1
|
Maes M, Almulla AF, Zhou B, Algon AAA, Sodsai P. In major dysmood disorder, physiosomatic, chronic fatigue and fibromyalgia symptoms are driven by immune activation and increased immune-associated neurotoxicity. Sci Rep 2024; 14:7344. [PMID: 38538641 PMCID: PMC10973347 DOI: 10.1038/s41598-024-57350-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/18/2024] [Indexed: 11/12/2024] Open
Abstract
Major depressive disorder (MDD) is accompanied by activated neuro-immune pathways, increased physiosomatic and chronic fatigue-fibromyalgia (FF) symptoms. The most severe MDD phenotype, namely major dysmood disorder (MDMD), is associated with adverse childhood experiences (ACEs) and negative life events (NLEs) which induce cytokines/chemokines/growth factors. To delineate the impact of ACE + NLEs on physiosomatic and FF symptoms in first episode (FE)-MDMD, and examine whether these effects are mediated by immune profiles. ACEs, NLEs, physiosomatic and FF symptoms, and 48 cytokines/chemokines/growth factors were measured in 64 FE-MDMD patients and 32 normal controls. Physiosomatic, FF and gastro-intestinal symptoms belong to the same factor as depression, anxiety, melancholia, and insomnia. The first factor extracted from these seven domains is labeled the physio-affective phenome of depression. A part (59.0%) of the variance in physiosomatic symptoms is explained by the independent effects of interleukin (IL)-16 and IL-8 (positively), CCL3 and IL-1 receptor antagonist (inversely correlated). A part (46.5%) of the variance in physiosomatic (59.0%) symptoms is explained by the independent effects of interleukin (IL)-16, TNF-related apoptosis-inducing ligand (TRAIL) (positively) and combined activities of negative immunoregulatory cytokines (inversely associated). Partial least squares analysis shows that ACE + NLEs exert a substantial influence on the physio-affective phenome which are partly mediated by an immune network composed of interleukin-16, CCL27, TRAIL, macrophage-colony stimulating factor, and stem cell growth factor. The physiosomatic and FF symptoms of FE-MDMD are partly caused by immune-associated neurotoxicity due to T helper (Th)-1 polarization and M1 macrophage activation and relative lowered compensatory immunoregulatory protection.
Collapse
Affiliation(s)
- Michael Maes
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
- Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu, 610072, China.
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, and King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand.
- Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria.
- Research Institute, Medical University Plovdiv, Plovdiv, Bulgaria.
- Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Korea.
| | - Abbas F Almulla
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, and King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Bo Zhou
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu, 610072, China
| | - Ali Abbas Abo Algon
- Research Group of Organic Synthesis and Catalysis, University of Pannonia, Egyetem u. 10, Veszprém, 8200, Hungary
| | - Pimpayao Sodsai
- Department of Immunology, Faculty of Medicine, Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| |
Collapse
|
2
|
Wu P, Chang C, Zhu G, Zhai L, Zhang X, Huan Q, Gao Z, Deng H, Liang Y, Xiao H. Network Pharmacology Study of Bioactive Components and Molecular Mechanisms of the Glycoside Fraction from Picrorhiza scrophulariiflora Against Experimental Colitis. Drug Des Devel Ther 2023; 17:1531-1546. [PMID: 37249930 PMCID: PMC10224697 DOI: 10.2147/dddt.s407339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/29/2023] [Indexed: 05/31/2023] Open
Abstract
Purpose To explore the potential mechanism of glycosidic fraction of Picrorhiza scrophulariiflora Pennell (GPS) extract for the treatment of colitis using UPLC-QTOF-MS analysis, network pharmacology and experimental research. Methods The active components of GPS extract were identified by UPLC-QTOF-MS analysis and extracted their targets from the databases, which was used for network pharmacology analysis. Kyoto Encyclopedia of genes and genomes (KEGG) pathway analysis was performed to discover potential therapeutic mechanisms, and the network pharmacology results were then validated by in vivo and in vitro experiments. Results The results showed that GPS extract significantly alleviated the clinical signs of colitis, including body weight, disease activity index, colon shortening, and colon tissue damage, and inhibited the transcription and production of colonic IL-1β and IL-6 in DSS-induced colitis mice. In vitro, GPS extract also significantly suppressed nitric oxide (NO) production, iNOS expression, IL-1β and IL-6 transcription of LPS-activated RAW 264.7 cells. Network pharmacology integrated with experimental validation identified that GPS extract significantly suppressed Akt, p38, ERK, and JNK phosphorylation in vivo and in vitro, and luteolin, apocynin, caffeic acid, caffeic acid methyl ester, luteoloside, picroside II, aucubin, cinnamic acid, vanillic acid, and sweroside were the main components responsible for the anti-inflammatory effect of GPS. These findings demonstrate that the potential anti-inflammatory effect of GPS extract against colitis is achieved through suppressing PI3K/Akt and MAPK pathways, and that the abovementioned active components mainly exerted its anti-inflammatory effect. Conclusion The therapeutic effect of GPS extract on colitis is related to PI3K/Akt and MAPK pathways, which is a promising remedy for colitis therapy.
Collapse
Affiliation(s)
- Peigen Wu
- Department of Pharmacy, Peking University Shenzhen Hospital, Shenzhen, People’s Republic of China
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, People’s Republic of China
- School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guizhou, People’s Republic of China
| | - Churui Chang
- School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guizhou, People’s Republic of China
| | - Guanglin Zhu
- Traditional Chinese Medicine Hospital of Qijiang, Chongqing, People’s Republic of China
| | - Lixiang Zhai
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong Special Administrative Region, People’s Republic of China
| | - Xu Zhang
- School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guizhou, People’s Republic of China
| | - Qiuchan Huan
- Department of Pharmacy, Peking University Shenzhen Hospital, Shenzhen, People’s Republic of China
- School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guizhou, People’s Republic of China
| | - Zhengxian Gao
- Department of Pharmacy, Peking University Shenzhen Hospital, Shenzhen, People’s Republic of China
- School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guizhou, People’s Republic of China
| | - Huan Deng
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, People’s Republic of China
| | - Yue Liang
- Department of Pharmacy, Peking University Shenzhen Hospital, Shenzhen, People’s Republic of China
| | - Haitao Xiao
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, People’s Republic of China
- School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guizhou, People’s Republic of China
| |
Collapse
|
3
|
Gao X, Duan S, Cao Y, Zhang Y. Change of monocytes/macrophages in ulcerative colitis patients with symptoms of anxiety and depression. BMC Gastroenterol 2023; 23:67. [PMID: 36906523 PMCID: PMC10007821 DOI: 10.1186/s12876-023-02693-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 02/23/2023] [Indexed: 03/13/2023] Open
Abstract
BACKGROUND AND AIMS Monocytes/macrophages play important roles in inflammatory bowel disease and depression, but few studies had focused on the change of monocytes/macrophages in ulcerative colitis (UC) patients with psychiatric disorders. METHODS UC patients were divided into two groups based on the Hospital Anxiety and Depression Scale (HADS). Demographic and clinical data were captured. Peripheral blood samples and intestinal biopsies were collected for the analysis of monocyte immunophenotype, phagocytic function, and CD4 + T cell differentiation. Transmission electron microscopy was used to observe the ultrastructure of intestinal macrophages. RESULTS A total of 139 UC patients were included. 37.41% and 32.37% of UC patients had symptoms of anxiety and depression. In patients with symptoms of anxiety/depression, mayo score, platelet count, erythrocyte sedimentation rate, and endoscopic score, histological scores were significantly higher than those in UC patients without. In patients with symptoms of anxiety/depression, the percentages of CD14 + + CD16 + monocytes and CD14 + CD16++ monocytes were higher, and the phagocytosis was decreased. Patients with symptoms of anxiety/depression had more CD68 + cells and higher M1/M2 ratios in the intestine mucosal layer compared to those without. CONCLUSIONS Monocytes and intestinal macrophages from UC patients with anxiety/depression tended to polarize to pro-inflammatory subtypes, and their function was also impaired.
Collapse
Affiliation(s)
- Xin Gao
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Shihao Duan
- Department of Gastroenterology, West China Hospital of Sichuan University, No.37 Guoxue Street, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yubin Cao
- Department of Gastroenterology, West China Hospital of Sichuan University, No.37 Guoxue Street, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yan Zhang
- Department of Gastroenterology, West China Hospital of Sichuan University, No.37 Guoxue Street, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
4
|
Cheruku S, Rao V, Pandey R, Rao Chamallamudi M, Velayutham R, Kumar N. Tumor-associated macrophages employ immunoediting mechanisms in colorectal tumor progression: Current research in Macrophage repolarization immunotherapy. Int Immunopharmacol 2023; 116:109569. [PMID: 36773572 DOI: 10.1016/j.intimp.2022.109569] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/01/2022] [Accepted: 12/07/2022] [Indexed: 02/11/2023]
Abstract
Tumor-associated macrophages (TAMs) constitute the most prolific resident of the tumor microenvironment (TME) that regulate its TME into tumor suppressive or progressive milieu by utilizing immunoediting machinery. Here, the tumor cells construct an immunosuppressive microenvironment that educates TAMs to polarize from anti-tumor TAM-M1 to pro-tumor TAM-M2 phenotype consequently contributing to tumor progression. In colorectal cancer (CRC), the TME displays a prominent pro-tumorigenic immune profile with elevated expression of immune-checkpoint molecules notably PD-1, CTLA4, etc., in both MSI and ultra-mutated MSS tumors. This authenticated immune-checkpoint inhibition (ICI) immunotherapy as a pre-requisite for clinical benefit in CRC. However, in response to ICI, specifically, the MSIhi tumors evolved to produce novel immune escape variants thus undermining ICI. Lately, TAM-directed therapies extending from macrophage depletion to repolarization have enabled TME alteration. While TAM accrual implicates clinical benefit in CRC, sustained inflammatory insult may program TAMs to shift from M1 to M2 phenotype. Their ability to oscillate on both facets of the spectrum represents macrophage repolarization immunotherapy as an effective approach to treating CRC. In this review, we briefly discuss the differentiation heterogeneity of colonic macrophages that partake in macrophage-directed immunoediting mechanisms in CRC progression and its employment in macrophage re-polarization immunotherapy.
Collapse
Affiliation(s)
- SriPragnya Cheruku
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal- 576104, Karnataka, India
| | - Vanishree Rao
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal- 576104, Karnataka, India
| | - Ruchi Pandey
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education, and Research, Hajipur, Export Promotions Industrial Park (EPIP), Industrial area, Hajipur, Vaishali, 844102, Bihar, India
| | - Mallikarjuna Rao Chamallamudi
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal- 576104, Karnataka, India
| | - Ravichandiran Velayutham
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education, and Research, Hajipur, Export Promotions Industrial Park (EPIP), Industrial area, Hajipur, Vaishali, 844102, Bihar, India
| | - Nitesh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education, and Research, Hajipur, Export Promotions Industrial Park (EPIP), Industrial area, Hajipur, Vaishali, 844102, Bihar, India.
| |
Collapse
|
5
|
Fu N, Wu F, Jiang Z, Kim W, Ruan T, Malagola E, Ochiai Y, Nápoles OC, Valenti G, White RA, Belin BR, Zamechek LB, LaBella JS, Wang TC. Acute Intestinal Inflammation Depletes/Recruits Histamine-Expressing Myeloid Cells From the Bone Marrow Leading to Exhaustion of MB-HSCs. Cell Mol Gastroenterol Hepatol 2020; 11:1119-1138. [PMID: 33249238 PMCID: PMC7903065 DOI: 10.1016/j.jcmgh.2020.11.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/10/2020] [Accepted: 11/10/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Histidine decarboxylase (HDC), the histamine-synthesizing enzyme, is expressed in a subset of myeloid cells but also marks quiescent myeloid-biased hematopoietic stem cells (MB-HSCs) that are activated upon myeloid demand injury. However, the role of MB-HSCs in dextran sulfate sodium (DSS)-induced acute colitis has not been addressed. METHODS We investigated HDC+ MB-HSCs and myeloid cells by flow cytometry in acute intestinal inflammation by treating HDC-green fluorescent protein (GFP) male mice with 5% DSS at various time points. HDC+ myeloid cells in the colon also were analyzed by flow cytometry and immunofluorescence staining. Knockout of the HDC gene by using HDC-/-; HDC-GFP and ablation of HDC+ myeloid cells by using HDC-GFP; HDC-tamoxifen-inducible recombinase Cre system; diphtheria toxin receptor (DTR) mice was performed. The role of H2-receptor signaling in acute colitis was addressed by treatment of DSS-treated mice with the H2 agonist dimaprit dihydrochloride. Kaplan-Meier survival analysis was performed to assess the effect on survival. RESULTS In acute colitis, rapid activation and expansion of MB-HSC from bone marrow was evident early on, followed by a gradual depletion, resulting in profound HSC exhaustion, accompanied by infiltration of the colon by increased HDC+ myeloid cells. Knockout of the HDC gene and ablation of HDC+ myeloid cells enhance the early depletion of HDC+ MB-HSC, and treatment with H2-receptor agonist ameliorates the depletion of MB-HSCs and resulted in significantly increased survival of HDC-GFP mice with acute colitis. CONCLUSIONS Exhaustion of bone marrow MB-HSCs contributes to the progression of DSS-induced acute colitis, and preservation of quiescence of MB-HSCs by the H2-receptor agonist significantly enhances survival, suggesting the potential for therapeutic utility.
Collapse
Affiliation(s)
- Na Fu
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, College of Physicians and Surgeons, New York, New York; Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York; Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Feijing Wu
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, College of Physicians and Surgeons, New York, New York; Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York; The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Zhengyu Jiang
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, College of Physicians and Surgeons, New York, New York; Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| | - Woosook Kim
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, College of Physicians and Surgeons, New York, New York; Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| | - Tuo Ruan
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, College of Physicians and Surgeons, New York, New York; Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York; Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ermanno Malagola
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, College of Physicians and Surgeons, New York, New York; Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| | - Yosuke Ochiai
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, College of Physicians and Surgeons, New York, New York; Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| | - Osmel Companioni Nápoles
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, College of Physicians and Surgeons, New York, New York; Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| | - Giovanni Valenti
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, College of Physicians and Surgeons, New York, New York; Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| | - Ruth A White
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, College of Physicians and Surgeons, New York, New York; Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| | - Bryana R Belin
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, College of Physicians and Surgeons, New York, New York; Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| | - Leah B Zamechek
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, College of Physicians and Surgeons, New York, New York; Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| | - Jonathan S LaBella
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, College of Physicians and Surgeons, New York, New York; Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| | - Timothy C Wang
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, College of Physicians and Surgeons, New York, New York; Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York.
| |
Collapse
|
6
|
Cui S, Wang C, Bai W, Li J, Pan Y, Huang X, Yang H, Feng Z, Xiang Q, Fei L, Zheng L, Huang J, Zhang Q, Wu Y, Chen Y. CD1d1 intrinsic signaling in macrophages controls NLRP3 inflammasome expression during inflammation. SCIENCE ADVANCES 2020; 6:6/43/eaaz7290. [PMID: 33087357 PMCID: PMC7577718 DOI: 10.1126/sciadv.aaz7290] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 09/08/2020] [Indexed: 06/11/2023]
Abstract
Dysregulation of immune responses in the gut often associates with inflammatory bowel diseases (IBD). Mouse CD1d1, an ortholog of human CD1d mainly participating in lipid-antigen presentation to NKT cells, is able to generate intrinsic signals upon stimulation. Mice with macrophage-specific CD1d1 deficiency (LymCD1d1-/- ) acquire resistance to dextran sodium sulfate (DSS)-induced colitis, attributing to the transcriptional inhibition of NLRP3 inflammasome components. The hyperactivation of NLRP3 inflammasome accounts for gut epithelial proliferation and intestine-blood barrier integrity. Mechanistically, occupancy by the natural ligand glycosphingolipid iGb3, CD1d1 responds with intracellular Ser330 dephosphorylation thus to reduce the Peroxiredoxin 1 (PRDX1)-associated AKT-STAT1 phosphorylation and subsequent NF-κB activation, eventually causing transcriptional down-regulation of Nlrp3 and its immediate substrates Il1b and Il18 in macrophages. Therefore, the counterbalancing role of CD1d1 in macrophages appears to determine severity of DSS-mediated colitis in mice. These findings propose new intervention strategies for treating IBD and other inflammatory disorders.
Collapse
Affiliation(s)
- Shan Cui
- Yanbian University Hospital, Yanbian University, Jilin Province 133000, People's Republic of China
| | - Chenhui Wang
- Institute of Immunology, PLA, Third Military Medical University, Chongqing 400038, People's Republic of China
| | - Weizhi Bai
- Department of Emergency, Chongqing University Center Hospital, Chongqing Emergency Medical Center, Chongqing 400038, People's Republic of China
| | - Jiao Li
- School of Medicine, Yanbian University, Jilin Province 133000, People's Republic of China
| | - Yue Pan
- Institute of Immunology, PLA, Third Military Medical University, Chongqing 400038, People's Republic of China
| | - Xiaoyong Huang
- Institute of Immunology, PLA, Third Military Medical University, Chongqing 400038, People's Republic of China
| | - Han Yang
- Institute of Immunology, PLA, Third Military Medical University, Chongqing 400038, People's Republic of China
| | - Zeqing Feng
- Institute of Immunology, PLA, Third Military Medical University, Chongqing 400038, People's Republic of China
| | - Qun Xiang
- Institute of Immunology, PLA, Third Military Medical University, Chongqing 400038, People's Republic of China
| | - Lei Fei
- Institute of Immunology, PLA, Third Military Medical University, Chongqing 400038, People's Republic of China
| | - Lixin Zheng
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Jian Huang
- Department of Emergency, Chongqing University Center Hospital, Chongqing Emergency Medical Center, Chongqing 400038, People's Republic of China.
| | - Qinggao Zhang
- School of Medicine, Yanbian University, Jilin Province 133000, People's Republic of China.
| | - Yuzhang Wu
- Institute of Immunology, PLA, Third Military Medical University, Chongqing 400038, People's Republic of China.
| | - Yongwen Chen
- Institute of Immunology, PLA, Third Military Medical University, Chongqing 400038, People's Republic of China.
| |
Collapse
|
7
|
The M-CSF receptor in osteoclasts and beyond. Exp Mol Med 2020; 52:1239-1254. [PMID: 32801364 PMCID: PMC8080670 DOI: 10.1038/s12276-020-0484-z] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 12/18/2022] Open
Abstract
Colony-stimulating factor 1 receptor (CSF1R, also known as c-FMS) is a receptor tyrosine kinase. Macrophage colony-stimulating factor (M-CSF) and IL-34 are ligands of CSF1R. CSF1R-mediated signaling is crucial for the survival, function, proliferation, and differentiation of myeloid lineage cells, including osteoclasts, monocytes/macrophages, microglia, Langerhans cells in the skin, and Paneth cells in the intestine. CSF1R also plays an important role in oocytes and trophoblastic cells in the female reproductive tract and in the maintenance and maturation of neural progenitor cells. Given that CSF1R is expressed in a wide range of myeloid cells, altered CSF1R signaling is implicated in inflammatory, neoplastic, and neurodegenerative diseases. Inhibiting CSF1R signaling through an inhibitory anti-CSF1R antibody or small molecule inhibitors that target the kinase activity of CSF1R has thus been a promising therapeutic strategy for those diseases. In this review, we cover the recent progress in our understanding of the various roles of CSF1R in osteoclasts and other myeloid cells, highlighting the therapeutic applications of CSF1R inhibitors in disease conditions. Drugs directed at a key signaling receptor involved in breaking down bone tissue could help treat diseases marked by pathological bone loss and destruction. In a review article, Kyung-Hyun Park-Min and colleagues from the Hospital for Special Surgery in New York, USA, discuss the essential roles played by the colony-stimulating factor 1 receptor (CSF1R) protein in the survival, function, proliferation and differentiation of myeloid lineage stem cells in the bone marrow, including bone-resorbing osteoclasts. They explore the links between the CSF1R-mediated signaling pathway and diseases such as cancer and neurodegeneration. The authors largely focus on bone conditions, highlighting mouse studies in which CSF1R-blocking drugs were shown to ameliorate bone loss and inflammatory symptoms in models of arthritis, osteoporosis and metastatic cancer. Clinical trials are ongoing to test therapeutic applications.
Collapse
|
8
|
Du SY, Huang HF, Li XQ, Zhai LX, Zhu QC, Zheng K, Song X, Xu CS, Li CY, Li Y, He ZD, Xiao HT. Anti-inflammatory properties of uvaol on DSS-induced colitis and LPS-stimulated macrophages. Chin Med 2020; 15:43. [PMID: 32411289 PMCID: PMC7206718 DOI: 10.1186/s13020-020-00322-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 04/23/2020] [Indexed: 01/01/2023] Open
Abstract
Background Apocynum venetum leaves are used as a kind of phytomedicine and the main ingredient in some traditional Chinese medicine products for the relief of colitis. To understand the bioactive constituents of A. venetum L., we did a phytochemistry study and investigated anti-Inflammatory effects of compounds and explored the underlying mechanisms. Methods We isolated compounds from ethanol extract of A. venetum L. leaf and detected the most effective compound by NO inhibition assay. We investigated anti-Inflammatory effects on dextran sulfate sodium (DSS)-induced colitis mice and lipopolysaccharide (LPS)-stimulated RAW264.7 cells. The disease activity index was determined by scores of body weight loss, diarrhea and rectal bleeding; histological damage was analyzed by H&E staining; macrophages change in the colon were analyzed by immunohistochemistry (IHC); myeloperoxidase activity was measured by myeloperoxidase assay kits; levels of proinflammatory cytokines were determined by qPCR and ELISA; protein production such as COX-2, iNOS, STAT3 and ERK1/2 were determined by western blotting. Results We isolated uvaol from ethanol extract of A. venetum L. leaf and found uvaol has excellent potential of inhibiting NO production. We further found uvaol could attenuate disease activity index (DAI), colon shortening, colon injury, and colonic myeloperoxidase activity in DSS-induced colitis mice. Moreover, uvaol significantly reduces mRNA expression and production of pro-inflammatory cytokines (TNF-α, IL-6, IL-1β, and MCP-1) and infiltration of macrophages in colonic tissues of colitis mice. Studies on LPS challenged murine macrophage RAW246.7 cells also revealed that uvaol reduces mRNA expression and production of pro-inflammatory cytokines and mediators. Mechanically, uvaol inhibits the pro-inflammatory ERK/STAT3 axis in both inflamed colonic tissues and macrophages. Conclusions A. venetum leaf contains uvaol and uvaol has potent anti-inflammatory effects on DSS-induced experimental colitis and LPS-stimulated RAW264.7 macrophage cells. These results suggest uvaol is a prospective anti-inflammatory agent for colonic inflammation.
Collapse
Affiliation(s)
- Shi-Yun Du
- 1School of Pharmaceutical Sciences, Guangdong Key Laboratory for Genome Stability & Human Disease Prevention, Shenzhen Key Laboratory of Novel Natural Health Care Products, Innovation Platform for Natural Small Molecule Drugs, Engineering Laboratory of Shenzhen Natural Small Molecule Innovative Drugs, Health Science Center, Shenzhen University, Shenzhen, 518060 China
| | - Hai-Feng Huang
- 1School of Pharmaceutical Sciences, Guangdong Key Laboratory for Genome Stability & Human Disease Prevention, Shenzhen Key Laboratory of Novel Natural Health Care Products, Innovation Platform for Natural Small Molecule Drugs, Engineering Laboratory of Shenzhen Natural Small Molecule Innovative Drugs, Health Science Center, Shenzhen University, Shenzhen, 518060 China.,2The Key Laboratory of Pharmacology and Druggability for Natural Medicines, Department of Education, Guizhou Medical University, Guiyang, 550025 Guizhou China
| | - Xian-Qian Li
- 1School of Pharmaceutical Sciences, Guangdong Key Laboratory for Genome Stability & Human Disease Prevention, Shenzhen Key Laboratory of Novel Natural Health Care Products, Innovation Platform for Natural Small Molecule Drugs, Engineering Laboratory of Shenzhen Natural Small Molecule Innovative Drugs, Health Science Center, Shenzhen University, Shenzhen, 518060 China.,3School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong, China
| | - Li-Xiang Zhai
- 3School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong, China
| | - Qin-Chang Zhu
- 1School of Pharmaceutical Sciences, Guangdong Key Laboratory for Genome Stability & Human Disease Prevention, Shenzhen Key Laboratory of Novel Natural Health Care Products, Innovation Platform for Natural Small Molecule Drugs, Engineering Laboratory of Shenzhen Natural Small Molecule Innovative Drugs, Health Science Center, Shenzhen University, Shenzhen, 518060 China
| | - Kai Zheng
- 1School of Pharmaceutical Sciences, Guangdong Key Laboratory for Genome Stability & Human Disease Prevention, Shenzhen Key Laboratory of Novel Natural Health Care Products, Innovation Platform for Natural Small Molecule Drugs, Engineering Laboratory of Shenzhen Natural Small Molecule Innovative Drugs, Health Science Center, Shenzhen University, Shenzhen, 518060 China
| | - Xun Song
- 1School of Pharmaceutical Sciences, Guangdong Key Laboratory for Genome Stability & Human Disease Prevention, Shenzhen Key Laboratory of Novel Natural Health Care Products, Innovation Platform for Natural Small Molecule Drugs, Engineering Laboratory of Shenzhen Natural Small Molecule Innovative Drugs, Health Science Center, Shenzhen University, Shenzhen, 518060 China
| | - Chen-Shu Xu
- 1School of Pharmaceutical Sciences, Guangdong Key Laboratory for Genome Stability & Human Disease Prevention, Shenzhen Key Laboratory of Novel Natural Health Care Products, Innovation Platform for Natural Small Molecule Drugs, Engineering Laboratory of Shenzhen Natural Small Molecule Innovative Drugs, Health Science Center, Shenzhen University, Shenzhen, 518060 China
| | - Chen-Yang Li
- 1School of Pharmaceutical Sciences, Guangdong Key Laboratory for Genome Stability & Human Disease Prevention, Shenzhen Key Laboratory of Novel Natural Health Care Products, Innovation Platform for Natural Small Molecule Drugs, Engineering Laboratory of Shenzhen Natural Small Molecule Innovative Drugs, Health Science Center, Shenzhen University, Shenzhen, 518060 China
| | - Ying Li
- 1School of Pharmaceutical Sciences, Guangdong Key Laboratory for Genome Stability & Human Disease Prevention, Shenzhen Key Laboratory of Novel Natural Health Care Products, Innovation Platform for Natural Small Molecule Drugs, Engineering Laboratory of Shenzhen Natural Small Molecule Innovative Drugs, Health Science Center, Shenzhen University, Shenzhen, 518060 China
| | - Zhen-Dan He
- 1School of Pharmaceutical Sciences, Guangdong Key Laboratory for Genome Stability & Human Disease Prevention, Shenzhen Key Laboratory of Novel Natural Health Care Products, Innovation Platform for Natural Small Molecule Drugs, Engineering Laboratory of Shenzhen Natural Small Molecule Innovative Drugs, Health Science Center, Shenzhen University, Shenzhen, 518060 China
| | - Hai-Tao Xiao
- 1School of Pharmaceutical Sciences, Guangdong Key Laboratory for Genome Stability & Human Disease Prevention, Shenzhen Key Laboratory of Novel Natural Health Care Products, Innovation Platform for Natural Small Molecule Drugs, Engineering Laboratory of Shenzhen Natural Small Molecule Innovative Drugs, Health Science Center, Shenzhen University, Shenzhen, 518060 China.,2The Key Laboratory of Pharmacology and Druggability for Natural Medicines, Department of Education, Guizhou Medical University, Guiyang, 550025 Guizhou China
| |
Collapse
|
9
|
Manthey CL, Moore BA, Chen Y, Loza MJ, Yao X, Liu H, Belkowski SM, Raymond-Parks H, Dunford PJ, Leon F, Towne JE, Plevy SE. The CSF-1-receptor inhibitor, JNJ-40346527 (PRV-6527), reduced inflammatory macrophage recruitment to the intestinal mucosa and suppressed murine T cell mediated colitis. PLoS One 2019; 14:e0223918. [PMID: 31710624 PMCID: PMC6844469 DOI: 10.1371/journal.pone.0223918] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 10/01/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND & AIMS Originally believed to be primarily a disorder of T-cell signaling, evidence shows that macrophage-lineage cells also contribute to the pathogenesis of Crohn's disease (CD). Colony stimulating factor-1 (CSF-1) is a key regulator of the macrophage lineage, but its role in CD has not been well established. We examined transcriptional data from CD mucosa for evidence of CSF-1 pathway activation and tested JNJ-40346527 (PRV-6527), a small molecule inhibitor of CSF-1 receptor kinase (CSF-1R), for its ability to inhibit disease indices in murine colitis. METHODS A CSF-1 pathway gene set was created from microarray data of human whole blood cultured ex vivo with CSF-1 and compared to a TNFα-induced gene set generated from epithelial-lineage cells. Gene set variation analysis was performed using existing Crohn's mucosa microarray data comparing patients who either responded or failed to respond to anti-TNFα therapy. Commencing day 14 or day 21, mice with T-cell transfer colitis were treated with vehicle or JNJ-40346527 until study termination (day 42). Endpoints included colon weight/length ratios and histopathology scores, and macrophage and T cells were assessed by immunohistochemistry. Mucosal gene expression was investigated using RNAseq. RESULTS Both the CSF-1 and the TNFα gene sets were enriched in the colonic mucosal transcriptomes of Crohn's disease and in mouse colitis, and expression of both gene sets was highest in patients who did not respond to anti-TNFα therapy. In these patients neither set was reduced by therapy. In the mouse model, JNJ-40346527 inhibited the increase in colon weight/length ratio by ∼50%, reduced histological disease scores by ∼60%, and reduced F4/80+ mononuclear cell and CD3+ lymphocyte numbers. RNAseq analysis confirmed the CSF-1 gene set was sharply reduced in treated mice, as were gene sets enriched in "M1" inflammatory and "M0" resident macrophages and in activated T cells. CONCLUSIONS CSF-1 biology is activated in Crohn's disease and in murine T cell transfer colitis. Inhibition of CSF-1R by JNJ-40346527 was associated with attenuated clinical disease scores and reduced inflammatory gene expression in mice. These data provide rationale for testing JNJ-40346527 (PRV-6527) in human inflammatory bowel disease.
Collapse
Affiliation(s)
- Carl L. Manthey
- Janssen Research & Development, LLC, Pennsylvania, United States of America
| | - Beverley A. Moore
- Janssen Research & Development, LLC, Pennsylvania, United States of America
- * E-mail:
| | - Yanqing Chen
- Janssen Research & Development, LLC, Pennsylvania, United States of America
| | - Matthew J. Loza
- Janssen Research & Development, LLC, Pennsylvania, United States of America
| | - Xiang Yao
- Janssen Research & Development, LLC, Pennsylvania, United States of America
| | - Hao Liu
- Janssen Research & Development, LLC, Pennsylvania, United States of America
| | | | | | - Paul J. Dunford
- Janssen Research & Development, LLC, Pennsylvania, United States of America
| | - Francisco Leon
- Janssen Research & Development, LLC, Pennsylvania, United States of America
| | - Jennifer E. Towne
- Janssen Research & Development, LLC, Pennsylvania, United States of America
| | - Scott E. Plevy
- Janssen Research & Development, LLC, Pennsylvania, United States of America
| |
Collapse
|
10
|
Treatment with Molgramostim (Recombinant Human Granulocyte-Macrophage Colony Stimulating Factor, Rhugm-Csf, Mielogen) and Lenograstim (Granulocyte-Colony Stimulating Factor) Improves Experimental Colitis in Rats. BIOMED RESEARCH INTERNATIONAL 2019; 2019:8298192. [PMID: 31687401 PMCID: PMC6803744 DOI: 10.1155/2019/8298192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 08/20/2019] [Indexed: 11/17/2022]
Abstract
Background/Aim Treatment with growth factors could be beneficial in both inflammatory bowel disease and experimental colitis. The aim of this study was to investigate the effect of Colony Stimulating Factor (CSF), and Recombinant Human (rHu) Granulocyte Stimulating Factor (GSF) in experimental colitis in rats. Methods Experimental colitis was induced in 62 male Wistar rats, divided into 9 groups, using 2,4,6-trinitrobenzensulfonic acid (TNBS). Group 1: Ten rats with colitis without treatment (control group). Euthanasia after 15 days. Group 2: Ten animals with colitis without treatment (control group). Euthanasia after 30 days. Group 3: Six animals with colitis. Immediate treatment with CSF. Euthanasia after 19 days. Group 4: Six animals with colitis. Treatment started 7 days after the induction of colitis. Animals were kept for 19 days. Group 5: Six animals with colitis. Treatment started 2 weeks after the induction of colitis. Group 6: Six animals with colitis, the same as in group 3. Treatment with GSF. Group 7: Six animals with colitis, the same as in group 4. Treatment with GSF. Group 8 Six animals with colitis, the same as in group 5. Treatment with GSF. Group 9: Six animals with colitis. Immediate treatment with prednisolone. Euthanasia after 15 days. Results CSF and GSF administration significantly improved the histological score (P < 0.05) and reduced malondialdehyde contents (P < 0.05), compared to control groups in all animals. CSF was superior to GSF and to prednisolone. Conclusion Administration of both CSF and GSF could significantly improve the histological score and oxidative stress in experimental colitis in rats.
Collapse
|
11
|
Qi S, Li Y, Dai Z, Xiang M, Wang G, Wang L, Wang Z. Uhrf1-Mediated Tnf-α Gene Methylation Controls Proinflammatory Macrophages in Experimental Colitis Resembling Inflammatory Bowel Disease. THE JOURNAL OF IMMUNOLOGY 2019; 203:3045-3053. [DOI: 10.4049/jimmunol.1900467] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 09/19/2019] [Indexed: 12/19/2022]
|
12
|
Al-Dwairi A, Alqudah M, Al-Shboul O, Alfaqih M, Alomari D. Metformin exerts anti-inflammatory effects on mouse colon smooth muscle cells in vitro. Exp Ther Med 2018; 16:985-992. [PMID: 30116349 DOI: 10.3892/etm.2018.6222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 04/20/2018] [Indexed: 02/07/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic incurable condition characterized by relapsing inflammation of the gut. Intestinal smooth muscle cells (SMCs) are affected structurally and functionally during IBD due to excessive production of different inflammatory mediators. Metformin is a widely used antidiabetic agent known to exert several anti-inflammatory effects in different tissues independently from its hypoglycemic effect. The aim of the present study was to investigate the effect of metformin on expression and secretion of different cytokines and chemokines from mouse colon SMCs (CSMCs) following induction of inflammation with lipopolysaccharide (LPS) in vitro. CSMCs from male BALB/c mice were isolated and cultured in Dulbecco's modified Eagle's medium and treated with LPS (1 µg/ml) and 0, 5, 10 or 20 mM metformin for 24 h. Expression and secretion of tumor necrosis factor-α (TNF-α), interleukin-1α (IL-1α), macrophage colony stimulating factor (M-CSF), T cell activation gene-3 (TCA-3) and stromal cell-derived factor-1 (SDF-1) was evaluated by ELISA. LPS-treated CSMCs demonstrated significantly increased expression of TNF-α, IL-1α, M-CSF, TCA-3 and SDF-1 when compared with the control group (P<0.05). Co-treatment with metformin (5 and 10 mM) significantly reduced their expression by ~20-40% when compared with LPS treatment alone (P<0.05). Furthermore, secretion of TNF-α, IL-1α, M-CSF and TCA-3 into the conditioned media was significantly decreased by metformin (5 and 10 mM; P<0.05). In addition, metformin decreased levels of LPS-induced nuclear factor-κB phosphorylation. These data suggest that metformin may provide beneficial anti-inflammatory effects on CSMCs and it may be utilized as an adjunct therapy for patients suffering from IBD.
Collapse
Affiliation(s)
- Ahmed Al-Dwairi
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Mohammad Alqudah
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Othman Al-Shboul
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Mahmoud Alfaqih
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Dana Alomari
- Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| |
Collapse
|
13
|
Al-Dwairi A, Alqudah TE, Al-Shboul O, Alqudah M, Mustafa AG, Alfaqih MA. Glucagon-like peptide-1 exerts anti-inflammatory effects on mouse colon smooth muscle cells through the cyclic adenosine monophosphate/nuclear factor-κB pathway in vitro. J Inflamm Res 2018; 11:95-109. [PMID: 29593427 PMCID: PMC5865574 DOI: 10.2147/jir.s152835] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background Intestinal smooth muscle cells (SMCs) undergo substantial morphological, phenotypic, and contractile changes during inflammatory bowel disease (IBD). SMCs act as a source and target for different inflammatory mediators, however their role in IBD pathogenesis is usually overlooked. Glucagon-like peptide-1 (GLP-1) is an incretin hormone reported to exert multiple anti-inflammatory effects in different tissues including the gastrointestinal tract through various mechanisms. Aim The aim of this research is to explore the effect of GLP-1 analog exendin-4 on the expression and secretion of inflammatory markers from mouse colon smooth muscle cells (CSMCs) after stimulation with lipopolysaccharide (LPS). Materials and methods Freshly isolated CSMCs from male BALB/c mice were cultured in DMEM and treated with vehicle, LPS (1 μg/mL), LPS+exendin-4 (50 nM), or LPS+exendin-4 (100 nM) for 24 h. Expression of inflammatory cytokines was then evaluated by antibody array membrane. Results CSMCs showed basal expression of several cytokines which was enhanced with the induction of inflammation by LPS. However, exendin-4 (50 and 100 nM) significantly (p<0.05) reduced the expression of multiple cytokines including tumor necrosis factor-α (TNF-α), interleukin-1α (IL-1α), T cell activation gene-3 (TCA-3), stromal cell-derived factor-1 (SDF-1), and macrophage colony stimulating factor (M-CSF). To confirm these results, expression of these cytokines was further assessed by enzyme-linked immunosorbent assay and real-time polymerase chain reaction and similar results were also observed. Moreover, secretion of TNF-α and IL1-α into the conditioned media was significantly downregulated by exendin-4 when compared to LPS-treated cells. Furthermore, LPS increased NF-κB phosphorylation, while exendin-4 significantly reduced levels of NF-κB phosphorylation. Conclusion These data indicate that GLP-1 analogs can exert significant anti-inflammatory effects on CSMCs and can potentially be used as an adjunct treatment for inflammatory bowel conditions.
Collapse
Affiliation(s)
- Ahmed Al-Dwairi
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Tamara E Alqudah
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Othman Al-Shboul
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Mohammad Alqudah
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Ayman G Mustafa
- Department of Anatomy, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Mahmoud A Alfaqih
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
14
|
Gao XJ, Li T, Wei B, Yan ZX, Hu N, Huang YJ, Han BL, Wai TS, Yang W, Yan R. Bacterial Outer Membrane Vesicles from Dextran Sulfate Sodium-Induced Colitis Differentially Regulate Intestinal UDP-Glucuronosyltransferase 1A1 Partially Through Toll-Like Receptor 4/Mitogen-Activated Protein Kinase/Phosphatidylinositol 3-Kinase Pathway. Drug Metab Dispos 2018; 46:292-302. [PMID: 29311138 DOI: 10.1124/dmd.117.079046] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 01/03/2018] [Indexed: 11/22/2022] Open
Abstract
UDP-glucuronosyltransferase 1A1 (UGT1A1) constitutes an important part of intestinal epithelial barrier and catalyzes glucuronidation of many endogenous compounds and drugs. Downregulation of UGT1A1 in inflammation has been reported, whereas the association with gut dysbiosis is poorly defined. This study verified the involvement of gut microbiota in intestinal UGT1A1 regulation using dextran sulfate sodium (DSS)-induced rat colitis model plus fecal microbiota transplantation (FMT). Generally, both DSS induction and colitis-to-normal FMT suppressed mRNA and protein expressions of UGT1A1 and nuclear xenobiotic receptors (NRs) in colon, but enhanced mRNA and decreased protein of rat UGT1A1/rat NRs in small intestine. Normal-to-colitis FMT alleviated DSS-induced changes. Bacterial outer membrane vesicles (OMVs) from colitis rats and rats receiving colitis feces reduced both mRNA and protein of human UGT1A1 (hUGT1A1)/human NRs (hNRs) in Caco-2 cells. Interestingly, using deoxycholate to reduce lipopolysaccharide, normal OMVs upregulated hUGT1A1/hNRs, whereas colitis OMVs decreased, indicating the involvement of other OMVs components in UGT1A1 regulation. The 10- to 50-kDa fractions from both normal and colitis OMVs downregulated hUGT1A1, human PXR, and human PPAR-γ, whereas >50-kDa fractions from normal rats upregulated hUGT1A1 and human CAR. Additionally, the conditioned medium from OMVs-stimulated rat primary macrophages also reduced hUGT1A1/hNRs expression. Both Toll-like receptor (TLR)2 and TLR4 were activated by DSS, colitis-to-normal FMT, and the opposite, whereas only TLR4 was increased in OMVs-treated cells. TLR4 small interfering RNA blocked hUGT1A1/hNRs downregulation and phosphatidylinositol 3-kinase/Akt, extracellular signal-regulated kinase, and nuclear factor κB phosphorylation evoked by bacterial OMVs. Taken together, this study demonstrated that gut microbiota regulate intestinal UGT1A1 partially through secreting OMVs, which interact with intestinal epithelial cells directly or via activating macrophage.
Collapse
Affiliation(s)
- Xue-Jiao Gao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China; and Zhuhai UM Science & Technology Research Institute, Zhuhai, China
| | - Ting Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China; and Zhuhai UM Science & Technology Research Institute, Zhuhai, China
| | - Bin Wei
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China; and Zhuhai UM Science & Technology Research Institute, Zhuhai, China
| | - Zhi-Xiang Yan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China; and Zhuhai UM Science & Technology Research Institute, Zhuhai, China
| | - Nan Hu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China; and Zhuhai UM Science & Technology Research Institute, Zhuhai, China
| | - Yan-Juan Huang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China; and Zhuhai UM Science & Technology Research Institute, Zhuhai, China
| | - Bei-Lei Han
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China; and Zhuhai UM Science & Technology Research Institute, Zhuhai, China
| | - Tai-Seng Wai
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China; and Zhuhai UM Science & Technology Research Institute, Zhuhai, China
| | - Wei Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China; and Zhuhai UM Science & Technology Research Institute, Zhuhai, China
| | - Ru Yan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China; and Zhuhai UM Science & Technology Research Institute, Zhuhai, China
| |
Collapse
|
15
|
Zheng X, Lv Y, Li S, Zhang Q, Zhang X, Hao Z. Adeno-associated virus-mediated colonic secretory expression of HMGB1 A box attenuates experimental colitis in mice. J Gene Med 2018; 18:261-272. [PMID: 27572454 DOI: 10.1002/jgm.2899] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 08/25/2016] [Accepted: 08/25/2016] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Extracellular high mobility group box 1 (HMGB1) is crucially implicated in the pathogenesis of inflammatory bowel diseases (IBDs). A box domain of HMGB1 has been identified as a specific antagonist of HMGB1. In the present study, we tested the effects of adeno-associated virus (AAV)-mediated colonic secretory expression of HMGB1 A box on murine experimental colitis. METHODS Self-complementary AAV-2 carrying mouse immunoglobin Gκ leader-human HMGB1 A box (AAV-HMGB1 A box) was constructed. The effects of intracolonically administered AAV-HMGB1 A box on dextran sulfate sodium (DSS)- and 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis were assessed by the disease activity index (DAI), colon length, macroscopic and histological scoring, myeloperoxidase (MPO) activity, and epithelial apoptosis and complementary proliferation. Colonic immune cell infiltrates, mucosal malondialdehyde content and superoxide dismutase activity, colonic tumor necrosis factor-α (TNF-α), interleukin (IL)-1β and IL-10 levels, serum HMGB1 concentration, and colonic HMGB1 release were determined to investigate the underlying mechanisms. RESULTS Intracolonically administered AAV-HMGB1 A box efficiently mediated secretory expression of HMGB1 A box and led to significant decreases in DAI, macroscopic and histological scores and colonic epithelial apoptosis in both DSS- and TNBS-treated mice. Modulating inflammation-associated cytokines, such as inhibiting colonic TNF-α and IL-1β expression, decreasing HMGB1 release, and restoring colonic IL-10 levels, and thereby inhibiting inflammatory cell infiltration and alleviating oxidant damage, might be the underlying mechanism. CONCLUSIONS Intracolonic application of AAV-HMGB1 A box is effective in alleviating murine colitis and has therapeutic potential in human IBDs.
Collapse
Affiliation(s)
- Xiaoyan Zheng
- Department of Rheumatology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
| | - Yifei Lv
- Department of Gastroenterology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi Province, People's Republic of China
| | - Shuang Li
- Department of Gastroenterology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
| | - Qiannan Zhang
- Department of Gastroenterology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
| | - Xueting Zhang
- Department of Gastroenterology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
| | - Zhiming Hao
- Department of Rheumatology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China. .,Department of Gastroenterology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China.
| |
Collapse
|
16
|
Seyedabadi M, Rahimian R, Ghia JE. The role of alpha7 nicotinic acetylcholine receptors in inflammatory bowel disease: involvement of different cellular pathways. Expert Opin Ther Targets 2018; 22:161-176. [PMID: 29298542 DOI: 10.1080/14728222.2018.1420166] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Autonomic imbalance plays a pivotal role in the pathophysiology of inflammatory bowel diseases (IBD). The central nervous system (CNS) cooperates dynamically with the immune system to regulate inflammation through humoral and neural pathways. In particular, acetylcholine (Ach), the main neurotransmitter in the vagus nerve, decreases the production of pro-inflammatory cytokines through a mechanism dependent on the α7 nicotinic Ach receptors (α7nAChRs). Areas covered: Here, we review the evidence for involvement of the cholinergic anti-inflammatory pathway (CAP) in IBD. We also elaborate the role of α7nAChRs and subsequent cellular pathways in CAP. Finally, we review potential therapeutic implications of modulators of these receptors. Expert opinion: Alpha7nAChR modulators possess both cognitive improving and anti-inflammatory properties. Although, these agents demonstrated therapeutic benefits in experimental models, their efficacy has not always been translated in clinical trials. Thus, development of more specific α7nAChR ligands as well as more experimental studies and better controlled trials, especially in the field of IBD, are encouraged for a progress in this field.
Collapse
Affiliation(s)
- Mohammad Seyedabadi
- a Department of Pharmacology, School of Medicine , Bushehr University of Medical Sciences , Bushehr , Iran.,b The Persian Gulf Biomedical Sciences Research Institute , Bushehr University of Medical Sciences , Bushehr , Iran.,c Education Development Center , Bushehr University of Medical Sciences , Bushehr , Iran
| | - Reza Rahimian
- d Department of Psychiatry and Neuroscience, Faculty of Medicine , CERVO Brain Research Center, Laval University , Quebec , Quebec , Canada
| | - Jean-Eric Ghia
- e Department of Immunology , University of Manitoba , Winnipeg , Manitoba , Canada.,f Department of Internal Medicine Section of Gastroenterology, and Inflammatory Bowel Disease Clinical & Research Center , University of Manitoba , Winnipeg , Manitoba , Canada
| |
Collapse
|
17
|
Chromofungin (CHR: CHGA47-66) is downregulated in persons with active ulcerative colitis and suppresses pro-inflammatory macrophage function through the inhibition of NF-κB signaling. Biochem Pharmacol 2017; 145:102-113. [DOI: 10.1016/j.bcp.2017.08.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 08/17/2017] [Indexed: 12/22/2022]
|
18
|
Zhang LC, Wang Y, Tong LC, Sun S, Liu WY, Zhang S, Wang RM, Wang ZB, Li L. Berberine alleviates dextran sodium sulfate-induced colitis by improving intestinal barrier function and reducing inflammation and oxidative stress. Exp Ther Med 2017; 13:3374-3382. [PMID: 28587416 PMCID: PMC5450762 DOI: 10.3892/etm.2017.4402] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Accepted: 01/06/2017] [Indexed: 12/21/2022] Open
Abstract
Berberine has demonstrated efficacy in alleviating experimental colitis in vivo and in vitro. However, the anti-colitis mechanisms of berberine that enable it to promote intestinal barrier function in vivo remain unclear. The present study aimed to evaluate the effect of berberine on intestinal epithelial barrier function, expression of tight junction proteins and the levels of inflammatory and oxidative stress factors in the intestinal mucosa of dextran sulfate sodium (DSS)-induced colitis mice. Berberine (100 mg/kg) was administered for five days to mice with established colitis, induced by administration of DSS (3% w/v) for six days. Intestinal barrier function and the presence of proinflammatory factors, oxidative stress and active signaling pathways in the colon were determined principally by western blotting and reverse transcription-quantitative polymerase chain reaction. It was observed that berberine reduced weight loss, shortening of the colon and colon damage in DSS-colitis mice. In addition, berberine significantly inhibited the increase of fluorescein isothiocyanate-dextran in serum and the decrease of zonula occluden-1 (also known as tight junction protein-1), occludin and epithelial cadherin expression in colonic tissue, relative to a DSS-treated control group. Berberine also significantly inhibited the expression of interleukin (IL)-1β, IL-6 and tumor necrosis factor-α mRNA and phosphorylation of signal transducer and activator of transcription 3. Furthermore, berberine reduced the levels of myeloperoxidase and increased the levels of superoxide dismutase and catalase in colon and serum samples relative to the control group. The expression of cluster of differentiation 68 in the colon of colitis mice was also reduced by berberine. Collectively, these data suggest that berberine alleviates colitis principally by improving intestinal barrier function and promoting anti-inflammatory and antioxidative stress responses. In turn these effects inhibit macrophage infiltration into the colon and thus may be central to the anti-colitis activity of berberine.
Collapse
Affiliation(s)
- Li-Chao Zhang
- Department of Pharmacy, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Yue Wang
- Department of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Ling-Chang Tong
- Department of Pharmacology, College of Pharmacy, The Second Military Medical University, Shanghai 200433, P.R. China
| | - Sheng Sun
- Department of Pharmacology, College of Pharmacy, The Second Military Medical University, Shanghai 200433, P.R. China
| | - Wei-Ye Liu
- Department of Pharmacology, College of Pharmacy, The Second Military Medical University, Shanghai 200433, P.R. China
| | - Su Zhang
- Department of Pharmacy, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai 200071, P.R. China.,Department of Pharmacology, College of Pharmacy, The Second Military Medical University, Shanghai 200433, P.R. China
| | - Rong-Mei Wang
- Department of Pharmacology, College of Pharmacy, The Second Military Medical University, Shanghai 200433, P.R. China
| | - Zhi-Bin Wang
- Department of Pharmacology, College of Pharmacy, The Second Military Medical University, Shanghai 200433, P.R. China
| | - Ling Li
- Department of Pharmacology, College of Pharmacy, The Second Military Medical University, Shanghai 200433, P.R. China
| |
Collapse
|
19
|
Anti-colony-stimulating factor therapies for inflammatory and autoimmune diseases. Nat Rev Drug Discov 2016; 16:53-70. [PMID: 28031576 DOI: 10.1038/nrd.2016.231] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
20
|
Molendijk I, Barnhoorn MC, de Jonge-Muller ESM, Mieremet-Ooms MAC, van der Reijden JJ, van der Helm D, Hommes DW, van der Meulen-de Jong AE, Verspaget HW. Intraluminal Injection of Mesenchymal Stromal Cells in Spheroids Attenuates Experimental Colitis. J Crohns Colitis 2016; 10:953-64. [PMID: 26896084 DOI: 10.1093/ecco-jcc/jjw047] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 02/11/2016] [Indexed: 02/08/2023]
Abstract
BACKGROUND AND AIMS In recent years, mesenchymal stromal cells [MSCs] emerged as a promising therapeutic option for various diseases, due to their immunomodulatory properties. We previously observed that intraperitoneally injected MSCs in experimental colitis form spherical shaped aggregates. Therefore, we aggregated MSCs in vitro into spheroids and injected them intraluminally in mice with established colitis, to investigate whether these MSC spheroids could alleviate the colitis. METHODS We injected 0.5 x 10(6) MSCs in spheroids, 2.0 x 10(6) MSCs in spheroids, or phosphate-buffered saline [PBS] as a treatment control, via an enema in mice with established dextran sulphate sodium [DSS]-induced colitis. Body weight was measured daily and disease activity score was determined at sacrifice. Endoscopy was performed to evaluate mucosal healing. After sacrifice, both systemic and local inflammatory responses were evaluated. RESULTS Intraluminally injected MSC spheroids alleviated DSS-induced colitis, resulting in significantly less body weight loss and lower disease activity score at sacrifice when a high dose of MSC spheroids was administered. However, the percentage of mucosal lesions in the distal colon and endoscopy scores were not significantly lower after treatment with 2.0 x 10(6) MSCs in spheroids compared with PBS-treated mice. Systemic inflammation marker serum amyloid A [SAA] was significantly reduced after treatment with 2.0 x 10(6) MSCs in spheroids. In addition, local cytokine levels of IFN-ɣ, TNF-α, IL-6, and IL-17a, as well as numbers of macrophages and neutrophils, showed a clear decrease-though not always significant-after intraluminal injection of the MSC spheroids. CONCLUSION Intraluminally injected MSC spheroids at least partially attenuate experimental colitis, with fewer phagocytes and proinflammmatory cytokines, when a high dose of MSCs in spheroids was administered.
Collapse
Affiliation(s)
- Ilse Molendijk
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Marieke C Barnhoorn
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Marij A C Mieremet-Ooms
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Johan J van der Reijden
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Danny van der Helm
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Daniel W Hommes
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands Division of Digestive Diseases, University of California Los Angeles, Los Angeles, CA, USA
| | | | - Hein W Verspaget
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
21
|
Yu C, Zhang S, Wang Y, Zhang S, Luo L, Thorlacius H. Platelet-Derived CCL5 Regulates CXC Chemokine Formation and Neutrophil Recruitment in Acute Experimental Colitis. J Cell Physiol 2016; 231:370-6. [PMID: 26089223 DOI: 10.1002/jcp.25081] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 06/15/2015] [Indexed: 01/30/2023]
Abstract
Accumulating data suggest that platelets not only regulate thrombosis and haemostasis but also inflammatory processes. Platelets contain numerous potent pro-inflammatory compounds, including the chemokines CCL5 and CXCL4, although their role in acute colitis remains elusive. The aim of this study is to examine the role of platelets and platelet-derived chemokines in acute colitis. Acute colitis is induced in female Balb/c mice by administration of 5% dextran sodium sulfate (DSS) for 5 days. Animals receive a platelet-depleting, anti-CCL5, anti-CXCL4, or a control antibody prior to DSS challenge. Colonic tissue is collected for quantification of myeloperoxidase (MPO) activity, CXCL5, CXCL2, interleukin-6 (IL-6), and CCL5 levels as well as morphological analyses. Platelet depletion reduce tissue damage and clinical disease activity index in DSS-exposed animals. Platelet depletion not only reduces levels of CXCL2 and CXCL5 but also levels of CCL5 in the inflamed colon. Immunoneutralization of CCL5 but not CXCL4 reduces tissue damage, CXC chemokine expression, and neutrophil recruitment in DSS-treated animals. These findings show that platelets play a key role in acute colitis by regulating CXC chemokine generation, neutrophil infiltration, and tissue damage in the colon. Moreover, our results suggest that platelet-derived CCL5 is an important link between platelet activation and neutrophil recruitment in acute colitis.
Collapse
Affiliation(s)
- Changhui Yu
- Department of Clinical Sciences Section of Surgery, Malmö Lund University, Malmö, Sweden.,Department of Gastroenterology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Songen Zhang
- Department of Clinical Sciences Section of Surgery, Malmö Lund University, Malmö, Sweden
| | - Yongzhi Wang
- Department of Clinical Sciences Section of Surgery, Malmö Lund University, Malmö, Sweden
| | - Su Zhang
- Department of Clinical Sciences Section of Surgery, Malmö Lund University, Malmö, Sweden
| | - Lingtao Luo
- Department of Clinical Sciences Section of Surgery, Malmö Lund University, Malmö, Sweden
| | - Henrik Thorlacius
- Department of Clinical Sciences Section of Surgery, Malmö Lund University, Malmö, Sweden
| |
Collapse
|
22
|
Kondo Y, Kinoshita M, Yoshida T, Matoba H, Uehara T, Ikeyama M, Nakayama J, Yoshida K, Ikeda SI. Unexpected Occurrence of Fetal Hemophagocytic Syndrome in a Patient with Hereditary Diffuse Leukoencephalopathy with Spheroids. ACTA ACUST UNITED AC 2016. [DOI: 10.4236/crcm.2016.53014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
23
|
Qing-dai powder promotes recovery of colitis by inhibiting inflammatory responses of colonic macrophages in dextran sulfate sodium-treated mice. Chin Med 2015; 10:29. [PMID: 26464580 PMCID: PMC4604072 DOI: 10.1186/s13020-015-0061-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 09/29/2015] [Indexed: 02/06/2023] Open
Abstract
Background Qing-dai powder (QDP), comprising Indigo naturalis (Qing-dai) and dried alum (Ku-fan), was used in Chinese medicine to treat the conditions associated with mucosal hemorrhage, such as ulcerative colitis (UC). This study aims to investigate the effects and potential mechanism of QDP on dextran sulfate sodium (DSS)-induced acute colitis in mice and to examine the regulatory effects of QDP on macrophages. Methods Seven- to eight-week-old male C57BL/6 mice were challenged with 2.0 % DSS in drinking water for 5 days and then the colitic mice were arbitrarily allocated into five groups (n = 10 for each group). QDP (0.77, 1.54 and 3.08 g/kg) and sulfasalazine (SASP) (0.20 g/kg) were orally administered for 7 days. The disease activity index was determined by scores of body weight loss, diarrhea and rectal bleeding; histological signs of damage was analyzed by H&E staining; myeloperoxidase activity was measured by colorimetric method, levels of proinflammatory cytokines were determined by ELISA; changes in macrophages in the colon were analyzed by immunohistochemistry (IHC) and flow cytometry. Lipopolysaccharide (LPS)-induced RAW264.7 cells were treated with or without QDP, then the production of TNF-α and IL-6 were measured by ELISA; and protein molecules such as COX-2, iNOS, IкB-α were determined by Western blot. Results Oral administration of QDP at dosages of 1.54 and 3.08 g/kg significantly reduced disease activity index on day 12 (P < 0.001 for 1.54 g/kg and P < 0.0008 for 3.08 g/kg), colon shortening (P = 0.012 for 1.54 g/kg, P = 0.001 for 3.08 g/kg), histological damage (P < 0.001 for 1.54 g/kg, P < 0.001 for 3.08 g/kg) and colonic myeloperoxidase activity (P = 0.002 for 1.54 g/kg, P < 0.001 for 3.08 g/kg) of DSS-treated mice. Moreover, QDP treatment (1.54 and 3.08 g/kg) significantly decreased DSS-induced infiltration of macrophages, and production of TNF-α (P = 0.005 for 1.54 g/kg, P = 0.002 for 3.08 g/kg), IL-1β (P = 0.008 for 1.54 g/kg, P = 0.002 for 3.08 g/kg) and IL-6 (P = 0.011 for 1.54 g/kg, P = 0.004 for 3.08 g/kg) in colonic tissues, and also reduced serum MCP-1 levels (P = 0.001 for 1.54 g/kg, P < 0.001 for 3.08 g/kg). In RAW264.7 cells, QDP significantly suppressed LPS-induced production of TNF-α and IL-6 (Both P < 0.001 for 1.0 μg/mL QDP treatment) and expression levels of COX-2 (P = 0.002 and P = 0.001 for 1 and 3 μg/mL QDP treatment, respectively) and iNOS (P < 0.001 for 3 μg/mL QDP treatment) by inhibiting IкB-α degradation (P = 0.007 and P = 0.004 for 1 and 3 μg/mL QDP treatment, respectively) and NF-кB p65 nuclear translocation. Conclusion QDP suppressed the inflammatory responses of colonic macrophages in DSS-induced UC in mice and LPS-induced RAW264.7 cells.
Collapse
|
24
|
Liu ZZ, Wang WG, Li Q, Tang M, Li J, Wu WT, Wan YH, Wang ZG, Bao SS, Fei J. Growth hormone secretagogue receptor is important in the development of experimental colitis. Cell Biosci 2015; 5:12. [PMID: 25825652 PMCID: PMC4377856 DOI: 10.1186/s13578-015-0002-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 03/02/2015] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Growth hormone secretagogue receptor (GHSR) and its ligand, ghrelin, are important modulators in weight control and energy homeostasis. Recently, ghrelin is also involved in experimental colitis, but the role of GHSR in the development of colitis is unclear. The aim was to examine the underlying mechanism of GHSR in IBD development. METHODS The temporal expression of GHSR/ghrelin was determined in dextran sulphate sodium (DSS) induced colitis in Wt mice. The severity of DSS induced colitis from GHSR(-/-) and WT mice was compared at clinical/pathological levels. Furthermore, the function of macrophages was evaluated in vivo and in vitro. RESULTS Lack of GHSR attenuated colitis significantly at the clinical and pathological levels with reduced colonic pro-inflammatory cytokines (P < 0.05). This is consistent with the observation of less colonic macrophage infiltration and TLRs expression from DSS-treated GHSR(-/-) mice compared to WT mice (P < 0.05). Furthermore, there was significantly reduced pro-inflammatory cytokines in LPS-stimulated macrophages in vitro from GHSR(-/-) mice than WT mice (P < 0.05). Moreover, D-lys(3)-GHRP6 (a GHSR antagonist) reduced LPS-induced macrophage pro-inflammatory cytokines from WT mice in vitro. CONCLUSIONS GHSR contributes to development of acute DSS-induced colitis, likely via elevated pro-inflammatory cytokines and activation of macrophages. These data suggest GHSR as a potential therapeutic target for IBD.
Collapse
Affiliation(s)
- Zhen-Ze Liu
- School of Life Science and Technology, Tongji University, Shanghai, 200092 China
| | - Wei-Gang Wang
- Shanghai Research Centre for Model Organisms, Shanghai, 201203 China
| | - Qing Li
- School of Life Science and Technology, Tongji University, Shanghai, 200092 China
| | - Miao Tang
- School of Life Science and Technology, Tongji University, Shanghai, 200092 China
| | - Jun Li
- Shanghai Research Centre for Model Organisms, Shanghai, 201203 China
| | - Wen-Ting Wu
- Shanghai Research Centre for Model Organisms, Shanghai, 201203 China
| | - Ying-Han Wan
- Shanghai Research Centre for Model Organisms, Shanghai, 201203 China
| | - Zhu-Gang Wang
- Shanghai Research Centre for Model Organisms, Shanghai, 201203 China
| | - Shi-San Bao
- Discipline of Pathology, Bosch Institute and School of Medical Sciences, University of Sydney, Sydney, NSW 2006 Australia
| | - Jian Fei
- School of Life Science and Technology, Tongji University, Shanghai, 200092 China ; Shanghai Research Centre for Model Organisms, Shanghai, 201203 China
| |
Collapse
|
25
|
Gastrointestinal tract and the mucosal macrophage reservoir in HIV infection. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2014; 21:1469-73. [PMID: 25185575 DOI: 10.1128/cvi.00518-14] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The gastrointestinal tract (GIT) is a primary site for human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) infection, replication, and dissemination. After an initial explosive phase of infection, HIV establishes latency. In addition to CD4 T cells, macrophages are readily infected, which can persist for long periods of time. Though macrophages at various systemic sites are infected, those present in the GIT constitute a major cellular reservoir due to the abundance of these cells at mucosal sites. Here, we review some of the important findings regarding what is known about the macrophage reservoir in the gut and explore potential approaches being pursued in the field to reduce this reservoir. The development of strategies that can lead to a functional cure will need to incorporate approaches that can eradicate the macrophage reservoir in the GIT.
Collapse
|
26
|
Lou Y, Sun H, Morrissey S, Porturas T, Liu S, Hua X, Chen YH. Critical roles of TIPE2 protein in murine experimental colitis. THE JOURNAL OF IMMUNOLOGY 2014; 193:1064-70. [PMID: 24973456 DOI: 10.4049/jimmunol.1400415] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Both commensal bacteria and infiltrating inflammatory cells play essential roles in the pathogenesis of inflammatory bowel disease. The molecular mechanisms whereby these pathogenic factors are regulated during the disease are not fully understood. We report in this article that a member of the TNF-α-induced protein 8 (TNFAIP8) family called TIPE2 (TNFAIP8-like 2) plays a crucial role in regulating commensal bacteria dissemination and inflammatory cell function in experimental colitis induced by dextran sodium sulfate (DSS). Following DSS treatment, TIPE2-deficient mice, or chimeric mice that are deficient in TIPE2 only in their hematopoietic cells, lost less body weight and survived longer than wild-type controls. Consistent with this clinical observation, TIPE2-deficient mice exhibited significantly less severe colitis and colonic damage. This was associated with a marked reduction in the colonic expression of inflammatory cytokines, such as TNF-α, IL-6, and IL-12. Importantly, the ameliorated DSS-induced colitis in TIPE2(-/-) mice also was associated with reduced local dissemination of commensal bacteria and a weaker systemic inflammatory response. Combined with our previous report that TIPE2 is a negative regulator of antibacterial immunity, these results indicate that TIPE2 promotes colitis by inhibiting mucosal immunity to commensal bacteria.
Collapse
Affiliation(s)
- Yunwei Lou
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104; Department of Immunology, Shandong University School of Medicine, Ji'nan 250012, People's Republic of China; and
| | - Honghong Sun
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104
| | - Samantha Morrissey
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104
| | - Thomas Porturas
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104
| | - Suxia Liu
- Department of Immunology, Shandong University School of Medicine, Ji'nan 250012, People's Republic of China; and
| | - Xianxin Hua
- Department of Cancer Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104
| | - Youhai H Chen
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104;
| |
Collapse
|
27
|
Rabbi MF, Labis B, Metz-Boutigue MH, Bernstein CN, Ghia JE. Catestatin decreases macrophage function in two mouse models of experimental colitis. Biochem Pharmacol 2014; 89:386-98. [PMID: 24637240 DOI: 10.1016/j.bcp.2014.03.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 03/04/2014] [Accepted: 03/06/2014] [Indexed: 02/06/2023]
Abstract
Mucosal inflammation in patients with inflammatory bowel disease (IBD) is characterized by an alteration of prohormone chromogranin A (CgA) production. The recent demonstration of an implication of CgA in collagenous colitis and immune regulation provides a potential link between CgA-derived peptides (catestatin, CTS) and gut inflammation. Colitis was induced by administration of dextran sulfate sodium or 2, 4 dinitrobenzenesulfonic acid to C57BL/6 mice. Treatment with human (h)CTS or its proximal or distal part was started one day before colitis induction and colonic inflammatory markers were determined. Pro-inflammatory cytokines were evaluated in peritoneal isolated and bone marrow derived macrophages (BMDMs); p-STAT3 level was studied. Serum levels of CgA and CTS were assessed in experimental colitis and in a separate study in IBD patients and healthy controls. We show that sera from IBD patients and that in experimental colitis conditions the colonic level of mouse (m)CgA and mCTS are significantly increased. Moreover, in vivo treatment with human (h)CTS reduces the disease onset and suppresses exacerbated inflammatory responses in preclinical settings of colitis associated with an increase of p-STAT3. In vitro, hCTS treatment decreases proinflammatory cytokine release by peritoneal macrophages and BMDMs and increases p-STAT3 levels. These results support the hypothesis that CTS is increased during colitis and that hCTS modulates intestinal inflammation via the macrophage population and through a STAT-3 dependent pathway in a murine model of colitis. Identification of the molecular mechanism underlying the protective role of this peptide may lead to a novel therapeutic option in IBD.
Collapse
Affiliation(s)
- Mohammad F Rabbi
- University of Manitoba, Department of Immunology, Winnipeg, MB, Canada
| | - Benoit Labis
- University of Manitoba, Department of Immunology, Winnipeg, MB, Canada
| | - Marie-Hélène Metz-Boutigue
- Université de Strasbourg, Biomatériaux et Ingénierie tissulaire, INSERM U1121, 1 Place de l'Hôpital, 67091 Strasbourg, France
| | - Charles N Bernstein
- University of Manitoba, IBD Clinical and Research Centre and Section of Gastroenterology, Winnipeg, MB, Canada
| | - Jean-Eric Ghia
- University of Manitoba, Department of Immunology, Winnipeg, MB, Canada; University of Manitoba, IBD Clinical and Research Centre and Section of Gastroenterology, Winnipeg, MB, Canada.
| |
Collapse
|
28
|
Central cholinergic activation of a vagus nerve-to-spleen circuit alleviates experimental colitis. Mucosal Immunol 2014; 7:335-47. [PMID: 23881354 PMCID: PMC3859808 DOI: 10.1038/mi.2013.52] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 06/20/2013] [Indexed: 02/04/2023]
Abstract
The cholinergic anti-inflammatory pathway is an efferent vagus nerve-based mechanism that regulates immune responses and cytokine production through α7 nicotinic acetylcholine receptor (α7nAChR) signaling. Decreased efferent vagus nerve activity is observed in inflammatory bowel disease. We determined whether central activation of this pathway alters inflammation in mice with colitis and the mediating role of a vagus nerve-to-spleen circuit and α7nAChR signaling. Two experimental models of colitis were used in C57BL/6 mice. Central cholinergic activation induced by the acetylcholinesterase inhibitor galantamine or a muscarinic acetylcholine receptor agonist treatments resulted in reduced mucosal inflammation associated with decreased major histocompatibility complex II level and pro-inflammatory cytokine secretion by splenic CD11c⁺ cells mediated by α7nAChR signaling. The cholinergic anti-inflammatory efficacy was abolished in mice with vagotomy, splenic neurectomy, or splenectomy. In conclusion, central cholinergic activation of a vagus nerve-to-spleen circuit controls intestinal inflammation and this regulation can be explored to develop novel therapeutic strategies.
Collapse
|
29
|
Shaker ME, Ashamallah SA, Houssen ME. Celastrol ameliorates murine colitis via modulating oxidative stress, inflammatory cytokines and intestinal homeostasis. Chem Biol Interact 2013; 210:26-33. [PMID: 24384223 DOI: 10.1016/j.cbi.2013.12.007] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Revised: 12/10/2013] [Accepted: 12/17/2013] [Indexed: 12/11/2022]
Abstract
Therapeutic agents that block the nuclear factor-kappa B (NF-κB) pathway might be beneficial for incurable inflammatory diseases, such as ulcerative colitis. Here, we investigated the effect of the novel NF-κB inhibitor celastrol on murine colitis. Colitis was induced in male mice by administration of 5% (w/v) dextran sulfate sodium (DSS) in drinking water for a period of 5 days, followed by a 2 day recovery period. Celastrol (2mg/kg, oral) was administered daily over the 1 week of the study. Our results indicated that treatment with celastrol attenuated DSS-induced colon shortening and neutrophil infiltration. Besides, celastrol ameliorated DSS-induced colon injury and inflammatory signs as visualized by histopathology. The mechanisms behind these beneficial effects of celastrol were also elucidated. These include (i) counteracting DSS-induced oxidative stress in the colon via decreasing lipid peroxidation products (malondialdehyde and 4-hydroxynonenal) and increasing the antioxidant levels (reduced glutathione, glutathione-S-transferase and superoxide dismutase); (ii) inhibiting DSS-induced activation of the NLRP3-inflammasome, as evidenced by decreased production of IL-1β and IFN-γ as indirect measure of IL-18 in the colon; (iii) targeting DSS-induced activation of the IL-23/IL-17 pathway by abating the elevation of IL-23 and IL-17A levels in the colon; (iv) augmenting the anti-inflammatory defense mechanisms via increasing IL-10 and TNF-α levels in the colon; (v) and more importantly, maintaining intestinal epithelial reconstitution and homeostasis via attenuating the overexpression of CD98 in colonic epithelial cells. In conclusion, our study provides novel insights into the beneficial effects of celastrol as a promising candidate for the treatment of ulcerative colitis in humans.
Collapse
Affiliation(s)
- Mohamed E Shaker
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| | - Sylvia A Ashamallah
- Department of Pathology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Maha E Houssen
- Department of Biochemistry, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| |
Collapse
|
30
|
Zindl CL, Lai JF, Lee YK, Maynard CL, Harbour SN, Ouyang W, Chaplin DD, Weaver CT. IL-22-producing neutrophils contribute to antimicrobial defense and restitution of colonic epithelial integrity during colitis. Proc Natl Acad Sci U S A 2013; 110:12768-73. [PMID: 23781104 PMCID: PMC3732935 DOI: 10.1073/pnas.1300318110] [Citation(s) in RCA: 261] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
IL-22 plays an important role in mucosal epithelial cell homeostasis. Using a dextran sodium sulfate-induced mouse model of acute colitis, we observed an IL-23-dependent up-regulation of IL-22 in the middle and distal colon at the onset of epithelial cell damage. This heightened IL-22 correlated with an influx of innate immune cells, suggesting an important role in colonic epithelial protection. Freshly isolated colon-infiltrating neutrophils produced IL-22 contingent upon IL-23 signaling, and IL-22 production was augmented by TNF-α. Importantly, the depletion of neutrophils resulted in diminished IL-22 levels in the colon, and the transfer of IL-22-competent neutrophils to Il22a-deficient mice protected the colonic epithelium from dextran sodium sulfate-induced damage. In addition, IL-22-producing neutrophils targeted colonic epithelial cells to up-regulate the antimicrobial peptides, RegIIIβ and S100A8. This study establishes a role for neutrophils in providing IL-22-dependent mucosal epithelial support that contributes to the resolution of colitis.
Collapse
Affiliation(s)
- Carlene L. Zindl
- Departments of Pathology and
- Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Jen-Feng Lai
- Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Yun Kyung Lee
- Departments of Pathology and
- Division of Biology, California Institute of Technology, Pasadena, CA 91125; and
| | | | | | - Wenjun Ouyang
- Department of Immunology, Genentech, South San Francisco, CA 94080
| | - David D. Chaplin
- Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294
| | | |
Collapse
|
31
|
Waddell A, Ahrens R, Tsai YT, Sherrill JD, Denson LA, Steinbrecher KA, Hogan SP. Intestinal CCL11 and eosinophilic inflammation is regulated by myeloid cell-specific RelA/p65 in mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2013; 190:4773-85. [PMID: 23562811 PMCID: PMC3969817 DOI: 10.4049/jimmunol.1200057] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In inflammatory bowel diseases (IBDs), particularly ulcerative colitis, intestinal macrophages (MΦs), eosinophils, and the eosinophil-selective chemokine CCL11, have been associated with disease pathogenesis. MΦs, a source of CCL11, have been reported to be of a mixed classical (NF-κB-mediated) and alternatively activated (STAT-6-mediated) phenotype. The importance of NF-κB and STAT-6 pathways to the intestinal MΦ/CCL11 response and eosinophilic inflammation in the histopathology of experimental colitis is not yet understood. Our gene array analyses demonstrated elevated STAT-6- and NF-κB-dependent genes in pediatric ulcerative colitis colonic biopsies. Dextran sodium sulfate (DSS) exposure induced STAT-6 and NF-κB activation in mouse intestinal F4/80(+)CD11b(+)Ly6C(hi) (inflammatory) MΦs. DSS-induced CCL11 expression, eosinophilic inflammation, and histopathology were attenuated in RelA/p65(Δmye) mice, but not in the absence of STAT-6. Deletion of p65 in myeloid cells did not affect inflammatory MΦ recruitment or alter apoptosis, but did attenuate LPS-induced cytokine production (IL-6) and Ccl11 expression in purified F4/80(+)CD11b(+)Ly6C(hi) inflammatory MΦs. Molecular and cellular analyses revealed a link between expression of calprotectin (S100a8/S100a9), Ccl11 expression, and eosinophil numbers in the DSS-treated colon. In vitro studies of bone marrow-derived MΦs showed calprotectin-induced CCL11 production via a p65-dependent mechanism. Our results indicate that myeloid cell-specific NF-κB-dependent pathways play an unexpected role in CCL11 expression and maintenance of eosinophilic inflammation in experimental colitis. These data indicate that targeting myeloid cells and NF-κB-dependent pathways may be of therapeutic benefit for the treatment of eosinophilic inflammation and histopathology in IBD.
Collapse
Affiliation(s)
- Amanda Waddell
- Division of Allergy and Immunology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229
| | - Richard Ahrens
- Division of Allergy and Immunology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229
| | - Yi Ting Tsai
- Division of Allergy and Immunology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229
| | - Joseph D. Sherrill
- Division of Allergy and Immunology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229
| | - Lee A. Denson
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229
| | - Kris A. Steinbrecher
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229
| | - Simon P. Hogan
- Division of Allergy and Immunology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229
| |
Collapse
|
32
|
Hamilton JA, Achuthan A. Colony stimulating factors and myeloid cell biology in health and disease. Trends Immunol 2013; 34:81-9. [DOI: 10.1016/j.it.2012.08.006] [Citation(s) in RCA: 192] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 08/03/2012] [Accepted: 08/24/2012] [Indexed: 12/14/2022]
|
33
|
Colonic epithelial response to injury requires Myd88 signaling in myeloid cells. Mucosal Immunol 2012; 5:194-206. [PMID: 22258450 PMCID: PMC3791628 DOI: 10.1038/mi.2011.65] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Proper colonic injury response requires myeloid-derived cells and Toll-like receptor/Myd88 signaling. However, the precise role of Myd88 signaling specifically in myeloid-derived cells that occurs during tissue damage is unclear. Therefore, we created a mouse line with Myd88 expression restricted to myeloid lineages (Myd88(-/-); LysM(Cre/+); ROSA26(Myd88/+); herein Mlcr). In these mice, Myd88 was appropriately expressed and mediated responses to bacterial ligand exposure in targeted cells. Importantly, the severe colonic epithelial phenotype observed in dextran sodium sulfate-injured Myd88(-/-) mice was rescued by the genetic modification of Mlcr mice. During injury, myeloid cell activation and enrichment of Ptsg2-expressing stromal cells occurred within the mesenchyme that surrounded the crypt bases of Mlcr and Myd88(+/-) mice but not Myd88(-/-) mice. Interestingly, these cellular changes to the crypt base mesenchyme also occurred, but to a lesser extent in uninjured Mlcr mice. These results show that Myd88 expression in myeloid cells was sufficient to rescue intestinal injury responses, and surprisingly, these cells appear to require an additional Myd88-dependent signal from a non-myeloid cell type during homeostasis.
Collapse
|
34
|
Liu Z, Lee J, Krummey S, Lu W, Cai H, Lenardo MJ. The kinase LRRK2 is a regulator of the transcription factor NFAT that modulates the severity of inflammatory bowel disease. Nat Immunol 2011; 12:1063-70. [PMID: 21983832 PMCID: PMC4140245 DOI: 10.1038/ni.2113] [Citation(s) in RCA: 283] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Accepted: 08/19/2011] [Indexed: 12/19/2022]
Abstract
Leucine-rich repeat kinase 2 (LRRK2) has been identified by genome-wide association studies as being encoded by a major susceptibility gene for Crohn's disease. Here we found that LRRK2 deficiency conferred enhanced susceptibility to experimental colitis in mice. Mechanistic studies showed that LRRK2 was a potent negative regulator of the transcription factor NFAT and was a component of a complex that included the large noncoding RNA NRON (an NFAT repressor). Furthermore, the risk-associated allele encoding LRRK2 Met2397 identified by a genome-wide association study for Crohn's disease resulted in less LRRK2 protein post-translationally. Severe colitis in LRRK2-deficient mice was associated with enhanced nuclear localization of NFAT1. Thus, our study defines a new step in the control of NFAT activation that involves an immunoregulatory function of LRRK2 and has important implications for inflammatory bowel disease.
Collapse
Affiliation(s)
- Zhihua Liu
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jinwoo Lee
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Scott Krummey
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wei Lu
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Huaibin Cai
- Unit of Transgenesis; Laboratory of Neurogenetics; National Institute on Aging, National Institutes of Health; Bethesda, MD 20892 USA
| | - Michael J. Lenardo
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
35
|
Mowat AM, Bain CC. Mucosal macrophages in intestinal homeostasis and inflammation. J Innate Immun 2011; 3:550-64. [PMID: 22025201 PMCID: PMC3224516 DOI: 10.1159/000329099] [Citation(s) in RCA: 172] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 05/04/2011] [Indexed: 12/17/2022] Open
Abstract
Intestinal macrophages are essential for local homeostasis and in keeping a balance between commensal microbiota and the host. However, they also play essential roles in inflammation and protective immunity, when they change from peaceful regulators to powerful aggressors. As a result, activated macrophages are important targets for treatment of inflammatory bowel diseases such as Crohn's disease. Until recently, the complexity and heterogeneity of intestinal macrophages have been underestimated and here we review current evidence that there are distinct populations of resident and inflammatory macrophages in the intestine. We describe the mechanisms that ensure macrophages remain partially inert in the healthy gut and cannot promote inflammation despite constant exposure to bacteria and other stimuli. This may be because the local environment 'conditions' macrophage precursors to become unresponsive after they arrive in the gut. Nevertheless, this permits some active, physiological functions to persist. A new population of pro-inflammatory macrophages appears in inflammation and we review the evidence that this involves recruitment of a distinct population of fully responsive monocytes, rather than alterations in the existing cells. A constant balance between these resident and inflammatory macrophages is critical for maintaining the status quo in healthy gut and ensuring protective immunity when required.
Collapse
Affiliation(s)
- Allan McI Mowat
- Institute of Infection, Immunology and Inflammation, University of Glasgow, Glasgow, UK.
| | | |
Collapse
|
36
|
Saha S, Bhanja P, Kabarriti R, Liu L, Alfieri AA, Guha C. Bone marrow stromal cell transplantation mitigates radiation-induced gastrointestinal syndrome in mice. PLoS One 2011; 6:e24072. [PMID: 21935373 PMCID: PMC3174150 DOI: 10.1371/journal.pone.0024072] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 07/29/2011] [Indexed: 12/11/2022] Open
Abstract
Background Nuclear accidents and terrorism presents a serious threat for mass casualty. While bone-marrow transplantation might mitigate hematopoietic syndrome, currently there are no approved medical countermeasures to alleviate radiation-induced gastrointestinal syndrome (RIGS), resulting from direct cytocidal effects on intestinal stem cells (ISC) and crypt stromal cells. We examined whether bone marrow-derived adherent stromal cell transplantation (BMSCT) could restitute irradiated intestinal stem cells niche and mitigate radiation-induced gastrointestinal syndrome. Methodology/Principal Findings Autologous bone marrow was cultured in mesenchymal basal medium and adherent cells were harvested for transplantation to C57Bl6 mice, 24 and 72 hours after lethal whole body irradiation (10.4 Gy) or abdominal irradiation (16–20 Gy) in a single fraction. Mesenchymal, endothelial and myeloid population were characterized by flow cytometry. Intestinal crypt regeneration and absorptive function was assessed by histopathology and xylose absorption assay, respectively. In contrast to 100% mortality in irradiated controls, BMSCT mitigated RIGS and rescued mice from radiation lethality after 18 Gy of abdominal irradiation or 10.4 Gy whole body irradiation with 100% survival (p<0.0007 and p<0.0009 respectively) beyond 25 days. Transplantation of enriched myeloid and non-myeloid fractions failed to improve survival. BMASCT induced ISC regeneration, restitution of the ISC niche and xylose absorption. Serum levels of intestinal radioprotective factors, such as, R-Spondin1, KGF, PDGF and FGF2, and anti-inflammatory cytokines were elevated, while inflammatory cytokines were down regulated. Conclusion/Significance Mitigation of lethal intestinal injury, following high doses of irradiation, can be achieved by intravenous transplantation of marrow-derived stromal cells, including mesenchymal, endothelial and macrophage cell population. BMASCT increases blood levels of intestinal growth factors and induces regeneration of the irradiated host ISC niche, thus providing a platform to discover potential radiation mitigators and protectors for acute radiation syndromes and chemo-radiation therapy of abdominal malignancies.
Collapse
Affiliation(s)
- Subhrajit Saha
- Department of Radiation Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York, United States of America
| | - Payel Bhanja
- Department of Radiation Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York, United States of America
| | - Rafi Kabarriti
- Department of Radiation Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York, United States of America
| | - Laibin Liu
- Department of Radiation Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York, United States of America
| | - Alan A. Alfieri
- Department of Radiation Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York, United States of America
| | - Chandan Guha
- Department of Radiation Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York, United States of America
- Department of Pathology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York, United States of America
- * E-mail:
| |
Collapse
|
37
|
Prescott D, McKay DM. Aspirin-triggered lipoxin enhances macrophage phagocytosis of bacteria while inhibiting inflammatory cytokine production. Am J Physiol Gastrointest Liver Physiol 2011; 301:G487-97. [PMID: 21659618 DOI: 10.1152/ajpgi.00042.2011] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The macrophage plays a major role in the induction and resolution phases of inflammation; however, how lipid mediator-derived signals may modulate macrophage function in the resolution of inflammation driven by microbes (e.g., in inflammatory bowel disease) is not well understood. We examined the effects of aspirin-triggered lipoxin (ATL), a stable analog of lipoxin A(4), on the antimicrobial responses of human peripheral blood mononuclear cell-derived macrophages and the monocytic THP-1 cell line. Additionally, we assessed the expression and localization of the lipoxin receptor, formyl peptide receptor 2 (FPR2), in colonic mucosal biopsies from patients with Crohn's disease to determine whether the capacity for lipoxin signaling is altered in inflammatory bowel disease. We found that THP-1 cells treated with ATL (100 nM) displayed increased phagocytosis of inert fluorescent beads and Escherichia coli in a scavenger receptor- and PI3K-dependent, opsonization-independent manner. This ATL-induced increase in phagocytosis was also observed in primary human macrophages, where it was associated with an inhibition of E. coli-induced IL-1β and IL-8 production. Finally, we found that FPR2 gene expression was increased approximately sixfold in the colon of patients with Crohn's disease, a finding reproduced in vitro by the treatment of THP-1 cells with interferon-γ or lipopolysaccharide. These results suggest that lipoxin signaling is upregulated in inflammatory environments, and, in addition to their known role in tissue resolution following injury, lipoxins can enhance macrophage clearance of invading microbes.
Collapse
Affiliation(s)
- David Prescott
- Gastrointestinal Research Group, Department of Physiology and Pharmacology, Calvin, Phoebe and Joan Snyder Institute of Infection, Immunity and Inflammation, University of Calgary, Calgary, Alberta, Canada
| | | |
Collapse
|
38
|
Rani R, Smulian AG, Greaves DR, Hogan SP, Herbert DR. TGF-β limits IL-33 production and promotes the resolution of colitis through regulation of macrophage function. Eur J Immunol 2011. [PMID: 21469118 DOI: 10.1002/eji.201041135.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Mϕs promote tissue injury or repair depending on their activation status and the local cytokine milieu. It remains unclear whether the immunosuppressive effects of transforming growth factor β (TGF-β) serve a nonredundant role in Mϕ function in vivo. We generated Mϕ-specific transgenic mice that express a truncated TGF-β receptor II under control of the CD68 promoter (CD68TGF-βDNRII) and subjected these mice to the dextran sodium sulfate (DSS) model of colitis. CD68TGF-βDNRII mice have an impaired ability to resolve colitic inflammation as demonstrated by increased lethality, granulocytic inflammation, and delayed goblet cell regeneration compared with transgene negative littermates. CD68TGF-βDNRII mice produce significantly less IL-10, but have increased levels of IgE and numbers of IL-33+ Mϕs than controls. These data are consistent with associations between ulcerative colitis and increased IL-33 production in humans and suggest that TGF-β may promote the suppression of intestinal inflammation, at least in part, through direct effects on Mϕ function.
Collapse
Affiliation(s)
- Reena Rani
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | | | | | | | | |
Collapse
|
39
|
Rani R, Smulian AG, Greaves DR, Hogan SP, Herbert DR. TGF-β limits IL-33 production and promotes the resolution of colitis through regulation of macrophage function. Eur J Immunol 2011; 41:2000-9. [PMID: 21469118 DOI: 10.1002/eji.201041135] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 03/26/2011] [Accepted: 03/31/2011] [Indexed: 12/28/2022]
Abstract
Mϕs promote tissue injury or repair depending on their activation status and the local cytokine milieu. It remains unclear whether the immunosuppressive effects of transforming growth factor β (TGF-β) serve a nonredundant role in Mϕ function in vivo. We generated Mϕ-specific transgenic mice that express a truncated TGF-β receptor II under control of the CD68 promoter (CD68TGF-βDNRII) and subjected these mice to the dextran sodium sulfate (DSS) model of colitis. CD68TGF-βDNRII mice have an impaired ability to resolve colitic inflammation as demonstrated by increased lethality, granulocytic inflammation, and delayed goblet cell regeneration compared with transgene negative littermates. CD68TGF-βDNRII mice produce significantly less IL-10, but have increased levels of IgE and numbers of IL-33+ Mϕs than controls. These data are consistent with associations between ulcerative colitis and increased IL-33 production in humans and suggest that TGF-β may promote the suppression of intestinal inflammation, at least in part, through direct effects on Mϕ function.
Collapse
Affiliation(s)
- Reena Rani
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | | | | | | | | |
Collapse
|
40
|
Bar-On L, Zigmond E, Jung S. Management of gut inflammation through the manipulation of intestinal dendritic cells and macrophages? Semin Immunol 2011; 23:58-64. [PMID: 21292502 DOI: 10.1016/j.smim.2011.01.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Accepted: 01/05/2011] [Indexed: 12/18/2022]
Abstract
Inflammatory bowel diseases (IBDs) including Crohn's disease and ulcerative colitis represent a major challenge to clinicians and immunologists trying to understand why in certain individuals the peaceful coexistence of the commensal microflora and its host breaks down and results in chronic inflammation. Here we summarize the recent progress in our understanding of the organization of the intestinal mononuclear phagocytes with dendritic cells and macrophages of distinct phenotype, origin and function. Finally, we discuss potential strategies to translate the recent findings into the management of chronic inflammation in animal models of IBD.
Collapse
Affiliation(s)
- Liat Bar-On
- Department of Immunology, Weizmann Institute of Science, Herzl 1, Rehovot, Israel
| | | | | |
Collapse
|
41
|
Munitz A, Cole ET, Waddell A, Groschwitz K, Ahrens R, Steinbrecher K, Willson T, Han X, Denson L, Rothenberg ME, Hogan SP. Paired immunoglobulin-like receptor B (PIR-B) negatively regulates macrophage activation in experimental colitis. Gastroenterology 2010; 139:530-41. [PMID: 20398663 PMCID: PMC3423916 DOI: 10.1053/j.gastro.2010.04.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Revised: 04/01/2010] [Accepted: 04/07/2010] [Indexed: 01/26/2023]
Abstract
BACKGROUND & AIMS Innate and adaptive immune responses are regulated by cross talk between activation and inhibitory signals. Dysregulation of the inhibitory signal can lead to aberrant chronic inflammatory diseases such as the inflammatory bowel diseases (IBD). Little is known about negative regulation of innate intestinal immune activation. We examined the role of the inhibitory receptor paired immunoglobulin-like receptor B (PIR-B) in the regulation of macrophage function in innate intestinal immunity. METHODS We examined the susceptibility of Pirb-/- and wild-type (WT) mice to dextran sodium sulfate (DSS)-induced colitis. We assessed proinflammatory cytokine release and mitogen-activated protein kinase (MAPK) and nuclear factor kappaB (NF-kappaB) activation in Pirb-/- and WT macrophages following Escherichia coli stimulation. Macrophage transfer experiments were performed to define the role of PIR-B in the negative regulation of macrophage function in DSS-induced colitis. We also assessed expression of PIR-B human homologues (immunoglobulin-like transcript [ILT]-2 and ILT-3) in colon biopsy samples from healthy individuals (controls) and patients with IBD. RESULTS Pirb-/- mice had increased susceptibility to DSS-induced colitis. In vitro analysis showed increased production of proinflammatory cytokines (interleukin-6, interleukin-1beta, and tumor necrosis factor alpha) and activation of MAPK and NF-kappaB in Pirb-/- macrophages following bacterial activation. Adoptive transfer of bone marrow-derived Pirb-/- macrophages into WT mice was sufficient to increase disease susceptibility. ILT-2 and ILT-3 were expressed on CD68+ and CD68- mononuclear cells and intestinal epithelium in colon biopsy samples from patients and controls. CONCLUSIONS PIR-B negatively regulates macrophage functions in response to pathogenic bacteria and chronic intestinal inflammatory responses. Inhibitory receptors such as PIR-B might be used as therapeutic targets for treatment of patients with IBD.
Collapse
Affiliation(s)
- Ariel Munitz
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229, Department of Microbiology and Clinical Immunology, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, 69978, Israel
| | - Eric T. Cole
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229
| | - Amanda Waddell
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229
| | - Katherine Groschwitz
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229
| | - Richard Ahrens
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229
| | - Kris Steinbrecher
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229
| | - Tara Willson
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229
| | - Xiaonan Han
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229
| | - Lee Denson
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229
| | - Marc E. Rothenberg
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229
| | - Simon P Hogan
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229
| |
Collapse
|
42
|
Extracts of the rat tapeworm, Hymenolepis diminuta, suppress macrophage activation in vitro and alleviate chemically induced colitis in mice. Infect Immun 2009; 78:1364-75. [PMID: 20028812 DOI: 10.1128/iai.01349-08] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Analysis of parasite-host interactions can reveal the intricacies of immunity and identify ways to modulate immunopathological reactions. We assessed the ability of a phosphate-buffered saline-soluble extract of adult Hymenolepis diminuta to suppress macrophage (human THP-1 cell line, murine peritoneal macrophages) activity in vitro and the impact of treating mice with this extract on colitis induced by dinitrobenzene sulfonic acid (DNBS). A high-molecular-mass fraction of adult H. diminuta (HdHMW) or excretory/secretory products reduced macrophage activation: lipopolysaccharide (LPS)-induced interleukin-1beta (IL-1beta), IL-6, and tumor necrosis factor alpha (TNF-alpha) and poly(I:C)-induced TNF-alpha and IL-6 were suppressed by HdHMW. The active component in the HdHMW extract was minimally sensitive to boiling and trypsin digestion, whereas the use of sodium metaperiodate, as a general deglycosylation strategy, indicated that the immunosuppressive effect of HdHMW was at least partially dependent on a glycan: treating the HdHMW with neuraminidase and alpha-mannosidase failed to inhibit its blockade of LPS-induced TNF-alpha production by THP-1 macrophages. Mice treated with DNBS developed colitis, as typified by wasting, shortening of the colon, macroscopic and microscopic tissue damage, and an inflammatory infiltrate. Mice cotreated with HdHMW (three intraperitoneal injections) displayed significantly less inflammatory disease, and this was accompanied by reduced TNF-alpha production and increased IL-10 and IL-4 production by mitogen-stimulated spleen cells. However, cotreatment of mice with neutralizing anti-IL-10 antibodies had only a minor impact on the anticolitic effect of the HdHMW. We speculate that purification of the immunosuppressive factor(s) from H. diminuta has the potential to lead to the development of novel immunomodulatory drugs to treat inflammatory disease.
Collapse
|
43
|
Abstract
Although they were originally defined as haematopoietic-cell growth factors, colony-stimulating factors (CSFs) have been shown to have additional functions by acting directly on mature myeloid cells. Recent data from animal models indicate that the depletion of CSFs has therapeutic benefit in many inflammatory and/or autoimmune conditions and as a result, early-phase clinical trials targeting granulocyte/macrophage colony-stimulating factor and macrophage colony-stimulating factor have now commenced. The distinct biological features of CSFs offer opportunities for specific targeting, but with some associated risks. Here, I describe these biological features, discuss the probable specific outcomes of targeting CSFs in vivo and highlight outstanding questions that need to be addressed.
Collapse
|