-methyltransferase-deficient mice), and nutritional (mice fed a methionine- and choline-deficient diet). Among the different transcription factors investigated, CCAAT-enhancer-binding protein α (C/EBPα) showed the strongest dominant-repressive effect on SHP expression in HepG2 and human hepatocytes. Reporter assays revealed that the inhibitory effect of C/EBPα and steatotic drugs colocalize between -340 and -509 base pair of the SHP promoter, and mutation of a predicted C/EBPα response element at -473 base pair abolished SHP repression by both C/EBPα and drugs. Moreover, inhibition of major stress signaling pathways demonstrated that the mitogen-activated protein kinase kinase 1/2 pathway activates, while the phosphatidylinositol 3 kinase pathway represses SHP in a C/EBP-dependent manner. We conclude that SHP is downregulated by several steatotic drugs and in advanced NAFLD. These conditions can activate signals that target C/EBPα and consequently repress SHP, thus favoring the progression and severity of NAFLD.
Collapse
Affiliation(s)
- Marta Benet
- Experimental Hepatology Unit, IIS Hospital La Fe, Valencia (M.B., C.G., M.T.D., J.V.C., R.J.); CIBERehd, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Barcelona (M.B., M.V.G.-M., S.S.-C., M.L.M.-C., M.T.D., J.V.C., R.J.); Institute of Biomedicine, University of León, León (S.P.-V., M.V.G.-M., S.S.-C.); CIC bioGUNE, Technology Park of Bizkaia, Derio (M.L.M.-C.); and Department of Biochemistry and Molecular Biology, University of Valencia, Valencia, Spain (M.T.D., J.V.C., R.J.)
| | - Carla Guzmán
- Experimental Hepatology Unit, IIS Hospital La Fe, Valencia (M.B., C.G., M.T.D., J.V.C., R.J.); CIBERehd, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Barcelona (M.B., M.V.G.-M., S.S.-C., M.L.M.-C., M.T.D., J.V.C., R.J.); Institute of Biomedicine, University of León, León (S.P.-V., M.V.G.-M., S.S.-C.); CIC bioGUNE, Technology Park of Bizkaia, Derio (M.L.M.-C.); and Department of Biochemistry and Molecular Biology, University of Valencia, Valencia, Spain (M.T.D., J.V.C., R.J.)
| | - Sandra Pisonero-Vaquero
- Experimental Hepatology Unit, IIS Hospital La Fe, Valencia (M.B., C.G., M.T.D., J.V.C., R.J.); CIBERehd, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Barcelona (M.B., M.V.G.-M., S.S.-C., M.L.M.-C., M.T.D., J.V.C., R.J.); Institute of Biomedicine, University of León, León (S.P.-V., M.V.G.-M., S.S.-C.); CIC bioGUNE, Technology Park of Bizkaia, Derio (M.L.M.-C.); and Department of Biochemistry and Molecular Biology, University of Valencia, Valencia, Spain (M.T.D., J.V.C., R.J.)
| | - M Victoria García-Mediavilla
- Experimental Hepatology Unit, IIS Hospital La Fe, Valencia (M.B., C.G., M.T.D., J.V.C., R.J.); CIBERehd, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Barcelona (M.B., M.V.G.-M., S.S.-C., M.L.M.-C., M.T.D., J.V.C., R.J.); Institute of Biomedicine, University of León, León (S.P.-V., M.V.G.-M., S.S.-C.); CIC bioGUNE, Technology Park of Bizkaia, Derio (M.L.M.-C.); and Department of Biochemistry and Molecular Biology, University of Valencia, Valencia, Spain (M.T.D., J.V.C., R.J.)
| | - Sonia Sánchez-Campos
- Experimental Hepatology Unit, IIS Hospital La Fe, Valencia (M.B., C.G., M.T.D., J.V.C., R.J.); CIBERehd, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Barcelona (M.B., M.V.G.-M., S.S.-C., M.L.M.-C., M.T.D., J.V.C., R.J.); Institute of Biomedicine, University of León, León (S.P.-V., M.V.G.-M., S.S.-C.); CIC bioGUNE, Technology Park of Bizkaia, Derio (M.L.M.-C.); and Department of Biochemistry and Molecular Biology, University of Valencia, Valencia, Spain (M.T.D., J.V.C., R.J.)
| | - M Luz Martínez-Chantar
- Experimental Hepatology Unit, IIS Hospital La Fe, Valencia (M.B., C.G., M.T.D., J.V.C., R.J.); CIBERehd, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Barcelona (M.B., M.V.G.-M., S.S.-C., M.L.M.-C., M.T.D., J.V.C., R.J.); Institute of Biomedicine, University of León, León (S.P.-V., M.V.G.-M., S.S.-C.); CIC bioGUNE, Technology Park of Bizkaia, Derio (M.L.M.-C.); and Department of Biochemistry and Molecular Biology, University of Valencia, Valencia, Spain (M.T.D., J.V.C., R.J.)
| | - M Teresa Donato
- Experimental Hepatology Unit, IIS Hospital La Fe, Valencia (M.B., C.G., M.T.D., J.V.C., R.J.); CIBERehd, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Barcelona (M.B., M.V.G.-M., S.S.-C., M.L.M.-C., M.T.D., J.V.C., R.J.); Institute of Biomedicine, University of León, León (S.P.-V., M.V.G.-M., S.S.-C.); CIC bioGUNE, Technology Park of Bizkaia, Derio (M.L.M.-C.); and Department of Biochemistry and Molecular Biology, University of Valencia, Valencia, Spain (M.T.D., J.V.C., R.J.)
| | - José Vicente Castell
- Experimental Hepatology Unit, IIS Hospital La Fe, Valencia (M.B., C.G., M.T.D., J.V.C., R.J.); CIBERehd, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Barcelona (M.B., M.V.G.-M., S.S.-C., M.L.M.-C., M.T.D., J.V.C., R.J.); Institute of Biomedicine, University of León, León (S.P.-V., M.V.G.-M., S.S.-C.); CIC bioGUNE, Technology Park of Bizkaia, Derio (M.L.M.-C.); and Department of Biochemistry and Molecular Biology, University of Valencia, Valencia, Spain (M.T.D., J.V.C., R.J.)
| | - Ramiro Jover
- Experimental Hepatology Unit, IIS Hospital La Fe, Valencia (M.B., C.G., M.T.D., J.V.C., R.J.); CIBERehd, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Barcelona (M.B., M.V.G.-M., S.S.-C., M.L.M.-C., M.T.D., J.V.C., R.J.); Institute of Biomedicine, University of León, León (S.P.-V., M.V.G.-M., S.S.-C.); CIC bioGUNE, Technology Park of Bizkaia, Derio (M.L.M.-C.); and Department of Biochemistry and Molecular Biology, University of Valencia, Valencia, Spain (M.T.D., J.V.C., R.J.)
| |
Collapse
|