1
|
Garcia IS, Teixeira SA, Costa KA, Marques DBD, Rodrigues GDA, Costa TC, Guimarães JD, Otto PI, Saraiva A, Ibelli AMG, Cantão ME, de Oliveira HC, Ledur MC, Peixoto JDO, Guimarães SEF. l-Arginine supplementation of gilts during early gestation modulates energy sensitive pathways in pig conceptuses. Mol Reprod Dev 2020; 87:819-834. [PMID: 32592179 DOI: 10.1002/mrd.23397] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/12/2020] [Indexed: 11/09/2022]
Abstract
Dietary l-arginine (ARG) supplementation has been studied as a nutritional strategy to improve reproductive performance of pregnant sows, since arginine is a conditionally essential amino acid. However, reports addressing the molecular mechanisms that mediate supplementation effects on embryos and fetuses development are still scarce. Therefore, we aimed to evaluate the effects of 1.0% ARG supplementation of commercial pregnant gilts on genes and proteins from energy metabolism and antioxidant defense pathways in embryos and fetuses. We also analyzed the global transcriptome profile of 25- and 35-day-old conceptuses. At Day 25, we observed a lower abundance of phospho-AMP-activated protein kinase (phospho-AMPK) protein and downregulation of oxidative phosphorylation system genes in ARG embryos. On the other hand, ARG fetuses showed greater expression of MLST8 and lower expression of MTOR genes, in addition to lower abundance of phospho-AMPK and phospho-mammalian target of rapamycin (phospho-mTOR) proteins. Transcriptome analysis at Day 35 did not present differentially expressed genes. For the antioxidant defense pathway, no differences were found between CON and ARG conceptuses, only trends. In general, supplementation of gilts with 1.0% ARG during early gestation affects energy sensitive pathways in 25- and 35-day conceptuses; however, no effects of supplementation were found on the antioxidative defense pathway in 25-day embryos.
Collapse
Affiliation(s)
- Ingrid S Garcia
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Susana A Teixeira
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Karine A Costa
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Daniele B D Marques
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa, Brazil
| | | | - Thaís C Costa
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa, Brazil
| | - José D Guimarães
- Department of Veterinary Medicine, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Pamela I Otto
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Alysson Saraiva
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Adriana M G Ibelli
- Animal Genetics Laboratory, Embrapa Swine and Poultry Nacional Research Center, Concordia, Brazil
| | - Maurício E Cantão
- Animal Genetics Laboratory, Embrapa Swine and Poultry Nacional Research Center, Concordia, Brazil
| | | | - Mônica C Ledur
- Animal Genetics Laboratory, Embrapa Swine and Poultry Nacional Research Center, Concordia, Brazil
| | - Jane de O Peixoto
- Animal Genetics Laboratory, Embrapa Swine and Poultry Nacional Research Center, Concordia, Brazil
| | | |
Collapse
|
2
|
Che D, Adams S, Zhao B, Qin G, Jiang H. Effects of Dietary L-arginine Supplementation from Conception to Post- Weaning in Piglets. Curr Protein Pept Sci 2019; 20:736-749. [PMID: 30678624 DOI: 10.2174/1389203720666190125104959] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 12/30/2018] [Accepted: 01/10/2019] [Indexed: 12/13/2022]
Abstract
Weaned piglets experience sudden changes in their dietary patterns such as withdrawal from the easily digestible watery milk to a coarse cereal diet with both systemic and intestinal disruptions coupling with the expression of pro-inflammatory proteins which affects the immune system and the concentrations of haptoglobin including both positive and negative acute-phase proteins in the plasma. L-arginine is an important protein amino acid for piglets, but its inadequate synthesis is a nutritional problem for both sows and piglets. Recent studies indicated that dietary supplementation of L-arginine increased feed intake, uterine growth, placental growth and nutrient transport, maternal growth and health, embryonic survival, piglets birth weight, piglet's growth, and productivity, and decreased stillbirths. L-arginine is essential in several important pathways involved in the growth and development of piglets such as nitric oxide synthesis, energy metabolism, polyamine synthesis, cellular protein production and muscle accretion, and the synthesis of other functional amino acids. However, the underlying molecular mechanism in these key pathways remains largely unresolved. This review was conducted on the general hypothesis that L-arginine increased the growth and survival of post-weaning piglets. We discussed the effects of dietary L-arginine supplementation during gestation, parturition, lactation, weaning, and post-weaning in pigs as each of these stages influences the health and survival of sows and their progenies. Therefore, the aim of this review was to discuss through a logical approach the effects of L-arginine supplementation on piglet's growth and survival from conception to postweaning.
Collapse
Affiliation(s)
- Dongsheng Che
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.,Jilin Provincial Key Lab of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun 130118, China.,Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, 130118 China
| | - Seidu Adams
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Bao Zhao
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.,Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, 130118 China
| | - Guixin Qin
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.,Jilin Provincial Key Lab of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun 130118, China.,Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, 130118 China
| | - Hailong Jiang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.,Jilin Provincial Key Lab of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun 130118, China.,Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, 130118 China
| |
Collapse
|
3
|
Curry SM, Burrough ER, Schwartz KJ, Yoon KJ, Lonergan SM, Gabler NK. Porcine epidemic diarrhea virus reduces feed efficiency in nursery pigs. J Anim Sci 2018; 96:85-97. [PMID: 29378029 PMCID: PMC6140930 DOI: 10.1093/jas/skx005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 11/28/2017] [Indexed: 12/25/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) infects enterocytes and in nursery pigs, results in diarrhea, anorexia, and reduced performance. Therefore, the objective of this study was to determine how PEDV infection influenced growth performance and repartitioning of amino acids and energy in nursery pigs. A total of 32 barrows and gilts, approximately 1 wk post-wean (BW = 8.46 ± 0.50 kg), and naïve for PEDV were obtained, weighed, and allotted based on sex and BW to one of two treatments: 1) Control, PEDV naïve and 2) PEDV-inoculated (PEDV) with eight pens of two pigs each per treatment. On day post-inoculation (dpi) 0, PEDV pigs were inoculated via intragastric gavage with PEDV isolate (USA/Iowa/18984/2013). Pig and feeder weights were recorded at dpi −7, 0, 5, and 20 in order to calculate ADG, ADFI, and G:F. Eight pigs per treatment were euthanized on dpi 5 and 20, and tissues and blood were collected. At dpi 5, all PEDV pigs were PCR positive for PEDV in feces. Overall, PEDV pigs tended (P < 0.10) to increase ADFI, which resulted in reduced (P < 0.05) feed efficiency. At dpi 5, PEDV pigs had reduced (P < 0.05) villus height and increased (P < 0.05) stem cell proliferation in the jejunum compared with Control pigs. Pigs inoculated with PEDV had increased (P < 0.05) serum haptoglobin and increased insulin-to-glucose ratios compared with Control pigs at dpi 5. Markers of muscle proteolysis were not different (P > 0.05) between treatments within dpi; however, at dpi 5, 20S proteasome activity was increased (P < 0.05) in longissimus dorsi of PEDV pigs compared with Control pigs. Liver and jejunum gluconeogenic enzyme activities were not different (P > 0.05) between treatments within dpi. Overall, PEDV-inoculated pigs did recover the absorptive capacity that was reduced during PEDV infection by increasing proliferation of intestinal stem cells. However, the energy and nutrients needed to recover the epithelium may be originating from available luminal nutrients instead of muscle proteolysis and gluconeogenesis. This study provides insight into the effects of an enteric coronavirus on postabsorptive metabolism in nursery pigs.
Collapse
Affiliation(s)
- S M Curry
- Department of Animal Science, Iowa State University, Ames, IA
| | - E R Burrough
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA
| | - K J Schwartz
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA
| | - K J Yoon
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA
| | - S M Lonergan
- Department of Animal Science, Iowa State University, Ames, IA
| | - N K Gabler
- Department of Animal Science, Iowa State University, Ames, IA
| |
Collapse
|
4
|
Xiao H, Zeng L, Shao F, Huang B, Wu M, Tan B, Yin Y. The role of nitric oxide pathway in arginine transport and growth of IPEC-1 cells. Oncotarget 2018; 8:29976-29983. [PMID: 28415785 PMCID: PMC5444718 DOI: 10.18632/oncotarget.16267] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 03/08/2017] [Indexed: 11/25/2022] Open
Abstract
L-Arginine itself and its metabolite-nitric oxide play great roles in intestinal physiology. However, the molecular mechanism underlying nitric oxide pathway regulating L-Arginine transport and cell growth is not yet fully understood. We report that inhibition of nitric oxide synthase (NOS) significantly induced cell apoptosis (p < 0.05), and promoted the rate of Arginine uptake and the expressions of protein for CAT-2 and y+LAT-1 (p < 0.05), while reduced protein expression of CAT-1. And NOS inhibition markedly decreased the activation of mammalian target of rapamycin (mTOR) and PI3K-Akt pathways by Arginine in the IPEC-1 cells (p < 0.05). Taken together, these data suggest that inhibition of NO pathway by L-NAME induces a negative feedback increasing of Arginine uptake and CAT-2 and y+LAT-1 protein expression, but promotes cell apoptosis which involved inhibiting the activation of mTOR and PI3K-Akt pathways.
Collapse
Affiliation(s)
- Hao Xiao
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, Hunan, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Liming Zeng
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, Hunan, China.,Science College of Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Fangyuan Shao
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Bo Huang
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, Hunan, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Miaomiao Wu
- Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Bie Tan
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, Hunan, China
| | - Yulong Yin
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, Hunan, China.,Laboratory of Animal Nutrition and Human Health, School of Biology, Hunan Normal University, Changsha, Hunan, China.,College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
5
|
Leucine alters immunoglobulin a secretion and inflammatory cytokine expression induced by lipopolysaccharide via the nuclear factor-κB pathway in intestine of chicken embryos. Animal 2017; 12:1903-1911. [PMID: 29271330 DOI: 10.1017/s1751731117003342] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The mammalian target of rapamycin (mTOR) has been shown to be involved in lipopolysaccharide (LPS)-induced immune responses in many mammal cells. Here, we suggest that the mTOR pathway is involved in the intestinal inflammatory responses evoked by LPS treatment in chicken embryos. The intestinal tissue from Specific pathogen free chick embryos was cultured in the presence of LPS for 2 h. Secretory immunoglobulin A (sIgA) concentrations, messenger RNA (mRNA) expression of cytokines, and protein levels of nuclear factor-κB (NF-κB), mitogen-activated protein kinase (MAPK), mTOR and p70 ribosomal S6 kinase (p70S6K) were determined. The results showed that LPS treatment increased sIgA concentrations in a dose-dependent manner. The mRNA levels of interleukine (IL)-6, IL-8, IL-10, tumor necrosis factor-α and Toll-like receptor (TLR) 4 were upregulated by LPS treatment (P<0.05). Lipopolysaccharide increased the phosphorylation of Jun N-terminal kinase (JNK), p38 MAPK and NF-κB (P<0.05) while decreasing the phosphorylation level of mTOR (P<0.05). Supplementation of leucine at doses of 10, 20 and 40 mM dose-dependently decreased sIgA production. Leucine supplementation at 40 mM restored the phosphorylation level of mTOR and p70S6K while suppressing the phosphorylation levels of NF-κB (P<0.05) and partially down-regulating the phosphorylation of p38 MAPK and JNK. The transcription of IL-6 was significantly decreased by leucine supplementation. These results suggested that leucine could alleviate LPS-induced inflammatory responses by down-regulating NF-κB signaling pathway and evoking mTOR/p70S6K signaling pathway, which may involve in the regulation of the intestinal immune system in chicken embryos.
Collapse
|
6
|
Yin Y, Dang W, Zhou X, Xu L, Wang W, Cao W, Chen S, Su J, Cai X, Xiao S, Peppelenbosch MP, Pan Q. PI3K-Akt-mTOR axis sustains rotavirus infection via the 4E-BP1 mediated autophagy pathway and represents an antiviral target. Virulence 2017; 9:83-98. [PMID: 28475412 PMCID: PMC5955461 DOI: 10.1080/21505594.2017.1326443] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Rotavirus infection is a major cause of severe dehydrating diarrhea in infants younger than 5 y old and in particular cases of immunocompromised patients irrespective to the age of the patients. Although vaccines have been developed, antiviral therapy is an important complement that cannot be substituted. Because of the lack of specific approved treatment, it is urgent to facilitate the cascade of further understanding of the infection biology, identification of druggable targets and the final development of effective antiviral therapies. PI3K-Akt-mTOR signaling pathway plays a vital role in regulating the infection course of many viruses. In this study, we have dissected the effects of PI3K-Akt-mTOR signaling pathway on rotavirus infection using both conventional cell culture models and a 3D model of human primary intestinal organoids. We found that PI3K-Akt-mTOR signaling is essential in sustaining rotavirus infection. Thus, blocking the key elements of this pathway, including PI3K, mTOR and 4E-BP1, has resulted in potent anti-rotavirus activity. Importantly, a clinically used mTOR inhibitor, rapamycin, potently inhibited both experimental and patient-derived rotavirus strains. This effect involves 4E-BP1 mediated induction of autophagy, which in turn exerts anti-rotavirus effects. These results revealed new insights on rotavirus-host interactions and provided new avenues for antiviral drug development.
Collapse
Affiliation(s)
- Yuebang Yin
- a Department of Gastroenterology and Hepatology , Erasmus MC-University Medical Center , Rotterdam , The Netherlands
| | - Wen Dang
- a Department of Gastroenterology and Hepatology , Erasmus MC-University Medical Center , Rotterdam , The Netherlands
| | - Xinying Zhou
- a Department of Gastroenterology and Hepatology , Erasmus MC-University Medical Center , Rotterdam , The Netherlands
| | - Lei Xu
- a Department of Gastroenterology and Hepatology , Erasmus MC-University Medical Center , Rotterdam , The Netherlands
| | - Wenshi Wang
- a Department of Gastroenterology and Hepatology , Erasmus MC-University Medical Center , Rotterdam , The Netherlands
| | - Wanlu Cao
- a Department of Gastroenterology and Hepatology , Erasmus MC-University Medical Center , Rotterdam , The Netherlands
| | - Sunrui Chen
- a Department of Gastroenterology and Hepatology , Erasmus MC-University Medical Center , Rotterdam , The Netherlands
| | - Junhong Su
- b Medical Faculty, Kunming University of Science and Technology , Kunming , P. R. China
| | - Xuepeng Cai
- c State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS) , Lanzhou , P. R. China
| | - Shaobo Xiao
- d State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University , Wuhan , P. R. China
| | - Maikel P Peppelenbosch
- a Department of Gastroenterology and Hepatology , Erasmus MC-University Medical Center , Rotterdam , The Netherlands
| | - Qiuwei Pan
- a Department of Gastroenterology and Hepatology , Erasmus MC-University Medical Center , Rotterdam , The Netherlands
| |
Collapse
|
7
|
Curry SM, Gibson KA, Burrough ER, Schwartz KJ, Yoon KJ, Gabler NK. Nursery pig growth performance and tissue accretion modulation due to porcine epidemic diarrhea virus or porcine deltacoronavirus challenge. J Anim Sci 2017; 95:173-181. [PMID: 28177368 PMCID: PMC7199665 DOI: 10.2527/jas.2016.1000] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) and porcine deltacoronavirus (PDCoV) are both members of the family Coronaviridae which induce clinical signs of diarrhea, dehydration, and in some circumstances, mortality. Most research has been focused on isolation, genome sequencing, pathogenicity, and virulence of these viruses, but there is little information on long-term growth performance and tissue accretion of pigs inoculated with PEDV or PDCoV. Therefore, our objective was to determine the effect of PEDV or PDCoV infection on growth performance and tissue accretion over 42 d following inoculation. A total of 75 Choice Genetics Large White Pureline barrows and gilts (BW = 10.81 ± 0.81 kg) at approximately 2 wk post-wean and naïve for PEDV and PDCoV were selected. Pigs were allotted based on BW and sex, stratified across 3 treatments with 8 pens per treatment. Treatments were: 1) Control (n = 8); 2) PEDV inoculated (n = 8); and 3) PDCoV inoculated (n = 8). On day post inoculation (dpi) 2, 5, 7, and 14 pigs were euthanized for tissue collection and analyses from these tissues are discussed elsewhere. Pen feed intake and BW were recorded on dpi 2, 5, 7, and weekly thereafter until dpi 42. On 1 designated pig per pen, initial and final body composition was determined using dual-energy X-ray absorptiometry (DXA) and tissue accretion rates were calculated over 6 wk test period. Peak PEDV infection was noted at 3 dpi compared with 4 dpi for PDCoV pigs as determined by fecal swab quantitative real-time PCR (RT-PCR). Control pigs remained negative for PEDV and PDCoV throughout the experiment. Overall, Control and PDCoV pigs did not differ in ADG, ADFI or G:F (P > 0.05). Compared to Control and PDCoV pigs, the overall 42 d ADFI was reduced in the challenged PEDV pigs (P < 0.05) by 19 and 27%, respectively. PEDV did not significantly reduce the overall ADG or G:F compared with Control and PDCoV pigs; however, the biggest reduction in ADG and ADFI for PEDV pigs was within 14 dpi compared to the Control pigs (P < 0.05). Whole body tissue accretion was altered due to PED, with fat, lean, protein, and bone mineral accretion reductions by 24, 20, 21, and 42%, respectively (P < 0.05) compared with Control pigs. Overall, nursery pig performance was greatly impacted by PEDV challenge. Surprisingly, the PDCoV challenge did not negatively influence nursery pig performance. This study provides further insight into the longitudinal impact swine enteric coronaviruses have on growing pigs.
Collapse
Affiliation(s)
- S. M. Curry
- Department of Animal Science, Iowa State University, Ames 50011
| | - K. A. Gibson
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames 50011
| | - E. R. Burrough
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames 50011
| | - K. J. Schwartz
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames 50011
| | - K. J. Yoon
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames 50011
| | - N. K. Gabler
- Department of Animal Science, Iowa State University, Ames 50011
- Corresponding author:
| |
Collapse
|
8
|
Ma X, Han M, Li D, Hu S, Gilbreath KR, Bazer FW, Wu G. L-Arginine promotes protein synthesis and cell growth in brown adipocyte precursor cells via the mTOR signal pathway. Amino Acids 2017; 49:957-964. [PMID: 28260165 DOI: 10.1007/s00726-017-2399-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 02/21/2017] [Indexed: 01/11/2023]
Abstract
L-Arginine has been reported to enhance brown adipose tissue developments in fetal lambs of obese ewes, but the underlying mechanism is unknown. The present study tested the hypothesis that L-arginine stimulates growth and development of brown adipocyte precursor cells (BAPCs) through activation of mammalian target of rapamycin cell signaling. BAPCs isolated from fetal lambs at day 90 of gestation were incubated for 6 h in arginine-free DMEM, and then cultured in DMEM with concentrations of 50, 100, 200, 500 or 1000 μmol L-arginine/L for 24-96 h. Cell proliferation, protein turnover, the mammalian target of rapamycin (mTOR) signaling pathway and pre-adipocyte differentiation markers were determined. L-arginine treatment enhanced (P < 0.05) BAPC growth and protein synthesis, while inhibiting proteolysis in a dose-dependent manner. Compared with 50 and 100 μmol/L (the concentrations of arginine in the maternal plasma of obese ewes), 200 μmol L-arginine/L (the concentrations of arginine in the maternal plasma of obese ewes receiving arginine supplementation) increased (P < 0.05) the abundances of phosphorylated mTOR, P70S6K and 4EBP1, as well as the abundances of PGC1α, UCP1, BMP7 and PRDM16. These novel findings indicate that increasing extra-cellular arginine concentration from 50 to 200 µmol/L activates mTOR cell signaling in BAPCs and enhances their growth and development in a dose-dependent manner. Our results provide a mechanism for arginine supplementation to enhance the development of brown adipose tissue in fetal lambs.
Collapse
Affiliation(s)
- Xi Ma
- State Key Laboratory of Animal Nutrition, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China.,Department of Animal Science, Texas A&M University, College Station, TX, 77843-2471, USA
| | - Meng Han
- State Key Laboratory of Animal Nutrition, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Defa Li
- State Key Laboratory of Animal Nutrition, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Shengdi Hu
- Department of Animal Science, Texas A&M University, College Station, TX, 77843-2471, USA
| | - Kyler R Gilbreath
- Department of Animal Science, Texas A&M University, College Station, TX, 77843-2471, USA
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, TX, 77843-2471, USA
| | - Guoyao Wu
- State Key Laboratory of Animal Nutrition, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China. .,Department of Animal Science, Texas A&M University, College Station, TX, 77843-2471, USA.
| |
Collapse
|
9
|
Guerrero CA, Acosta O. Inflammatory and oxidative stress in rotavirus infection. World J Virol 2016; 5:38-62. [PMID: 27175349 PMCID: PMC4861870 DOI: 10.5501/wjv.v5.i2.38] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 10/23/2015] [Accepted: 01/29/2016] [Indexed: 02/05/2023] Open
Abstract
Rotaviruses are the single leading cause of life-threatening diarrhea affecting children under 5 years of age. Rotavirus entry into the host cell seems to occur by sequential interactions between virion proteins and various cell surface molecules. The entry mechanisms seem to involve the contribution of cellular molecules having binding, chaperoning and oxido-reducing activities. It appears to be that the receptor usage and tropism of rotaviruses is determined by the species, cell line and rotavirus strain. Rotaviruses have evolved functions which can antagonize the host innate immune response, whereas are able to induce endoplasmic reticulum (ER) stress, oxidative stress and inflammatory signaling. A networking between ER stress, inflammation and oxidative stress is suggested, in which release of calcium from the ER increases the generation of mitochondrial reactive oxygen species (ROS) leading to toxic accumulation of ROS within ER and mitochondria. Sustained ER stress potentially stimulates inflammatory response through unfolded protein response pathways. However, the detailed characterization of the molecular mechanisms underpinning these rotavirus-induced stressful conditions is still lacking. The signaling events triggered by host recognition of virus-associated molecular patterns offers an opportunity for the development of novel therapeutic strategies aimed at interfering with rotavirus infection. The use of N-acetylcysteine, non-steroidal anti-inflammatory drugs and PPARγ agonists to inhibit rotavirus infection opens a new way for treating the rotavirus-induced diarrhea and complementing vaccines.
Collapse
|
10
|
Liu SQ, Zhao JP, Fan XX, Liu GH, Jiao HC, Wang XJ, Sun SH, Lin H. Rapamycin, a specific inhibitor of the target of rapamycin complex 1, disrupts intestinal barrier integrity in broiler chicks. J Anim Physiol Anim Nutr (Berl) 2015; 100:323-30. [PMID: 26249793 DOI: 10.1111/jpn.12375] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 06/10/2015] [Indexed: 12/16/2022]
Abstract
To uncover the molecular mechanisms underlying the intestinal barrier integrity, this study determined whether the rapamycin (RAPA)-sensitive target of rapamycin complex 1 (TORC1) pathway was involved in this process. Three groups of 4-day-old male chicks were randomly subjected to one of the following treatments for 6 days: high-dose RAPA [a specific inhibitor of TORC1; an intraperitoneal injection of 1.0 mg/kg body weight (BW), once daily at 09:00 hours], low-dose RAPA (0.4 mg/kg BW) and RAPA vehicle (control). Results showed that the RAPA treatment increased mortality, while decreasing villus height (p < 0.01), claudin 1 expression, content of immunoglobulin A (IgA), extent of TORC1 phosphorylation (p < 0.05), ratio of villus height to crypt depth (p < 0.01), and population of IgA-positive B cells in intestinal mucosa, particularly for the jejunum. Some aspects of these responses were dose dependent and appeared to result from weight loss. Together, RAPA exerts the expected inhibition of small intestinal development and IgA production in birds, suggesting the important role of TORC1 in gut barrier integrity.
Collapse
Affiliation(s)
- S Q Liu
- Shandong Key Lab for Animal Biotechnology and Disease Control, Department of Animal Science, Shandong Agricultural University, Tai'an, China
| | - J P Zhao
- Shandong Key Lab for Animal Biotechnology and Disease Control, Department of Animal Science, Shandong Agricultural University, Tai'an, China
| | - X X Fan
- Shandong Key Lab for Animal Biotechnology and Disease Control, Department of Animal Science, Shandong Agricultural University, Tai'an, China
| | - G H Liu
- Shandong Key Lab for Animal Biotechnology and Disease Control, Department of Animal Science, Shandong Agricultural University, Tai'an, China
| | - H C Jiao
- Shandong Key Lab for Animal Biotechnology and Disease Control, Department of Animal Science, Shandong Agricultural University, Tai'an, China
| | - X J Wang
- Shandong Key Lab for Animal Biotechnology and Disease Control, Department of Animal Science, Shandong Agricultural University, Tai'an, China
| | - S H Sun
- Shandong Key Lab for Animal Biotechnology and Disease Control, Department of Animal Science, Shandong Agricultural University, Tai'an, China
| | - H Lin
- Shandong Key Lab for Animal Biotechnology and Disease Control, Department of Animal Science, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
11
|
Zhou F, Wang Y, Tang L, Huang Y, Ding X, He Z. Effects of Dietary Soy Protein Concentrate on Growth, Digestive Enzymes Activities and Target of Rapamycin Signaling Pathway Regulation in Juvenile Soft-Shelled Turtle, <i>Pelodiscus sinensis</i>. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/as.2015.63034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Jacobi SK, Moeser AJ, Blikslager AT, Rhoads JM, Corl BA, Harrell RJ, Odle J. Acute effects of rotavirus and malnutrition on intestinal barrier function in neonatal piglets. World J Gastroenterol 2013; 19:5094-5102. [PMID: 23964143 PMCID: PMC3746381 DOI: 10.3748/wjg.v19.i31.5094] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 04/24/2013] [Accepted: 06/06/2013] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effect of protein-energy malnutrition on intestinal barrier function during rotavirus enteritis in a piglet model.
METHODS: Newborn piglets were allotted at day 4 of age to the following treatments: (1) full-strength formula (FSF)/noninfected; (2) FSF/rotavirus infected; (3) half-strength formula (HSF)/noninfected; or (4) HSF/rotavirus infected. After one day of adjustment to the feeding rates, pigs were infected with rotavirus and acute effects on growth and diarrhea were monitored for 3 d and jejunal samples were collected for Ussing-chamber analyses.
RESULTS: Piglets that were malnourished or infected had lower body weights on days 2 and 3 post-infection (P < 0.05). Three days post-infection, marked diarrhea and weight loss were accompanied by sharp reductions in villus height (59%) and lactase activity (91%) and increased crypt depth (21%) in infected compared with non-infected pigs (P < 0.05). Malnutrition also increased crypt depth (21%) compared to full-fed piglets. Villus:crypt ratio was reduced (67%) with viral infection. There was a trend for reduction in transepithelial electrical resistance with rotavirus infection and malnutrition (P = 0.1). 3H-mannitol flux was significantly increased (50%; P < 0.001) in rotavirus-infected piglets compared to non-infected piglets, but there was no effect of nutritional status. Furthermore, rotavirus infection reduced localization of the tight junction protein, occludin, in the cell membrane and increased localization in the cytosol.
CONCLUSION: Overall, malnutrition had no additive effects to rotavirus infection on intestinal barrier function at day 3 post-infection in a neonatal piglet model.
Collapse
|
13
|
Abstract
Dietary nutrients are essential for gastrointestinal (GI) growth and function, and nutritional support of GI growth and development is a significant component of infant care. For healthy full-term neonates, nutritional provisions of the mother's milk and/or formula will support normal maturation of structure and function of the GI tract in most infants. The composition of breast milk affects GI barrier function and development of a competent mucosal immune system. The functional nutrients and other bioactive components of milk support a microenvironment for gut protection and maturation. However, premature infants struggle with feeding tolerance impairing normal GI function, leading to intestinal dysfunction and even death. The high prevalence worldwide of enteric diseases and dysfunction in neonates has led to much interest in understanding the role of nutrients and food components in the establishment and maintenance of a functioning GI tract. Neonates who do not receive enteral feeding as either mother's milk or formula are supported by total parental nutrition (TPN). The lack of enteral nutrition can compound intestinal dysfunction, leading to high morbidity and mortality in intestinally compromised infants. Reciprocally, enteral stimulation of an immature GI tract can also compound intestinal dysfunction. Therefore, further understanding of nutrient interactions with the mucosa is necessary to define nutritional requirements of the developing GI tract to minimize intestinal complications and infant morbidity. Piglet models of intestinal development and function are similar to humans, and this review summarizes recent findings regarding nutrient requirements for growth and maintenance of intestinal health. In particular, this article reviews the role of specific amino acids (arginine, glutamine, glutamate, and threonine), fatty acids (long chain polyunsaturated, medium chain, and short chain), various prebiotic carbohydrates (short-chain fructo-oligosaccharide, fructo--oligosaccharide, lacto-N-neotetraose, human milk oligosaccharide, polydextrose, and galacto-oligosaccharide), and probiotics that have been examined in the suckling piglet model of intestinal health.
Collapse
Affiliation(s)
- Sheila K Jacobi
- Laboratory of Developmental Nutrition, Department of Animal Science, North Carolina State University, Raleigh, NC, USA
| | | |
Collapse
|
14
|
Thomson ABR, Chopra A, Clandinin MT, Freeman H. Recent advances in small bowel diseases: Part I. World J Gastroenterol 2012; 18:3336-52. [PMID: 22807604 PMCID: PMC3396187 DOI: 10.3748/wjg.v18.i26.3336] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 04/05/2012] [Accepted: 04/13/2012] [Indexed: 02/06/2023] Open
Abstract
As is the case in all parts of gastroenterology and hepatology, there have been many advances in our knowledge and understanding of small intestinal diseases. Over 1000 publications were reviewed for 2008 and 2009, and the important advances in basic science as well as clinical applications were considered. In Part I of this Editorial Review, seven topics are considered: intestinal development; proliferation and repair; intestinal permeability; microbiotica, infectious diarrhea and probiotics; diarrhea; salt and water absorption; necrotizing enterocolitis; and immunology/allergy. These topics were chosen because of their importance to the practicing physician.
Collapse
|
15
|
Kong X, Tan B, Yin Y, Gao H, Li X, Jaeger LA, Bazer FW, Wu G. L-Arginine stimulates the mTOR signaling pathway and protein synthesis in porcine trophectoderm cells. J Nutr Biochem 2011; 23:1178-83. [PMID: 22137265 DOI: 10.1016/j.jnutbio.2011.06.012] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 06/01/2011] [Accepted: 06/29/2011] [Indexed: 11/24/2022]
Abstract
Impairment of placental growth is a major factor contributing to intrauterine growth retardation (IUGR) in both human pregnancy and animal production. Results of recent studies indicate that administration of L-arginine (Arg) to gestating pigs or sheep with IUGR fetuses can enhance fetal growth. However, the underlying mechanisms are largely unknown. The present study tested the hypothesis that Arg stimulates the mammalian target of rapamycin (mTOR) signaling pathway and protein synthesis in porcine conceptus trophectoderm (pTr2) cells. The cells were cultured for 4 days in Arg-free Dulbecco's modified Eagle's Ham medium containing 10, 50, 100, 200, 350 or 500 μM Arg. Cell numbers, protein synthesis and degradation, as well as total and phosphorylated levels of mTOR, ribosomal protein S6 kinase 1 (p70S6K) and eukaryotic initiation factor 4E-binding protein-1 (4EBP1), were determined. The pTr2 cells exhibited time (0-6 days)- and Arg concentration (10-350 μM)-dependent increases in proliferation. Addition of 100 and 350 μM Arg to culture medium dose-dependently increased (a) protein synthesis and decreased protein degradation and (b) the abundance of total and phosphorylated mTOR, p70S6K and 4EBP1 proteins. Effects of 350 μM Arg on intracellular protein turnover were only modestly affected when nitric oxide synthesis was inhibited. Collectively, these results indicate a novel and important role for Arg in promoting growth of porcine placental cells largely via a nitric-oxide-independent pathway. Additionally, these findings help to explain beneficial effects of Arg supplementation on improving survival and growth of embryos/fetuses in mammals.
Collapse
Affiliation(s)
- Xiangfeng Kong
- Research Center for Healthy Breeding of Livestock and Poultry and Key Laboratory for Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, 410125 Hunan, China
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Kim JY, Burghardt RC, Wu G, Johnson GA, Spencer TE, Bazer FW. Select Nutrients in the Ovine Uterine Lumen. VIII. Arginine Stimulates Proliferation of Ovine Trophectoderm Cells Through MTOR-RPS6K-RPS6 Signaling Cascade and Synthesis of Nitric Oxide and Polyamines1. Biol Reprod 2011; 84:70-8. [DOI: 10.1095/biolreprod.110.085753] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
17
|
Wu G, Bazer FW, Johnson GA, Knabe DA, Burghardt RC, Spencer TE, Li XL, Wang JJ. Triennial Growth Symposium: important roles for L-glutamine in swine nutrition and production. J Anim Sci 2010; 89:2017-30. [PMID: 21169511 DOI: 10.2527/jas.2010-3614] [Citation(s) in RCA: 164] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
L-Glutamine (Gln) has traditionally not been considered a nutrient needed in diets for livestock species or even mentioned in classic animal nutrition textbooks. This is due to previous technical difficulties in Gln analysis and the unsubstantiated assumption that animals can synthesize sufficient amounts of Gln to meet their needs. Consequently, the current (1998) version of NRC does not recommend dietary Gln requirements for swine. This lack of knowledge about Gln nutrition has contributed to suboptimal efficiency of global pig production. Because of recent advances in research, Gln is now known to be an abundant AA in physiological fluids and proteins and a key regulator of gene expression. Additionally, Gln can regulate cell signaling via the mammalian target of rapamycin pathway, adenosine monophosphate-activated protein kinase, extracellular signal-related kinase, Jun kinase, mitogen-activated protein kinase, and nitric oxide. The exquisite integration of Gln-dependent regulatory networks has profound effects on cell proliferation, differentiation, migration, metabolism, homeostasis, survival, and function. As a result of translating basic research into practice, dietary supplementation with 1% Gln maintains gut health and prevents intestinal dysfunction in low-birth-weight or early-weaned piglets while increasing their growth performance and survival. In addition, supplementing 1% Gln to a corn- and soybean-meal-based diet between d 90 and 114 of gestation ameliorates fetal growth retardation in gilts and reduces preweaning mortality of piglets. Furthermore, dietary supplementation with 1% Gln enhances milk production by lactating sows. Thus, adequate amounts of dietary Gln, a major nutrient, are necessary to support the maximum growth, development, and production performance of swine.
Collapse
Affiliation(s)
- G Wu
- Department of Animal Science and of Veterinary Integrative Biosciences, Texas A&M University, College Station, 77843, USA.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Tan B, Yin Y, Kong X, Li P, Li X, Gao H, Li X, Huang R, Wu G. L-Arginine stimulates proliferation and prevents endotoxin-induced death of intestinal cells. Amino Acids 2010; 38:1227-35. [PMID: 19669080 PMCID: PMC2850530 DOI: 10.1007/s00726-009-0334-8] [Citation(s) in RCA: 158] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Accepted: 07/22/2009] [Indexed: 12/18/2022]
Abstract
This study tested the hypothesis that L-arginine (Arg) may stimulate cell proliferation and prevent lipopolysaccharide (LPS)-induced death of intestinal cells. Intestinal porcine epithelial cells (IPEC-1) were cultured for 4 days in Arg-free Dulbecco's modified Eagle's-F12 Ham medium (DMEM-F12) containing 10, 100 or 350 microM Arg and 0 or 20 ng/ml LPS. Cell numbers, protein concentrations, protein synthesis and degradation, as well as mammalian target of rapamycin (mTOR) and Toll-like receptor 4 (TLR4) signaling pathways were determined. Without LPS, IPEC-1 cells exhibited time- and Arg-dependent growth curves. LPS treatment increased cell death and reduced protein concentrations in IPEC-1 cells. Addition of 100 and 350 microM Arg to culture medium dose-dependently attenuated LPS-induced cell death and reduction of protein concentrations, in comparison with the basal medium containing 10 microM Arg. Furthermore, supplementation of 100 and 350 microM Arg increased protein synthesis and reduced protein degradation in both control and LPS-treated IPEC-1 cells. Consistent with the data on cell growth and protein turnover, addition of 100 or 350 microM Arg to culture medium increased relative protein levels for phosphorylated mTOR and phosphorylated ribosomal protein S6 kinase-1, while reducing the relative levels of TLR4 and phosphorylated levels of nuclear factor-kappaB in LPS-treated IPEC-1 cells. These results demonstrate a protective effect of Arg against LPS-induced enterocyte damage through mechanisms involving mTOR and TLR4 signaling pathways, as well as intracellular protein turnover.
Collapse
Affiliation(s)
- Bie Tan
- Hunan Engineering Technology Research Center of Healthy Animal Husbandry and Laboratory for Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, 410125 Hunan, China
- Department of Animal Science, Texas A&M University, College Station, TX 77843 USA
- The Graduate School of the Chinese Academy of Sciences, 100039 Beijing, China
| | - Yulong Yin
- Hunan Engineering Technology Research Center of Healthy Animal Husbandry and Laboratory for Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, 410125 Hunan, China
| | - Xiangfeng Kong
- Hunan Engineering Technology Research Center of Healthy Animal Husbandry and Laboratory for Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, 410125 Hunan, China
- Department of Animal Science, Texas A&M University, College Station, TX 77843 USA
| | - Peng Li
- Department of Animal Science, Texas A&M University, College Station, TX 77843 USA
| | - Xilong Li
- Department of Animal Science, Texas A&M University, College Station, TX 77843 USA
| | - Haijun Gao
- Department of Animal Science, Texas A&M University, College Station, TX 77843 USA
| | - Xinguo Li
- Hunan Institute of Animal Husbandry and Veterinary Medicine, Changsha, 410131 Hunan, China
| | - Ruilin Huang
- Hunan Engineering Technology Research Center of Healthy Animal Husbandry and Laboratory for Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, 410125 Hunan, China
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX 77843 USA
| |
Collapse
|
19
|
Dutta D, Bagchi P, Chatterjee A, Nayak MK, Mukherjee A, Chattopadhyay S, Nagashima S, Kobayashi N, Komoto S, Taniguchi K, Chawla-Sarkar M. The molecular chaperone heat shock protein-90 positively regulates rotavirus infectionx. Virology 2009; 391:325-33. [PMID: 19628238 DOI: 10.1016/j.virol.2009.06.044] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Revised: 06/07/2009] [Accepted: 06/26/2009] [Indexed: 11/17/2022]
Abstract
Rotaviruses are the major cause of severe dehydrating gastroenteritis in children worldwide. In this study, we report a positive role of cellular chaperone Hsp90 during rotavirus infection. A highly specific Hsp90 inhibitor, 17-allylamono-demethoxygeldanamycin (17-AAG) was used to delineate the functional role of Hsp90. In MA104 cells treated with 17-AAG after viral adsorption, replication of simian (SA11) or human (KU) strains was attenuated as assessed by quantitating both plaque forming units and expression of viral genes. Phosphorylation of Akt and NFkappaB observed 2-4 hpi with SA11, was strongly inhibited in the presence of 17-AAG. Direct Hsp90-Akt interaction in virus infected cells was also reduced in the presence of 17-AAG. Anti-rotaviral effects of 17-AAG were due to inhibition of activation of Akt that was confirmed since, PI3K/Akt inhibitors attenuated rotavirus growth significantly. Thus, Hsp90 regulates rotavirus by modulating cellular signaling proteins. The results highlight the importance of cellular proteins during rotavirus infection and the possibility of targeting cellular chaperones for developing new anti-rotaviral strategies.
Collapse
Affiliation(s)
- Dipanjan Dutta
- Division of Virology, National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme-XM, Beliaghata, Kolkata-700010, West Bengal, India
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Glutamine, arginine, and leucine signaling in the intestine. Amino Acids 2009; 37:111-22. [PMID: 19130170 DOI: 10.1007/s00726-008-0225-4] [Citation(s) in RCA: 231] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Accepted: 12/09/2008] [Indexed: 12/14/2022]
Abstract
Glutamine and leucine are abundant constituents of plant and animal proteins, whereas the content of arginine in foods and physiological fluids varies greatly. Besides their role in protein synthesis, these three amino acids individually activate signaling pathway to promote protein synthesis and possibly inhibit autophagy-mediated protein degradation in intestinal epithelial cells. In addition, glutamine and arginine stimulate the mitogen-activated protein kinase and mammalian target of rapamycin (mTOR)/p70 (s6) kinase pathways, respectively, to enhance mucosal cell migration and restitution. Moreover, through the nitric oxide-dependent cGMP signaling cascade, arginine regulates multiple physiological events in the intestine that are beneficial for cell homeostasis and survival. Available evidence from both in vitro and in vivo animal studies shows that glutamine and arginine promote cell proliferation and exert differential cytoprotective effects in response to nutrient deprivation, oxidative injury, stress, and immunological challenge. Additionally, when nitric oxide is available, leucine increases the migration of intestinal cells. Therefore, through cellular signaling mechanisms, arginine, glutamine, and leucine play crucial roles in intestinal growth, integrity, and function.
Collapse
|
21
|
Wu G, Bazer FW, Davis TA, Kim SW, Li P, Marc Rhoads J, Carey Satterfield M, Smith SB, Spencer TE, Yin Y. Arginine metabolism and nutrition in growth, health and disease. Amino Acids 2008; 37:153-68. [PMID: 19030957 DOI: 10.1007/s00726-008-0210-y] [Citation(s) in RCA: 821] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Accepted: 11/05/2008] [Indexed: 12/11/2022]
Abstract
L-Arginine (Arg) is synthesised from glutamine, glutamate, and proline via the intestinal-renal axis in humans and most other mammals (including pigs, sheep and rats). Arg degradation occurs via multiple pathways that are initiated by arginase, nitric-oxide synthase, Arg:glycine amidinotransferase, and Arg decarboxylase. These pathways produce nitric oxide, polyamines, proline, glutamate, creatine, and agmatine with each having enormous biological importance. Arg is also required for the detoxification of ammonia, which is an extremely toxic substance for the central nervous system. There is compelling evidence that Arg regulates interorgan metabolism of energy substrates and the function of multiple organs. The results of both experimental and clinical studies indicate that Arg is a nutritionally essential amino acid (AA) for spermatogenesis, embryonic survival, fetal and neonatal growth, as well as maintenance of vascular tone and hemodynamics. Moreover, a growing body of evidence clearly indicates that dietary supplementation or intravenous administration of Arg is beneficial in improving reproductive, cardiovascular, pulmonary, renal, gastrointestinal, liver and immune functions, as well as facilitating wound healing, enhancing insulin sensitivity, and maintaining tissue integrity. Additionally, Arg or L-citrulline may provide novel and effective therapies for obesity, diabetes, and the metabolic syndrome. The effect of Arg in treating many developmental and health problems is unique among AAs, and offers great promise for improved health and wellbeing of humans and animals.
Collapse
Affiliation(s)
- Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Yao K, Yin YL, Chu W, Liu Z, Deng D, Li T, Huang R, Zhang J, Tan B, Wang W, Wu G. Dietary arginine supplementation increases mTOR signaling activity in skeletal muscle of neonatal pigs. J Nutr 2008; 138:867-72. [PMID: 18424593 DOI: 10.1093/jn/138.5.867] [Citation(s) in RCA: 263] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Dietary arginine supplementation increases growth of neonatal pigs, but the underlying mechanisms are unknown. This study was conducted to test the hypothesis that the arginine treatment activates translation initiation factors and protein synthesis in skeletal muscle. Piglets were fed milk-based diets supplemented with 0 or 0.6% L-arginine between 7 and 14 d of age. Following a 7-d period of arginine supplementation, at 1 h after the last meal, jugular venous blood samples were obtained for metabolite analysis, whereas longissimus muscle and liver were collected to determine the abundance and phosphorylation state of the mammalian target of the rapamycin (mTOR), ribosomal protein S6 kinase 1 (S6K1), eukaryotic initiation factor (eIF) 4E-binding protein-1 (4E-BP1), eIF4E, and eIF4G. Fractional rates of protein synthesis were measured in muscle and liver using the [(3)H]phenylalanine flooding-dose technique. Arginine supplementation increased (P < 0.05) daily gain, the plasma insulin concentration, and protein synthesis in skeletal muscle but not in liver. The arginine treatment enhanced the formation of the active eIF4E x eIF4G complex but reduced the amount of the inactive 4E-BP1 x eIF4E complex in muscle. These changes were associated with elevated levels of phosphorylated mTOR and 4E-BP1 in muscle of arginine-supplemented piglets (P < 0.05). Neither the total amounts nor phosphorylation levels of the translation initiation factors in the liver differed between control and arginine-supplemented piglets. Collectively, these results suggest that dietary arginine supplementation increases mTOR signaling activity in skeletal muscle, but not in liver, of milk-fed neonatal pigs. The findings provide a molecular mechanism for explaining the previous observation that increased circulating arginine stimulated muscle protein synthesis and promoted weight gain in neonatal pigs.
Collapse
Affiliation(s)
- Kang Yao
- Laboratory of Animal Nutrition and Health, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Corl BA, Odle J, Niu X, Moeser AJ, Gatlin LA, Phillips OT, Blikslager AT, Rhoads JM. Arginine activates intestinal p70(S6k) and protein synthesis in piglet rotavirus enteritis. J Nutr 2008; 138:24-9. [PMID: 18156399 DOI: 10.1093/jn/138.1.24] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We previously showed that phosphorylation of p70 S6 kinase (p70(S6k)) in the intestine is increased during viral enteritis. In this study, we hypothesized that during rotavirus infection, oral Arg, which stimulates p70(S6k) activation, will further stimulate intestinal protein synthesis and mucosal recovery, whereas the p70(S6k) inhibitor rapamycin (Rapa) will inhibit mucosal recovery. Newborn piglets were fed a standard milk replacer diet supplemented with Arg (0.4 g x kg(-1) x d(-1), twice daily by gavage), Rapa (2 mg x m(-2) x d(-1)), Arg + Rapa, or saline (controls). They were infected on d 6 of life with porcine rotavirus. Three days postinoculation, we measured the piglets' body weight, fecal rotavirus excretion, villus-crypt morphology, epithelial electrical resistance in Ussing chambers, and p70(S6k) activation by Western blotting and immunohistochemistry. We previously showed a 2-fold increase in jejunal protein synthesis during rotavirus diarrhea. In this experiment, Arg stimulated jejunal protein synthesis 1.3-fold above standard medium, and the Arg stimulation was partially inhibited by Rapa. Small bowel stimulation of p70(S6k) phosphorylation and p70(S6k) levels were inhibited >80% by Rapa. Immunohistochemistry revealed a major increase of p70(S6k) and ribosomal protein S6 phosphorylation in the crypt and lower villus of the infected piglets. However, in Arg-treated piglets, p70(S6k) activation occurred over the entire villus. Jejunal villi of the Rapa-treated group showed inactivation of p70(S6k) and a decrease in mucosal resistance (reflecting increased permeability), the latter of which was reversed by Arg. We conclude that, early in rotavirus enteritis, Arg has no impact on diarrhea but augments intestinal protein synthesis in part by p70(S6k) stimulation, while improving intestinal permeability via a mammalian target of rapamycin/p70(S6k)-independent mechanism.
Collapse
Affiliation(s)
- Benjamin A Corl
- Department of Animal Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | | | | | | | | | | | | | | |
Collapse
|