1
|
Siqueira F, Rodrigues F, Ribeiro S, Veras H, Ferreira F, Siqueira R, dos Santos A, Havt A, Lima A. Induced acute hyperglycemia modifies the barrier function of the intestinal epithelium by tissue inflammation and tight junction disruption resulting in hydroelectrolytic secretion in an animal model. Braz J Med Biol Res 2024; 57:e13309. [PMID: 38656073 PMCID: PMC11027184 DOI: 10.1590/1414-431x2024e13309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 02/21/2024] [Indexed: 04/26/2024] Open
Abstract
Diabetic-metabolic syndrome (MetS-D) has a high prevalence worldwide, in which an association with the rupture of the intestinal epithelium barrier function (IEBF) has been pointed out, but the functional and morphological properties are still not well understood. This study aimed to evaluate the impact of acute hyperglycemia diabetes on intestinal tight junction proteins, metabolic failure, intestinal ion and water transports, and IEBF parameters. Diabetes was induced in male Rattus norvegicus (200-310 g) with 0.5 mL of streptozotocin (70 mg/kg). Glycemic and clinical parameters were evaluated every 7 days, and intestinal parameters were evaluated on the 14th day. The MetS-D animals showed a clinical pattern of hyperglycemia, with increases in the area of villi and crypts, lactulose:mannitol ratio, myeloperoxidase (MPO) activity, and intestinal tissue concentrations of malondialdehyde (MDA), but showed a reduction in reduced glutathione (GSH) when these parameters were compared to the control. The MetS-D group had increased secretion of Na+, K+, Cl-, and water compared to the control group in ileal tissue. Furthermore, we observed a reduction in mRNA transcript of claudin-2, claudin-15, and NHE3 and increases of SGLT-1 and ZO-1 in the MetS-D group. These results showed that MetS-D triggered intestinal tissue inflammation, oxidative stress, complex alterations in gene regulatory protein transcriptions of intestinal transporters and tight junctions, damaging the IEBF and causing hydroelectrolyte secretion.
Collapse
Affiliation(s)
- F.J.W.S. Siqueira
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - F.A.P. Rodrigues
- Departamento de Educação Física e Esporte, Instituto Federal de Educação, Ciência e Tecnologia do Ceará, Fortaleza, CE, Brasil
| | - S.A. Ribeiro
- Programa de Pós-Graduação em Ciências Médicas, Departamento de Patologia e Medicina Legal, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - H.N. Veras
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - F.C.S. Ferreira
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - R.C.L. Siqueira
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - A.A. dos Santos
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - A. Havt
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - A.A.M. Lima
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| |
Collapse
|
2
|
Dominguez Rieg JA, Rieg T. New functions and roles of the Na +-H +-exchanger NHE3. Pflugers Arch 2024; 476:505-516. [PMID: 38448727 DOI: 10.1007/s00424-024-02938-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 03/08/2024]
Abstract
The sodium/proton exchanger isoform 3 (NHE3) is expressed in the intestine and the kidney, where it contributes to hydrogen secretion and sodium (re)absorption. The roles of this transporter have been studied by the use of the respective knockout mice and by using pharmacological inhibitors. Whole-body NHE3 knockout mice suffer from a high mortality rate (with only ∼30% of mice surviving into adulthood), and based on the expression of NHE3 in both intestine and kidney, some conclusions that were originally derived were based on this rather complex phenotype. In the last decade, more refined models have been developed that added temporal and spatial control of NHE3 expression. For example, novel mouse models have been developed with a knockout of NHE3 in intestinal epithelial cells, tubule/collecting duct of the kidney, proximal tubule of the kidney, and thick ascending limb of the kidney. These refined models have significantly contributed to our understanding of the role of NHE3 in a tissue/cell type-specific manner. In addition, tenapanor was developed, which is a non-absorbable, intestine-specific NHE3 inhibitor. In rat and human studies, tenapanor lowered intestinal Pi uptake and was effective in lowering plasma Pi levels in patients on hemodialysis. Of note, diarrhea is seen as a side effect of tenapanor (with its indication for the treatment of constipation) and in intestine-specific NHE3 knockout mice; however, effects on plasma Pi were not supported by this mouse model which showed enhanced and not reduced intestinal Pi uptake. Further studies indicated that the gut microbiome in mice lacking intestinal NHE3 resembles an intestinal environment favoring the competitive advantage of inflammophilic over anti-inflammatory species, something similar seen in patients with inflammatory bowel disease. This review will highlight recent developments and summarize newly gained insight from these refined models.
Collapse
Affiliation(s)
- Jessica A Dominguez Rieg
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
- James A. Haley Veterans' Hospital, Tampa, FL, 33612, USA
- Hypertension and Kidney Research Center, University of South Florida, Tampa, FL, 33602, USA
| | - Timo Rieg
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA.
- James A. Haley Veterans' Hospital, Tampa, FL, 33612, USA.
- Hypertension and Kidney Research Center, University of South Florida, Tampa, FL, 33602, USA.
| |
Collapse
|
3
|
de Souza Goncalves L, Chu T, Master R, Chhetri PD, Gao Q, Cil O. Mg2+ supplementation treats secretory diarrhea in mice by activating calcium-sensing receptor in intestinal epithelial cells. J Clin Invest 2024; 134:e171249. [PMID: 37962961 PMCID: PMC10786700 DOI: 10.1172/jci171249] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 11/09/2023] [Indexed: 11/16/2023] Open
Abstract
Cholera is a global health problem with no targeted therapies. The Ca2+-sensing receptor (CaSR) is a regulator of intestinal ion transport and a therapeutic target for diarrhea, and Ca2+ is considered its main agonist. We found that increasing extracellular Ca2+ had a minimal effect on forskolin-induced Cl- secretion in human intestinal epithelial T84 cells. However, extracellular Mg2+, an often-neglected CaSR agonist, suppressed forskolin-induced Cl- secretion in T84 cells by 65% at physiological levels seen in stool (10 mM). The effect of Mg2+ occurred via the CaSR/Gq signaling that led to cAMP hydrolysis. Mg2+ (10 mM) also suppressed Cl- secretion induced by cholera toxin, heat-stable E. coli enterotoxin, and vasoactive intestinal peptide by 50%. In mouse intestinal closed loops, luminal Mg2+ treatment (20 mM) inhibited cholera toxin-induced fluid accumulation by 40%. In a mouse intestinal perfusion model of cholera, addition of 10 mM Mg2+ to the perfusate reversed net fluid transport from secretion to absorption. These results suggest that Mg2+ is the key CaSR activator in mouse and human intestinal epithelia at physiological levels in stool. Since stool Mg2+ concentrations in patients with cholera are essentially zero, oral Mg2+ supplementation, alone or in an oral rehydration solution, could be a potential therapy for cholera and other cyclic nucleotide-mediated secretory diarrheas.
Collapse
|
4
|
Hammers DE, Donahue DL, Tucker Z, Ashfeld BL, Ploplis VA, Castellino FJ, Lee SW. Streptolysin S targets the sodium-bicarbonate cotransporter NBCn1 to induce inflammation and cytotoxicity in human keratinocytes during Group A Streptococcal infection. Front Cell Infect Microbiol 2022; 12:1002230. [PMID: 36389147 PMCID: PMC9663810 DOI: 10.3389/fcimb.2022.1002230] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 09/29/2022] [Indexed: 11/30/2022] Open
Abstract
Group A <i>Streptococcus</i> (GAS, <i>Streptococcus pyogenes</i>) is a Gram-positive human pathogen that employs several secreted and surface-bound virulence factors to manipulate its environment, allowing it to cause a variety of disease outcomes. One such virulence factor is Streptolysin S (SLS), a ribosomally-produced peptide toxin that undergoes extensive post-translational modifications. The activity of SLS has been studied for over 100 years owing to its rapid and potent ability to lyse red blood cells, and the toxin has been shown to play a major role in GAS virulence <i>in vivo</i>. We have previously demonstrated that SLS induces hemolysis by targeting the chloride-bicarbonate exchanger Band 3 in erythrocytes, indicating that SLS is capable of targeting host proteins to promote cell lysis. However, the possibility that SLS has additional protein targets in other cell types, such as keratinocytes, has not been explored. Here, we use bioinformatics analysis and chemical inhibition studies to demonstrate that SLS targets the electroneutral sodium-bicarbonate cotransporter NBCn1 in keratinocytes during GAS infection. SLS induces NF-κB activation and host cytotoxicity in human keratinocytes, and these processes can be mitigated by treating keratinocytes with the sodium-bicarbonate cotransport inhibitor S0859. Furthermore, treating keratinocytes with SLS disrupts the ability of host cells to regulate their intracellular pH, and this can be monitored in real time using the pH-sensitive dye pHrodo Red AM in live imaging studies. These results demonstrate that SLS is a multifunctional bacterial toxin that GAS uses in numerous context-dependent ways to promote host cell cytotoxicity and increase disease severity. Studies to elucidate additional host targets of SLS have the potential to impact the development of therapeutics for severe GAS infections.
Collapse
Affiliation(s)
- Daniel E. Hammers
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States,Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, United States
| | - Deborah L. Donahue
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States,William Myron (W. M.) Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN, United States
| | - Zachary D. Tucker
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States
| | - Brandon L. Ashfeld
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States
| | - Victoria A. Ploplis
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States,William Myron (W. M.) Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN, United States
| | - Francis J. Castellino
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States,William Myron (W. M.) Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN, United States
| | - Shaun W. Lee
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States,Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, United States,William Myron (W. M.) Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN, United States,*Correspondence: Shaun W. Lee,
| |
Collapse
|
5
|
Xue J, Dominguez Rieg JA, Thomas L, White JR, Rieg T. Intestine-Specific NHE3 Deletion in Adulthood Causes Microbial Dysbiosis. Front Cell Infect Microbiol 2022; 12:896309. [PMID: 35719363 PMCID: PMC9204535 DOI: 10.3389/fcimb.2022.896309] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/21/2022] [Indexed: 11/13/2022] Open
Abstract
In the intestine, the Na+/H+ exchanger 3 (NHE3) plays a critical role for Na+ and fluid absorption. NHE3 deficiency predisposes patients to inflammatory bowel disease (IBD). In mice, selective deletion of intestinal NHE3 causes various local and systemic pathologies due to dramatic changes in the intestinal environment, which can influence microbiota colonization. By using metagenome shotgun sequencing, we determined the effect of inducible intestinal epithelial cell-specific deletion of NHE3 (NHE3IEC-KO) in adulthood on the gut microbiome in mice. Compared with control mice, NHE3IEC-KO mice show a significantly different gut microbiome signature, with an unexpected greater diversity. At the phylum level, NHE3IEC-KO mice showed a significant expansion in Proteobacteria and a tendency for lower Firmicutes/Bacteroidetes (F/B) ratio, an indicator of dysbiosis. At the family level, NHE3IEC-KO mice showed significant expansions in Bacteroidaceae, Rikenellaceae, Tannerellaceae, Flavobacteriaceae and Erysipelotrichaceae, but had contractions in Lachnospiraceae, Prevotellaceae and Eubacteriaceae. At the species level, after removing those with lowest occurrence and abundance, we identified 23 species that were significantly expanded (several of which are established pro-inflammatory pathobionts); whereas another 23 species were found to be contracted (some of which are potential anti-inflammatory probiotics) in NHE3IEC-KO mice. These results reveal that intestinal NHE3 deletion creates an intestinal environment favoring the competitive advantage of inflammophilic over anti-inflammatory species, which is commonly featured in conventional NHE3 knockout mice and patients with IBD. In conclusion, our study emphasizes the importance of intestinal NHE3 for gut microbiota homeostasis, and provides a deeper understanding regarding interactions between NHE3, dysbiosis, and IBD.
Collapse
Affiliation(s)
- Jianxiang Xue
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL, United States
| | - Jessica A Dominguez Rieg
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL, United States.,James A. Haley Veterans' Hospital, Tampa, FL, United States
| | - Linto Thomas
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL, United States
| | - James R White
- Resphera Biosciences LLC, Baltimore, MD, United States
| | - Timo Rieg
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL, United States.,James A. Haley Veterans' Hospital, Tampa, FL, United States.,Center for Hypertension and Kidney Research, University of South Florida, Tampa, FL, United States
| |
Collapse
|
6
|
Nikolovska K, Seidler UE, Stock C. The Role of Plasma Membrane Sodium/Hydrogen Exchangers in Gastrointestinal Functions: Proliferation and Differentiation, Fluid/Electrolyte Transport and Barrier Integrity. Front Physiol 2022; 13:899286. [PMID: 35665228 PMCID: PMC9159811 DOI: 10.3389/fphys.2022.899286] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/19/2022] [Indexed: 12/11/2022] Open
Abstract
The five plasma membrane Na+/H+ exchanger (NHE) isoforms in the gastrointestinal tract are characterized by distinct cellular localization, tissue distribution, inhibitor sensitivities, and physiological regulation. NHE1 (Slc9a1) is ubiquitously expressed along the gastrointestinal tract in the basolateral membrane of enterocytes, but so far, an exclusive role for NHE1 in enterocyte physiology has remained elusive. NHE2 (Slc9a2) and NHE8 (Slc9a8) are apically expressed isoforms with ubiquitous distribution along the colonic crypt axis. They are involved in pHi regulation of intestinal epithelial cells. Combined use of a knockout mouse model, intestinal organoid technology, and specific inhibitors revealed previously unrecognized actions of NHE2 and NHE8 in enterocyte proliferation and differentiation. NHE3 (Slc9a3), expressed in the apical membrane of differentiated intestinal epithelial cells, functions as the predominant nutrient-independent Na+ absorptive mechanism in the gut. The new selective NHE3 inhibitor (Tenapanor) allowed discovery of novel pathophysiological and drug-targetable NHE3 functions in cystic-fibrosis associated intestinal obstructions. NHE4, expressed in the basolateral membrane of parietal cells, is essential for parietal cell integrity and acid secretory function, through its role in cell volume regulation. This review focuses on the expression, regulation and activity of the five plasma membrane Na+/H+ exchangers in the gastrointestinal tract, emphasizing their role in maintaining intestinal homeostasis, or their impact on disease pathogenesis. We point to major open questions in identifying NHE interacting partners in central cellular pathways and processes and the necessity of determining their physiological role in a system where their endogenous expression/activity is maintained, such as organoids derived from different parts of the gastrointestinal tract.
Collapse
|
7
|
Park NY, Koh A. From the Dish to the Real World: Modeling Interactions between the Gut and Microorganisms in Gut Organoids by Tailoring the Gut Milieu. Int J Stem Cells 2022; 15:70-84. [PMID: 35220293 PMCID: PMC8889331 DOI: 10.15283/ijsc21243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 11/11/2022] Open
Abstract
The advent of human intestinal organoid systems has revolutionized the way we understand the interactions between the human gut and microorganisms given the host tropism of human microorganisms. The gut microorganisms have regionality (i.e., small versus large intestine) and the expression of various virulence factors in pathogens is influenced by the gut milieu. However, the culture conditions, optimized for human intestinal organoids, often do not fully support the proliferation and functionality of gut microorganisms. In addition, the regional identity of human intestinal organoids has not been considered to study specific microorganisms with regional preference. In this review we provide an overview of current efforts to understand the role of microorganisms in human intestinal organoids. Specifically, we will emphasize the importance of matching the regional preference of microorganisms in the gut and tailoring the appropriate luminal environmental conditions (i.e., oxygen, pH, and biochemical levels) for modeling real interactions between the gut and the microorganisms with human intestinal organoids.
Collapse
Affiliation(s)
- Na-Young Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Korea
| | - Ara Koh
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Korea
| |
Collapse
|
8
|
Wang Y, Wang Y, Lin X, Gou Z, Fan Q, Jiang S. Effects of Clostridium butyricum, Sodium Butyrate, and Butyric Acid Glycerides on the Reproductive Performance, Egg Quality, Intestinal Health, and Offspring Performance of Yellow-Feathered Breeder Hens. Front Microbiol 2021; 12:657542. [PMID: 34603221 PMCID: PMC8481923 DOI: 10.3389/fmicb.2021.657542] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 08/12/2021] [Indexed: 01/24/2023] Open
Abstract
Butyrate has been reported to promote the performance and growth of chickens. The specific roles and efficacy of different sources of butyrate remained unclear. Thus, the present study aimed to investigate and compare the effects of Clostridium butyricum (CB), sodium butyrate (SB), and butyric acid glycerides (tributyrin, BAG) on the reproductive performance, egg quality, intestinal health, and offspring performance of yellow-feathered breeder hens. A total of 300 Lingnan yellow-feathered breeder hens were assigned to five treatment groups: control (CL), 1×108CFU/kg CB (CBL), 1×109CFU/kg CB (CBH), 500mg/kg SB, and 300mg/kg BAG. Results showed that the laying performance and egg quality were increased by CBL, CBH, and BAG. Both CB treatments increased the hatchability of fertilized eggs. Maternal supplementation with both levels of CB significantly elevated the growth performance of offspring. Treatment with CBL, CBH, SB, and BAG all improved the oviduct-related variables and reduced the plasmal antioxidant variables. The CBH, CBL, and BAG treatments also improved the intestinal morphology to different degrees. Jejunal contents of IL-6 were decreased by CBH and BAG, while those of IL-4, IL-6, IL-1β, and IgY were decreased by SB. Transcripts of nutrient transporters in jejunal mucosa were also upregulated by CBH, CBL, and SB treatments and expression of Bcl-2-associated X protein was decreased by CBL, CBH, and BAG. In cecal contents, CBL increased the abundance of Firmicutes and Bacillus, while CBH decreased the abundance of Proteobacteria. Also, the co-occurrence networks of intestinal microbes were regulated by CBH and BAG. In conclusion, dietary inclusion of CB and BAG improved the reproductive parameters, egg quality, and intestinal morphology of breeders. CB also influenced the hatching performance of breeders and growth performance of the offspring, while SB improved the oviduct-related variables. These beneficial effects may result from the regulation of cytokines, nutrient transporters, apoptosis, and gut microbiota; high-level CB had more obvious impact. Further study is needed to explore and understand the correlation between the altered gut microbiota induced by butyrate and the performance, egg quality, intestinal health, and also offspring performance.
Collapse
Affiliation(s)
- Yibing Wang
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agricultural and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yang Wang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Xiajing Lin
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agricultural and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Zhongyong Gou
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agricultural and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Qiuli Fan
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agricultural and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Shouqun Jiang
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agricultural and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
9
|
Nickerson AJ, Rajendran VM. Flupirtine enhances NHE-3-mediated Na + absorption in rat colon via an ENS-dependent mechanism. Am J Physiol Gastrointest Liver Physiol 2021; 321:G185-G199. [PMID: 34132108 PMCID: PMC8410105 DOI: 10.1152/ajpgi.00158.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/11/2021] [Accepted: 06/11/2021] [Indexed: 01/31/2023]
Abstract
Recent studies in our lab have shown that the KV7 channel activator, flupirtine, inhibits colonic epithelial Cl- secretion through effects on submucosal neurons of the enteric nervous system (ENS). We hypothesized that flupirtine would also stimulate Na+ absorption as a result of reduced secretory ENS input to the epithelium. To test this hypothesis, unidirectional 22Na+ fluxes were measured under voltage-clamped conditions. Pharmacological approaches using an Ussing-style recording chamber combined with immunofluorescence microscopy techniques were used to determine the effect of flupirtine on active Na+ transport in the rat colon. Flupirtine stimulated electroneutral Na+ absorption in partially seromuscular-stripped colonic tissues, while simultaneously inhibiting short-circuit current (ISC; i.e., Cl- secretion). Both of these effects were attenuated by pretreatment with the ENS inhibitor, tetrodotoxin. The Na+/H+ exchanger isoform 3 (NHE-3)-selective inhibitor, S3226, significantly inhibited flupirtine-stimulated Na+ absorption, whereas the NHE-2-selective inhibitor HOE-694 did not. NHE-3 localization near the apical membranes of surface epithelial cells was also more apparent in flupirtine-treated colon versus control. Flupirtine did not alter epithelial Na+ channel (ENaC)-mediated Na+ absorption in distal colonic tissues obtained from hyperaldosteronaemic rats and had no effect in the normal ileum but did stimulate Na+ absorption in the proximal colon. Finally, the parallel effects of flupirtine on ISC (Cl- secretion) and Na+ absorption were significantly correlated with each other. Together, these data indicate that flupirtine stimulates NHE-3-dependent Na+ absorption, likely as a result of reduced stimulatory input to the colonic epithelium by submucosal ENS neurons.NEW & NOTEWORTHY We present a novel mechanism regarding regulation of epithelial ion transport by enteric neurons. Activation of neuronal KV7 K+ channels markedly stimulates Na+ absorption and inhibits Cl- secretion across the colonic epithelium. This may be useful in developing new treatments for diarrheal disorders, such as irritable bowel syndrome with diarrhea (IBS-D).
Collapse
Affiliation(s)
- Andrew J Nickerson
- Departments of Physiology, Pharmacology and Neuroscience, West Virginia University School of Medicine, Morgantown, West Virginia
- Department of Biochemistry, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Vazhaikkurichi M Rajendran
- Department of Biochemistry, West Virginia University School of Medicine, Morgantown, West Virginia
- Department of Medicine, West Virginia University School of Medicine, Morgantown, West Virginia
| |
Collapse
|
10
|
Yin J, Sunuwar L, Kasendra M, Yu H, Tse CM, Talbot CC, Boronina T, Cole R, Karalis K, Donowitz M. Fluid shear stress enhances differentiation of jejunal human enteroids in Intestine-Chip. Am J Physiol Gastrointest Liver Physiol 2021; 320:G258-G271. [PMID: 33074011 PMCID: PMC8202237 DOI: 10.1152/ajpgi.00282.2020] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
There is increasing evidence that the study of normal human enteroids duplicates many known aspects of human intestinal physiology. However, this epithelial cell-only model lacks the many nonepithelial intestinal cells present in the gastrointestinal tract and exposure to the mechanical forces to which the intestine is exposed. We tested the hypothesis that physical shear forces produced by luminal and blood flow would provide an intestinal model more closely resembling normal human jejunum. Jejunal enteroid monolayers were studied in the Emulate, Inc. Intestine-Chip under conditions of constant luminal and basolateral flow that was designed to mimic normal intestinal fluid flow, with human umbilical vein endothelial cells (HUVECs) on the basolateral surface and with Wnt3A, R-spondin, and Noggin only on the luminal surface. The jejunal enteroids formed monolayers that remained confluent for 6-8 days, began differentiating at least as early as day 2 post plating, and demonstrated continuing differentiation over the entire time of the study, as shown by quantitative real-time polymerase chain reaction and Western blot analysis. Differentiation impacted villus genes and proteins differently with early expression of regenerating family member 1α (REG1A), early reduction to a low but constant level of expression of Na+-K+-2Cl- cotransporter 1 (NKCC1), and increasing expression of sucrase-isomaltase (SI) and downregulated in adenoma (DRA). These results were consistent with continual differentiation, as was shown to occur in mouse villus enterocytes. Compared with differentiated enteroid monolayers grown on Transwell inserts, enteroids exposed to flow were more differentiated but exhibited increased apoptosis and reduced carbohydrate metabolism, as shown by proteomic analysis. This study of human jejunal enteroids-on-chip suggests that luminal and basolateral flow produce a model of continual differentiation over time and NaCl absorption that mimics normal intestine and should provide new insights in intestinal physiology.NEW & NOTEWORTHY This study showed that polarized enteroid models in which there is no basolateral Wnt3a, are differentiated, regardless of the Wnt3a status of the apical media. The study supports the concept that in the human intestine villus differentiation is not an all or none phenomenon, demonstrating that at different days after lack of basolateral Wnt exposure, clusters of genes and proteins exist geographically along the villus with different domains having different functions.
Collapse
Affiliation(s)
- Jianyi Yin
- 1Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Laxmi Sunuwar
- 1Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Huimin Yu
- 1Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Chung-Ming Tse
- 1Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - C. Conover Talbot
- 3Institute for Basic Biomedical Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Tatiana Boronina
- 4Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Robert Cole
- 4Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Katia Karalis
- 2Emulate, Inc., Boston, Massachusetts,5Biomedical Sciences Research Center (BSRC) Alexander Fleming, Vari, Greece,7Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Mark Donowitz
- 1Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, Maryland,7Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
11
|
Dwivedi M, Shaw A. Implication of cation-proton antiporters (CPA) in human health and diseases causing microorganisms. Biochimie 2021; 182:85-98. [PMID: 33453344 DOI: 10.1016/j.biochi.2021.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 01/03/2021] [Accepted: 01/07/2021] [Indexed: 12/15/2022]
Abstract
Cation and protons perform a substantial role in all the organism and its homeostasis within the cells are maintained by the cation-proton antiporters (CPAs). CPA is the huge family of the membrane transporter protein throughout the plant and animal kingdom including microorganism. In human, any malfunctioning of these proteins may lead to severe diseases like hypertension, heart diseases etc and CPAs are recently proposed to be responsible for the virulent property of various pathogens including Vibrio cholerae, Yersinia pestis etc. Human Sodium-Proton exchangers (Na+/H+ exchangers, NHEs) are crucial in ion homeostasis whereas Ec-NhaA, Na + -H + Antiporters maintain a balance of Na+ and proton in E. coli, regulating pH and cell volume within the cell. These Sodium-Proton antiporters are found to be responsible for the virulence in various pathogens causing human diseases. Understanding of these CPAs may assist investigators to target such human diseases, that further may lead to establishing the effective path for therapeutics or drug designing against associated human disease. Here we have compiled all such information on CPAs and provide a systematic approach to unravel the mechanism and role of antiporter proteins in a wide range of organisms. Being involved throughout all the species, this review on cation-proton antiporters may attract the attention of many investigators and concerned researchers and will be provided with the recent detailed information on the role of CPA in human health.
Collapse
Affiliation(s)
- Manish Dwivedi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, 226028, India.
| | | |
Collapse
|
12
|
Xue H, Zhang M, Ma J, Chen T, Wang F, Tang X. Lactose-Induced Chronic Diarrhea Results From Abnormal Luminal Microbial Fermentation and Disorder of Ion Transport in the Colon. Front Physiol 2020; 11:877. [PMID: 32848839 PMCID: PMC7403511 DOI: 10.3389/fphys.2020.00877] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/29/2020] [Indexed: 12/12/2022] Open
Abstract
Diarrhea is one of the major abdominal symptoms in lactose-intolerant subjects. The changes in the large intestinal luminal environment and disorder of the epithelial ion transport in lactose-induced diarrhea remain unclear. The present study aimed to investigate the effect of an incremental high-lactose diet (IHLD, 30%/40%/50%) on luminal microbiota, microbiota-derived metabolite concentrations and colonic ion transport. Gut microbiota were analyzed by 16S rRNA amplicon sequencing and the concentration of SCFAs by gas chromatography, galactose, lactose and lactic acid through assay kit; Ussing chamber was performed to detect basal and stimulated ion transport; The expression and location of SCFA transporters, the Na-H exchanger 3(NHE3), cystic fibrosis transporter regulater (CFTR) and NKCC1 in the colon mucosa were analyzed by western and immunostaining. The concentrations of lactose, galactose and lactic acid of the cecal content were markedly increased (P < 0.01) and SCFA concentration was significantly decreased (P < 0.01). This was associated with depletion of the Lachnospiraceae NK4A136 group and Ruminococcaceae UCG-005 and increased relative abundance of Lactobacillus, escherichia-shigella and megamonas in the cecal microbiota. The expression of monocarboxylate transporter 1 was decreased in the colonic mucosa of the IHLD group. Low NHE3 expression and phosphorylation levels, and decreases in delta basal short circuit current after apical Na+ removal in the colonic mucosa of the IHLD group contributed to Na+ accumulation in the lumen and decrease stimulated Cl– secretion with low CFTR and NKCC1 expression would compensate for water and electrolyte loss during the diarrhea process. These results indicated that the persistence of the diarrhea state was maintained by abnormal colonic microbiota fermentation leading to high concentrations of lactose, galactose and lactic acid and low SCFAs in the lumen, and decreased Na+ absorption with the low NHE3 expression and phosphorylation levels.
Collapse
Affiliation(s)
- Hong Xue
- Digestive Laboratory of Traditional Chinese Medicine Research Institute of Spleen and Stomach Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Min Zhang
- Digestive Laboratory of Traditional Chinese Medicine Research Institute of Spleen and Stomach Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jinxin Ma
- Digestive Laboratory of Traditional Chinese Medicine Research Institute of Spleen and Stomach Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ting Chen
- Digestive Laboratory of Traditional Chinese Medicine Research Institute of Spleen and Stomach Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fengyun Wang
- Digestive Laboratory of Traditional Chinese Medicine Research Institute of Spleen and Stomach Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xudong Tang
- Digestive Laboratory of Traditional Chinese Medicine Research Institute of Spleen and Stomach Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
13
|
Enns CB, Keith BA, Challa N, Harding JCS, Loewen ME. Impairment of electroneutral Na + transport and associated downregulation of NHE3 contributes to the development of diarrhea following in vivo challenge with Brachyspira spp. Am J Physiol Gastrointest Liver Physiol 2020; 318:G288-G297. [PMID: 31760765 PMCID: PMC7052572 DOI: 10.1152/ajpgi.00011.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The effect of Brachyspira hyodysenteriae and Brachyspira hampsonii spirochetosis on Na+ transport was assessed in the colon to determine its contribution to diarrheal disease in pigs following experimental infection. Electrogenic and electroneutral Na+ absorption was assessed in Ussing chambers by radiolabeled 22Na flux and pharmacological inhibitory studies. Basal radiolabeled 22Na flux experiments revealed that mucosal-to-serosal flux (Jms) was significantly impaired in B. hyodysenteriae and B. hampsonii-diseased pigs. Inhibition of epithelial sodium channel via amiloride did not significantly reduce electrogenic short-circuit current (Isc) in the proximal, apex, and distal colonic segments of diseased pigs over control pigs, suggesting that a loss of electroneutral Na+ absorption is responsible for diarrheal development. These findings were further supported by significant downregulation of Na+/H+ exchanger (NHE1, NHE2, and NHE3) mRNA expression in the proximal, apex, and distal colonic segments paired with decreased protein expression of the critical NHE3 isoform. The decrease in NHE3 mRNA expression appears not to be attributed to the host's cytokine response as human IL-1α did not modify NHE3 mRNA expression in Caco-2 cells. However, a whole cell B. hampsonii lysate significantly downregulated NHE3 mRNA expression and significantly increased p38 phosphorylation in Caco-2 cells. Together these findings provide a likely mechanism for the spirochete-induced malabsorptive diarrhea, indicated by a decrease in electroneutral Na+ absorption in the porcine colon due to Brachyspira's ability to inhibit NHE3 transcription, resulting in diarrheal disease.NEW & NOTEWORTHY This research demonstrates that diarrheal disease caused by two infectious spirochete spp. is a result of impaired electroneutral Na+ absorption via Na+/H+ exchanger 3 (NHE3) in the porcine colon. Our findings suggest that the decrease in NHE3 mRNA and protein is not likely a result of the host's cytokine response. Rather, it appears that these two Brachyspira spp. directly inhibit the transcription and translation of NHE3, resulting in the development of diarrhea.
Collapse
Affiliation(s)
- Cole B. Enns
- 1Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Brandon A. Keith
- 1Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Nitin Challa
- 1Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - John C. S. Harding
- 2Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Matthew E. Loewen
- 1Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
14
|
Affiliation(s)
- Henry J Binder
- Section of Digestive Diseases, Department of Internal Medicine, Yale University, PO Box 208019, New Haven, CT, 06520, USA.
| |
Collapse
|
15
|
Cao L, Yuan Z, Liu M, Stock C. (Patho-)Physiology of Na +/H + Exchangers (NHEs) in the Digestive System. Front Physiol 2020; 10:1566. [PMID: 32009977 PMCID: PMC6974801 DOI: 10.3389/fphys.2019.01566] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 12/12/2019] [Indexed: 02/06/2023] Open
Abstract
Na+/H+ exchangers (NHEs) are expressed in virtually all human tissues and organs. Two major tasks of those NHE isoforms that are located in plasma membranes are cell volume control by Na+-uptake and cellular pH regulation by H+-extrusion. Several NHEs, particularly NHE 1–4 and 8, are involved in the pathogenesis of diseases of the digestive system such as inflammatory bowel disease (ulcerative colitis, Crohn’s disease) and gastric and colorectal tumorigenesis. In the present review, we describe the physiological purposes, possible malfunctions and pathophysiological effects of the different NHE isoforms along the alimentary canal from esophagus to colon, including pancreas, liver and gallbladder. Particular attention is paid to the functions of NHEs in injury repair and to the role of NHE1 in Barrett’s esophagus. The impact of NHEs on gut microbiota and intestinal mucosal integrity is also dealt with. As the hitherto existing findings are not always consistent, sometimes even controversial, they are compared and critically discussed.
Collapse
Affiliation(s)
- Li Cao
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhenglin Yuan
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mei Liu
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Christian Stock
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hanover, Germany
| |
Collapse
|
16
|
Prasad H, Shenoy AR, Visweswariah SS. Cyclic nucleotides, gut physiology and inflammation. FEBS J 2020; 287:1970-1981. [PMID: 31889413 DOI: 10.1111/febs.15198] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/10/2019] [Accepted: 12/30/2019] [Indexed: 12/27/2022]
Abstract
Misregulation of gut function and homeostasis impinges on the overall well-being of the entire organism. Diarrheal disease is the second leading cause of death in children under 5 years of age, and globally, 1.7 billion cases of childhood diarrhea are reported every year. Accompanying diarrheal episodes are a number of secondary effects in gut physiology and structure, such as erosion of the mucosal barrier that lines the gut, facilitating further inflammation of the gut in response to the normal microbiome. Here, we focus on pathogenic bacteria-mediated diarrhea, emphasizing the role of cyclic adenosine 3',5'-monophosphate and cyclic guanosine 3',5'-monophosphate in driving signaling outputs that result in the secretion of water and ions from the epithelial cells of the gut. We also speculate on how this aberrant efflux and influx of ions could modulate inflammasome signaling, and therefore cell survival and maintenance of gut architecture and function.
Collapse
Affiliation(s)
- Hari Prasad
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bengaluru, India
| | | | | |
Collapse
|
17
|
Siciliano V, Nista EC, Rosà T, Brigida M, Franceschi F. Clinical Management of Infectious Diarrhea. Rev Recent Clin Trials 2020; 15:298-308. [PMID: 32598272 DOI: 10.2174/1574887115666200628144128] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/05/2020] [Accepted: 05/11/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Infectious diarrhea is the most common cause of diarrhea worldwide and is responsible for more deaths than other gastrointestinal tract diseases such as gastrointestinal cancers, peptic ulcer disease or inflammatory bowel disease. Diarrheal disease still represents the 8th leading cause of death worldwide, with more than 1,6 million attributed fatalities in 2016 alone. The majority of cases can be divided into three principal clinical presentations: acute watery diarrhea lasting 5-10 days and normally self-limiting, bloody diarrhea (dysentery), and persistent diarrhea with or without intestinal malabsorption. METHODS We performed an electronic search on PUBMED of the scientific literature concerning infectious diarrhea and its clinical management. AIM In this review article, we analyze the most important causes of infectious diarrhea and their constellation of signs and symptoms, providing an update on the diagnostic tools available in today's practice and on the different treatment options. CONCLUSION Even though the majority of intestinal infections are self-limiting in immunocompetent individuals, specific diagnosis and identification of the causative agent remain crucial from public health and epidemiological perspectives. Specific diagnostic investigation can be reserved for patients with severe dehydration, more severe illness, persistent fever, bloody stools, immunosuppression, and for cases of suspected nosocomial infection or outbreak and it includes complete blood count, creatinine and electrolytes evaluation, determination of leukocytes and lactoferrin presence in the stools, stool culture, together with C. difficile testing, PCR, ova and parasites' search, endoscopy and abdominal imaging. Since acute diarrhea is most often self-limited and caused by viruses, routine antibiotic use is not recommended for most adults with mild, watery diarrhea. However, when used appropriately, antibiotics are effective against shigellosis, campylobacteriosis, C. difficile colitis, traveler's diarrhea, and protozoal infections. Furthermore, antibiotics use should be considered in patients who are older than 65 years, immunocompromised, severely ill, or septic.
Collapse
Affiliation(s)
| | | | - Tommaso Rosà
- Universita Cattolica del Sacro Cuore - Rome, Italy
| | | | | |
Collapse
|
18
|
Duan T, Cil O, Thiagarajah JR, Verkman AS. Intestinal epithelial potassium channels and CFTR chloride channels activated in ErbB tyrosine kinase inhibitor diarrhea. JCI Insight 2019; 4:126444. [PMID: 30668547 PMCID: PMC6478423 DOI: 10.1172/jci.insight.126444] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 01/14/2019] [Indexed: 12/11/2022] Open
Abstract
Diarrhea is a major side effect of ErbB receptor tyrosine kinase inhibitors (TKIs) in cancer chemotherapy. Here, we show that the primary mechanism of ErbB TKI diarrhea is activation of basolateral membrane potassium (K+) channels and apical membrane chloride (Cl-) channels in intestinal epithelia and demonstrate the efficacy of channel blockers in a rat model of TKI diarrhea. Short-circuit current in colonic epithelial cells showed that the TKIs gefitinib, lapatinib, and afatinib do not affect basal secretion but amplify carbachol-stimulated secretion by 2- to 3-fold. Mechanistic studies with the second-generation TKI afatinib showed that the amplifying effect on Cl- secretion was Ca2+ and cAMP independent, was blocked by CF transmembrane conductance regulator (CFTR) and K+ channel inhibitors, and involved EGFR binding and ERK signaling. Afatinib-amplified activation of basolateral K+ and apical Cl- channels was demonstrated by selective membrane permeabilization, ion substitution, and channel inhibitors. Rats that were administered afatinib orally at 60 mg/kg/day developed diarrhea with increased stool water from approximately 60% to greater than 80%, which was reduced by up to 75% by the K+ channel inhibitors clotrimazole or senicapoc or the CFTR inhibitor (R)-BPO-27. These results indicate a mechanism for TKI diarrhea involving K+ and Cl- channel activation and support the therapeutic efficacy of channel inhibitors.
Collapse
Affiliation(s)
- Tianying Duan
- Departments of Medicine and Physiology, UCSF, San Francisco, California, USA
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Onur Cil
- Departments of Medicine and Physiology, UCSF, San Francisco, California, USA
- Department of Pediatrics, UCSF, San Francisco, California, USA
| | - Jay R. Thiagarajah
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Alan S. Verkman
- Departments of Medicine and Physiology, UCSF, San Francisco, California, USA
| |
Collapse
|
19
|
Harrison CA, Laubitz D, Ohland CL, Midura-Kiela MT, Patil K, Besselsen DG, Jamwal DR, Jobin C, Ghishan FK, Kiela PR. Microbial dysbiosis associated with impaired intestinal Na +/H + exchange accelerates and exacerbates colitis in ex-germ free mice. Mucosal Immunol 2018; 11:1329-1341. [PMID: 29875400 PMCID: PMC6162102 DOI: 10.1038/s41385-018-0035-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 03/29/2018] [Accepted: 04/15/2018] [Indexed: 02/04/2023]
Abstract
Intestinal epithelial Na+/H+ exchange facilitated by the apical NHE3 (Slc9a3) is a highly regulated process inhibited by intestinal pathogens and in inflammatory bowel diseases. NHE3-/- mice develop spontaneous, bacterially mediated colitis, and IBD-like dysbiosis. Disruption of epithelial Na+/H+ exchange in IBD may thus represent a host response contributing to the altered gut microbial ecology, and may play a pivotal role in modulating the severity of inflammation in a microbiome-dependent manner. To test whether microbiome fostered in an NHE3-deficient environment is able to drive mucosal immune responses affecting the onset or severity of colitis, we performed a series of cohousing experiments and fecal microbiome transplants into germ-free Rag-deficient or IL-10-/- mice. We determined that in the settings where the microbiome of NHE3-deficient mice was stably engrafted in the recipient host, it was able accelerate the onset and amplify severity of experimental colitis. NHE3-deficiency was characterized by the reduction in pH-sensitive butyrate-producing Firmicutes families Lachnospiraceae and Ruminococcaceae (Clostridia clusters IV and XIVa), with an expansion of inflammation-associated Bacteroidaceae. We conclude that the microbiome fostered by impaired epithelial Na+/H+ exchange enhances the onset and severity of colitis through disruption of the gut microbial ecology.
Collapse
Affiliation(s)
- Christy A Harrison
- Department of Pediatrics, Steele Children's Research Center, Tucson, AZ, USA
- Department of Immunobiology, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Daniel Laubitz
- Department of Pediatrics, Steele Children's Research Center, Tucson, AZ, USA
| | | | | | - Karuna Patil
- University Animal Care, University of Arizona, Tucson, AZ, USA
| | | | - Deepa R Jamwal
- Department of Pediatrics, Steele Children's Research Center, Tucson, AZ, USA
| | - Christian Jobin
- Division of Gastroenterology, Department of Medicine, University of Florida College of Medicine, Gainesville, FL, USA
| | - Fayez K Ghishan
- Department of Pediatrics, Steele Children's Research Center, Tucson, AZ, USA
| | - Pawel R Kiela
- Department of Pediatrics, Steele Children's Research Center, Tucson, AZ, USA.
- Department of Immunobiology, University of Arizona College of Medicine, Tucson, AZ, USA.
| |
Collapse
|
20
|
Singh V, Yang J, Yin J, Cole R, Tse M, Berman DE, Small SA, Petsko G, Donowitz M. Cholera toxin inhibits SNX27-retromer-mediated delivery of cargo proteins to the plasma membrane. J Cell Sci 2018; 131:jcs218610. [PMID: 30030371 PMCID: PMC6127729 DOI: 10.1242/jcs.218610] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 06/22/2018] [Indexed: 12/14/2022] Open
Abstract
Cholera toxin (CT) causes severe diarrhea by increasing intracellular cAMP leading to a PKA-dependent increase in Cl- secretion through CFTR and decreased Na+ absorption through inhibition of Na+/H+ exchanger 3 (NHE3; also known as SLC9A3). The mechanism(s) by which CT inhibits NHE3 is partially understood, although no drug therapy has been successful at reversing this inhibition. We now describe that CT phosphorylates an amino acid in the PDZ domain of SNX27, which inhibits SNX27-mediated trafficking of NHE3 from the early endosomes to the plasma membrane (PM), and contributes to reduced basal NHE3 activity through a mechanism that involves reduced PM expression and reduced endocytic recycling. Importantly, mutagenesis studies (Ser to Asp) showed that the effect of this phosphorylation of SNX27 phenocopies the effects seen upon loss of SNX27 function, affecting PM trafficking of cargo proteins that bind SNX27-retromer. Additionally, CT destabilizes retromer function by decreasing the amount of core retromer proteins. These effects of CT can be partially rescued by enhancing retromer stability by using 'pharmacological chaperones'. Moreover, pharmacological chaperones can be used to increase basal and cholera toxin-inhibited NHE3 activity and fluid absorption by intestinal epithelial cells.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Varsha Singh
- Departments of Medicine and Physiology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Jianbo Yang
- Departments of Medicine and Physiology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Jianyi Yin
- Departments of Medicine and Physiology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Robert Cole
- Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Ming Tse
- Departments of Medicine and Physiology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Diego E Berman
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Department of Pathology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Scott A Small
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Department of Pathology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Gregory Petsko
- Helen and Robert Appel Alzheimer's Disease Research Institute and Department of Neurology, Weill Cornell Medical College, New York, NY 10021, USA
| | - Mark Donowitz
- Departments of Medicine and Physiology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
21
|
Das S, Jayaratne R, Barrett KE. The Role of Ion Transporters in the Pathophysiology of Infectious Diarrhea. Cell Mol Gastroenterol Hepatol 2018; 6:33-45. [PMID: 29928670 PMCID: PMC6007821 DOI: 10.1016/j.jcmgh.2018.02.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 02/26/2018] [Indexed: 12/12/2022]
Abstract
Every year, enteric infections and associated diarrhea kill millions of people. The situation is compounded by increases in the number of enteric pathogens that are acquiring resistance to antibiotics, as well as (hitherto) a relative paucity of information on host molecular targets that may contribute to diarrhea. Many forms of diarrheal disease depend on the dysregulation of intestinal ion transporters, and an associated imbalance between secretory and absorptive functions of the intestinal epithelium. A number of major transporters have been implicated in the pathogenesis of diarrheal diseases and thus an understanding of their expression, localization, and regulation after infection with various bacteria, viruses, and protozoa likely will prove critical in designing new therapies. This article surveys our understanding of transporters that are modulated by specific pathogens and the mechanism(s) involved, thereby illuminating targets that might be exploited for new therapeutic approaches.
Collapse
Key Words
- ATP, adenosine triphosphate
- ATPase, adenosine triphosphatase
- CDI, Clostridium difficile infection
- CFTR, cystic fibrosis transmembrane conductance regulator
- CLCA1, chloride channel accessory 1
- CT, cholera toxin
- CXCR2, C-X-C motif chemokine receptor 2
- DRA, down-regulated in adenoma
- Diarrhea
- ENaC, epithelial sodium channel
- EPEC, enteropathogenic Escherichia coli
- ETEC, enterotoxigenic Escherichia coli
- Enteric Pathogen
- Epithelium
- EspG, Escherichia coli secreted protein G
- GPR39, G-protein coupled receptor 39
- Ion Transport
- KCC, potassium-chloride cotransporter
- LPA, lysophosphatidic acid
- LT, heat-labile toxin
- NHE, sodium/hydrogen exchanger
- NHERF2, sodium/hydrogen exchanger regulatory factor 2
- NKCC, sodium-potassium-2 chloride cotransporter
- ORT, oral rehydration therapy
- PKC, protein kinase C
- SGLT1, sodium-glucose cotransporter 1
- SLC, solute carrier
- ST, heat-stabile toxin
- TNF, tumor necrosis factor
- Tcd, Clostridium difficile toxin
- ZnR, zinc sensing receptor
- cAMP, adenosine 3′,5′-cyclic monophosphate
Collapse
Affiliation(s)
- Soumita Das
- Department of Pathology, University of California San Diego School of Medicine, La Jolla, California
| | - Rashini Jayaratne
- Department of Medicine, University of California San Diego School of Medicine, La Jolla, California
| | - Kim E. Barrett
- Department of Medicine, University of California San Diego School of Medicine, La Jolla, California,Correspondence Address correspondence to: Kim E. Barrett, Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0063. fax: (858) 246-1788.
| |
Collapse
|
22
|
Human rotavirus strain Wa downregulates NHE1 and NHE6 expressions in rotavirus-infected Caco-2 cells. Virus Genes 2017; 53:367-376. [PMID: 28289928 DOI: 10.1007/s11262-017-1444-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 03/04/2017] [Indexed: 12/26/2022]
Abstract
Rotavirus (RV) is the most common cause of severe gastroenteritis and fatal dehydration in human infants and neonates of different species. However, the pathogenesis of rotavirus-induced diarrhea is poorly understood. Secretory diarrhea caused by rotavirus may lead to a combination of excessive secretion of fluid and electrolytes into the intestinal lumen. Fluid absorption in the small intestine is driven by Na+-coupled transport mechanisms at the luminal membrane, including Na+/H+ exchanger (NHE). Here, we performed qRT-PCR to detect the transcription of NHEs. Western blotting was employed for protein detection. Furthermore, immunocytochemistry was used to validate the NHE's protein expression. Finally, intracellular Ca2+ concentration was detected by confocal laser scanning microscopy. The results demonstrated that the NHE6 mRNA and protein expressed in the human colon adenocarcinoma cell line (Caco-2). Furthermore, RV-Wa induced decreased expression of the NHE1 and NHE6 in Caco-2 cell in a time-dependent manner. In addition, intracellular Ca2+ concentration in RV-Wa-infected Caco-2 cells was higher than that in the mock-infected cells. Furthermore, RV-Wa also can downregulate the expression of calmodulin (CaM) and calmodulin kinase II (CaMKII) in Caco-2 cells. These findings provides important insights into the mechanisms of rotavirus-induced diarrhea. Further studies on the underlying pathophysiological mechanisms that downregulate NHEs in RV-induced diarrhea are required.
Collapse
|
23
|
Abstract
Several members of the SLC9A family of Na+/H+ exchangers are expressed in the gut, with varying expression patterns and cellular localization. Not only do they participate in the regulation of basic epithelial cell functions, including control of transepithelial Na+ absorption, intracellular pH (pH i ), cell volume, and nutrient absorption, but also in cellular proliferation, migration, and apoptosis. Additionally, they modulate the extracellular milieu in order to facilitate other nutrient absorption and to regulate the intestinal microbial microenvironment. Na+/H+ exchangers are frequent targets of inhibition in gastrointestinal pathologies, either by intrinsic factors (e.g. bile acids, inflammatory mediators) or infectious agents and associated microbial toxins. Based on emerging evidence, disruption of NHE activity via impaired expression or function of respective isoforms may contribute not only to local and systemic electrolyte imbalance, but also to the disease severity via multiple mechanisms. Here, we review the current state of knowledge about the roles Na+/H+ exchangers play in the pathogenesis of disorders of diverse origin and affecting a range of GI tissues.
Collapse
Affiliation(s)
- Michael A. Gurney
- Department of Pediatrics, Steele Children’s Research Center, University of Arizona, Tucson, Arizona
| | - Daniel Laubitz
- Department of Pediatrics, Steele Children’s Research Center, University of Arizona, Tucson, Arizona
| | - Fayez K. Ghishan
- Department of Pediatrics, Steele Children’s Research Center, University of Arizona, Tucson, Arizona
| | - Pawel R. Kiela
- Department of Pediatrics, Steele Children’s Research Center, University of Arizona, Tucson, Arizona,Department of Immunobiology, University of Arizona, Tucson, Arizona,Correspondence Address correspondence to: Pawel R. Kiela, DVM, PhD, Department of Pediatrics, University of Arizona, 1501 North Campbell Avenue, Tucson, Arizona 85724. fax: (520) 626-4141.Department of Pediatrics, University of Arizona1501 North Campbell AvenueTucsonArizona 85724
| |
Collapse
|
24
|
Dominguez Rieg JA, de la Mora Chavez S, Rieg T. Novel developments in differentiating the role of renal and intestinal sodium hydrogen exchanger 3. Am J Physiol Regul Integr Comp Physiol 2016; 311:R1186-R1191. [PMID: 27733387 DOI: 10.1152/ajpregu.00372.2016] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 09/22/2016] [Accepted: 10/05/2016] [Indexed: 11/22/2022]
Abstract
The Na+/H+ exchanger isoform 3 (NHE3) facilitates Na+ absorption and H+ secretion and is expressed in the intestine, proximal tubule, and thick ascending limb of the kidney. While the function of NHE3 for Na+ and [Formula: see text](re)absorption has been defined using conventional NHE3 knockout mice (NHE3-/-), the recent generation of conditional NHE3 knockout mice started to give critical new insight into the role of this protein by allowing for temporal and spatial control of NHE3 expression. For example, in contrast to NHE3-/- mice, knockout of NHE3 in the S1 and S2 segments of the proximal tubule or along the entire tubule/collecting duct does not cause any lethality. Nonabsorbable NHE3 inhibitors have been developed, and preclinical as well as clinical trials indicate possible pharmacological use in fluid overload, hypertension, chronic kidney disease, hyperphosphatemia, and constipation. Some of the therapeutic considerations seem to be directly related to the pharmacodynamic properties of these drugs; however, little is known about the effects of these nonabsorbable NHE3 inhibitors on intestinal phosphate transport and the mechanisms so far remain elusive. This review focuses on novel findings of NHE3 in the intestine and the kidney as well as novel drug developments targeting NHE3.
Collapse
Affiliation(s)
- Jessica A Dominguez Rieg
- Department of Basic Sciences, Bastyr University California, San Diego, California.,Veterans Affairs San Diego Healthcare System, San Diego, California; and
| | | | - Timo Rieg
- Veterans Affairs San Diego Healthcare System, San Diego, California; and .,Division of Nephrology-Hypertension, Department of Medicine, University of California San Diego, La Jolla, California
| |
Collapse
|
25
|
Rajendran VM, Nanda Kumar NS, Tse CM, Binder HJ. Na-H Exchanger Isoform-2 (NHE2) Mediates Butyrate-dependent Na+ Absorption in Dextran Sulfate Sodium (DSS)-induced Colitis. J Biol Chem 2015; 290:25487-96. [PMID: 26350456 DOI: 10.1074/jbc.m115.654277] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Indexed: 12/13/2022] Open
Abstract
Diarrhea associated with ulcerative colitis (UC) occurs primarily as a result of reduced Na(+) absorption. Although colonic Na(+) absorption is mediated by both epithelial Na(+) channels (ENaC) and Na-H exchangers (NHE), inhibition of NHE-mediated Na(+) absorption is the primary cause of diarrhea in UC. As there are conflicting observations reported on NHE expression in human UC, the present study was initiated to identify whether NHE isoforms (NHE2 and NHE3) expression is altered and how Na(+) absorption is regulated in DSS-induced inflammation in rat colon, a model that has been used to study UC. Western blot analyses indicate that neither NHE2 nor NHE3 expression is altered in apical membranes of inflamed colon. Na(+) fluxes measured in vitro under voltage clamp conditions in controls demonstrate that both HCO3 (-)-dependent and butyrate-dependent Na(+) absorption are inhibited by S3226 (NHE3-inhibitor), but not by HOE694 (NHE2-inhibitor) in normal animals. In contrast, in DSS-induced inflammation, butyrate-, but not HCO3 (-)-dependent Na(+) absorption is present and is inhibited by HOE694, but not by S3226. These observations indicate that in normal colon NHE3 mediates both HCO3 (-)-dependent and butyrate-dependent Na(+) absorption, whereas DSS-induced inflammation activates NHE2, which mediates butyrate-dependent (but not HCO3 (-)-dependent) Na(+) absorption. In in vivo loop studies HCO3 (-)-Ringer and butyrate-Ringer exhibit similar rates of water absorption in normal rats, whereas in DSS-induced inflammation luminal butyrate-Ringer reversed water secretion observed with HCO3 (-)-Ringer to fluid absorption. Lumen butyrate-Ringer incubation activated NHE3-mediated Na(+) absorption in DSS-induced colitis. These observations suggest that the butyrate activation of NHE2 would be a potential target to control UC-associated diarrhea.
Collapse
Affiliation(s)
- Vazhaikkurichi M Rajendran
- From the Department of Biochemistry and Molecular Biology, West Virginia University School of Medicine, Morgantown, West Virginia 26506,
| | - Navalpur S Nanda Kumar
- From the Department of Biochemistry and Molecular Biology, West Virginia University School of Medicine, Morgantown, West Virginia 26506
| | - Chung M Tse
- the Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, and
| | - Henry J Binder
- the Department of Internal Medicine, Yale University, New Haven, Connecticut 06520
| |
Collapse
|
26
|
Abstract
Diarrhoeal disease remains a major health burden worldwide. Secretory diarrhoeas are caused by certain bacterial and viral infections, inflammatory processes, drugs and genetic disorders. Fluid secretion across the intestinal epithelium in secretory diarrhoeas involves multiple ion and solute transporters, as well as activation of cyclic nucleotide and Ca(2+) signalling pathways. In many secretory diarrhoeas, activation of Cl(-) channels in the apical membrane of enterocytes, including the cystic fibrosis transmembrane conductance regulator and Ca(2+)-activated Cl(-) channels, increases fluid secretion, while inhibition of Na(+) transport reduces fluid absorption. Current treatment of diarrhoea includes replacement of fluid and electrolyte losses using oral rehydration solutions, and drugs targeting intestinal motility or fluid secretion. Therapeutics in the development pipeline target intestinal ion channels and transporters, regulatory proteins and cell surface receptors. This Review describes pathogenic mechanisms of secretory diarrhoea, current and emerging therapeutics, and the challenges in developing antidiarrhoeal therapeutics.
Collapse
Affiliation(s)
- Jay R Thiagarajah
- Division of Gastroenterology, Hepatology and Nutrition, Children's Hospital Boston, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Mark Donowitz
- Departments of Physiology and Medicine, Division of Gastroenterology, Johns Hopkins University School of Medicine, Ross 925, 720 Rutland Avenue, Baltimore, MD 21205, USA
| | - Alan S Verkman
- Departments of Medicine and Physiology, 1246 Health Sciences East Tower, University of California, 500 Parnassus Avenue, San Francisco, CA 94143, USA
| |
Collapse
|
27
|
Oba M, Mewis J, Zhining Z. Effects of ruminal doses of sucrose, lactose, and corn starch on ruminal fermentation and expression of genes in ruminal epithelial cells. J Dairy Sci 2015; 98:586-94. [DOI: 10.3168/jds.2014-8697] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 09/04/2014] [Indexed: 11/19/2022]
|
28
|
Donowitz M, Ming Tse C, Fuster D. SLC9/NHE gene family, a plasma membrane and organellar family of Na⁺/H⁺ exchangers. Mol Aspects Med 2013; 34:236-51. [PMID: 23506868 DOI: 10.1016/j.mam.2012.05.001] [Citation(s) in RCA: 196] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 03/09/2012] [Indexed: 12/24/2022]
Abstract
This brief review of the human Na/H exchanger gene family introduces a new classification with three subgroups to the SLC9 gene family. Progress in the structure and function of this gene family is reviewed with structure based on homology to the bacterial Na/H exchanger NhaA. Human diseases which result from genetic abnormalities of the SLC9 family are discussed although the exact role of these transporters in causing any disease is not established, other than poorly functioning NHE3 in congenital Na diarrhea.
Collapse
Affiliation(s)
- Mark Donowitz
- Departments of Medicine and Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| | | | | |
Collapse
|
29
|
Rogers AC, Huetter L, Hoekstra N, Collins D, Collaco A, Baird AW, Winter DC, Ameen N, Geibel JP, Kopic S. Activation of AMPK inhibits cholera toxin stimulated chloride secretion in human and murine intestine. PLoS One 2013; 8:e69050. [PMID: 23935921 PMCID: PMC3728293 DOI: 10.1371/journal.pone.0069050] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 06/03/2013] [Indexed: 02/07/2023] Open
Abstract
Increased intestinal chloride secretion through chloride channels, such as the cystic fibrosis transmembrane conductance regulator (CFTR), is one of the major molecular mechanisms underlying enterotoxigenic diarrhea. It has been demonstrated in the past that the intracellular energy sensing kinase, the AMP-activated protein kinase (AMPK), can inhibit CFTR opening. We hypothesized that pharmacological activation of AMPK can abrogate the increased chloride flux through CFTR occurring during cholera toxin (CTX) mediated diarrhea. Chloride efflux was measured in isolated rat colonic crypts using real-time fluorescence imaging. AICAR and metformin were used to activate AMPK in the presence of the secretagogues CTX or forskolin (FSK). In order to substantiate our findings on the whole tissue level, short-circuit current (SCC) was monitored in human and murine colonic mucosa using Ussing chambers. Furthermore, fluid accumulation was measured in excised intestinal loops. CTX and forskolin (FSK) significantly increased chloride efflux in isolated colonic crypts. The increase in chloride efflux could be offset by using the AMPK activators AICAR and metformin. In human and mouse mucosal sheets, CTX and FSK increased SCC. AICAR and metformin inhibited the secretagogue induced rise in SCC, thereby confirming the findings made in isolated crypts. Moreover, AICAR decreased CTX stimulated fluid accumulation in excised intestinal segments. The present study suggests that pharmacological activation of AMPK effectively reduces CTX mediated increases in intestinal chloride secretion, which is a key factor for intestinal water accumulation. AMPK activators may therefore represent a supplemental treatment strategy for acute diarrheal illness.
Collapse
Affiliation(s)
- Ailín C. Rogers
- University College Dublin and St. Vincent's University Hospital, Dublin, Ireland
| | - Lisa Huetter
- Institute of Physiology and Pathophysiology, Paracelsus Medical University, Salzburg, Austria
- Department of Surgery, Yale University, School of Medicine, New Haven, Connecticut, United States of America
| | - Nadia Hoekstra
- Department of Pediatrics, Yale University, School of Medicine, New Haven, Connecticut, United States of America
| | - Danielle Collins
- University College Dublin and St. Vincent's University Hospital, Dublin, Ireland
| | - Anne Collaco
- Department of Pediatrics, Yale University, School of Medicine, New Haven, Connecticut, United States of America
| | - Alan W. Baird
- University College Dublin and St. Vincent's University Hospital, Dublin, Ireland
| | - Desmond C. Winter
- University College Dublin and St. Vincent's University Hospital, Dublin, Ireland
| | - Nadia Ameen
- Department of Pediatrics, Yale University, School of Medicine, New Haven, Connecticut, United States of America
- Department of Cellular and Molecular Physiology, Yale University, School of Medicine, New Haven, Connecticut, United States of America
| | - John P. Geibel
- Department of Surgery, Yale University, School of Medicine, New Haven, Connecticut, United States of America
- Department of Cellular and Molecular Physiology, Yale University, School of Medicine, New Haven, Connecticut, United States of America
| | - Sascha Kopic
- Department of Surgery, Yale University, School of Medicine, New Haven, Connecticut, United States of America
- Department of Cellular and Molecular Physiology, Yale University, School of Medicine, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
30
|
Zhang Y, Wang X, Sha S, Liang S, Zhao L, Liu L, Chai N, Wang H, Wu K. Berberine increases the expression of NHE3 and AQP4 in sennosideA-induced diarrhoea model. Fitoterapia 2012; 83:1014-22. [DOI: 10.1016/j.fitote.2012.05.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 05/23/2012] [Accepted: 05/26/2012] [Indexed: 11/28/2022]
|
31
|
Girardi ACC, Di Sole F. Deciphering the mechanisms of the Na+/H+ exchanger-3 regulation in organ dysfunction. Am J Physiol Cell Physiol 2012; 302:C1569-87. [DOI: 10.1152/ajpcell.00017.2012] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The Na+/H+ exchanger-3 (NHE3) belongs to the mammalian NHE protein family and catalyzes the electro-neutral exchange of extracellular sodium for intracellular proton across cellular membranes. Its transport function is of essential importance for the maintenance of the body's salt and water homeostasis as well as acid-base balance. Indeed, NHE3 activity is finely regulated by a variety of stimuli, both acutely and chronically, and its transport function is fundamental for a multiplicity of severe and world-wide infection-pathological conditions. This review aims to provide a concise overview of NHE3 physiology and discusses the role of NHE3 in clinical conditions of prominent importance, specifically in hypertension, diabetic nephropathy, heart failure, acute kidney injury, and diarrhea. Study of NHE3 function in models of these diseases has contributed to the deciphering of mechanisms that control the delicate ion balance disrupted in these disorders. The majority of the findings indicate that NHE3 transport function is activated before the onset of hypertension and inhibited thereafter; NHE3 transport function is also upregulated in diabetic nephropathy and heart failure, while it is reported to be downregulated in acute kidney injury and in diarrhea. The molecular mechanisms activated during these pathological conditions to regulate NHE3 transport function are examined with the aim of linking NHE3 dysfunction to the analyzed clinical disorders.
Collapse
Affiliation(s)
| | - Francesca Di Sole
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas; and
- Center of Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
32
|
Uray KS, Shah SK, Radhakrishnan RS, Jimenez F, Walker PA, Stewart RH, Laine GA, Cox CS. Sodium hydrogen exchanger as a mediator of hydrostatic edema-induced intestinal contractile dysfunction. Surgery 2011; 149:114-25. [PMID: 20553904 DOI: 10.1016/j.surg.2010.04.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Accepted: 04/13/2010] [Indexed: 10/19/2022]
Abstract
BACKGROUND Resuscitation-induced intestinal edema is associated with early and profound mechanical changes in intestinal tissue. We hypothesize that the sodium hydrogen exchanger (NHE), a mechanoresponsive ion channel, is a mediator of edema-induced intestinal contractile dysfunction. METHODS An animal model of hydrostatic intestinal edema was used for all experiments. NHE isoforms 1-3 mRNA and protein were evaluated. Subsequently, the effects of NHE inhibition (with 5-(N-ethyl-N-isopropyl) amiloride [EIPA]) on wet-to-dry ratios, signal transduction and activator of transcription (STAT)-3, intestinal smooth muscle myosin light chain (MLC) phosphorylation, intestinal contractile activity, and intestinal transit were measured. RESULTS NHE1-3 mRNA and protein levels were increased significantly in the small intestinal mucosa with the induction of intestinal edema. The administration of EIPA, an NHE inhibitor, attenuated validated markers of intestinal contractile dysfunction induced by edema as measured by decreased STAT-3 activation, increased MLC phosphorylation, improved intestinal contractile activity, and enhanced intestinal transit. CONCLUSION The mechanoresponsive ion channel NHE may mediate edema-induced intestinal contractile dysfunction, possibly via a STAT-3 related mechanism.
Collapse
Affiliation(s)
- Karen S Uray
- Department of Pediatric Surgery, University of Texas Medical School at Houston, Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Toxin mediated diarrhea in the 21 century: the pathophysiology of intestinal ion transport in the course of ETEC, V. cholerae and rotavirus infection. Toxins (Basel) 2010; 2:2132-57. [PMID: 22069677 PMCID: PMC3153279 DOI: 10.3390/toxins2082132] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Accepted: 08/09/2010] [Indexed: 12/31/2022] Open
Abstract
An estimated 4 billion episodes of diarrhea occur each year. As a result, 2–3 million children and 0.5–1 million adults succumb to the consequences of this major healthcare concern. The majority of these deaths can be attributed to toxin mediated diarrhea by infectious agents, such as E. coli, V. cholerae or Rotavirus. Our understanding of the pathophysiological processes underlying these infectious diseases has notably improved over the last years. This review will focus on the cellular mechanism of action of the most common enterotoxins and the latest specific therapeutic approaches that have been developed to contain their lethal effects.
Collapse
|
34
|
Abstract
Short-chain fatty acids (SCFA) are the major anion in stool and are synthesized from nonabsorbed carbohydrate by the colonic microbiota. Nonabsorbed carbohydrate are not absorbed in the colon and induce an osmotically mediated diarrhea; in contrast, SCFA are absorbed by colonic epithelial cells and stimulate Na-dependent fluid absorption via a cyclic AMP-independent process involving apical membrane Na-H, SCFA-HCO(3), and Cl-SCFA exchanges. SCFA production represents an adaptive process to conserve calories, fluid, and electrolytes. Inhibition of SCFA synthesis by antibiotics and administration of PEG, a substance that is not metabolized by colonic microbiota, both result in diarrhea. In contrast, increased production of SCFA as a result of providing starch that is relatively resistant to amylase digestion [so-called resistant starch (RS)] to oral rehydration solution (RS-ORS) improves the efficacy of ORS and represents an important approach to improve the effectiveness of ORS in the treatment of acute diarrhea in children under five years of age.
Collapse
Affiliation(s)
- Henry J Binder
- Departments of Internal Medicine and Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
35
|
Hodges K, Gill R. Infectious diarrhea: Cellular and molecular mechanisms. Gut Microbes 2010; 1:4-21. [PMID: 21327112 PMCID: PMC3035144 DOI: 10.4161/gmic.1.1.11036] [Citation(s) in RCA: 171] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Revised: 12/15/2009] [Accepted: 12/28/2009] [Indexed: 02/03/2023] Open
Abstract
Diarrhea caused by enteric infections is a major factor in morbidity and mortality worldwide. An estimated 2-4 billion episodes of infectious diarrhea occur each year and are especially prevalent in infants. This review highlights the cellular and molecular mechanisms underlying diarrhea associated with the three classes of infectious agents, i.e., bacteria, viruses and parasites. Several bacterial pathogens have been chosen as model organisms, including Vibrio cholerae as a classical example of secretory diarrhea, Clostridium difficile and Shigella species as agents of inflammatory diarrhea and selected strains of pathogenic Escherichia coli (E. coli) to discuss the recent advances in alteration of epithelial ion absorption. Many of the recent studies addressing epithelial ion transport and barrier function have been carried out using viruses and parasites. Here, we focus on the rapidly developing field of viral diarrhea including rotavirus, norovirus and astrovirus infections. Finally we discuss Giardia lamblia and Entamoeba histolytica as examples of parasitic diarrhea. Parasites have a greater complexity than the other pathogens and are capable of creating molecules similar to those produced by the host, such as serotonin and PGE(2). The underlying mechanisms of infectious diarrhea discussed include alterations in ion transport and tight junctions as well as the virulence factors, which alter these processes either through direct effects or indirectly through inflammation and neurotransmitters.
Collapse
|
36
|
Musch MW, Arvans DL, Paris H, Chang EB. Alpha2-adrenergic receptors attenuate secretagogue-induced endocytosis and promote exocytosis of intestinal NHE2 and NHE3. J Pharmacol Exp Ther 2009; 330:818-25. [PMID: 19556451 DOI: 10.1124/jpet.109.151910] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Adrenergic agonists, through activation of intestinal epithelial alpha2-adrenergic receptors (alpha2AR), inhibit electrolyte secretion and promote absorption. The mechanisms of action to promote basal Na(+) absorption and inhibit stimulated secretion are not understood completely. The effects of alpha2-agonists on Na(+) transport were studied in a cell line, Caco2-3B, derived from the Caco2 cell line engineered to permanently express human alpha2A-adrenergic receptors. Serosal, but not mucosal, addition of the alpha2AR agonist N-(2,6-dichlorophenyl)-4,5-dihydro-1H-imidazol-2-amine (clonidine) increased Caco2-3B apical (22)Na(+) uptake, an effect not seen in the Caco2 parent line that lacks alpha2AR expression. This effect was blocked by the alpha2AR antagonist 17alpha-yohmban-16alpha-carboxylic acid methyl ester (yohimbine). Increased Na(+) uptake was paralleled by increased apical surface abundance of the sodium/hydrogen exchangers NHE2 and NHE3. No changes in total cell NHE2 and NHE3 expression were observed. Clonidine also inhibited both cAMP and Ca(2+)-induced decreases in apical Na(+) uptake and apical membrane NHE2 and NHE3 endocytosis stimulated by these agents. alpha2AR actions were mediated via stimulation of phospholipase C, and metabolism of arachidonic acid by an epoxygenase activity followed epidermal growth factor release and activation of the epidermal growth factor receptor, resulting in phosphatidylinositol-3-kinase and Akt stimulation. In summary, activation of intestinal epithelial alpha2AR significantly blocks the inhibition of apical Na(+) transporters by cAMP- and Ca(2+)-mediated pathways and also directly increases apical sodium/hydrogen exchange activities. By both blocking electrolyte secretion and promoting absorption, alpha2-agonists could be potent antidiarrheal agents that could directly counteract the actions of toxigenic pathogens and other secretagogues causing secretory diarrhea.
Collapse
Affiliation(s)
- Mark W Musch
- Martin Boyer Laboratories, University of Chicago, Chicago, Illinois, USA
| | | | | | | |
Collapse
|
37
|
Viswanathan VK, Hodges K, Hecht G. Enteric infection meets intestinal function: how bacterial pathogens cause diarrhoea. Nat Rev Microbiol 2008; 7:110-9. [PMID: 19116615 DOI: 10.1038/nrmicro2053] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Infectious diarrhoea is a significant contributor to morbidity and mortality worldwide. In bacterium-induced diarrhoea, rapid loss of fluids and electrolytes results from inhibition of the normal absorptive function of the intestine as well as the activation of secretory processes. Advances in the past 10 years in the fields of gastrointestinal physiology, innate immunity and enteric bacterial virulence mechanisms highlight the multifactorial nature of infectious diarrhoea. This review explores the various mechanisms that contribute to loss of fluids and electrolytes following bacterial infections, and attempts to link these events to specific virulence factors and toxins.
Collapse
Affiliation(s)
- V K Viswanathan
- Department of Veterinary Science & Microbiology, University of Arizona, Tucson, Arizona 85721, USA
| | | | | |
Collapse
|
38
|
Hodges K, Alto NM, Ramaswamy K, Dudeja PK, Hecht G. The enteropathogenic Escherichia coli effector protein EspF decreases sodium hydrogen exchanger 3 activity. Cell Microbiol 2008; 10:1735-45. [PMID: 18433466 DOI: 10.1111/j.1462-5822.2008.01163.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Enteropathogenic Escherichia coli (EPEC) have been previously shown to alter sodium hydrogen exchanger 3 (NHE3) activity in human intestinal epithelial cells. To further characterize these observations, PS120 fibroblasts transfected with NHE3 were studied. EPEC E2348/69 infection decreased NHE3 activity in PS120 fibroblasts. The effect on NHE3 was enhanced when PS120 cells were co-transfected with the scaffolding/regulatory proteins NHERF1 or NHERF2 or EBP50 and E3KARP respectively. The decrease in NHE3 activity was dependent on an intact type III secretion system, although intimate attachment mediated by translocated intimin receptor was not required. Despite its ability to bind to NHERF proteins, the EPEC effector Map had no impact on the regulation of NHE activity. Instead, EspF was found to be responsible for decreased NHE3 activity. However, neither EspF-induced apoptosis nor the interaction of EspF with sorting nexin-9, an endocytic protein, were involved.
Collapse
Affiliation(s)
- Kim Hodges
- Section of Digestive Disease and Nutrition, Department Of Medicine, University of Illinois at Chicago, Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| | | | | | | | | |
Collapse
|
39
|
Di Sole F, Cerull R, Casavola V, Moe OW, Burckhardt G, Helmle-Kolb C. Molecular aspects of acute inhibition of Na(+)-H(+) exchanger NHE3 by A(2)-adenosine receptor agonists. J Physiol 2002; 541:529-43. [PMID: 12042357 PMCID: PMC2290320 DOI: 10.1113/jphysiol.2001.013438] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Adenosine regulates Na(+) homeostasis by its acute effects on renal Na(+) transport. We have shown in heterologously transfected A6/C1 cells (renal cell line from Xenopus laevis) that adenosine-induced natriuresis may be effected partly via A(2) adenosine receptor-mediated inactivation of the renal brush border membrane Na(+)-H(+) exchanger NHE3. In this study we utilized A6/C1 cells stably expressing wild-type as well as mutated forms of NHE3 to assess the molecular mechanism underlying A(2)-dependent control of NHE3 function. Cell surface biotinylation combined with immunoprecipitation revealed that NHE3 is targeted exclusively to the apical domain and that the endogenous Xenopus NHE is located entirely on the basolateral side of A6/C1 transfectants. Stimulation of A(2)-adenosine receptors located on the basolateral side for 15 min with CPA (N6-cyclopentyladenosine) acutely decreased NHE3 activity (microspectrofluorimety). This effect was mimicked by 8-bromo-cAMP and entirely blocked by pharmacological inhibition of PKA (with H89) or singular substitution of two PKA target sites (serine 552 and serine 605) on NHE3. Downregulation of NHE3 activity by CPA was attributable to a reduction of NHE3 intrinsic transport activity without change in surface NHE3 protein at 15 min. At 30 min, the decrease in transport activity was associated with a decrease in apical membrane NHE3 antigen. In conclusion, two highly conserved target serine sites on NHE3 determine NHE3 modulation upon A(2)-receptor activation and NHE3 inactivation by adenosine proceeds via two phases with distinct mechanisms.
Collapse
Affiliation(s)
- Francesca Di Sole
- Department of Physiology and Pathophysiology, Division of Vegetative Physiology and Pathophysiology, Georg-August-University of Göttingen, D-37073 Göttingen, Germany
| | | | | | | | | | | |
Collapse
|