1
|
Hershfinkel M. Cross-talk between zinc and calcium regulates ion transport: A role for the zinc receptor, ZnR/GPR39. J Physiol 2024; 602:1579-1594. [PMID: 37462604 DOI: 10.1113/jp283834] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 06/26/2023] [Indexed: 04/21/2024] Open
Abstract
Zinc is essential for many physiological functions, with a major role in digestive system, skin health, and learning and memory. On the cellular level, zinc is involved in cell proliferation and cell death. A selective zinc sensing receptor, ZnR/GPR39 is a Gq-coupled receptor that acts via the inositol trisphosphate pathway to release intracellular Ca2+. The ZnR/GPR39 serves as a mediator between extracellular changes in Zn2+ concentration and cellular Ca2+ signalling. This signalling pathway regulates ion transporters activity and thereby controls the formation of transepithelial gradients or neuronal membrane potential, which play a fundamental role in the physiological function of these tissues. This review focuses on the role of Ca2+ signalling, and specifically ZnR/GPR39, with respect to the regulation of the Na+/H+ exchanger, NHE1, and of the K+/Cl- cotransporters, KCC1-3, and also describes the physiological implications of this regulation.
Collapse
Affiliation(s)
- Michal Hershfinkel
- Department of Physiology and Cell Biology and the School of Brain Sciences and Cognition, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
2
|
Nikolovska K, Seidler UE, Stock C. The Role of Plasma Membrane Sodium/Hydrogen Exchangers in Gastrointestinal Functions: Proliferation and Differentiation, Fluid/Electrolyte Transport and Barrier Integrity. Front Physiol 2022; 13:899286. [PMID: 35665228 PMCID: PMC9159811 DOI: 10.3389/fphys.2022.899286] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/19/2022] [Indexed: 12/11/2022] Open
Abstract
The five plasma membrane Na+/H+ exchanger (NHE) isoforms in the gastrointestinal tract are characterized by distinct cellular localization, tissue distribution, inhibitor sensitivities, and physiological regulation. NHE1 (Slc9a1) is ubiquitously expressed along the gastrointestinal tract in the basolateral membrane of enterocytes, but so far, an exclusive role for NHE1 in enterocyte physiology has remained elusive. NHE2 (Slc9a2) and NHE8 (Slc9a8) are apically expressed isoforms with ubiquitous distribution along the colonic crypt axis. They are involved in pHi regulation of intestinal epithelial cells. Combined use of a knockout mouse model, intestinal organoid technology, and specific inhibitors revealed previously unrecognized actions of NHE2 and NHE8 in enterocyte proliferation and differentiation. NHE3 (Slc9a3), expressed in the apical membrane of differentiated intestinal epithelial cells, functions as the predominant nutrient-independent Na+ absorptive mechanism in the gut. The new selective NHE3 inhibitor (Tenapanor) allowed discovery of novel pathophysiological and drug-targetable NHE3 functions in cystic-fibrosis associated intestinal obstructions. NHE4, expressed in the basolateral membrane of parietal cells, is essential for parietal cell integrity and acid secretory function, through its role in cell volume regulation. This review focuses on the expression, regulation and activity of the five plasma membrane Na+/H+ exchangers in the gastrointestinal tract, emphasizing their role in maintaining intestinal homeostasis, or their impact on disease pathogenesis. We point to major open questions in identifying NHE interacting partners in central cellular pathways and processes and the necessity of determining their physiological role in a system where their endogenous expression/activity is maintained, such as organoids derived from different parts of the gastrointestinal tract.
Collapse
|
3
|
Nikolovska K, Cao L, Hensel I, Di Stefano G, Seidler A, Zhou K, Qian J, Singh AK, Riederer B, Seidler U. Sodium/hydrogen-exchanger-2 modulates colonocyte lineage differentiation. Acta Physiol (Oxf) 2022; 234:e13774. [PMID: 34985202 DOI: 10.1111/apha.13774] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/12/2021] [Accepted: 01/01/2022] [Indexed: 12/11/2022]
Abstract
AIM The sodium/hydrogen exchanger 2 (NHE2) is an intestinal acid extruder with crypt-predominant localization and unresolved physiological significance. Our aim was to decipher its role in colonic epithelial cell proliferation, differentiation and electrolyte transport. METHODS Alterations induced by NHE2-deficiency were addressed in murine nhe2-/- and nhe2+/+ colonic crypts and colonoids, and NHE2-knockdown and control Caco2Bbe cells using pH-fluorometry, gene expression analysis and immunofluorescence. RESULTS pHi -measurements along the colonic cryptal axis revealed significantly decreased intracellular pH (pHi ) in the middle segment of nhe2-/- compared to nhe2+/+ crypts. Increased Nhe2 mRNA expression was detected in murine colonoids in the transiently amplifying/progenitor cell stage (TA/PE). Lack of Nhe2 altered the differentiation programme of colonic epithelial cells with reduced expression of absorptive lineage markers alkaline phosphatase (iAlp), Slc26a3 and transcription factor hairy and enhancer-of-split 1 (Hes1), but increased expression of secretory lineage markers Mucin 2, trefoil factor 3 (Tff3), enteroendocrine marker chromogranin A and murine atonal homolog 1 (Math1). Enterocyte differentiation was found to be pHi dependent with acidic pHi reducing, and alkaline pHi stimulating the expression of enterocyte differentiation markers in Caco2Bbe cells. A thicker mucus layer, longer crypts and an expanded brush border membrane zone of sodium/hydrogen exchanger 3 (NHE3) abundance may explain the lack of inflammation and the normal fluid absorptive rate in nhe2-/- colon. CONCLUSIONS The results suggest that NHE2 expression is activated when colonocytes emerge from the stem cell niche. Its activity increases progenitor cell pHi and thereby supports absorptive enterocyte differentiation.
Collapse
Affiliation(s)
- Katerina Nikolovska
- Department of Gastroenterology, Hepatology and Endocrinology Hannover Medical School Hannover Germany
| | - Li Cao
- Department of Gastroenterology, Hepatology and Endocrinology Hannover Medical School Hannover Germany
- Department of Gastroenterology Tongji Hospital Huazhong University Wuhan China
| | - Inga Hensel
- Department of Gastroenterology, Hepatology and Endocrinology Hannover Medical School Hannover Germany
| | - Gabriella Di Stefano
- Department of Gastroenterology, Hepatology and Endocrinology Hannover Medical School Hannover Germany
| | - Anna Elisabeth Seidler
- Department of Gastroenterology, Hepatology and Endocrinology Hannover Medical School Hannover Germany
| | - Kunyan Zhou
- Department of Gastroenterology, Hepatology and Endocrinology Hannover Medical School Hannover Germany
| | - Jiajie Qian
- Department of Gastroenterology, Hepatology and Endocrinology Hannover Medical School Hannover Germany
- Department of Transplantation and Hepatobiliary Surgery First Affiliated Hospital of Zheijang University Hangzhou China
| | - Anurag Kumar Singh
- Department of Gastroenterology, Hepatology and Endocrinology Hannover Medical School Hannover Germany
- Department of Physiological Chemistry University of Halle Halle (Saale) Germany
| | - Brigitte Riederer
- Department of Gastroenterology, Hepatology and Endocrinology Hannover Medical School Hannover Germany
| | - Ursula Seidler
- Department of Gastroenterology, Hepatology and Endocrinology Hannover Medical School Hannover Germany
| |
Collapse
|
4
|
Pathophysiological role of ion channels and transporters in gastrointestinal mucosal diseases. Cell Mol Life Sci 2021; 78:8109-8125. [PMID: 34778915 PMCID: PMC8629801 DOI: 10.1007/s00018-021-04011-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/10/2021] [Accepted: 10/23/2021] [Indexed: 11/13/2022]
Abstract
The incidence of gastrointestinal (GI) mucosal diseases, including various types of gastritis, ulcers, inflammatory bowel disease and GI cancer, is increasing. Therefore, it is necessary to identify new therapeutic targets. Ion channels/transporters are located on cell membranes, and tight junctions (TJs) affect acid–base balance, the mucus layer, permeability, the microbiota and mucosal blood flow, which are essential for maintaining GI mucosal integrity. As ion channel/transporter dysfunction results in various GI mucosal diseases, this review focuses on understanding the contribution of ion channels/transporters to protecting the GI mucosal barrier and the relationship between GI mucosal disease and ion channels/transporters, including Cl−/HCO3− exchangers, Cl− channels, aquaporins, Na+/H+ exchangers, and K+ channels. Here, we provide novel prospects for the treatment of GI mucosal diseases.
Collapse
|
5
|
Hagen SJ. Mucosal defense: gastroduodenal injury and repair mechanisms. Curr Opin Gastroenterol 2021; 37:609-614. [PMID: 34475337 PMCID: PMC8511296 DOI: 10.1097/mog.0000000000000775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
PURPOSE OF REVIEW The mucosal barrier serves as a primary interface between the environment and host. In daily life, superficial injury to the gastric or duodenal mucosa occurs regularly but heals rapidly by a process called 'restitution'. Persistent injury to the gastroduodenal mucosa also occurs but initiates a regenerative lesion with specific wound healing mechanisms that attempt to repair barrier function. If not healed, these lesions can be the site of neoplasia development in a chronic inflammatory setting. This review summarizes the past year of advances in understanding mucosal repair in the gastroduodenal mucosa, which occurs as a defense mechanism against injury. RECENT FINDINGS Organoids are an emerging new tool that allows for the correlation of in vivo and in vitro models; organoids represent an important reductionist model to probe specific aspects of injury and repair mechanisms that are limited to epithelial cells. Additionally, proof-of-concept studies show that machine learning algorithms may ultimately assist with identifying novel, targetable pathways to pursue in therapeutic interventions. Gut-on-chip technology and single cell RNA-sequencing contributed to new understanding of gastroduodenal regenerative lesions after injury by identifying networks and interactions that are involved in the repair process. SUMMARY Recent updates provide new possibilities for identifying novel molecular targets for the treatment of acute and superficial mucosal injury, mucosal regeneration, and regenerative lesions in the gastrointestinal tract.
Collapse
Affiliation(s)
- Susan J. Hagen
- Department of Surgery
- Beth Israel Deaconess Medical Center
- Harvard Medical School, Boston, MA 02215
| |
Collapse
|
6
|
Slifer ZM, Hernandez L, Pridgen TA, Carlson AR, Messenger KM, Madan J, Krishnan BR, Laumas S, Blikslager AT. Larazotide acetate induces recovery of ischemia-injured porcine jejunum via repair of tight junctions. PLoS One 2021; 16:e0250165. [PMID: 33886649 PMCID: PMC8061941 DOI: 10.1371/journal.pone.0250165] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/31/2021] [Indexed: 12/14/2022] Open
Abstract
Intestinal ischemia results in mucosal injury, including paracellular barrier loss due to disruption of tight junctions. Larazotide acetate (LA), a small peptide studied in Phase III clinical trials for treatment of celiac disease, regulates tight junctions (TJs). We hypothesized that LA would dose-dependently hasten recovery of intestinal ischemic injury via modulation of TJs. Ischemia-injured tissue from 6-8-week-old pigs was recovered in Ussing chambers for 240-minutes in the presence of LA. LA (1 μM but not 0.1 μM or 10 μM) significantly enhanced transepithelial electrical resistance (TER) above ischemic injured controls and significantly reduced serosal-to-mucosal flux LPS (P<0.05). LA (1 μM) enhanced localization of the sealing tight junction protein claudin-4 in repairing epithelium. To assess for the possibility of fragmentation of LA, an in vitro enzyme degradation assay using the brush border enzyme aminopeptidase M, revealed generation of peptide fragments. Western blot analysis of total protein isolated from uninjured and ischemia-injured porcine intestine showed aminopeptidase M enzyme presence in both tissue types, and mass spectrometry analysis of samples collected during ex vivo analysis confirmed formation of LA fragments. Treatment of tissues with LA fragments had no effect alone, but treatment with a fragment missing both amino-terminus glycines inhibited barrier recovery stimulated by 1 μM LA. To reduce potential LA inhibition by fragments, a D-amino acid analog of larazotide Analog #6, resulted in a significant recovery response at a 10-fold lower dose (0.1 μM) similar in magnitude to that of 1 μM LA. We conclude that LA stimulates repair of ischemic-injured epithelium at the level of the tight junctions, at an optimal dose of 1 μM LA. Higher doses were less effective because of inhibition by LA fragments, which could be subverted by chirally-modifying the molecule, or microdosing LA.
Collapse
Affiliation(s)
- Zachary M. Slifer
- Comparative Medicine Institute, Department of Clinical Sciences, North Carolina State University, Raleigh, NC, United States of America
| | - Liliana Hernandez
- Comparative Medicine Institute, Department of Clinical Sciences, North Carolina State University, Raleigh, NC, United States of America
| | - Tiffany A. Pridgen
- Comparative Medicine Institute, Department of Clinical Sciences, North Carolina State University, Raleigh, NC, United States of America
| | - Alexandra R. Carlson
- Comparative Medicine Institute, Department of Clinical Sciences, North Carolina State University, Raleigh, NC, United States of America
| | - Kristen M. Messenger
- Comparative Medicine Institute, Department of Clinical Sciences, North Carolina State University, Raleigh, NC, United States of America
| | - Jay Madan
- Innovate Biopharmaceuticals, Inc., Raleigh, NC, United States of America
| | - B. Radha Krishnan
- Innovate Biopharmaceuticals, Inc., Raleigh, NC, United States of America
| | - Sandeep Laumas
- 9 Meters Biopharma, Inc., Raleigh, NC, United States of America
| | - Anthony T. Blikslager
- Comparative Medicine Institute, Department of Clinical Sciences, North Carolina State University, Raleigh, NC, United States of America
- * E-mail:
| |
Collapse
|
7
|
Slifer ZM, Blikslager AT. The Integral Role of Tight Junction Proteins in the Repair of Injured Intestinal Epithelium. Int J Mol Sci 2020; 21:ijms21030972. [PMID: 32024112 PMCID: PMC7036844 DOI: 10.3390/ijms21030972] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/10/2019] [Accepted: 10/14/2019] [Indexed: 12/29/2022] Open
Abstract
The intestinal epithelial monolayer forms a transcellular and paracellular barrier that separates luminal contents from the interstitium. The paracellular barrier consists of a highly organized complex of intercellular junctions that is primarily regulated by apical tight junction proteins and tight junction-associated proteins. This homeostatic barrier can be lost through a multitude of injurious events that cause the disruption of the tight junction complex. Acute repair after injury leading to the reestablishment of the tight junction barrier is crucial for the return of both barrier function as well as other cellular functions, including water regulation and nutrient absorption. This review provides an overview of the tight junction complex components and how they link to other plasmalemmal proteins, such as ion channels and transporters, to induce tight junction closure during repair of acute injury. Understanding the components of interepithelial tight junctions and the mechanisms of tight junction regulation after injury is crucial for developing future therapeutic targets for patients experiencing dysregulated intestinal permeability.
Collapse
|
8
|
Shrine N, Portelli MA, John C, Soler Artigas M, Bennett N, Hall R, Lewis J, Henry AP, Billington CK, Ahmad A, Packer RJ, Shaw D, Pogson ZEK, Fogarty A, McKeever TM, Singapuri A, Heaney LG, Mansur AH, Chaudhuri R, Thomson NC, Holloway JW, Lockett GA, Howarth PH, Djukanovic R, Hankinson J, Niven R, Simpson A, Chung KF, Sterk PJ, Blakey JD, Adcock IM, Hu S, Guo Y, Obeidat M, Sin DD, van den Berge M, Nickle DC, Bossé Y, Tobin MD, Hall IP, Brightling CE, Wain LV, Sayers I. Moderate-to-severe asthma in individuals of European ancestry: a genome-wide association study. THE LANCET. RESPIRATORY MEDICINE 2019; 7:20-34. [PMID: 30552067 PMCID: PMC6314966 DOI: 10.1016/s2213-2600(18)30389-8] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/12/2018] [Accepted: 09/13/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND Few genetic studies that focus on moderate-to-severe asthma exist. We aimed to identity novel genetic variants associated with moderate-to-severe asthma, see whether previously identified genetic variants for all types of asthma contribute to moderate-to-severe asthma, and provide novel mechanistic insights using expression analyses in patients with asthma. METHODS In this genome-wide association study, we used a two-stage case-control design. In stage 1, we genotyped patient-level data from two UK cohorts (the Genetics of Asthma Severity and Phenotypes [GASP] initiative and the Unbiased BIOmarkers in PREDiction of respiratory disease outcomes [U-BIOPRED] project) and used data from the UK Biobank to collect patient-level genomic data for cases and controls of European ancestry in a 1:5 ratio. Cases were defined as having moderate-to-severe asthma if they were taking appropriate medication or had been diagnosed by a doctor. Controls were defined as not having asthma, rhinitis, eczema, allergy, emphysema, or chronic bronchitis as diagnosed by a doctor. For stage 2, an independent cohort of cases and controls (1:5) was selected from the UK Biobank only, with no overlap with stage 1 samples. In stage 1 we undertook a genome-wide association study of moderate-to-severe asthma, and in stage 2 we followed up independent variants that reached the significance threshold of p less than 1 × 10-6 in stage 1. We set genome-wide significance at p less than 5 × 10-8. For novel signals, we investigated their effect on all types of asthma (mild, moderate, and severe). For all signals meeting genome-wide significance, we investigated their effect on gene expression in patients with asthma and controls. FINDINGS We included 5135 cases and 25 675 controls for stage 1, and 5414 cases and 21 471 controls for stage 2. We identified 24 genome-wide significant signals of association with moderate-to-severe asthma, including several signals in innate or adaptive immune-response genes. Three novel signals were identified: rs10905284 in GATA3 (coded allele A, odds ratio [OR] 0·90, 95% CI 0·88-0·93; p=1·76 × 10-10), rs11603634 in the MUC5AC region (coded allele G, OR 1·09, 1·06-1·12; p=2·32 × 10-8), and rs560026225 near KIAA1109 (coded allele GATT, OR 1·12, 1·08-1·16; p=3·06 × 10-9). The MUC5AC signal was not associated with asthma when analyses included mild asthma. The rs11603634 G allele was associated with increased expression of MUC5AC mRNA in bronchial epithelial brush samples via proxy SNP rs11602802; (p=2·50 × 10-5) and MUC5AC mRNA was increased in bronchial epithelial samples from patients with severe asthma (in two independent analyses, p=0·039 and p=0·022). INTERPRETATION We found substantial shared genetic architecture between mild and moderate-to-severe asthma. We also report for the first time genetic variants associated with the risk of developing moderate-to-severe asthma that regulate mucin production. Finally, we identify candidate causal genes in these loci and provide increased insight into this difficult to treat population. FUNDING Asthma UK, AirPROM, U-BIOPRED, UK Medical Research Council, and Rosetrees Trust.
Collapse
Affiliation(s)
- Nick Shrine
- Department of Health Sciences, University of Leicester, Leicester, UK
| | - Michael A Portelli
- Division of Respiratory Medicine, National Institute for Health Research, Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| | - Catherine John
- Department of Health Sciences, University of Leicester, Leicester, UK
| | | | - Neil Bennett
- Department of Health Sciences, University of Leicester, Leicester, UK
| | - Robert Hall
- Division of Respiratory Medicine, National Institute for Health Research, Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| | - Jon Lewis
- Division of Respiratory Medicine, National Institute for Health Research, Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| | - Amanda P Henry
- Division of Respiratory Medicine, National Institute for Health Research, Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| | - Charlotte K Billington
- Division of Respiratory Medicine, National Institute for Health Research, Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| | - Azaz Ahmad
- Division of Respiratory Medicine, National Institute for Health Research, Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| | - Richard J Packer
- Department of Health Sciences, University of Leicester, Leicester, UK
| | - Dominick Shaw
- Division of Respiratory Medicine, National Institute for Health Research, Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| | - Zara E K Pogson
- Division of Epidemiology and Public Health, University of Nottingham, Nottingham, UK
| | - Andrew Fogarty
- Division of Epidemiology and Public Health, University of Nottingham, Nottingham, UK
| | - Tricia M McKeever
- Division of Epidemiology and Public Health, University of Nottingham, Nottingham, UK
| | - Amisha Singapuri
- Institute for Lung Health, Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK; Glenfield Hospital, Leicester, UK
| | - Liam G Heaney
- Centre for Infection and Immunity, Queen's University of Belfast, Belfast, UK
| | - Adel H Mansur
- Respiratory Medicine, Birmingham Heartlands Hospital and University of Birmingham, Birmingham, UK
| | - Rekha Chaudhuri
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Neil C Thomson
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - John W Holloway
- Human Development and Health, Clinical and Experimental Sciences, Faculty of Medicine and National Institute of Health Biomedical Research Centre, Southampton, University of Southampton, Southampton, UK
| | - Gabrielle A Lockett
- Human Development and Health, Clinical and Experimental Sciences, Faculty of Medicine and National Institute of Health Biomedical Research Centre, Southampton, University of Southampton, Southampton, UK
| | - Peter H Howarth
- Human Development and Health, Clinical and Experimental Sciences, Faculty of Medicine and National Institute of Health Biomedical Research Centre, Southampton, University of Southampton, Southampton, UK
| | - Ratko Djukanovic
- Human Development and Health, Clinical and Experimental Sciences, Faculty of Medicine and National Institute of Health Biomedical Research Centre, Southampton, University of Southampton, Southampton, UK
| | - Jenny Hankinson
- Division of Infection Immunity and Respiratory Medicine, The University of Manchester, Manchester Academic Health Science Centre, and Manchester University NHS Foundation Trust, Manchester, UK
| | - Robert Niven
- Division of Infection Immunity and Respiratory Medicine, The University of Manchester, Manchester Academic Health Science Centre, and Manchester University NHS Foundation Trust, Manchester, UK
| | - Angela Simpson
- Division of Infection Immunity and Respiratory Medicine, The University of Manchester, Manchester Academic Health Science Centre, and Manchester University NHS Foundation Trust, Manchester, UK
| | - Kian Fan Chung
- The National Heart and Lung Institute, Imperial College, London, UK
| | - Peter J Sterk
- Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| | - John D Blakey
- Respiratory Medicine, Sir Charles Gairdner Hospital, Perth, WA, Australia
| | - Ian M Adcock
- The National Heart and Lung Institute, Imperial College, London, UK
| | - Sile Hu
- Data Science Institute, Imperial College, London, UK
| | - Yike Guo
- Data Science Institute, Imperial College, London, UK
| | - Maen Obeidat
- The University of British Columbia Center for Heart Lung Innovation, St Paul's Hospital Vancouver, Vancouver, BC, Canada
| | - Don D Sin
- The University of British Columbia Center for Heart Lung Innovation, St Paul's Hospital Vancouver, Vancouver, BC, Canada; Division of Respiratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Maarten van den Berge
- University of Groningen, University Medical Center Groningen, Department of Pulmonology, Groningen Research Institute for Asthma and COPD Research Institute, Groningen, Netherlands
| | | | - Yohan Bossé
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Department of Molecular Medicine, Laval University, Quebec City, QC, Canada
| | - Martin D Tobin
- Department of Health Sciences, University of Leicester, Leicester, UK; National Institute for Health Research, Leicester Respiratory Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Ian P Hall
- Division of Respiratory Medicine, National Institute for Health Research, Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| | - Christopher E Brightling
- Institute for Lung Health, Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK; National Institute for Health Research, Leicester Respiratory Biomedical Research Centre, University of Leicester, Leicester, UK; Glenfield Hospital, Leicester, UK
| | - Louise V Wain
- Department of Health Sciences, University of Leicester, Leicester, UK; National Institute for Health Research, Leicester Respiratory Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Ian Sayers
- Division of Respiratory Medicine, National Institute for Health Research, Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK.
| |
Collapse
|
9
|
Xu H, Ghishan FK, Kiela PR. SLC9 Gene Family: Function, Expression, and Regulation. Compr Physiol 2018; 8:555-583. [PMID: 29687889 DOI: 10.1002/cphy.c170027] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The Slc9 family of Na+ /H+ exchangers (NHEs) plays a critical role in electroneutral exchange of Na+ and H+ in the mammalian intestine as well as other absorptive and secretory epithelia of digestive organs. These transport proteins contribute to the transepithelial Na+ and water absorption, intracellular pH and cellular volume regulation as well as the electrolyte, acid-base, and fluid volume homeostasis at the systemic level. They also influence the function of other membrane transport mechanisms, affect cellular proliferation and apoptosis as well as cell migration, adherence to the extracellular matrix, and tissue repair. Additionally, they modulate the extracellular milieu to facilitate other nutrient absorption and to regulate the intestinal microbial microenvironment. Na+ /H+ exchange is inhibited in selected gastrointestinal diseases, either by intrinsic factors (e.g., bile acids, inflammatory mediators) or infectious agents and associated bacterial toxins. Disrupted NHE activity may contribute not only to local and systemic electrolyte imbalance but also to the disease severity via multiple mechanisms. In this review, we describe the cation proton antiporter superfamily of Na+ /H+ exchangers with a particular emphasis on the eight SLC9A isoforms found in the digestive tract, followed by a more integrative description in their roles in each of the digestive organs. We discuss regulatory mechanisms that determine the function of Na+ /H+ exchangers as pertinent to the digestive tract, their regulation in pathological states of the digestive organs, and reciprocally, the contribution of dysregulated Na+ /H+ exchange to the disease pathogenesis and progression. © 2018 American Physiological Society. Compr Physiol 8:555-583, 2018.
Collapse
Affiliation(s)
- Hua Xu
- Department of Pediatrics, Steele Children's Research Center, University of Arizona, Tucson, Arizona, USA
| | - Fayez K Ghishan
- Department of Pediatrics, Steele Children's Research Center, University of Arizona, Tucson, Arizona, USA
| | - Pawel R Kiela
- Department of Pediatrics, Steele Children's Research Center, University of Arizona, Tucson, Arizona, USA.,Department of Immunobiology, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
10
|
Paehler Vor der Nolte A, Chodisetti G, Yuan Z, Busch F, Riederer B, Luo M, Yu Y, Menon MB, Schneider A, Stripecke R, Nikolovska K, Yeruva S, Seidler U. Na + /H + exchanger NHE1 and NHE2 have opposite effects on migration velocity in rat gastric surface cells. J Cell Physiol 2017; 232:1669-1680. [PMID: 28019659 PMCID: PMC5396337 DOI: 10.1002/jcp.25758] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 12/21/2016] [Accepted: 12/22/2016] [Indexed: 12/13/2022]
Abstract
Following superficial injury, neighbouring gastric epithelial cells close the wound by rapid cell migration, a process called epithelial restitution. Na+/H+ exchange (NHE) inhibitors interfere with restitution, but the role of the different NHE isoforms expressed in gastric pit cells has remained elusive. The role of the basolaterally expressed NHE1 (Slc9a1) and the presumably apically expressed NHE2 (Slc9a2) in epithelial restitution was investigated in the nontransformed rat gastric surface cell line RGM1. Migration velocity was assessed by loading the cells with the fluorescent dye DiR and following closure of an experimental wound over time. Since RGM1 cells expressed very low NHE2 mRNA and have low transport activity, NHE2 was introduced by lentiviral gene transfer. In medium with pH 7.4, RGM1 cells displayed slow wound healing even in the absence of growth factors and independently of NHE activity. Growth factors accelerated wound healing in a partly NHE1‐dependent fashion. Preincubation with acidic pH 7.1 stimulated restitution in a NHE1‐dependent fashion. When pH 7.1 was maintained during the restitution period, migratory speed was reduced to ∼10% of the speed at pH 7,4, and the residual restitution was further inhibited by NHE1 inhibition. Lentiviral NHE2 expression increased the steady‐state pHi and reduced the restitution velocity after low pH preincubation, which was reversible by pharmacological NHE2 inhibition. The results demonstrate that in RGM1 cells, migratory velocity is increased by NHE1 activation, while NHE2 activity inhibit this process. A differential activation of NHE1 and NHE2 may therefore, play a role in the initiation and completion of the epithelial restitution process.
Collapse
Affiliation(s)
- Anja Paehler Vor der Nolte
- Departments of Gastroenterology, Hemostatsis, Oncology and Stem Cell Transplantation, Medical School of Hannover, Germany
| | - Giriprakash Chodisetti
- Departments of Gastroenterology, Hemostatsis, Oncology and Stem Cell Transplantation, Medical School of Hannover, Germany
| | - Zhenglin Yuan
- Departments of Gastroenterology, Hemostatsis, Oncology and Stem Cell Transplantation, Medical School of Hannover, Germany
| | - Florian Busch
- Departments of Gastroenterology, Hemostatsis, Oncology and Stem Cell Transplantation, Medical School of Hannover, Germany
| | - Brigitte Riederer
- Departments of Gastroenterology, Hemostatsis, Oncology and Stem Cell Transplantation, Medical School of Hannover, Germany
| | - Min Luo
- Departments of Gastroenterology, Hemostatsis, Oncology and Stem Cell Transplantation, Medical School of Hannover, Germany
| | - Yan Yu
- Departments of Gastroenterology, Hemostatsis, Oncology and Stem Cell Transplantation, Medical School of Hannover, Germany
| | - Manoj B Menon
- Departments of Biochemistry, Hemostatsis, Oncology and Stem Cell Transplantation, Medical School of Hannover, Germany
| | - Andreas Schneider
- Departments of Hematology, Hemostatsis, Oncology and Stem Cell Transplantation, Medical School of Hannover, Germany
| | - Renata Stripecke
- Departments of Hematology, Hemostatsis, Oncology and Stem Cell Transplantation, Medical School of Hannover, Germany
| | - Katerina Nikolovska
- Departments of Gastroenterology, Hemostatsis, Oncology and Stem Cell Transplantation, Medical School of Hannover, Germany
| | - Sunil Yeruva
- Departments of Gastroenterology, Hemostatsis, Oncology and Stem Cell Transplantation, Medical School of Hannover, Germany
| | - Ursula Seidler
- Departments of Gastroenterology, Hemostatsis, Oncology and Stem Cell Transplantation, Medical School of Hannover, Germany
| |
Collapse
|
11
|
Abstract
Trefoil factor (TFF) peptides, with a 40-amino acid motif and including six conserved cysteine residues that form intramolecular disulfide bonds, are a family of mucin-associated secretory molecules mediating many physiological roles that maintain and restore gastrointestinal (GI) mucosal homeostasis. TFF peptides play important roles in response to GI mucosal injury and inflammation. In response to acute GI mucosal injury, TFF peptides accelerate cell migration to seal the damaged area from luminal contents, whereas chronic inflammation leads to increased TFF expression to prevent further progression of disease. Although much evidence supports the physiological significance of TFF peptides in mucosal defenses, the molecular and cellular mechanisms of TFF peptides in the GI epithelium remain largely unknown. In this review, we summarize the functional roles of TFF1, 2, and 3 and illustrate their action mechanisms, focusing on defense mechanisms in the GI tract.
Collapse
Affiliation(s)
- Eitaro Aihara
- Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, Ohio 45267;
| | - Kristen A Engevik
- Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, Ohio 45267;
| | - Marshall H Montrose
- Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, Ohio 45267;
| |
Collapse
|
12
|
Abstract
Gastrointestinal disease is a prevalent cause of morbidity and mortality and the use of animal models have been instrumental in studying mechanisms of digestive pathophysiology. As investigators attempt to translate the wealth of basic science information developed from rodent, models, large animal models provide a number of translational advantages. The pig, in particular, is arguably one of the most powerful models of human organ systems, including the gastrointestinal tract. The pig has provided important tools and insight into intestinal ischemia/reperfusion injury, intestinal mucosal repair, as well as new insights into esophageal injury and repair. Porcine model development has taken advantage of the size of the animal, allowing increased surgical and endoscopic access. In addition, cellular tools such as the intestinal porcine epithelial cell line and porcine enteroids are providing the methodology to translate basic science findings using in-depth mechanistic analyses. Further opportunities in porcine digestive disease modeling include developing additional transgenic pig strains. Collectively, porcine models hold great promise for the future of clinically relevant digestive disease research.
Collapse
|
13
|
Shawki A, Engevik MA, Kim RS, Knight PB, Baik RA, Anthony SR, Worrell RT, Shull GE, Mackenzie B. Intestinal brush-border Na+/H+ exchanger-3 drives H+-coupled iron absorption in the mouse. Am J Physiol Gastrointest Liver Physiol 2016; 311:G423-30. [PMID: 27390324 PMCID: PMC5076011 DOI: 10.1152/ajpgi.00167.2016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 06/29/2016] [Indexed: 01/31/2023]
Abstract
Divalent metal-ion transporter-1 (DMT1), the principal mechanism by which nonheme iron is taken up at the intestinal brush border, is energized by the H(+)-electrochemical potential gradient. The provenance of the H(+) gradient in vivo is unknown, so we have explored a role for brush-border Na(+)/H(+) exchanger (NHE) isoforms by examining iron homeostasis and intestinal iron handling in mice lacking NHE2 or NHE3. We observed modestly depleted liver iron stores in NHE2-null (NHE2(-/-)) mice stressed on a low-iron diet but no change in hematological or blood iron variables or the expression of genes associated with iron metabolism compared with wild-type mice. Ablation of NHE3 strongly depleted liver iron stores, regardless of diet. We observed decreases in blood iron variables but no overt anemia in NHE3-null (NHE3(-/-)) mice on a low-iron diet. Intestinal expression of DMT1, the apical surface ferrireductase cytochrome b reductase-1, and the basolateral iron exporter ferroportin was upregulated in NHE3(-/-) mice, and expression of liver Hamp1 (hepcidin) was suppressed compared with wild-type mice. Absorption of (59)Fe from an oral dose was substantially impaired in NHE3(-/-) compared with wild-type mice. Our data point to an important role for NHE3 in generating the H(+) gradient that drives DMT1-mediated iron uptake at the intestinal brush border.
Collapse
Affiliation(s)
- Ali Shawki
- Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio; Systems Biology and Physiology Program, University of Cincinnati College of Medicine, Cincinnati, Ohio; and
| | - Melinda A Engevik
- Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio; Systems Biology and Physiology Program, University of Cincinnati College of Medicine, Cincinnati, Ohio; and
| | - Robert S Kim
- Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Patrick B Knight
- Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Rusty A Baik
- Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Sarah R Anthony
- Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Roger T Worrell
- Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio; Systems Biology and Physiology Program, University of Cincinnati College of Medicine, Cincinnati, Ohio; and
| | - Gary E Shull
- Systems Biology and Physiology Program, University of Cincinnati College of Medicine, Cincinnati, Ohio; and Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Bryan Mackenzie
- Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio; Systems Biology and Physiology Program, University of Cincinnati College of Medicine, Cincinnati, Ohio; and
| |
Collapse
|
14
|
Muthusamy S, Cheng M, Jeong JJ, Kumar A, Dudeja PK, Malakooti J. Extracellular acidosis stimulates NHE2 expression through activation of transcription factor Egr-1 in the intestinal epithelial cells. PLoS One 2013; 8:e82023. [PMID: 24376510 PMCID: PMC3871166 DOI: 10.1371/journal.pone.0082023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 10/29/2013] [Indexed: 01/28/2023] Open
Abstract
Na(+)/H(+) exchangers (NHEs) play important roles in regulating internal pH (pHi), cell volume and neutral Na(+) absorption in the human intestine. Earlier studies have shown that low extracellular pH (pHe) and metabolic acidosis increases the expression and function of NHE1-3 genes. However, transcriptional mechanisms involved remained unknown. Therefore, we investigated the molecular mechanisms underlying acid-induced NHE2 expression in C2BBe1 and SK-CO15 intestinal epithelial cells. Assessing total RNA and protein by RT-PCR and Western blot analysis, respectively, displayed significant increases in the NHE2 mRNA and protein levels in cells exposed to acidic media (pH 6.5 and 6.7) compared to normal medium. Acid treatment was also associated with a significant enhancement in NHE2 transport activity. Quantification of the heterogeneous nuclear RNA indicated that the rate of NHE2 transcription was increased in response to acid. Furthermore, acid caused a significant increase in NHE2 promoter activity confirming transcriptional upregulation. Through functional and mutational studies the acid-response element was mapped to a 15-nucleotide GC-rich sequence at bp -337 to -323 upstream from the transcription start site. We previously identified this element as an overlapping Egr-1/Sp1/Egr-1 motif that was essential for the NHE2 upregulation by mitogen-induced transcription factor Egr-1. Cells exposed to acid exhibited a temporal increase in Egr-1 mRNA and protein expression. These events were followed by Egr-1 nuclear accumulation, as detected by immunofluorescence microscopy, and potentiated its in vitro and in vivo interaction with the NHE2 promoter. Disruption of ESE motif and knockdown of Egr-1 expression by targeted small interfering RNA abrogated the acid-induced NHE2 transcriptional activity. These data indicate that the acid-dependent NHE2 stimulation is implemented by transcriptional upregulation of NHE2 via acid-induced Egr-1 in the intestinal epithelial cells.
Collapse
Affiliation(s)
- Saminathan Muthusamy
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Ming Cheng
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Jong-Jin Jeong
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Anoop Kumar
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Pradeep K. Dudeja
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
- * E-mail:
| | - Jaleh Malakooti
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
15
|
Fuster DG, Alexander RT. Traditional and emerging roles for the SLC9 Na+/H+ exchangers. Pflugers Arch 2013; 466:61-76. [PMID: 24337822 DOI: 10.1007/s00424-013-1408-8] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 11/14/2013] [Accepted: 11/20/2013] [Indexed: 10/25/2022]
Abstract
The SLC9 gene family encodes Na(+)/H(+) exchangers (NHEs). These transmembrane proteins transport ions across lipid bilayers in a diverse array of species from prokaryotes to eukaryotes, including plants, fungi, and animals. They utilize the electrochemical gradient of one ion to transport another ion against its electrochemical gradient. Currently, 13 evolutionarily conserved NHE isoforms are known in mammals [22, 46, 128]. The SLC9 gene family (solute carrier classification of transporters: www.bioparadigms.org) is divided into three subgroups [46]. The SLC9A subgroup encompasses plasmalemmal isoforms NHE1-5 (SLC9A1-5) and the predominantly intracellular isoforms NHE6-9 (SLC9A6-9). The SLC9B subgroup consists of two recently cloned isoforms, NHA1 and NHA2 (SLC9B1 and SLC9B2, respectively). The SLC9C subgroup consist of a sperm specific plasmalemmal NHE (SLC9C1) and a putative NHE, SLC9C2, for which there is currently no functional data [46]. NHEs participate in the regulation of cytosolic and organellar pH as well as cell volume. In the intestine and kidney, NHEs are critical for transepithelial movement of Na(+) and HCO3(-) and thus for whole body volume and acid-base homeostasis [46]. Mutations in the NHE6 or NHE9 genes cause neurological disease in humans and are currently the only NHEs directly linked to human disease. However, it is becoming increasingly apparent that members of this gene family contribute to the pathophysiology of multiple human diseases.
Collapse
Affiliation(s)
- Daniel G Fuster
- Division of Nephrology, Hypertension and Clinical Pharmacology and Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland,
| | | |
Collapse
|
16
|
Intestinal mast cells mediate gut injury and systemic inflammation in a rat model of deep hypothermic circulatory arrest. Crit Care Med 2013; 41:e200-10. [PMID: 23478660 DOI: 10.1097/ccm.0b013e31827cac7a] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Cardiac surgery, especially when employing cardiopulmonary bypass and deep hypothermic circulatory arrest, is associated with systemic inflammatory responses that significantly affect morbidity and mortality. Intestinal perfusion abnormalities have been implicated in such responses, but the mechanisms linking local injury and systemic inflammation remain unclear. Intestinal mast cells are specialized immune cells that secrete various preformed effectors in response to cellular stress. We hypothesized that mast cells are activated in a microenvironment shaped by intestinal ischemia/reperfusion, and investigated local and systemic consequences. DESIGN Rat model of deep hypothermic circulatory arrest. SETTING University research laboratory. SUBJECTS Twelve- to 14-week-old male Sprague-Dawley rats. INTERVENTIONS Rats were anesthetized and cooled to 16°C to 18°C on cardiopulmonary bypass before instituting deep hypothermic circulatory arrest for 45 minutes. Specimens were harvested following rewarming and 2 hours of recovery. MEASUREMENTS AND MAIN RESULTS Significant intestinal barrier disruption was found, together with macro- and microscopic evidence of ischemia/reperfusion injury in ileum and colon, but not in the lungs or kidneys. Immunofluorescence and toluidine blue staining revealed increased numbers of mast cells and their activation in the gut. In animals pretreated with the mast cell stabilizer, cromolyn sodium, mast cell degranulation was blocked, and intestinal morphology and barrier function were preserved following deep hypothermic circulatory arrest. Furthermore, cromolyn sodium treatment was associated with reduced intestinal neutrophil influx and blunted systemic release of proinflammatory cytokines. CONCLUSION Our data provide primary evidence that intestinal ischemia/reperfusion is a leading pathophysiologic process in a rat model of deep hypothermic circulatory arrest, and that intestinal injury, and local and systemic inflammatory responses are critically dependent on mast cell activation. This identifies intestinal mast cells as central players in deep hypothermic circulatory arrest-associated responses, and opens novel therapeutic possibilities for patients undergoing this procedure.
Collapse
|
17
|
Hu YJ, Wang YD, Tan FQ, Yang WX. Regulation of paracellular permeability: factors and mechanisms. Mol Biol Rep 2013; 40:6123-42. [PMID: 24062072 DOI: 10.1007/s11033-013-2724-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Accepted: 09/14/2013] [Indexed: 12/20/2022]
Abstract
Epithelial permeability is composed of transcellular permeability and paracellular permeability. Paracellular permeability is controlled by tight junctions (TJs). Claudins and occludin are two major transmembrane proteins in TJs, which directly determine the paracellular permeability to different ions or large molecules. Intracellular signaling pathways including Rho/Rho-associated protein kinase, protein kinase Cs, and mitogen-activated protein kinase, modulate the TJ proteins to affect paracellular permeability in response for diverse stimuli. Cytokines, growth factors and hormones in organism can regulate the paracellular permeability via signaling pathway. The transcellular transporters such as Na-K-ATPase, Na(+)-coupled transporters and chloride channels, can interact with paracellular transport and regulate the TJs. In this review, we summarized the factors affecting paracellular permeability and new progressions of the related mechanism in recent studies, and pointed out further research areas.
Collapse
Affiliation(s)
- Yan-Jun Hu
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, People's Republic of China
| | | | | | | |
Collapse
|
18
|
Jacobi SK, Moeser AJ, Blikslager AT, Rhoads JM, Corl BA, Harrell RJ, Odle J. Acute effects of rotavirus and malnutrition on intestinal barrier function in neonatal piglets. World J Gastroenterol 2013; 19:5094-5102. [PMID: 23964143 PMCID: PMC3746381 DOI: 10.3748/wjg.v19.i31.5094] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 04/24/2013] [Accepted: 06/06/2013] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effect of protein-energy malnutrition on intestinal barrier function during rotavirus enteritis in a piglet model.
METHODS: Newborn piglets were allotted at day 4 of age to the following treatments: (1) full-strength formula (FSF)/noninfected; (2) FSF/rotavirus infected; (3) half-strength formula (HSF)/noninfected; or (4) HSF/rotavirus infected. After one day of adjustment to the feeding rates, pigs were infected with rotavirus and acute effects on growth and diarrhea were monitored for 3 d and jejunal samples were collected for Ussing-chamber analyses.
RESULTS: Piglets that were malnourished or infected had lower body weights on days 2 and 3 post-infection (P < 0.05). Three days post-infection, marked diarrhea and weight loss were accompanied by sharp reductions in villus height (59%) and lactase activity (91%) and increased crypt depth (21%) in infected compared with non-infected pigs (P < 0.05). Malnutrition also increased crypt depth (21%) compared to full-fed piglets. Villus:crypt ratio was reduced (67%) with viral infection. There was a trend for reduction in transepithelial electrical resistance with rotavirus infection and malnutrition (P = 0.1). 3H-mannitol flux was significantly increased (50%; P < 0.001) in rotavirus-infected piglets compared to non-infected piglets, but there was no effect of nutritional status. Furthermore, rotavirus infection reduced localization of the tight junction protein, occludin, in the cell membrane and increased localization in the cytosol.
CONCLUSION: Overall, malnutrition had no additive effects to rotavirus infection on intestinal barrier function at day 3 post-infection in a neonatal piglet model.
Collapse
|
19
|
Lu Z, Ding L, Lu Q, Chen YH. Claudins in intestines: Distribution and functional significance in health and diseases. Tissue Barriers 2013; 1:e24978. [PMID: 24478939 PMCID: PMC3879173 DOI: 10.4161/tisb.24978] [Citation(s) in RCA: 176] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 05/06/2013] [Accepted: 05/08/2013] [Indexed: 02/08/2023] Open
Abstract
Intestines are organs that not only digest food and absorb nutrients, but also provide a defense barrier against pathogens and noxious agents ingested. Tight junctions (TJs) are the most apical component of the junctional complex, providing one form of cell-cell adhesion in enterocytes and playing a critical role in regulating paracellular barrier permeability. Alteration of TJs leads to a number of pathophysiological diseases causing malabsorption of nutrition and intestinal structure disruption, which may even contribute to systemic organ failure. Claudins are the major structural and functional components of TJs with at least 24 members in mammals. Claudins have distinct charge-selectivity, either by tightening the paracellular pathway or functioning as paracellular channels, regulating ions and small molecules passing through the paracellular pathway. In this review, we have discussed the functions of claudin family members, their distribution and localization in the intestinal tract of mammals, their alterations in intestine-related diseases and chemicals/agents that regulate the expression and localization of claudins as well as the intestinal permeability, which provide a therapeutic view for treating intestinal diseases.
Collapse
Affiliation(s)
- Zhe Lu
- Department of Basic Medicine; Hangzhou Normal University, Hangzhou, PR China ; Department of Anatomy and Cell Biology; Brody School of Medicine; East Carolina University; Greenville, NC USA
| | - Lei Ding
- Department of Anatomy and Cell Biology; Brody School of Medicine; East Carolina University; Greenville, NC USA ; Department of Oncology; Beijing Shijitan Hospital; Capital Medical University; Beijing, PR China
| | - Qun Lu
- Department of Anatomy and Cell Biology; Brody School of Medicine; East Carolina University; Greenville, NC USA
| | - Yan-Hua Chen
- Department of Anatomy and Cell Biology; Brody School of Medicine; East Carolina University; Greenville, NC USA
| |
Collapse
|
20
|
Camilleri M, Lasch K, Zhou W. Irritable bowel syndrome: methods, mechanisms, and pathophysiology. The confluence of increased permeability, inflammation, and pain in irritable bowel syndrome. Am J Physiol Gastrointest Liver Physiol 2012; 303:G775-85. [PMID: 22837345 DOI: 10.1152/ajpgi.00155.2012] [Citation(s) in RCA: 273] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Irritable bowel syndrome (IBS) is one of the most common gastrointestinal ailments among those seeking health care for gastrointestinal disorders. Despite its prevalence, IBS pathophysiology is still not completely understood. Continued elucidation of IBS etiological mechanisms will lead to a greater appreciation of possible therapeutic targets. In the past decade, there has been increasing focus on the possible connection between increased intestinal mucosal permeability, inflammation, and visceral hypersensitivity. Increased permeability in subsets of IBS patients has been observed and the possible mechanisms underlying this defect are just beginning to be understood. The objectives of this review are to summarize the role of the healthy intestinal epithelium as a barrier between the lumen and the rest of the body with a focus on tight junctions; to examine the lines of evidence that suggest that different triggers lead to increased intestinal mucosal permeability and disruption of tight junctions in IBS patients; and to explore how this increased permeability may elicit immune responses that affect afferent nerves, resulting in the pain associated with IBS.
Collapse
Affiliation(s)
- Michael Camilleri
- Clinical Enteric Neuroscience Translational and Epidemiological Research, College of Medicine, Mayo Clinic, Charlton 8-110, 200 First St. S.W., Rochester, MN 55905, USA.
| | | | | |
Collapse
|
21
|
Cai Y, Wang W, Liang H, Sun L, Teitelbaum DH, Yang H. Keratinocyte growth factor improves epithelial structure and function in a mouse model of intestinal ischemia/reperfusion. PLoS One 2012; 7:e44772. [PMID: 23028616 PMCID: PMC3441439 DOI: 10.1371/journal.pone.0044772] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 08/07/2012] [Indexed: 12/16/2022] Open
Abstract
Background Intestinal ischemia/reperfusion (I/R) induces the desquamation of the intestinal epithelium, increases the intestinal permeability, and in patients often causes fatal conditions including sepsis and multiple organ failure. Keratinocyte growth factor (KGF) increases intestinal growth, although little is known about KGF activity on intestinal function after intestinal I/R. We hypothesized that KGF administration would improve the intestinal function in a mouse model of intestinal I/R. Methods Adult C57BL/6J mice were randomized to three groups: Sham, I/R group and I/R+KGF group. Mice were killed on day 5, and the small bowel was harvested for histology, wet weight, RNA and protein content analysis. Epithelial cell (EC) proliferation was detected by immunohistochemistry for PCNA, and apoptosis was determined by TUNEL staining. The expressions of Claudin-1 and ZO-1 were detected by immunohistochemistry. Epithelial barrier function was assessed with transepithelial resistance (TER). Results KGF significantly increased the intestinal wet weight, contents of intestinal protein and RNA, villus height, crypt depth and crypt cell proliferation, while KGF resulted in the decrease of epithelial apoptosis. KGF also stimulated the recovery of mucosal structures and attenuated the disrupted distribution of TJ proteins. Moreover, KGF attenuated the intestinal I/R-induced decrease in TER and maintained the intestinal barrier function. Conclusion KGF administration improves the epithelial structure and barrier function in a mouse model of intestinal I/R. This suggests that KGF may have clinical applicability.
Collapse
Affiliation(s)
- Yujiao Cai
- Department of General Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Wensheng Wang
- Department of General Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Hongying Liang
- Department of General Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Lihua Sun
- Department of General Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Daniel H. Teitelbaum
- Department of Surgery, the University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Hua Yang
- Department of General Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing, China
- Department of Surgery, the University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
22
|
Zhang ZB, Han XF, Tan ZL, Xiao WJ. Progress in understanding the relationship between diarrhea and intestinal ion transport. Shijie Huaren Xiaohua Zazhi 2012; 20:743-748. [DOI: 10.11569/wcjd.v20.i9.743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Diarrhea is a major cause of morbidity and mortality in the world. There are millions of people dying of diarrhea, and most of them are children. Diarrhea can be divided into acute diarrhea and chronic diarrhea based on the length of the course, and into infectious diarrhea and noninfectious diarrhea according to the etiology. Diarrhea is an imbalance in absorption and secretion of water and electrolytes in the intestine, which involves abnormal ion transport. This paper reviews recent advances in understanding the causes of diarrhea, the relationship between intestinal ion transport and diarrhea, and ion transport in different kinds of diarrhea, with an aim to providing a reference and some new ideas on the comprehensive understanding of the pathogenesis, pathophysiology and treatment of diarrhea.
Collapse
|
23
|
Marshall JF, Blikslager AT. The effect of nonsteroidal anti-inflammatory drugs on the equine intestine. Equine Vet J 2012:140-4. [PMID: 21790769 DOI: 10.1111/j.2042-3306.2011.00398.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) are commonly used in the management of pain and endotoxaemia associated with colic in the horse. While NSAIDs effectively treat the symptoms of colic, there is evidence to suggest that their administration is associated with adverse gastrointestinal effects including right dorsal colitis and inhibition of mucosal barrier healing. Several studies have examined the pathophysiology of NSAID associated effects on the large and small intestine in an effort to avoid these complications and identify effective alternative medications. Differences in the response of the large and small intestines to injury and NSAID treatment have been identified. Flunixin meglumine has been shown in the small intestine to inhibit barrier function recovery and increase permeability to lipopolysaccharide (LPS). A range of NSAIDs has been examined in the small intestine and experimental evidence suggests that those NSAIDs with cyclooxygenase independent anti-inflammatory effects or a COX-2 selective mode of action may offer significant advantages over traditional NSAIDs.
Collapse
Affiliation(s)
- J F Marshall
- Weipers Centre Equine Hospital, School of Veterinary Medicine, University of Glasgow, UK.
| | | |
Collapse
|
24
|
Nighot PK, Blikslager AT. Chloride channel ClC-2 modulates tight junction barrier function via intracellular trafficking of occludin. Am J Physiol Cell Physiol 2012; 302:C178-87. [DOI: 10.1152/ajpcell.00072.2011] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Previously, we have demonstrated that the chloride channel ClC-2 modulates intestinal mucosal barrier function. In the present study, we investigated the role of ClC-2 in epithelial barrier development and maintenance in Caco-2 cells. During early monolayer formation, silencing of ClC-2 with small interfering (si)RNA led to a significant delay in the development of transepithelial resistance (TER) and disruption of occludin localization. Proteomic analysis employing liquid chromatography-mass spectrometry /mass spectrometry revealed association of ClC-2 with key proteins involved in intracellular trafficking, including caveolin-1 and Rab5. In ClC-2 siRNA-treated cells, occludin colocalization with caveolin-1 was diffuse and in the subapical region. Subapically distributed occludin in ClC-2 siRNA-treated cells showed marked colocalization with Rab5. To study the link between ClC-2 and trafficking of occludin in confluent epithelial monolayers, a Caco-2 cell clone expressing ClC-2 short hairpin (sh)RNA was established. Disruption of caveolae with methyl-β-cyclodextrin (MβCD) caused a marked drop in TER and profound redistribution of caveolin-1-occludin coimmunofluorescence in ClC-2 shRNA cells. In ClC-2 shRNA cells, focal aggregations of Rab5-occludin coimmunofluorescence were present within the cytoplasm. Wortmannin caused an acute fall in TER in ClC-2 shRNA cells and subapical, diffuse redistribution of Rab5-occludin coimmunofluorescence in ClC-2 shRNA cells. An endocytosis and recycling assay for occludin revealed higher basal rate of endocytosis of occludin in ClC-2 shRNA cells. Wortmannin significantly reduced the rate of recycling of occludin in ClC-2 shRNA cells. These data clearly indicate that ClC-2 plays an important role in the modulation of tight junctions by influencing caveolar trafficking of the tight junction protein occludin.
Collapse
Affiliation(s)
- Prashant K. Nighot
- Department of Clinical Sciences, North Carolina State University, Raleigh, North Carolina
| | - Anthony T. Blikslager
- Department of Clinical Sciences, North Carolina State University, Raleigh, North Carolina
| |
Collapse
|
25
|
Xue L, Aihara E, Wang TC, Montrose MH. Trefoil factor 2 requires Na/H exchanger 2 activity to enhance mouse gastric epithelial repair. J Biol Chem 2011; 286:38375-38382. [PMID: 21900251 DOI: 10.1074/jbc.m111.268219] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Trefoil factor (TFF) peptides are pivotal for gastric restitution after surface epithelial damage, but TFF cellular targets that promote cell migration are poorly understood. Conversely, Na/H exchangers (NHE) are often implicated in cellular migration but have a controversial role in gastric restitution. Using intravital microscopy to create microscopic lesions in the mouse gastric surface epithelium and directly measure epithelial restitution, we evaluated whether TFFs and NHE isoforms share a common pathway to promote epithelial repair. Blocking Na/H exchange (luminal 10 μm 5-(N-ethyl-N-isopropyl) amiloride or 25 μm HOE694) slows restitution 72-83% in wild-type or NHE1(-/-) mice. In contrast, HOE694 has no effect on the intrinsically defective gastric restitution in NHE2(-/-) mice or TFF2(-/-) mice. In TFF2(-/-) mice, NHE2 protein is reduced 23%, NHE2 remains localized to apical membranes of surface epithelium, and NHE1 protein amount or localization is unchanged. The action of topical rat TFF3 to accelerate restitution in TFF2(-/-) mice was inhibited by AMD3100 (CXCR4 receptor antagonist). Furthermore, rat TFF3 did not rescue restitution when NHE2 was inhibited [TFF2(-/-) mice +HOE694, or NHE2(-/-) mice]. HOE694 had no effect on pH at the juxtamucosal surface before or after damage. We conclude that functional NHE2, but not NHE1, is essential for mouse gastric epithelial restitution and that TFFs activate epithelial repair via NHE2.
Collapse
Affiliation(s)
- Lin Xue
- Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, Ohio 45267
| | - Eitaro Aihara
- Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, Ohio 45267
| | - Timothy C Wang
- Division of Digestive and Liver Diseases, Columbia University Medical Center, New York, New York 10032
| | - Marshall H Montrose
- Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, Ohio 45267.
| |
Collapse
|
26
|
Seidler U, Song P, Xiao F, Riederer B, Bachmann O, Chen M. Recent advances in the molecular and functional characterization of acid/base and electrolyte transporters in the basolateral membranes of gastric and duodenal epithelial cells. Acta Physiol (Oxf) 2011; 201:3-20. [PMID: 20331540 DOI: 10.1111/j.1748-1716.2010.02107.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
All segments of the gastrointestinal tract are comprised of an elaborately folded epithelium that expresses a variety of cell types and performs multiple secretory and absorptive functions. While the apical membrane expresses the electrolyte transporters that secrete or absorb electrolytes and water, basolateral transporters regulate the secretory or absorptive rates. During gastric acid formation, Cl⁻/HCO₃⁻ and Na(+) /H(+) exchange and other transporters secure Cl⁻ re-supply as well as pH and volume regulation. Gastric surface cells utilize ion transporters to secrete HCO₃⁻, maintain pH(i) during a luminal acid load and repair damaged surface areas during the process of epithelial restitution. Na(+)/H(+) exchange and Na(+)/HCO₃⁻ cotransport serve basolateral acid/base import for gastroduodenal HCO₃⁻ secretion. The gastric and duodenal epithelium also absorbs salt and water. Recent molecular information on novel ion transporters expressed in the gastric and duodenal epithelium has exploded; however, a function has not been found yet for all transporters. The purpose of this review is to summarize current knowledge on the molecular identity and cellular function of basolateral ion transporters in the gastric and duodenal epithelium.
Collapse
Affiliation(s)
- U Seidler
- Department of Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, Germany.
| | | | | | | | | | | |
Collapse
|
27
|
Wang C, Xu H, Chen H, Li J, Zhang B, Tang C, Ghishan FK. Somatostatin stimulates intestinal NHE8 expression via p38 MAPK pathway. Am J Physiol Cell Physiol 2010; 300:C375-82. [PMID: 21106692 DOI: 10.1152/ajpcell.00421.2010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Diarrhea is a common manifestation of gastrointestinal disorders. Diarrhea-induced losses of fluid and electrolyte could lead to dehydration and electrolyte imbalances, resulting in significant morbidity and mortality, especially in children living in developing countries. Somatostatin, a peptide hormone secreted by D-cells, plays an important role in regulating motility and intestinal Na(+) absorption. Although octreotide, a somatostatin analog, is used to treat diarrhea, its mechanisms of action are unclear. Here we showed that octreotide increased brush-border membrane Na(+)/H(+) exchanger 8 (NHE8) expression in the small intestine to the exclusion of other NHEs that participate in Na(+) absorption. The same effect also occurred in human intestinal cells (Caco-2). We found that the increase of NHE8 expression by somatostatin required p38 mitogen-activated protein kinase (MAPK) activation. Furthermore, the somatostatin receptor SSTR2 antagonist CYN154806 could abolish somatostatin-induced NHE8 expression and p38 MAPK phosphorylation. Thus our data provided the first concrete evidence indicating that somatostatin stimulates intestinal Na(+) absorption by increasing intestinal NHE8 expression through the SSTR2-p38 MAPK pathway.
Collapse
Affiliation(s)
- Chunhui Wang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | | | | | | | | | | | | |
Collapse
|
28
|
Xu H, Zhang B, Li J, Chen H, Wang C, Ghishan FK. Transcriptional inhibition of intestinal NHE8 expression by glucocorticoids involves Pax5. Am J Physiol Gastrointest Liver Physiol 2010; 299:G921-7. [PMID: 20671194 PMCID: PMC2957336 DOI: 10.1152/ajpgi.00227.2010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Sodium/hydrogen exchangers (NHEs) are a family of proteins that transport sodium ions into the cells by moving protons out of the cells. They play a major role in sodium absorption, cell volume regulation, and intracellular pH regulation. Three out of nine identified NHEs (NHE2, NHE3, and NHE8) are expressed on the apical membrane of intestinal epithelial cells. Glucocorticoids have been found to regulate NHE3 function in the intestine, but it is unknown if they have a similar function on NHE8 expression. Interestingly, high glucocorticoid levels in the intestine coincide chronologically with the change from high expression of NHE8 to high expression of NHE3. Studies were performed to explore the role of glucocorticoids on NHE8 expression during intestinal maturation. Brush-border membrane vesicles were isolated from intestinal epithelia, and Western blotting was performed to determine NHE8 protein expression of suckling male rats treated with methylpredisolone. Real-time PCR was used to quantitate NHE8 mRNA expression in rats and Caco-2 cells. Human NHE8 promoter activity was characterized through transfection of Caco-2 cells. Gel mobility shift assays (GMSAs) were used to identify the promoter sequences and the transcription factors involved in glucocorticoid-mediated regulation. Our results showed that the expression of NHE8 mRNA and protein was decreased in glucocorticoid-treated rats and human intestinal epithelial cells (Caco-2). The activity of the human NHE8 gene promoter transfected in Caco-2 cells was also reduced by glucocorticoid treatment. GMSAs suggested that the reduction in promoter activity in the presence of glucocorticoids was due to enhanced transcription factor Pax5 binding on the NHE8 proximal promoter region. In conclusion, this study showed that glucocorticoids inhibit NHE8 gene expression by increasing Pax5 binding on NHE8 gene promoter, suggesting an important role for Pax5 during intestinal maturation.
Collapse
Affiliation(s)
- Hua Xu
- 1University of Arizona Health Sciences Center, Tucson, Arizona; and
| | - Bo Zhang
- 1University of Arizona Health Sciences Center, Tucson, Arizona; and
| | - Jing Li
- 1University of Arizona Health Sciences Center, Tucson, Arizona; and
| | - Huacong Chen
- 1University of Arizona Health Sciences Center, Tucson, Arizona; and
| | - Chunhui Wang
- 1University of Arizona Health Sciences Center, Tucson, Arizona; and ,2West China Medical School, Sichuan University, Sichuan, China
| | - Fayez K. Ghishan
- 1University of Arizona Health Sciences Center, Tucson, Arizona; and
| |
Collapse
|
29
|
Xu H, Zhang B, Li J, Chen H, Tooley J, Ghishan FK. Epidermal growth factor inhibits intestinal NHE8 expression via reducing its basal transcription. Am J Physiol Cell Physiol 2010; 299:C51-7. [PMID: 20375273 DOI: 10.1152/ajpcell.00081.2010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Sodium/hydrogen exchangers (NHEs) play a major role in Na(+) absorption, cell volume regulation, and intracellular pH regulation. Of the nine identified mammalian NHEs, three (NHE2, NHE3, and NHE8) are localized on the apical membrane of epithelial cells in the small intestine and the kidney. Although the regulation of NHE2 and NHE3 expression has been extensively studied in the past decade, little is known about the regulation of NHE8 gene expression under physiological conditions. The current studies were performed to explore the role of epidermal growth factor (EGF) on NHE8 expression during intestinal maturation. Brush-border membrane vesicles (BBMV) were isolated from intestinal epithelia, and Western blot analysis was performed to determine NHE8 protein expression of sucking male rats treated with EGF. Real-time PCR was used to quantitate NHE8 mRNA expression in rats and Caco-2 cells. Human NHE8 promoter activity was characterized through transfection of Caco-2 cells. Gel mobility shift assays (GMSAs) were used to identify the promoter sequences and the transcriptional factors involved in EGF-mediated regulation. Our results showed that intestinal NHE8 mRNA expression was decreased in EGF-treated rats and Caco-2 cells, and NHE8 protein abundance was also decreased in EGF-treated rats. The activity of the human NHE8 gene promoter transfected in Caco-2 cells was also reduced by EGF treatment. This could be explained by reduced binding of transcription factor Sp3 on the NHE8 basal promoter region in the presence of EGF. Pretreatment with MEK1/2 inhibitor UO-126 could prevent EGF-mediated inhibition of NHE8 gene expression. In conclusion, this study showed that EGF inhibits NHE8 gene expression through reducing its basal transcription, suggesting an important role of EGF in regulating NHE expression during intestinal maturation.
Collapse
Affiliation(s)
- Hua Xu
- University of Arizona Health Sciences Center, Tucson, Arizona 85724, USA
| | | | | | | | | | | |
Collapse
|
30
|
Abstract
The Ussing chamber provides a physiological system to measure the transport of ions, nutrients, and drugs across various epithelial tissues. One of the most studied epithelia is the intestine, which has provided several landmark discoveries regarding the mechanisms of ion transport processes. Adaptation of this method to mouse intestine adds the dimension of investigating genetic loss or gain of function as a means to identify proteins or processes affecting transepithelial transport. In this review, the principles underlying the use of Ussing chambers are outlined including limitations and advantages of the technique. With an emphasis on mouse intestinal preparations, the review covers chamber design, commercial equipment sources, tissue preparation, step-by-step instruction for operation, troubleshooting, and examples of interpretation difficulties. Specialized uses of the Ussing chamber such as the pH stat technique to measure transepithelial bicarbonate secretion and isotopic flux methods to measure net secretion or absorption of substrates are discussed in detail, and examples are given for the adaptation of Ussing chamber principles to other measurement systems. The purpose of the review is to provide a practical guide for investigators who are new to the Ussing chamber method.
Collapse
Affiliation(s)
- Lane L. Clarke
- Department of Biomedical Sciences, Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| |
Collapse
|