1
|
González A, Odriozola I, Fullaondo A, Odriozola A. Microbiota and detrimental protein derived metabolites in colorectal cancer. ADVANCES IN GENETICS 2024; 112:255-308. [PMID: 39396838 DOI: 10.1016/bs.adgen.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Colorectal cancer (CRC) is the third leading cancer in incidence and the second leading cancer in mortality worldwide. There is growing scientific evidence to support the crucial role of the gut microbiota in the development of CRC. The gut microbiota is the complex community of microorganisms that inhabit the host gut in a symbiotic relationship. Diet plays a crucial role in modulating the risk of CRC, with a high intake of red and processed meat being a risk factor for the development of CRC. The production of metabolites derived from protein fermentation by the gut microbiota is considered a crucial element in the interaction between red and processed meat consumption and the development of CRC. This paper examines several metabolites derived from the bacterial fermentation of proteins associated with an increased risk of CRC. These metabolites include ammonia, polyamines, trimethylamine N-oxide (TMAO), N-nitroso compounds (NOC), hydrogen sulphide (H2S), phenolic compounds (p-cresol) and indole compounds (indolimines). These compounds are depicted and reviewed for their association with CRC risk, possible mechanisms promoting carcinogenesis and their relationship with the gut microbiota. Additionally, this paper analyses the evidence related to the role of red and processed meat intake and CRC risk and the factors and pathways involved in bacterial proteolytic fermentation in the large intestine.
Collapse
Affiliation(s)
- Adriana González
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain.
| | - Iñaki Odriozola
- Health Department of Basque Government, Donostia-San Sebastián, Spain
| | - Asier Fullaondo
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain
| | - Adrian Odriozola
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain
| |
Collapse
|
2
|
Intestinal gas production by the gut microbiota: A review. J Funct Foods 2023. [DOI: 10.1016/j.jff.2022.105367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
3
|
Bhute SS, Mefferd CC, Phan JR, Ahmed M, Fox-King AE, Alarcia S, Villarama JV, Abel-Santos E, Hedlund BP. A High-Carbohydrate Diet Prolongs Dysbiosis and Clostridioides difficile Carriage and Increases Delayed Mortality in a Hamster Model of Infection. Microbiol Spectr 2022; 10:e0180421. [PMID: 35708337 PMCID: PMC9431659 DOI: 10.1128/spectrum.01804-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 05/21/2022] [Indexed: 12/20/2022] Open
Abstract
Studies using mouse models of Clostridioides difficile infection (CDI) have demonstrated a variety of relationships between dietary macronutrients on antibiotic-associated CDI; however, few of these effects have been examined in more susceptible hamster models of CDI. In this study, we investigated the effect of a high-carbohydrate diet previously shown to protect mice from CDI on the progression and resolution of CDI in a hamster disease model, with 10 animals per group. Hamsters fed the high-carbohydrate diet developed distinct diet-specific microbiomes during antibiotic treatment and CDI, with lower diversity, persistent C. difficile carriage, and delayed microbiome restoration. In contrast to CDI protection in mice, most hamsters fed a high-carbohydrate diet developed fulminant CDI including several cases of late-onset CDI, that were not observed in hamsters fed a standard lab diet. We speculate that prolonged high-carbohydrate diet-specific dysbiosis in these animals allowed C. difficile to persist in the gut of the animals where they could proliferate postvancomycin treatment, leading to delayed CDI onset. This study, along with similar studies in mouse models of CDI, suggests some high-carbohydrate diets may promote antibiotic-associated dysbiosis and long-term C. difficile carriage, which may later convert to symptomatic CDI. IMPORTANCE The effects of diet on CDI are not completely known. Here, we used a high-carbohydrate diet previously shown to protect mice against CDI to assess its effect on a hamster model of CDI and paradoxically found that it promoted dysbiosis, C. difficile carriage, and higher mortality. A common thread in both mouse and hamster experimental models was that the high-carbohydrate diet promoted dysbiosis and long-term carriage of C. difficile, which may have converted to fulminant CDI only in the highly susceptible hamster model system. If diets high in carbohydrates also promote dysbiosis and C. difficile carriage in humans, then these diets might paradoxically increase chances of CDI relapse despite their protective effects against primary CDI.
Collapse
Affiliation(s)
- Shrikant S. Bhute
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, Nevada, USA
| | - Chrisabelle C. Mefferd
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, Nevada, USA
- School of Public Health, University of Nevada, Las Vegas, Las Vegas, Nevada, USA
| | - Jacqueline R. Phan
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, Nevada, USA
| | - Muneeba Ahmed
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, Nevada, USA
- College of Osteopathic Medicine, Touro University, Nevada, Henderson, Nevada, USA
| | - Amelia E. Fox-King
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, Nevada, USA
- College of Osteopathic Medicine, Touro University, Nevada, Henderson, Nevada, USA
| | - Stephanie Alarcia
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, Nevada, USA
| | - Jacob V. Villarama
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, Nevada, USA
- Kirk Kerkorian School of Medicine, University of Nevada, Las Vegas, Las Vegas, Nevada, USA
| | - Ernesto Abel-Santos
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, Nevada, USA
- Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, Las Vegas, Nevada, USA
| | - Brian P. Hedlund
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, Nevada, USA
- Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, Las Vegas, Nevada, USA
| |
Collapse
|
4
|
Guerbette T, Boudry G, Lan A. Mitochondrial function in intestinal epithelium homeostasis and modulation in diet-induced obesity. Mol Metab 2022; 63:101546. [PMID: 35817394 PMCID: PMC9305624 DOI: 10.1016/j.molmet.2022.101546] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/27/2022] [Accepted: 07/06/2022] [Indexed: 11/30/2022] Open
Abstract
Background Systemic low-grade inflammation observed in diet-induced obesity has been associated with dysbiosis and disturbance of intestinal homeostasis. This latter relies on an efficient epithelial barrier and coordinated intestinal epithelial cell (IEC) renewal that are supported by their mitochondrial function. However, IEC mitochondrial function might be impaired by high fat diet (HFD) consumption, notably through gut-derived metabolite production and fatty acids, that may act as metabolic perturbators of IEC. Scope of review This review presents the current general knowledge on mitochondria, before focusing on IEC mitochondrial function and its role in the control of intestinal homeostasis, and featuring the known effects of nutrients and metabolites, originating from the diet or gut bacterial metabolism, on IEC mitochondrial function. It then summarizes the impact of HFD on mitochondrial function in IEC of both small intestine and colon and discusses the possible link between mitochondrial dysfunction and altered intestinal homeostasis in diet-induced obesity. Major conclusions HFD consumption provokes a metabolic shift toward fatty acid β-oxidation in the small intestine epithelial cells and impairs colonocyte mitochondrial function, possibly through downstream consequences of excessive fatty acid β-oxidation and/or the presence of deleterious metabolites produced by the gut microbiota. Decreased levels of ATP and concomitant O2 leaks into the intestinal lumen could explain the alterations of intestinal epithelium dynamics, barrier disruption and dysbiosis that contribute to the loss of epithelial homeostasis in diet-induced obesity. However, the effect of HFD on IEC mitochondrial function in the small intestine remains unknown and the precise mechanisms by which HFD induces mitochondrial dysfunction in the colon have not been elucidated so far.
Collapse
Affiliation(s)
| | - Gaëlle Boudry
- Institut Numecan, INSERM, INRAE, Univ Rennes, Rennes, France.
| | - Annaïg Lan
- Institut Numecan, INSERM, INRAE, Univ Rennes, Rennes, France; Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, Paris, France
| |
Collapse
|
5
|
Ahn E, Jeong H, Kim E. Differential effects of various dietary proteins on dextran sulfate sodium-induced colitis in mice. Nutr Res Pract 2022; 16:700-715. [DOI: 10.4162/nrp.2022.16.6.700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/13/2022] [Accepted: 03/25/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Eunyeong Ahn
- Department of Food Science and Nutrition, Daegu Catholic University, Gyeongsan 38430, Korea
| | - Hyejin Jeong
- Gyeongsangbuk-do Institute of Health & Environment, Yeongcheon 38874, Korea
| | - Eunjung Kim
- Department of Food Science and Nutrition, Daegu Catholic University, Gyeongsan 38430, Korea
| |
Collapse
|
6
|
Yokoo K, Yamamoto Y, Suzuki T. Ammonia impairs tight junction barriers by inducing mitochondrial dysfunction in Caco-2 cells. FASEB J 2021; 35:e21854. [PMID: 34597422 DOI: 10.1096/fj.202100758r] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/12/2021] [Accepted: 07/29/2021] [Indexed: 12/13/2022]
Abstract
Ammonia is one of the major metabolites produced by intestinal microorganisms; however, its role in intestinal homeostasis is poorly understood. The present study investigated the regulation of intestinal tight junction (TJ) proteins by ammonia and the underlying mechanisms in human intestinal Caco-2 cells. Ammonia (15, 30, and 60 mM) increased the permeability of the cells in a dose-dependent manner, as indicated by reduced transepithelial electrical resistance and increased dextran flux. Immunoblot and immunofluorescence analyses revealed that the ammonia-induced increase in TJ permeability reduced the membrane localization of TJ proteins such as zonula occludens (ZO)1, ZO2, occludin, claudin-1, and claudin-3. DNA microarray analysis identified a biological pathway "response to reactive oxygen species" enriched by ammonia treatment, indicating the induction of oxidative stress in the cells. Ammonia treatment also increased the malondialdehyde content and decreased the ratio of reduced to oxidized glutathione. Meanwhile, ammonia treatment-induced mitochondrial dysfunction, as indicated by the downregulation of genes associated with the electron transport chain, reduction of the cellular ATP, NADH, and tricarboxylic acid cycle intermediate content, and suppression of the mitochondrial membrane potential. In contrast, N-acetyl cysteine reversed the ammonia-induced impairment of TJ permeability and structure without affecting the mitochondrial parameters. Collectively, ammonia impaired the TJ barrier by increasing oxidative stress in Caco-2 cells. A mitochondrial dysfunction is possibly an event preceding ammonia-induced oxidative stress. The findings of this study could potentially improve our understanding of the interplay between intestinal microorganisms and their hosts.
Collapse
Affiliation(s)
- Kana Yokoo
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Yoshinari Yamamoto
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Takuya Suzuki
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan.,Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Japan
| |
Collapse
|
7
|
Luise D, Chalvon-Demersay T, Lambert W, Bosi P, Trevisi P. Meta-analysis to evaluate the impact of the reduction of dietary crude protein on the gut health of post-weaning pigs. ITALIAN JOURNAL OF ANIMAL SCIENCE 2021. [DOI: 10.1080/1828051x.2021.1952911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Diana Luise
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | | | | | - Paolo Bosi
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Paolo Trevisi
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
8
|
The Effect of a Diet Containing Extruded Faba Bean Seeds on Growth Performance and Selected Microbial Activity Indices in the Large Intestine of Piglets. Animals (Basel) 2021; 11:ani11061703. [PMID: 34200368 PMCID: PMC8226840 DOI: 10.3390/ani11061703] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/13/2021] [Accepted: 06/01/2021] [Indexed: 11/23/2022] Open
Abstract
Simple Summary Grain legumes are cultivated for food and feed purposes in all regions of the world. Legumes are the main source of protein for a large part of the world population where animal protein is hardly available. The potential of grain legumes is increasing primarily due to the genetic improvement of their agricultural and nutritional characteristics and expansion of organic farming. They are also fed to animals as a component of concentrates and on farms producing “organic” food. Therefore, studies on the composition, nutritional value and factors affecting quality of legume protein contribute to a more efficient utilization of seeds as feed and food ingredients. Faba bean is rich in both starch and protein and is an important alternative protein source in animal nutrition; however, its potential is not yet fully exploited, particularly in pig diets. The aim of the study was to evaluate the effect of diets containing various levels of extruded faba bean seeds on growth performance and selected microbial activity indices in the large intestine of pigs. Treatments with faba bean seeds did not negatively affect growth performance (except for the highest level of faba bean) and microbial activity in the large intestine, and can be applied in piglet diets. Abstract The study investigated the effect of replacing soybean meal with extruded faba bean seeds on piglet growth performance and selected microbial activity indices in the large intestine. In total, 24, 35-day-old, healthy, castrated piglets of similar body weight were divided into four groups with six replicates. Animals in the control group (C) were fed with soybean meal without extruded faba bean seeds. In other experimental groups, pigs were fed diets with the addition of 20 (FB20), 25 (FB25) or 30% (FB30) extruded faba bean seeds instead of soybean meal and wheat starch. Growth performance, histology of the large intestine, short-chain fatty acids (SCFA) and ammonia concentration, as well as the activity of bacterial enzymes in digesta samples, were analyzed. The intake of the FB25 diet resulted in an increased feed:gain ratio in comparison to the FB30 group. Feeding the FB30 diet increased tunica muscularis thickness in the caecum as compared to other groups. Moreover, dietary inclusion of extruded faba bean seeds had no effect on SCFA and ammonia concentration. In addition, feeding diets with a different level of extruded faba bean seeds did not affect the activity of bacterial enzymes in the colon.
Collapse
|
9
|
Wellington MO, Agyekum AK, Van Kessel AG. Microbial sensing in the neonatal pig gut: effect of diet-independent and diet-dependent factors 1. CANADIAN JOURNAL OF ANIMAL SCIENCE 2021. [DOI: 10.1139/cjas-2020-0051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
There is considerable agreement that the gastrointestinal microbiota contributes to the performance and health of the neonate, and this relationship includes an ability of the host animal to “sense” changes in the microbial community. Identifying the mechanisms used by the host to sense microbiota is one approach to developing methods to manipulate the microbiota to improve pig health and performance. Diet-independent microbial products are molecules unique to the microbial community and sensed by host pattern recognition receptors stimulating inflammation. Common among all members of the microbial community, their presence is unaffected by diet, but the nature of the response does depends on factors affecting the microenvironment in which the molecule is detected. Diet-dependent microbial products arise as products of fermentation of dietary components and include short-chain fatty acids, ammonia, phenols, hydrogen sulfide, amines, and many other compounds. A plethora of sensing mechanisms exists that include enzymatic metabolism as well as membrane receptors that have evolved to respond to microbial products (e.g., short-chain fatty acid receptors), or simply cross-react with microbial products. This review focuses on host mechanisms used to sense the intestinal microbiota and attempts to establish practical considerations for neonatal gut health based on current understanding.
Collapse
Affiliation(s)
- Michael O. Wellington
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - Atta K. Agyekum
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Grønnegårdsvej 3, DK-1870, Frederiksberg C, Denmark
| | - Andrew G. Van Kessel
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| |
Collapse
|
10
|
Karpik A, Machniak M, Chwałczynska A. Evaluation of Protein Content in the Diet of Amateur Male Bodybuilder. Am J Mens Health 2020; 14:1557988320970267. [PMID: 33256520 PMCID: PMC7711235 DOI: 10.1177/1557988320970267] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/23/2020] [Accepted: 10/09/2020] [Indexed: 01/21/2023] Open
Abstract
Public gyms and fitness clubs promote active lifestyles. At the same time, numerous nutritional errors and the phenomenon of incorrect supplementation are being observed among the given study group. Behavior can lead to malaise, injury, or lack of progression. One of the most serious mistakes is the incorrect level of protein in the diet. The aim of the study is to assess the quantity and quality of protein consumed by men undertaking recreational strength training in Szczecin. The study involved 35 men aged 18-35, practicing amateur strength training, from Szczecin (Poland). The author's questionnaire collected information on supplementation, physical activity, and subjective assessment of nutritional knowledge. The obtained test results were subjected to statistical analysis performed in the Statistica12 program. On average, respondents consumed 1.8 g of protein/kg, with the highest recorded conversion rate of 3.7 g of protein/kg of body weight, and the lowest of 0.9 g/kg of body weight. Total protein consumption ranged from 70.2 to 295.7 g, and the average value was 147.8 g (22%), which differs from the study group, that is, 129-133 g, which gives 14% energy proteins. It was found that the protein supplementation, on average, provided 31% of the total protein intake of the study group. The results show inappropriate dietary behavior regarding food supplementation among the examined group. Further education on the nutritional value of the food and a healthy and balanced diet is being recommended for the individuals practicing strength sports.
Collapse
Affiliation(s)
- A Karpik
- Pomeranian Medical University,
Szczecin, Zachodniopomorskie, Poland
| | - M Machniak
- Department of Human Biology,
Department of Physiotherapy, University School of Physical Education,
Wrocław, Poland
| | - A Chwałczynska
- Department of Human Biology,
Department of Physiotherapy, University School of Physical Education,
Wrocław, Poland
| |
Collapse
|
11
|
Upadhaya SD, Jiao Y, Kim YM, Lee KY, Kim IH. Coated sodium butyrate supplementation to a reduced nutrient diet enhanced the performance and positively impacted villus height and faecal and digesta bacterial composition in weaner pigs. Anim Feed Sci Technol 2020. [DOI: 10.1016/j.anifeedsci.2020.114534] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
12
|
Mefferd CC, Bhute SS, Phan JR, Villarama JV, Do DM, Alarcia S, Abel-Santos E, Hedlund BP. A High-Fat/High-Protein, Atkins-Type Diet Exacerbates Clostridioides ( Clostridium) difficile Infection in Mice, whereas a High-Carbohydrate Diet Protects. mSystems 2020; 5:e00765-19. [PMID: 32047064 PMCID: PMC7018531 DOI: 10.1128/msystems.00765-19] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 01/29/2020] [Indexed: 02/06/2023] Open
Abstract
Clostridioides difficile (formerly Clostridium difficile) infection (CDI) can result from the disruption of the resident gut microbiota. Western diets and popular weight-loss diets drive large changes in the gut microbiome; however, the literature is conflicted with regard to the effect of diet on CDI. Using the hypervirulent strain C. difficile R20291 (RT027) in a mouse model of antibiotic-induced CDI, we assessed disease outcome and microbial community dynamics in mice fed two high-fat diets in comparison with a high-carbohydrate diet and a standard rodent diet. The two high-fat diets exacerbated CDI, with a high-fat/high-protein, Atkins-like diet leading to severe CDI and 100% mortality and a high-fat/low-protein, medium-chain-triglyceride (MCT)-like diet inducing highly variable CDI outcomes. In contrast, mice fed a high-carbohydrate diet were protected from CDI, despite the high levels of refined carbohydrate and low levels of fiber in the diet. A total of 28 members of the Lachnospiraceae and Ruminococcaceae decreased in abundance due to diet and/or antibiotic treatment; these organisms may compete with C. difficile for amino acids and protect healthy animals from CDI in the absence of antibiotics. Together, these data suggest that antibiotic treatment might lead to loss of C. difficile competitors and create a favorable environment for C. difficile proliferation and virulence with effects that are intensified by high-fat/high-protein diets; in contrast, high-carbohydrate diets might be protective regardless of the source of carbohydrate or of antibiotic-driven loss of C. difficile competitors.IMPORTANCE The role of Western and weight-loss diets with extreme macronutrient composition in the risk and progression of CDI is poorly understood. In a longitudinal study, we showed that a high-fat/high-protein, Atkins-type diet greatly exacerbated antibiotic-induced CDI, whereas a high-carbohydrate diet protected, despite the high monosaccharide and starch content. Our study results, therefore, suggest that popular high-fat/high-protein weight-loss diets may enhance CDI risk during antibiotic treatment, possibly due to the synergistic effects of a loss of the microorganisms that normally inhibit C. difficile overgrowth and an abundance of amino acids that promote C. difficile overgrowth. In contrast, a high-carbohydrate diet might be protective, despite reports on the recent evolution of enhanced carbohydrate metabolism in C. difficile.
Collapse
Affiliation(s)
| | - Shrikant S Bhute
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, Nevada, USA
| | - Jacqueline R Phan
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, Nevada, USA
| | - Jacob V Villarama
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, Nevada, USA
| | - Dung M Do
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, Nevada, USA
| | - Stephanie Alarcia
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, Nevada, USA
| | - Ernesto Abel-Santos
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, Nevada, USA
- Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, Las Vegas, Nevada, USA
| | - Brian P Hedlund
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, Nevada, USA
- Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, Las Vegas, Nevada, USA
| |
Collapse
|
13
|
He X, Parenti M, Grip T, Lönnerdal B, Timby N, Domellöf M, Hernell O, Slupsky CM. Fecal microbiome and metabolome of infants fed bovine MFGM supplemented formula or standard formula with breast-fed infants as reference: a randomized controlled trial. Sci Rep 2019; 9:11589. [PMID: 31406230 PMCID: PMC6690946 DOI: 10.1038/s41598-019-47953-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 07/12/2019] [Indexed: 02/06/2023] Open
Abstract
Human milk delivers an array of bioactive components that safeguard infant growth and development and maintain healthy gut microbiota. Milk fat globule membrane (MFGM) is a biologically functional fraction of milk increasingly linked to beneficial outcomes in infants through protection from pathogens, modulation of the immune system and improved neurodevelopment. In the present study, we characterized the fecal microbiome and metabolome of infants fed a bovine MFGM supplemented experimental formula (EF) and compared to infants fed standard formula (SF) and a breast-fed reference group. The impact of MFGM on the fecal microbiome was moderate; however, the fecal metabolome of EF-fed infants showed a significant reduction of several metabolites including lactate, succinate, amino acids and their derivatives from that of infants fed SF. Introduction of weaning food with either human milk or infant formula reduces the distinct characteristics of breast-fed- or formula-fed- like infant fecal microbiome and metabolome profiles. Our findings support the hypothesis that higher levels of protein in infant formula and the lack of human milk oligosaccharides promote a shift toward amino acid fermentation in the gut. MFGM may play a role in shaping gut microbial activity and function.
Collapse
Affiliation(s)
- Xuan He
- Department of Nutrition, University of California Davis, One Shields Ave, Davis, CA, 95616, USA
- Department of Food Science and Technology, University of California Davis, One Shields Ave, Davis, CA, 95616, USA
| | - Mariana Parenti
- Department of Nutrition, University of California Davis, One Shields Ave, Davis, CA, 95616, USA
| | - Tove Grip
- Department of Clinical Sciences, Pediatrics, Umeå University, SE901 85, Umeå, Sweden
| | - Bo Lönnerdal
- Department of Nutrition, University of California Davis, One Shields Ave, Davis, CA, 95616, USA
| | - Niklas Timby
- Department of Clinical Sciences, Pediatrics, Umeå University, SE901 85, Umeå, Sweden
| | - Magnus Domellöf
- Department of Clinical Sciences, Pediatrics, Umeå University, SE901 85, Umeå, Sweden
| | - Olle Hernell
- Department of Clinical Sciences, Pediatrics, Umeå University, SE901 85, Umeå, Sweden
| | - Carolyn M Slupsky
- Department of Nutrition, University of California Davis, One Shields Ave, Davis, CA, 95616, USA.
- Department of Food Science and Technology, University of California Davis, One Shields Ave, Davis, CA, 95616, USA.
| |
Collapse
|
14
|
Oliphant K, Allen-Vercoe E. Macronutrient metabolism by the human gut microbiome: major fermentation by-products and their impact on host health. MICROBIOME 2019; 7:91. [PMID: 31196177 PMCID: PMC6567490 DOI: 10.1186/s40168-019-0704-8] [Citation(s) in RCA: 674] [Impact Index Per Article: 134.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 05/28/2019] [Indexed: 05/11/2023]
Abstract
The human gut microbiome is a critical component of digestion, breaking down complex carbohydrates, proteins, and to a lesser extent fats that reach the lower gastrointestinal tract. This process results in a multitude of microbial metabolites that can act both locally and systemically (after being absorbed into the bloodstream). The impact of these biochemicals on human health is complex, as both potentially beneficial and potentially toxic metabolites can be yielded from such microbial pathways, and in some cases, these effects are dependent upon the metabolite concentration or organ locality. The aim of this review is to summarize our current knowledge of how macronutrient metabolism by the gut microbiome influences human health. Metabolites to be discussed include short-chain fatty acids and alcohols (mainly yielded from monosaccharides); ammonia, branched-chain fatty acids, amines, sulfur compounds, phenols, and indoles (derived from amino acids); glycerol and choline derivatives (obtained from the breakdown of lipids); and tertiary cycling of carbon dioxide and hydrogen. Key microbial taxa and related disease states will be referred to in each case, and knowledge gaps that could contribute to our understanding of overall human wellness will be identified.
Collapse
Affiliation(s)
- Kaitlyn Oliphant
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd E, Guelph, ON N1G 2W1 Canada
| | - Emma Allen-Vercoe
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd E, Guelph, ON N1G 2W1 Canada
| |
Collapse
|
15
|
Su J, Zhu Q, Zhao Y, Han L, Yin Y, Blachier F, Wang Z, Kong X. Dietary Supplementation With Chinese Herbal Residues or Their Fermented Products Modifies the Colonic Microbiota, Bacterial Metabolites, and Expression of Genes Related to Colon Barrier Function in Weaned Piglets. Front Microbiol 2018; 9:3181. [PMID: 30627122 PMCID: PMC6309725 DOI: 10.3389/fmicb.2018.03181] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 12/07/2018] [Indexed: 01/01/2023] Open
Abstract
To explore the feasibility of dietary Chinese herbal residue (CHR) supplementation in swine production with the objective of valorization, we examined the effects of dietary supplementation with CHR or fermented CHR products on the colonic ecosystem (i.e., microbiota composition, luminal bacterial metabolites, and expression of genes related to the intestinal barrier function in weaned piglets). We randomly assigned 120 piglets to one of four dietary treatment groups: a blank control group, CHR group (dose of supplement 4 kg/t), fermented CHR group (dose of supplement 4 kg/t), and a positive control group (supplemented with 0.04 kg/t virginiamycin, 0.2 kg/t colistin, and 3000 mg/kg zinc 0.04 kg/t virginiamycin, 0.2 kg/t colistin, and 3000 mg/kg zinc oxide). Our results indicate that dietary supplementation with CHR increased (P < 0.05) the mRNA level corresponding to E-cadherin compared with that observed in the other three groups, increased (P < 0.05) the mRNA level corresponding to zonula occludens-1, and decreased (P < 0.05) the quantity of Bifidobacterium spp. When compared with the blank control group. Dietary supplementation with fermented CHR decreased (P < 0.05) the concentration of indole when compared to the positive control group; increased (P < 0.05) the concentrations of short-chain fatty acids compared with the values measured in the CHR group, as well as the mRNA levels corresponding to interleukin 1 alpha, interleukin 2, and tumor necrosis factor alpha. However, supplementation with fermented CHR decreased (P < 0.05) interleukin 12 levels when compared with the blank control group. Collectively, these findings suggest that dietary supplementation with CHR or fermented CHR modifies the gut environment of weaned piglets.
Collapse
Affiliation(s)
- Jiayi Su
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Qian Zhu
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Yue Zhao
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Li Han
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Yulong Yin
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Francois Blachier
- Nutrition Physiology and Ingestive Behavior, UMR 914 INRA/AgroParisTech/Universite Paris-Saclay, Paris, France
| | - Zhanbin Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Xiangfeng Kong
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| |
Collapse
|
16
|
Reducing agent can be omitted in the incubation medium of the batch in vitro fermentation model of the pig intestines. Animal 2018; 12:1154-1164. [DOI: 10.1017/s1751731117002749] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
17
|
Changes in the Luminal Environment of the Colonic Epithelial Cells and Physiopathological Consequences. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:476-486. [PMID: 28082121 DOI: 10.1016/j.ajpath.2016.11.015] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 11/21/2016] [Accepted: 11/23/2016] [Indexed: 12/28/2022]
Abstract
Evidence, mostly from experimental models, has accumulated, indicating that modifications of bacterial metabolite concentrations in the large intestine luminal content, notably after changes in the dietary composition, may have important beneficial or deleterious consequences for the colonic epithelial cell metabolism and physiology in terms of mitochondrial energy metabolism, reactive oxygen species production, gene expression, DNA integrity, proliferation, and viability. Recent data suggest that for some bacterial metabolites, like hydrogen sulfide and butyrate, the extent of their oxidation in colonocytes affects their capacity to modulate gene expression in these cells. Modifications of the luminal bacterial metabolite concentrations may, in addition, affect the colonic pH and osmolarity, which are known to affect colonocyte biology per se. Although the colonic epithelium appears able to face, up to some extent, changes in its luminal environment, notably by developing a metabolic adaptive response, some of these modifications may likely affect the homeostatic process of colonic epithelium renewal and the epithelial barrier function. The contribution of major changes in the colonocyte luminal environment in pathological processes, like mucosal inflammation, preneoplasia, and neoplasia, although suggested by several studies, remains to be precisely evaluated, particularly in a long-term perspective.
Collapse
|
18
|
Portune KJ, Beaumont M, Davila AM, Tomé D, Blachier F, Sanz Y. Gut microbiota role in dietary protein metabolism and health-related outcomes: The two sides of the coin. Trends Food Sci Technol 2016. [DOI: 10.1016/j.tifs.2016.08.011] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
19
|
Yao CK, Muir JG, Gibson PR. Review article: insights into colonic protein fermentation, its modulation and potential health implications. Aliment Pharmacol Ther 2016; 43:181-96. [PMID: 26527169 DOI: 10.1111/apt.13456] [Citation(s) in RCA: 272] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 09/11/2015] [Accepted: 10/13/2015] [Indexed: 02/06/2023]
Abstract
BACKGROUND Beneficial effects of carbohydrate fermentation on gastrointestinal health are well established. Conversely, protein fermentation generates harmful metabolites but their relevance to gastrointestinal health is poorly understood. AIM To review the effects of increased protein fermentation on biomarkers of colonic health, factors influencing fermentative activity and potential for dietary modulation to minimise detrimental effects. METHODS A literature search was performed in PubMed, Medline, EMBASE and Google scholar for clinical and pre-clinical studies using search terms - 'dietary protein', 'fermentation', 'putrefaction', 'phenols', 'sulphide', 'branched-chain fatty acid', 'carbohydrate fermentation', 'gastrointestinal'. RESULTS High protein, reduced carbohydrate diets alter the colonic microbiome, favouring a potentially pathogenic and pro-inflammatory microbiota profile, decreased short-chain fatty acid production and increased ammonia, phenols and hydrogen sulphide concentrations. These metabolites largely compromise the colonic epithelium structure, causing mucosal inflammation but may also directly modulate the enteric nervous system and intestinal motility. Increased protein fermentation as a result of a high-protein intake can be attenuated by addition of oligosaccharides, resistant starch and nonstarch polysaccharides and a reduction in total protein or specifically, aromatic and sulphur-containing amino acids. These factors may have clinical importance as novel therapeutic approaches to problems, in which protein fermentation may be implicated, such as malodorous flatus, irritable bowel syndrome, ulcerative colitis and prevention of colorectal cancer. CONCLUSIONS The direct clinical relevance of excessive protein fermentation in the pathogenesis of irritable bowel syndrome, malodorous flatus and ulcerative colitis are underexplored. Manipulating dietary carbohydrate and protein intake have potential therapeutic applications in such settings and warrant further clinical studies.
Collapse
Affiliation(s)
- C K Yao
- Department of Gastroenterology, Monash University, Alfred Health, Melbourne, Vic., Australia
| | - J G Muir
- Department of Gastroenterology, Monash University, Alfred Health, Melbourne, Vic., Australia
| | - P R Gibson
- Department of Gastroenterology, Monash University, Alfred Health, Melbourne, Vic., Australia
| |
Collapse
|
20
|
Byun SY, Kim DB, Kim E. Curcumin ameliorates the tumor-enhancing effects of a high-protein diet in an azoxymethane-induced mouse model of colon carcinogenesis. Nutr Res 2015; 35:726-35. [PMID: 26094212 DOI: 10.1016/j.nutres.2015.05.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 05/15/2015] [Accepted: 05/27/2015] [Indexed: 02/06/2023]
Abstract
An increasing number of reports suggest that a high-protein diet (HPD) is associated with an increased risk for colorectal cancer (CRC). One of the proposed mechanisms is that an HPD increases the delivery of protein to the colon and generates various toxic metabolites that contribute to colon carcinogenesis. Curcumin was shown to exert significant preventive properties against CRC. We therefore hypothesized that curcumin can reverse the tumor-enhancing effects of an HPD. This study examined the effects of curcumin on the development of azoxymethane (AOM)-induced colorectal tumors in HPD-fed mice. A total of 30 female Balb/c mice were randomly divided into 3 groups: those fed a normal diet (20% casein), those fed an HPD (HPD; 50% casein), and those fed an HPD supplemented with curcumin (HPDC; 0.02% curcumin). The mice were subjected to an AOM-dextran sodium sulfate colon carcinogenesis protocol. Mice in the HPDC group exhibited a significant (40%) reduction in colorectal tumor multiplicity when compared with those in the HPD group. The expression of colonic inflammatory proteins (cyclooxygenase-2 and inducible nitric oxide synthase), the levels of plasma inflammatory markers (nitric oxide and tumor necrosis factor-α), fecal ammonia, short- and branched-chain fatty acid levels, and the rate of colonocyte proliferation were significantly lower in the HPDC than the HPD group. In conclusion, curcumin inhibited the development of colorectal tumors in an AOM-induced mouse model of colon carcinogenesis by attenuating colonic inflammation, proliferation, and toxic metabolite production. Curcumin might be useful in the chemoprevention of CRC in individuals consuming an HPD.
Collapse
Affiliation(s)
- So-Young Byun
- Department of Food Science and Nutrition, Catholic University of Daegu, Gyeongsan, Korea
| | - Dan-Bi Kim
- Department of Food Science and Nutrition, Catholic University of Daegu, Gyeongsan, Korea
| | - Eunjung Kim
- Department of Food Science and Nutrition, Catholic University of Daegu, Gyeongsan, Korea.
| |
Collapse
|
21
|
Della Guardia L, Cavallaro M, Cena H. The risks of self-made diets: the case of an amateur bodybuilder. J Int Soc Sports Nutr 2015; 12:16. [PMID: 25908930 PMCID: PMC4407350 DOI: 10.1186/s12970-015-0077-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 02/26/2015] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Following DIY (do it yourself) diets as well as consuming supplements exceeding by far the recommended daily intake levels, is common among athletes; these dietary habits often lead to an overconsumption of some macro and/or micronutrients, exposing athletes to potential health risks. The aim of this study is to document the development of possible adverse effects in a 33 year-old amateur bodybuilder who consumed for 16 years a DIY high protein diet associated to nutrient supplementation. Body composition, biochemical measures and anamnestic findings were evaluated. We present this case to put on alert about the possible risks of such behavior repeated over time, focusing on the adverse gastrointestinal effects. We discuss the energy and nutrient composition of his DIY diet as well as the use of supplements. CONCLUSION This study provides preliminary data of the potential risks of a long-term DIY dietary supplementation and a high protein diet. In this case, permanent abdominal discomfort was evidenced in an amateur body builder with an intake exceeding tolerable upper limit for vitamin A, selenium and zinc, according to our national and updated recommendations. As many amateur athletes usually adopt self-made diets and supplementation, it would be advisable for them to be supervised in order to prevent health risks due to a long-term DIY diet and over-supplementation.
Collapse
Affiliation(s)
- Lucio Della Guardia
- Department of Public Health, Experimental and Forensic Medicine, Unit of Human Nutrition, University of Pavia, via Bassi 21, 27100 Pavia, Italy
| | - Maurizio Cavallaro
- Department of Public Health, Experimental and Forensic Medicine, Unit of Human Nutrition, University of Pavia, via Bassi 21, 27100 Pavia, Italy
| | - Hellas Cena
- Department of Public Health, Experimental and Forensic Medicine, Unit of Human Nutrition, University of Pavia, via Bassi 21, 27100 Pavia, Italy
| |
Collapse
|
22
|
Zhang J, Li C, Tang X, Lu Q, Sa R, Zhang H. Proteome changes in the small intestinal mucosa of broilers (Gallus gallus) induced by high concentrations of atmospheric ammonia. Proteome Sci 2015; 13:9. [PMID: 25741220 PMCID: PMC4347970 DOI: 10.1186/s12953-015-0067-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 02/11/2015] [Indexed: 01/15/2023] Open
Abstract
Background Ammonia is a well-known toxicant both existing in atmospheric and aquatic system. So far, most studies of ammonia toxicity focused on mammals or aquatic animals. With the development of poultry industry, ammonia as a main source of contaminant in the air is causing more and more problems on broiler production, especially lower growth rate. The molecular mechanisms that underlie the negative effects of ammonia on the growth and intestine of broilers are yet unclear. We investigated the growth, gut morphology, and mucosal proteome of Arbor Acres broilers (Gallus gallus) exposed to high concentrations of atmospheric ammonia by performing a proteomics approach integrated with traditional methods. Results Exposure to ammonia interfered with the development of immune organ and gut villi. Meanwhile, it greatly reduced daily weight gain and feed intake, and enhanced feed conversion ratio. A total of 43 intestinal mucosal proteins were found to be differentially abundant. Up-regulated proteins are related to oxidative phosphorylation and apoptosis. Down-regulated proteins are related to cell structure and growth, transcriptional and translational regulation, immune response, oxidative stress and nutrient metabolism. These results indicated that exposure to ammonia triggered oxidative stress, and interfered with nutrient absorption and immune function in the small intestinal mucosa of broilers. Conclusions These findings have important implications for understanding the toxic mechanisms of ammonia on intestine of broilers, which provides new information that can be used for intervention using nutritional strategies in the future. Electronic supplementary material The online version of this article (doi:10.1186/s12953-015-0067-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jize Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193 People's Republic of China
| | - Cong Li
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193 People's Republic of China
| | - Xiangfang Tang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193 People's Republic of China
| | - Qingping Lu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193 People's Republic of China
| | - Renna Sa
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193 People's Republic of China
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193 People's Republic of China
| |
Collapse
|
23
|
Wheat bran extract alters colonic fermentation and microbial composition, but does not affect faecal water toxicity: a randomised controlled trial in healthy subjects. Br J Nutr 2014; 113:225-38. [PMID: 25498469 DOI: 10.1017/s0007114514003523] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Wheat bran extract (WBE), containing arabinoxylan-oligosaccharides that are potential prebiotic substrates, has been shown to modify bacterial colonic fermentation in human subjects and to beneficially affect the development of colorectal cancer (CRC) in rats. However, it is unclear whether these changes in fermentation are able to reduce the risk of developing CRC in humans. The aim of the present study was to evaluate the effects of WBE on the markers of CRC risk in healthy volunteers, and to correlate these effects with colonic fermentation. A total of twenty healthy subjects were enrolled in a double-blind, cross-over, randomised, controlled trial in which the subjects ingested WBE (10 g/d) or placebo (maltodextrin, 10 g/d) for 3 weeks, separated by a 3-week washout period. At the end of each study period, colonic handling of NH3 was evaluated using the biomarker lactose[15N, 15N']ureide, colonic fermentation was characterised through a metabolomics approach, and the predominant microbial composition was analysed using denaturing gradient gel electrophoresis. As markers of CRC risk, faecal water genotoxicity was determined using the comet assay and faecal water cytotoxicity using a colorimetric cell viability assay. Intake of WBE induced a shift from urinary to faecal 15N excretion, indicating a stimulation of colonic bacterial activity and/or growth. Microbial analysis revealed a selective stimulation of Bifidobacterium adolescentis. In addition, WBE altered the colonic fermentation pattern and significantly reduced colonic protein fermentation compared with the run-in period. However, faecal water cytotoxicity and genotoxicity were not affected. Although intake of WBE clearly affected colonic fermentation and changed the composition of the microbiota, these changes were not associated with the changes in the markers of CRC risk.
Collapse
|
24
|
Alexandre A. Suggested involvement of ketone bodies in the pathogenesis of the metabolic syndrome. Med Hypotheses 2013; 80:578-81. [PMID: 23466063 DOI: 10.1016/j.mehy.2013.01.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 11/06/2012] [Accepted: 01/26/2013] [Indexed: 12/23/2022]
Abstract
Untreated brain mitochondria are strong producers of H2O2. High peroxide production (in the presence of glutamate and pyruvate) is strictly succinate-dependent. Importantly, it is inhibited by the ketone body acetoacetate (AcAc) starting at 10 μM (maximal effect at 0.5mM). Butyrate derives from the fermentation of prebiotics, is present physiologically in the colon and is a strong producer of AcAc: indeed butyrate induces in the colon the transcription of mitochondrial 3-hydroxy-3-methyl glutarylCoA (HMGCoA) synthase, a key enzyme in ketone body synthesis. Obesity and insulin resistance were shown to be dependent on increased permeability of the colon epithelium to bacterial lipopolysaccharide (LPS); the process is evident particularly upon ingestion of lipids (a peroxidative event, inhibited by vitamin E) and is likely sensitive to AcAc. The oxidation of butyrate and the production of AcAc in the colon appear to be inhibited by high luminal sulphides and high NH3, a situation that presumably facilitates LPS permeation (on the contrary beta-hydroxy-butyrate oxidation is not inhibited). It is proposed that these damaging events may be opposed by the delivery of ketone bodies directly to the colon.
Collapse
Affiliation(s)
- Adolfo Alexandre
- Department of Biomaedical Sciences, Via G. Colombo 3, University of Padova, 35131 Padova, Italy.
| |
Collapse
|
25
|
Davila AM, Blachier F, Gotteland M, Andriamihaja M, Benetti PH, Sanz Y, Tomé D. Intestinal luminal nitrogen metabolism: Role of the gut microbiota and consequences for the host. Pharmacol Res 2013. [DOI: 10.1016/j.phrs.2012.11.005] [Citation(s) in RCA: 248] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
26
|
Davila AM, Blachier F, Gotteland M, Andriamihaja M, Benetti PH, Sanz Y, Tomé D. Re-print of "Intestinal luminal nitrogen metabolism: role of the gut microbiota and consequences for the host". Pharmacol Res 2013; 69:114-26. [PMID: 23318949 DOI: 10.1016/j.phrs.2013.01.003] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Alimentary and endogenous proteins are mixed in the small intestinal lumen with the microbiota. Although experimental evidences suggest that the intestinal microbiota is able to incorporate and degrade some of the available amino acids, it appears that the microbiota is also able to synthesize amino acids raising the view that amino acid exchange between the microbiota and host can proceed in both directions. Although the net result of such exchanges remains to be determined, it is likely that a significant part of the amino acids recovered from the alimentary proteins are used by the microbiota. In the large intestine, where the density of bacteria is much higher than in the small intestine and the transit time much longer, the residual undigested luminal proteins and peptides can be degraded in amino acids by the microbiota. These amino acids cannot be absorbed to a significant extent by the colonic epithelium, but are precursors for the synthesis of numerous metabolic end products in reactions made by the microbiota. Among these products, some like short-chain fatty acids and organic acids are energy substrates for the colonic mucosa and several peripheral tissues while others like sulfide and ammonia can affect the energy metabolism of colonic epithelial cells. More work is needed to clarify the overall effects of the intestinal microbiota on nitrogenous compound metabolism and consequences on gut and more generally host health.
Collapse
Affiliation(s)
- Anne-Marie Davila
- UMR 914 INRA/AgroParisTech, Nutrition Physiology and Ingestive Behavior, Paris, France.
| | | | | | | | | | | | | |
Collapse
|
27
|
Andriamihaja M, Davila AM, Eklou-Lawson M, Petit N, Delpal S, Allek F, Blais A, Delteil C, Tomé D, Blachier F. Colon luminal content and epithelial cell morphology are markedly modified in rats fed with a high-protein diet. Am J Physiol Gastrointest Liver Physiol 2010; 299:G1030-7. [PMID: 20689060 DOI: 10.1152/ajpgi.00149.2010] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Hyperproteic diets are used in human nutrition to obtain body weight reduction. Although increased protein ingestion results in an increased transfer of proteins from the small to the large intestine, there is little information on the consequences of the use of such diets on the composition of large intestine content and on epithelial cell morphology and metabolism. Rats were fed for 15 days with either a normoproteic (NP, 14% protein) or a hyperproteic isocaloric diet (HP, 53% protein), and absorptive colonocytes were observed by electron microscopy or isolated for enzyme activity studies. The colonic luminal content was recovered for biochemical analysis. Absorbing colonocytes were characterized by a 1.7-fold reduction in the height of the brush-border membranes (P = 0.0001) after HP diet consumption when compared with NP. This coincided in the whole colon content of HP animals with a 1.8-fold higher mass content (P = 0.0020), a 2.2-fold higher water content (P = 0.0240), a 5.2-fold higher protease activity (P = 0.0104), a 5.5-fold higher ammonia content (P = 0.0008), and a more than twofold higher propionate, valerate, isobutyrate, and isovalerate content (P < 0.05). The basal oxygen consumption of colonocytes was similar in the NP and HP groups, but ammonia was found to provoke a dose-dependent decrease of oxygen consumption in the isolated absorbing colonocytes. The activity of glutamine synthetase (which condenses ammonia and glutamate) was found to be much higher in colonocytes than in small intestine enterocytes and was 1.6-fold higher (P = 0.0304) in colonocytes isolated from HP animals than NP. Glutaminase activity remained unchanged. Thus hyperproteic diet ingestion causes marked changes both in the luminal environment of colonocytes and in the characteristics of these cells, demonstrating that hyperproteic diet interferes with colonocyte metabolism and morphology. Possible causal relationships between energy metabolism, reduced height of colonocyte brush-border membranes, and reduced water absorption are discussed.
Collapse
Affiliation(s)
- Mireille Andriamihaja
- Institut National de Recherche Agronomique, AgroParisTech, Centre de Recherche en Nutrition Humaine-Ile de France, UMR 914 Physiologie de Nutrition et du Comportement Alimentaire, Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Thibault R, Blachier F, Darcy-Vrillon B, de Coppet P, Bourreille A, Segain JP. Butyrate utilization by the colonic mucosa in inflammatory bowel diseases: a transport deficiency. Inflamm Bowel Dis 2010; 16:684-95. [PMID: 19774643 DOI: 10.1002/ibd.21108] [Citation(s) in RCA: 174] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The short-chain fatty acid butyrate, which is mainly produced in the lumen of the large intestine by the fermentation of dietary fibers, plays a major role in the physiology of the colonic mucosa. It is also the major energy source for the colonocyte. Numerous studies have reported that butyrate metabolism is impaired in intestinal inflamed mucosa of patients with inflammatory bowel disease (IBD). The data of butyrate oxidation in normal and inflamed colonic tissues depend on several factors, such as the methodology or the models used or the intensity of inflammation. The putative mechanisms involved in butyrate oxidation impairment may include a defect in beta oxidation, luminal compounds interfering with butyrate metabolism, changes in luminal butyrate concentrations or pH, and a defect in butyrate transport. Recent data show that butyrate deficiency results from the reduction of butyrate uptake by the inflamed mucosa through downregulation of the monocarboxylate transporter MCT1. The concomitant induction of the glucose transporter GLUT1 suggests that inflammation could induce a metabolic switch from butyrate to glucose oxidation. Butyrate transport deficiency is expected to have clinical consequences. Particularly, the reduction of the intracellular availability of butyrate in colonocytes may decrease its protective effects toward cancer in IBD patients.
Collapse
Affiliation(s)
- Ronan Thibault
- UMR 1280 Physiologie des Adaptations Nutritionnelles, INRA, Université de Nantes, CHU Nantes, Nantes, France.
| | | | | | | | | | | |
Collapse
|
29
|
Biagi G, Piva A, Moschini M, Vezzali E, Roth FX. Effect of gluconic acid on piglet growth performance, intestinal microflora, and intestinal wall morphology. J Anim Sci 2008; 84:370-8. [PMID: 16424265 DOI: 10.2527/2006.842370x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Gluconic acid (GA) derives from the incomplete oxidation of glucose by some Gluconobacter strains. When fed to nonruminant animals, GA is only poorly absorbed in the small intestine and is primarly fermented to butyric acid in the lower gut. This study investigated the effect of GA on in vitro growth response and metabolism of swine cecal microflora and on animal growth performance, intestinal wall morphology, and intestinal microflora. During a 24-h in vitro cecal fermentation, total gas production and maximum rate of gas production were increased by GA (linear, P < 0.001). Ammonia in cecal liquor was reduced by GA after 4, 8, and 24 h of fermentation (quadratic, P < 0.01). After 24 h of fermentation, total short-chain fatty acids, acetic acid, propionic acid, n-butyric acid, acetic to propionic acid ratio, and acetic + butyric to propionic acid ratio were linearly increased by GA (P < 0.001). In the in vivo study, 48 piglets were divided into 4 groups and housed in individual cages for 6 wk. Piglets received a basal diet with a) no addition (control) or with GA addition at b) 3,000 ppm, c) 6,000 ppm, or d) 12,000 ppm. After 6 wk, 4 animals per treatment were killed, and samples of intestinal content and mucosa were collected. Compared with control, GA tended to increase average daily gain (+13 and +14% for GA at 3,000 and 6,000 ppm, respectively; P of the model = 0.11; quadratic, P < 0.05). Daily feed consumption and gain to feed ratio were not influenced by GA. Intestinal counts of clostridia, enterobacteriaceae, and lactic acid bacteria were not affected by GA. Gluconic acid tended to increase total short-chain fatty acids in the jejunum (+174, +87, and +74% for GA at 3,000, 6,000, and 12,000 ppm, respectively; P of the model = 0.07; quadratic, P = 0.07). Morphological evaluation of intestinal mucosa from jejunum, ileum, and cecum did not show any significant differences among treatments. This study showed that feeding GA influences the composition and activity of the intestinal microflora and may improve growth performance of piglets after weaning.
Collapse
Affiliation(s)
- G Biagi
- Department of Veterinary Morphophysiology and Animal Production, Università di Bologna, via Tolara di Sopra 50, 40064, Ozzano Emilia, Italy.
| | | | | | | | | |
Collapse
|