1
|
Biesiekierski JR, Tuck CJ. Low FODMAP diet beyond IBS: Evidence for use in other conditions. Curr Opin Pharmacol 2022; 64:102208. [DOI: 10.1016/j.coph.2022.102208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/22/2022] [Accepted: 02/26/2022] [Indexed: 11/29/2022]
|
2
|
Li H, Page AJ. Altered Vagal Signaling and Its Pathophysiological Roles in Functional Dyspepsia. Front Neurosci 2022; 16:858612. [PMID: 35527812 PMCID: PMC9072791 DOI: 10.3389/fnins.2022.858612] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/28/2022] [Indexed: 11/20/2022] Open
Abstract
The vagus nerve is crucial in the bidirectional communication between the gut and the brain. It is involved in the modulation of a variety of gut and brain functions. Human studies indicate that the descending vagal signaling from the brain is impaired in functional dyspepsia. Growing evidence indicate that the vagal signaling from gut to brain may also be altered, due to the alteration of a variety of gut signals identified in this disorder. The pathophysiological roles of vagal signaling in functional dyspepsia is still largely unknown, although some studies suggested it may contribute to reduced food intake and gastric motility, increased psychological disorders and pain sensation, nausea and vomiting. Understanding the alteration in vagal signaling and its pathophysiological roles in functional dyspepsia may provide information for new potential therapeutic treatments of this disorder. In this review, we summarize and speculate possible alterations in vagal gut-to-brain and brain-to-gut signaling and the potential pathophysiological roles in functional dyspepsia.
Collapse
Affiliation(s)
- Hui Li
- Vagal Afferent Research Group, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Nutrition, Diabetes and Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- *Correspondence: Hui Li,
| | - Amanda J. Page
- Vagal Afferent Research Group, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Nutrition, Diabetes and Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| |
Collapse
|
3
|
Neural signalling of gut mechanosensation in ingestive and digestive processes. Nat Rev Neurosci 2022; 23:135-156. [PMID: 34983992 DOI: 10.1038/s41583-021-00544-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2021] [Indexed: 12/29/2022]
Abstract
Eating and drinking generate sequential mechanosensory signals along the digestive tract. These signals are communicated to the brain for the timely initiation and regulation of diverse ingestive and digestive processes - ranging from appetite control and tactile perception to gut motility, digestive fluid secretion and defecation - that are vital for the proper intake, breakdown and absorption of nutrients and water. Gut mechanosensation has been investigated for over a century as a common pillar of energy, fluid and gastrointestinal homeostasis, and recent discoveries of specific mechanoreceptors, contributing ion channels and the well-defined circuits underlying gut mechanosensation signalling and function have further expanded our understanding of ingestive and digestive processes at the molecular and cellular levels. In this Review, we discuss our current understanding of the generation of mechanosensory signals from the digestive periphery, the neural afferent pathways that relay these signals to the brain and the neural circuit mechanisms that control ingestive and digestive processes, focusing on the four major digestive tract parts: the oral and pharyngeal cavities, oesophagus, stomach and intestines. We also discuss the clinical implications of gut mechanosensation in ingestive and digestive disorders.
Collapse
|
4
|
Cao J, Wang X, Powley TL, Liu Z. Gastric neurons in the nucleus tractus solitarius are selective to the orientation of gastric electrical stimulation. J Neural Eng 2021; 18:10.1088/1741-2552/ac2ec6. [PMID: 34634781 PMCID: PMC8625070 DOI: 10.1088/1741-2552/ac2ec6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/11/2021] [Indexed: 01/02/2023]
Abstract
Objective.Gastric electrical stimulation (GES) is a bioelectric intervention for gastroparesis, obesity, and other functional gastrointestinal disorders. In a potential mechanism of action, GES activates the nerve endings of vagal afferent neurons and induces the vago-vagal reflex through the nucleus tractus solitarius (NTS) in the brainstem. However, it is unclear where and how to stimulate in order to optimize the vagal afferent responses.Approach.To address this question with electrophysiology in rats, we applied mild electrical currents to two serosal targets on the distal forestomach with dense distributions of vagal intramuscular arrays (IMAs) that innervated the circular and longitudinal smooth muscle layers. During stimulation, we recorded single and multi-unit responses from gastric neurons in NTS and evaluated how the recorded responses depended on the stimulus orientation and amplitude.Main results.We found that NTS responses were highly selective to the stimulus orientation for a range of stimulus amplitudes. The strongest responses were observed when the applied current flowed in the same direction as the IMAs in parallel with the underlying smooth muscle fibers. Our results suggest that gastric neurons in NTS may encode the orientation-specific activity of gastric smooth muscles relayed by vagal afferent neurons.Significance.This finding suggests that the orientation of GES is critical to effective engagement of vagal afferents and should be considered in light of the structural phenotypes of vagal terminals in the stomach.
Collapse
Affiliation(s)
- Jiayue Cao
- Department of Biomedical Engineering, University of Michigan Ann Arbor
| | - Xiaokai Wang
- Department of Biomedical Engineering, University of Michigan Ann Arbor
| | - Terry L. Powley
- Department of Psychological Sciences, Purdue University West Lafayette
| | - Zhongming Liu
- Department of Biomedical Engineering, University of Michigan Ann Arbor
- Department of Electrical Engineering and Computer Science, University of Michigan Ann Arbor
| |
Collapse
|
5
|
Manning LP, Biesiekierski JR. Use of dietary interventions for functional gastrointestinal disorders. Curr Opin Pharmacol 2018; 43:132-138. [DOI: 10.1016/j.coph.2018.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 09/10/2018] [Indexed: 02/06/2023]
|
6
|
Masuy I, Van Oudenhove L, Tack J, Biesiekierski JR. Effect of intragastric FODMAP infusion on upper gastrointestinal motility, gastrointestinal, and psychological symptoms in irritable bowel syndrome vs healthy controls. Neurogastroenterol Motil 2018; 30. [PMID: 28762592 DOI: 10.1111/nmo.13167] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 06/26/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND The low fermentable oligo-, di-, mono-saccharides and polyol (FODMAP) diet is a treatment strategy to reduce symptoms of irritable bowel syndrome (IBS). Acute effects of FODMAPs on upper gastrointestinal motility are incompletely understood. Our objectives were to assess the acute effects of intragastric FODMAP infusions on upper gastrointestinal motility and gastrointestinal and psychological symptoms in healthy controls (HC) and IBS patients. METHODS A high-resolution solid-state manometry probe and an infusion tube were positioned into the stomach. Fructans, fructose, FODMAP mix, or glucose was intragastrically administered to HC, and fructans or glucose was administered to IBS patients until full satiation (score 0-5), in a randomized crossover fashion. Manometric measurements continued for 3 hours. Gastrointestinal and psychological symptoms were assessed by questionnaires at predefined time points. The study was registered on www.clinicaltrials.gov (NCT02980406). KEY RESULTS Twenty HC and 20 IBS patients were included. Fructans induced higher postprandial gastric pressures compared with glucose over both groups (P<.001). Bloating, belching, and pain increased more in IBS over both carbohydrates (P<.041). In addition, IBS patients reported more flatulence and cramps compared with HC following fructans (P<.001). Glucose induced more fatigue and dominance compared with fructans (P=.028, P=.001). Irritable bowel syndrome patients reported a higher increase in anger (P=.030) and a stronger decrease in positive affect (P=.021). CONCLUSIONS & INFERENCES The upper gastrointestinal motility response varies between carbohydrates. Irritable bowel syndrome patients are more sensitive to fructan infusion, reflected in their higher gastrointestinal symptom scores. Acute carbohydrate infusion can have differential psychological effects in IBS and HC.
Collapse
Affiliation(s)
- I Masuy
- Translational Research Centre for Gastrointestinal Disorders, University of Leuven, Leuven, Belgium
| | - L Van Oudenhove
- Translational Research Centre for Gastrointestinal Disorders, University of Leuven, Leuven, Belgium
| | - J Tack
- Translational Research Centre for Gastrointestinal Disorders, University of Leuven, Leuven, Belgium
| | - J R Biesiekierski
- Translational Research Centre for Gastrointestinal Disorders, University of Leuven, Leuven, Belgium
| |
Collapse
|
7
|
Harada Y, Ro S, Ochiai M, Hayashi K, Hosomi E, Fujitsuka N, Hattori T, Yakabi K. Ghrelin enhancer, rikkunshito, improves postprandial gastric motor dysfunction in an experimental stress model. Neurogastroenterol Motil 2015; 27:1089-97. [PMID: 26088415 PMCID: PMC4744783 DOI: 10.1111/nmo.12588] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 04/16/2015] [Indexed: 02/08/2023]
Abstract
BACKGROUND Functional dyspepsia (FD) is one of the most common disorders of gastrointestinal (GI) diseases. However, no curable treatment is available for FD because the detailed mechanism of GI dysfunction in stressed conditions remains unclear. We aimed to clarify the association between endogenous acylated ghrelin signaling and gastric motor dysfunction and explore the possibility of a drug with ghrelin signal-enhancing action for FD treatment. METHODS Solid gastric emptying (GE) and plasma acylated ghrelin levels were evaluated in an urocortin1 (UCN1) -induced stress model. To clarify the role of acylated ghrelin on GI dysfunction in the model, exogenous acylated ghrelin, an endogenous ghrelin enhancer, rikkunshito, or an α2 -adrenergic receptor (AR) antagonist was administered. Postprandial motor function was investigated using a strain gauge force transducer in a free-moving condition. KEY RESULTS Exogenous acylated ghrelin supplementation restored UCN1-induced delayed GE. Alpha2 -AR antagonist and rikkunshito inhibited the reduction in plasma acylated ghrelin and GE in the stress model. The action of rikkunshito on delayed GE was blocked by co-administration of the ghrelin receptor antagonist. UCN1 decreased the amplitude of contraction in the antrum while increasing it in the duodenum. The motility index of the antrum but not the duodenum was significantly reduced by UCN1 treatment, which was improved by acylated ghrelin or rikkunshito. CONCLUSIONS & INFERENCES The UCN1-induced gastric motility dysfunction was mediated by abnormal acylated ghrelin dynamics. Supplementation of exogenous acylated ghrelin or enhancement of endogenous acylated ghrelin secretion by rikkunshito may be effective in treating functional GI disorders.
Collapse
Affiliation(s)
- Y. Harada
- Tsumura Research LaboratoriesTsumura & Co.IbarakiJapan
| | - S. Ro
- Department of Gastroenterology and HepatologySaitama Medical CenterSaitama Medical UniversitySaitamaJapan,Central Research LaboratoriesTeikyo University Chiba Medical CenterChibaJapan
| | - M. Ochiai
- Department of Gastroenterology and HepatologySaitama Medical CenterSaitama Medical UniversitySaitamaJapan
| | - K. Hayashi
- Department of Gastroenterology and HepatologySaitama Medical CenterSaitama Medical UniversitySaitamaJapan
| | - E. Hosomi
- Department of Gastroenterology and HepatologySaitama Medical CenterSaitama Medical UniversitySaitamaJapan
| | - N. Fujitsuka
- Tsumura Research LaboratoriesTsumura & Co.IbarakiJapan
| | - T. Hattori
- Tsumura Research LaboratoriesTsumura & Co.IbarakiJapan
| | - K. Yakabi
- Department of Gastroenterology and HepatologySaitama Medical CenterSaitama Medical UniversitySaitamaJapan
| |
Collapse
|
8
|
Azpiroz F, Feinle-Bisset C, Grundy D, Tack J. Gastric sensitivity and reflexes: basic mechanisms underlying clinical problems. J Gastroenterol 2014; 49:206-18. [PMID: 24306100 DOI: 10.1007/s00535-013-0917-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 11/19/2013] [Indexed: 02/04/2023]
Abstract
Both reflex and sensory mechanisms control the function of the stomach, and disturbances in these mechanisms may explain the pathophysiology of disorders of gastric function. The objective of this report is to perform a literature-based critical analysis of new, relevant or conflicting information on gastric sensitivity and reflexes, with particular emphasis on the comprehensive integration of basic and clinical research data. The stomach exerts both phasic and tonic muscular (contractile and relaxatory) activity. Gastric tone determines the capacity of the stomach and mediates both gastric accommodation to a meal as well as gastric emptying, by partial relaxation or progressive recontraction, respectively. Perception and reflex afferent pathways from the stomach are activated independently by specific stimuli, suggesting that the terminal nerve endings operate as specialized receptors. Particularly, perception appears to be related to stimulation of tension receptors, while the existence of volume receptors in the stomach is uncertain. Reliable techniques have been developed to measure gastric perception and reflexes both in experimental and clinical conditions, and have facilitated the identification of abnormal responses in patients with gastric disorders. Gastroparesis is characterised by impaired gastric tone and contractility, whereas patients with functional dyspepsia have impaired accommodation, associated with antral distention and increased gastric sensitivity. An integrated view of fragmented knowledge allows the design of pathophysiological models in an attempt to explain disorders of gastric function, and may facilitate the development of mechanistically orientated treatments.
Collapse
Affiliation(s)
- Fernando Azpiroz
- Digestive System Research Unit, Hospital General Vall d'Hebron, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), 08035, Barcelona, Spain,
| | | | | | | |
Collapse
|
9
|
Janssen P, Verschueren S, Rotondo A, Tack J. Role of Y(2) receptors in the regulation of gastric tone in rats. Am J Physiol Gastrointest Liver Physiol 2012; 302:G732-9. [PMID: 22268097 DOI: 10.1152/ajpgi.00404.2011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We set out to determine the effect of peptide YY(3-36) (PYY(3-36)) on the gastric muscle tone in conscious rats by measuring intragastric pressure (IGP) during intragastric nutrient drink infusion. After an overnight fast, a chronically implanted gastric fistula was connected to a custom-made nutrient drink infusion system and a catheter to measure IGP. IGP was measured before and during the infusion of a nutrient drink (Nutridrink; 0.5 ml/min) until 10 ml was infused. Rats were treated with PYY(3-36) (0, 33, and 100 pmol·kg(-1)·min(-1)) in combination with a subcutaneous injection of the Y(2) receptor antagonists JNJ31020028 (10 mg/kg) or BIIE0246 (2 mg/kg). Experiments were also performed after subdiaphragmatic vagotomy and after pretreatment with 3 ml of nutrient drink (to mimic a fed state). IGP was compared as the average IGP during nutrient infusion, represented as means ± SE and compared using ANOVA. PYY(3-36) dose dependently increased the IGP during nutrient infusion (4.7 ± 0.3, 5.7 ± 0.5 and 7.3 ± 0.7 mmHg; P < 0.01) while JNJ31020028 and BIIE0246 could block this increase [4.4 ± 0.5 (P < 0.001) and 4.8 ± 0.4 (P < 0.05) mmHg, respectively]. Also in vagotomized rats, PYY(3-36) was able to significantly increase the IGP during, an effect attenuated by JNJ31020028. BIIE0246 and JNJ31020028 were not able to decrease the IGP when no PYY(3-36) was administered. PYY(3-36) increased gastric tone through an Y(2) receptor-mediated mechanism that does not involve the vagus nerve. Y(2) receptor antagonists were not able to decrease gastric tone without exogenous administration of PYY(3-36), indicating that Y(2) receptors do not play a crucial role in the determination of gastric tone in physiological conditions.
Collapse
Affiliation(s)
- P Janssen
- Translational Research Center for Gastrointestinal Disorders, University of Leuven, Leuven, Belgium
| | | | | | | |
Collapse
|
10
|
Qin C, Chen JDZ, Zhang J, Foreman RD. Duodenal afferent input converges onto T9-T10 spinal neurons responding to gastric distension in rats. Brain Res 2007; 1186:180-7. [PMID: 17997398 PMCID: PMC2206627 DOI: 10.1016/j.brainres.2007.10.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Revised: 09/26/2007] [Accepted: 10/06/2007] [Indexed: 01/08/2023]
Abstract
Clinically, the overlap of gastroduodenal symptoms, such as visceral pain or hypersensitivity, is often observed in functional gastrointestinal disorders. The underlying mechanism may be related to intraspinal neuronal processing of noxious convergent inputs from the stomach and the intestine. The purpose of this study was to examine whether single low thoracic (T9-T10) spinal neurons responded to both gastric and duodenal mechanical stimulation. Extracellular potentials of single T9-T10 spinal neurons were recorded in pentobarbital anesthetized, paralyzed, and ventilated male rats. Graded gastric distensions (GD, 20, 40, 60 mm Hg, 20 s) were induced by air inflation of a latex balloon surgically placed in the stomach. Graded duodenal distensions (DD, 0.2, 0.4, 0.6 ml, 20 s) were produced by water inflation of a latex balloon placed into the duodenum. Of 70 deeper (depth from dorsal surface of spinal cord: 0.3-1.2 mm) spinal neurons responsive to noxious GD (> or =40 mm Hg), 44(63%) also responded to noxious DD (> or =0.4 ml). Similarly, 13/17 (76%) superficial neurons (depth <0.3 mm) responded to both GD and DD. Of 57 gastroduodenal convergent neurons, 41 (72%) had excitatory and 6 had inhibitory responses to both GD and DD; the remaining neurons exhibited multiple patterns of excitation and inhibition. 43/57 (75%) gastroduodenal convergent neurons had low-threshold (< or =20 mm Hg) responses to GD, whereas 42/57 (74%) of these neurons had high-threshold (> or =0.4 ml) responses to DD. In addition, 34/40 (85%) gastroduodenal convergent neurons had somatic receptive fields on the back, flank, and medial/lateral abdominal areas. These results suggested that superficial and deeper T9-T10 spinal neurons received innocuous and/or noxious convergent inputs from mechanical stimulation of the stomach and duodenum. Gastroduodenal convergent spinal neurons might contribute to intraspinal sensory transmission for cross-organ afferent-afferent communication between the stomach and duodenum and play a role in visceral nociception and reflexes.
Collapse
Affiliation(s)
- Chao Qin
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73190, USA.
| | | | | | | |
Collapse
|
11
|
Janssen P, Prins NH, Moreaux B, Meulemans AL, Lefebvre RA. Characterization of 5-HT7-receptor-mediated gastric relaxation in conscious dogs. Am J Physiol Gastrointest Liver Physiol 2005; 289:G108-15. [PMID: 15746214 DOI: 10.1152/ajpgi.00012.2005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We aimed to evaluate the gastric relaxant capacity of the 5-HT(1/7)-receptor agonist 5-carboxamidotryptamine (5-CT) in conscious dogs and to clarify the mechanism of action by use of selective antagonists, vagotomy, and in vitro experiments. A barostat enabled us to monitor the intragastric volume in response to different treatments (intravenously administered) before and after supradiaphragmatic vagotomy [results presented as the maximum volume change after treatment (mean; n = 5-11)]. In vitro experiments were performed with isolated muscle strips cut from four different stomach regions of the vagotomized dogs [results were fitted to the operational model of agonism to determine the efficacy parameter tau (n = 5)]. 5-CT (0.5-10 microg/kg) caused a dose-dependent gastric relaxation (29-267 ml) that was completely blocked by the selective 5-HT(7)-receptor antagonist SB-269970 (50 microg/kg). After vagotomy, the relaxation to 10 microg/kg 5-CT was significantly less pronounced (73 vs. 267 ml; P < 0.05) but still blocked by SB-269970, whereas the response to the nitric oxide donor nitroprusside was similar to that before vagotomy (178 vs. 218 ml). In vitro, 5-CT concentration dependently inhibited the PGF(2alpha)-contracted muscle strips before and after vagotomy. Although before and after vagotomy the response in every region was mediated by 5-HT(7) receptors (apparent affinity dissociation constant: SB-269970, 8.2-8.6 vs. 8.3-8.6, respectively), the response after vagotomy was less efficacious (log tau: 1.9 to 0.5 vs. 1.4 to -0.1). The results indicate that the 5-CT-induced proximal stomach relaxation in conscious dogs before and after vagotomy is mediated via 5-HT(7) receptors. The decreased efficacy of 5-CT in vitro after vagotomy is probably related to vagotomy-induced changes in receptor density or coupling efficiency and provides a possible explanation for the decreased in vivo response to 5-CT after vagotomy.
Collapse
Affiliation(s)
- Pieter Janssen
- Heymans Institute of Pharmacology, Ghent University, Ghent, Belgium.
| | | | | | | | | |
Collapse
|
12
|
Chi MM, Fan G, Fox EA. Increased short-term food satiation and sensitivity to cholecystokinin in neurotrophin-4 knock-in mice. Am J Physiol Regul Integr Comp Physiol 2004; 287:R1044-53. [PMID: 15297267 DOI: 10.1152/ajpregu.00420.2004] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Neurotrophin-4 (NT-4) knockout mice exhibited decreased innervation of the small intestine by vagal intraganglionic laminar endings (IGLEs) and reduced food satiation. Recent findings suggested this innervation was increased in NT-4 knock-in (NT-4KI) mice. Therefore, to further investigate the relationship between intestinal IGLEs and satiation, meal patterns were characterized using solid and liquid diets, and cholecystokinin (CCK) effects on 30-min solid diet intake were examined in NT-4KI and wild-type mice. NT-4KI mice consuming the solid diet exhibited reduced meal size, suggesting increased satiation. However, compensation occurred through increased meal frequency, maintaining daily food intake and body weight gain similar to controls. Mutants fed the liquid diet displayed a decrease in intake rate, again implying increased satiation, but meal duration increased, which led to an increase in meal size. This was compensated for by decreased meal frequency, resulting in similar daily food intake and weight gain as controls. Importantly, these alterations in NT-4KI mice were opposite, or different, from those of NT-4 knockout mice, further supporting the hypothesis that they are specific to vagal afferent signaling. CCK suppressed short-term intake in mutants and controls, but the mutants exhibited larger suppressions at lower doses, implying they were more sensitive to CCK. Moreover, devazepide prevented this suppression, indicating this increased sensitivity was mediated by CCK-1 receptors. These results suggest that the NT-4 gene knock-in, probably involving increased intestinal IGLE innervation, altered short-term feeding, in particular by enhancing satiation and sensitivity to CCK, whereas long-term control of daily intake and body weight was unaffected.
Collapse
Affiliation(s)
- Michael M Chi
- Department of Psychological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | | | | |
Collapse
|
13
|
Janssen P, Prins NH, Moreaux B, Meulemans AL, Lefebvre RA. In vivo characterization of 5-HT1A receptor-mediated gastric relaxation in conscious dogs. Br J Pharmacol 2003; 140:913-20. [PMID: 14517177 PMCID: PMC1574099 DOI: 10.1038/sj.bjp.0705507] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2003] [Revised: 08/08/2003] [Accepted: 08/18/2003] [Indexed: 11/08/2022] Open
Abstract
Accumulating data have been published emphasizing the important role of 5-hydroxytryptamine (5-HT) receptors in proximal stomach relaxation. However, a proper in vivo characterization of 5-HT receptors mediating gastric relaxation is still missing. In the current study, we focus on the in vivo characterization of 5-HT1A receptors mediating relaxation of the proximal stomach in conscious dogs. Beagle dogs were equipped with a gastric fistula. In the conscious state, volume changes within an intragastric bag were measured at constant pressure by means of a barostat. Results are presented as the maximum volume increase after treatment (mean+/-s.e.m.). All drugs were injected intravenously. The 5-HT1A receptor agonist flesinoxan (10, 50, 100 and 150 microg kg-1) induced a dose-dependent relaxation of the canine proximal stomach (50+/-10, 230+/-51, 290+/-38 and 275+/-33 ml, respectively; n=9-11). The selective 5-HT1A receptor antagonist WAY-100635 dose-dependently inhibited the flesinoxan-induced relaxation. NG-nitro-l-arginine methyl ester did not affect this relaxation, suggesting that nitrergic nerves are not involved. After supradiaphragmatic vagotomy, the baseline of the intragastric volume was larger compared to that before vagotomy (317+/-50 vs 142+/-28 ml, respectively; n=5). Compensation for this by either reduction of the intraballoon pressure or infusion of a contractile dose of bethanechol did not establish a condition in which flesinoxan was able to relax the stomach. In contrast, nitroprusside induced a significant gastric relaxation when tone was increased by bethanechol. It is concluded that flesinoxan induces proximal gastric relaxation in conscious dogs via 5-HT1A receptors. The response is mediated through a vagal pathway without involvement of nitrergic nerves.
Collapse
Affiliation(s)
- P Janssen
- Heymans Institute of Pharmacology, Ghent University, Ghent, Belgium.
| | | | | | | | | |
Collapse
|
14
|
De Ponti F, Crema F, Moro E, Nardelli G, Frigo G, Crema A. Role of 5-HT1B/D receptors in canine gastric accommodation: effect of sumatriptan and 5-HT1B/D receptor antagonists. Am J Physiol Gastrointest Liver Physiol 2003; 285:G96-G104. [PMID: 12646419 DOI: 10.1152/ajpgi.00280.2002] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The 5-HT1B/D receptor agonist sumatriptan has been proposed to treat dyspeptic symptoms, because it facilitates gastric accommodation. It is unknown whether stimulation of 5-HT1B/D receptors is involved. Thus, in four conscious dogs, we compared the effects of sumatriptan alone or combined with N-[4-methoxy-3-(4-methyl-1-piperazinyl) phenyl]-2'-methyl-4'-(5-methyl-1,2,4-oxadiazol-3-yl)-[1,1-biphenyl]-4-carboxamide hydrocloride (GR-127935), N-[3-[3 (dimethylamino)-ethoxy]-4-methoxyphenyl]-2'-[methyl-4'-(5-methyl-1,2,4-oxadiazol-3-yl)]-[1,1-biphenyl]-4-carboxamide hydrocloride (SB-216641 hydrochloride), or 3-[4-(4-chloro-phenyl)piperazin-1-yl]-1,1-diphenyl-2-propanol hydrochloride (BRL-15572 hydrochloride) (respectively, nonselective 5-HT1B/D, selective 5-HT1B, and selective 5-HT1D receptor antagonists) on gastric accommodation to isobaric distensions performed with a barostat. An exponential and a linear model were used to fit the pressure-volume relationship. An exponential equation fitted the data better than a linear equation. Sumatriptan (800 nmol/kg iv) induced an immediate gastric relaxation (Deltavolume: 112 +/- 44 ml, P < 0.05). After sumatriptan, the pressure-volume curve was shifted toward significantly higher volumes. This effect was fully reversed by GR-127935 or SB-216641 but not by BRL-15572. In conclusion, 5-HT1B receptors seem to play an important role in modulating gastric accommodation to a distending stimulus. An exponential model for pressure-volume curves fits well with the concept of gastric adaptive relaxation.
Collapse
Affiliation(s)
- Fabrizio De Ponti
- Department of Pharmacology, University of Bologna, Via Irnerio 48, I-40126 Bologna, Italy.
| | | | | | | | | | | |
Collapse
|
15
|
Neurotrophin-4 deficient mice have a loss of vagal intraganglionic mechanoreceptors from the small intestine and a disruption of short-term satiety. J Neurosci 2001. [PMID: 11606648 DOI: 10.1523/jneurosci.21-21-08602.2001] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Intraganglionic laminar endings (IGLEs) and intramuscular arrays (IMAs) are the two putative mechanoreceptors that the vagus nerve supplies to gastrointestinal smooth muscle. To examine whether neurotrophin-4 (NT-4)-deficient mice, which have only 45% of the normal number of nodose ganglion neurons, exhibit selective losses of these endings and potentially provide a model for assessing their functional roles, we inventoried IGLEs and IMAs in the gut wall. Vagal afferents were labeled by nodose ganglion injections of wheat germ agglutinin-horseradish peroxidase, and a standardized sampling protocol was used to map the terminals in the stomach, duodenum, and ileum. NT-4 mutants had a substantial organ-specific reduction of IGLEs; whereas the morphologies and densities of both IGLEs and IMAs in the stomach were similar to wild-type patterns, IGLEs were largely absent in the small intestine (90 and 81% losses in duodenum and ileum, respectively). Meal pattern analyses revealed that NT-4 mutants had increased meal durations with solid food and increased meal sizes with liquid food. However, daily total food intake and body weight remained normal because of compensatory changes in other meal parameters. These findings indicate that NT-4 knock-out mice have a selective vagal afferent loss and suggest that intestinal IGLEs (1) may participate in short-term satiety, probably by conveying feedback about intestinal distension or transit to the brain, (2) are not essential for long-term control of feeding and body weight, and (3) play different roles in regulation of solid and liquid diet intake.
Collapse
|
16
|
Kihara N, Fujimura M, Yamamoto I, Itoh E, Inui A, Fujimiya M. Effects of central and peripheral urocortin on fed and fasted gastroduodenal motor activity in conscious rats. Am J Physiol Gastrointest Liver Physiol 2001; 280:G406-19. [PMID: 11171623 DOI: 10.1152/ajpgi.2001.280.3.g406] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Since few previous studies have examined the effects of urocortin on physiological fed and fasted gastrointestinal motility, we administered urocortin intracerebroventricularly (icv) or intravenously (iv) in freely moving conscious rats and examined the changes in antral and duodenal motility. Icv and iv injection of urocortin disrupted fasted motor patterns of gastroduodenal motility, which were replaced by fed-like motor patterns. When urocortin was given icv and iv in the fed state, the motor activity remained like the fed patterns but % motor index (%MI) was decreased in the antrum and increased in the duodenum. Increase in the %MI in the duodenum induced by urocortin was shown as a nonpropagated event, since the transit of nonnutrient contents in the duodenum was decreased by icv and iv injection of urocortin. Changes in the gastroduodenal motility induced by icv injection of urocortin were abolished in animals with truncal vagotomy but not altered in animals with mechanical sympathectomy, suggesting that the vagal pathway may mediate the central action of urocortin. Neither urocortin antiserum nor alpha-helical CRF-(9-41) affected fed and fasted gastroduodenal motility, suggesting that endogenous urocortin is not involved in regulation of basal gastroduodenal motility.
Collapse
Affiliation(s)
- N Kihara
- Department of Surgery, Shiga University of Medical Science, Otsu, Japan
| | | | | | | | | | | |
Collapse
|
17
|
Andrews JM, Doran SM, Hebbard GS, Malbert CH, Horowitz M, Dent J. Nutrient-induced spatial patterning of human duodenal motor function. Am J Physiol Gastrointest Liver Physiol 2001; 280:G501-G509. [PMID: 11171634 DOI: 10.1152/ajpgi.2001.280.3.g501] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The spatiotemporal patterning of duodenal motor function has been evaluated comprehensively for the first time in humans, with a novel 21-lumen manometric assembly. In nine young, healthy volunteers (6 male, 3 female), duodenal motility was recorded during fasting and three 45-min intraduodenal (ID) nutrient infusion periods (Intralipid at 0.25, 0.5, and 1.5 kcal/min). Pressures were recorded along the length of the duodenum with an array of 18 sideholes at 1.5-cm intervals. Pressure patterns were compared for the final 20 min of each of the four periods. Compared with fasting, ID lipid was associated with regional variation in pressure wave (PW) sequences, with fewer proximally and more distally; this was not observed during fasting (P < 0.001). During fasting and all rates of lipid infusion, most (87-90%) PW sequences were short (1.5-4.5 cm), with a small number (2-4%) of 10.5 cm or longer. At all times, antegrade PW sequences occurred more frequently than retrograde sequences over all distances examined (3, 4.5, and >6 cm), and the proportion of antegrade sequences increased with greater PW sequence length (P = 0.0001). Increasing ID lipid rates appeared to produce dose-related suppression of PW sequences (P < 0.001). The frequency and spatial patterning of human duodenal motor function show substantial variability in response to different nutrient delivery rates. These complex patterns are likely to be involved in duodenal modulation of flow and gastric emptying rate.
Collapse
Affiliation(s)
- J M Andrews
- Department of Medicine, Royal Adelaide Hospital, Adelaide, South Australia 5000, Australia.
| | | | | | | | | | | |
Collapse
|
18
|
Tack J. Functional Dyspepsia: Impaired Fundic Accommodation. CURRENT TREATMENT OPTIONS IN GASTROENTEROLOGY 2000; 3:287-294. [PMID: 11096589 DOI: 10.1007/s11938-000-0042-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Functional dyspepsia is a heterogeneous disorder in which distinct pathophysiological abnormalities are present in subgroups of patients. Accommodation of the proximal stomach to a meal is impaired in 40% of patients with functional dyspepsia. This is associated with symptoms of early satiety and weight loss. The presence of early satiety as a relevant or severe symptom is a good predictor of impaired accommodation. Gastric barostat or proximal gastric ultrasound may confirm the presence of impaired accommodation after a meal. Sophisticated analysis of scintigraphic gastric emptying images or a simple caloric drinking test are under investigation in the diagnosis of impaired accommodation. It seems logical to have patients eat more frequent, smaller sized meals. Cisapride is the only well-evaluated form of pharmacological treatment for this condition, and has been withdrawn from the US market (see Important Note under Treatment, below). Small or preliminary studies suggest some benefit from buspirone or selective serotonin reuptake inhibitors (SSRIs).
Collapse
Affiliation(s)
- J Tack
- Department of Internal Medicine, Division of Gastroenterology, University Hospital Gasthuisberg, University of Leuven, Herestraat 49, B-3000 Leuven, Belgium.
| |
Collapse
|
19
|
Junien JL, Riviere P. Review article: the hypersensitive gut--peripheral kappa agonists as a new pharmacological approach. Aliment Pharmacol Ther 1995; 9:117-26. [PMID: 7605851 DOI: 10.1111/j.1365-2036.1995.tb00360.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Hypersensitivity to pain is a common component of functional bowel disorders. Hyperalgesia may be induced by various stimuli which produce a cocktail of inflammatory mediators that decrease the pain threshold. Drugs able to block these peripheral events within the gut may offer a new pharmacological approach for treating functional bowel disorders. Kappa opioids have been shown to inhibit somatic pain through a peripheral mechanism of action, acting directly on receptors located on peripheral sensory endings. They can block both the nociceptive messages as well as the release of sensory peptides. This paper reviews the effects of opioid agonists on gut visceral pain and motility anomalies induced by visceral pain. Kappa opioids have strong effects on all models tested, with a peripheral mechanism of action allowing the design of drugs acting only in the periphery and having no central nervous system side-effects. This contrasts with mu agonists which are centrally active on pain and worsen the subsequent transit and motility anomalies.
Collapse
Affiliation(s)
- J L Junien
- Institut de Recherche Jouveinal, Fresnes, France
| | | |
Collapse
|